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Abstract Estimating and quantifying uncertainty in system parameters remains a
big challenge in applied and computational mathematics. A subset of these problems
includes estimating periodic parameters that have unknown dynamics. Along with
their time series, the period of these parameters may also be unknown and need to
be estimated. The aim of this paper is to address the periodic parameter estimation
problem, with particular focus on exploring the associated uncertainty, using Monte
Carlo particle methods, such as the ensemble Kalman filter. Both parameter tracking
and piecewise function approximations of periodic parameters are considered, high-
lighting aspects of parameter uncertainty in each approach when considering factors
such as the frequency of available data and the number of piecewise segments used
in the approximation. Estimation of the period of the periodic parameters and related
uncertainty is also analyzed in the piecewise formulation. The pros and cons of each
approach are discussed relative to a numerical example estimating the external volt-
age parameter in the FitzHugh-Nagumo system for modeling the spiking dynamics
of neurons.
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parameter estimation; uncertainty quantification; periodic parameters.

1 Introduction

Estimating and quantifying uncertainty in system parameters remains a big challenge
in applied and computational mathematics. A subset of these problems includes
estimating parameters that vary periodicallywith time but have unknown or uncertain
time evolution models. Examples of periodic, time-varying parameters in dynamical

Andrea Arnold
Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA,
e-mail: anarnold@wpi.edu

1



2 Andrea Arnold

systems arising from life sciences applications include the seasonal transmission
in modeling the spread of infectious diseases [1, 9, 17] and the external voltage in
modeling the spiking dynamics of neurons [34].

While most traditional algorithms aim at estimating constant parameters, the
challenge in estimating time-varying parameters lies in accurately accounting for
their time evolution without observations or known evolution models. In the case
of periodic parameters, the resulting time series estimates should also maintain
periodicity. Along with their time series, the period of these parameters may also
be unknown and therefore may need to be estimated. This is particularly true in real
data applications where a reasonable approximation of the period may not be clear
from the available information.

The aim of this paper is to address the periodic parameter estimation problem,
with particular focus on exploring the uncertainty associated with estimating peri-
odic, time-varying parameters. In particular, this work uses sequential Monte Carlo
particle methods (or nonlinear filtering methods) [27, 26, 16, 13, 29] to estimate
the time series of periodic parameters. Note that while the term “sequential Monte
Carlo” sometimes refers exclusively to particle filters, in this work the term more
generally refers to sequential-in-time, Monte Carlo-based particle methods, includ-
ing both particle filters and ensemble Kalman-type filters. In the Bayesian family of
parameter estimation algorithms, Monte Carlo particle methods naturally account
for uncertainty in the resulting parameter estimates by treating the unknowns as
random variables with probability distributions describing their most likely values.

Both parameter tracking [34, 20, 30] and piecewise function approximations [8]
of periodic parameters are considered, highlighting aspects of parameter uncertainty
in each approach when considering factors such as the frequency of available data
and the number of piecewise segments used in the approximation. Estimation of
the period of the periodic parameters and related uncertainty is also analyzed in
the piecewise formulation. As is demonstrated in the numerical results, while the
parameter tracking method is efficient in tracking the overall behavior of slowly-
varying parameters, it is unable to guarantee that periodicity ismaintained in resulting
parameter estimates. Pros and cons of each approach are discussed as applied to
a numerical example estimating the external voltage parameter in the FitzHugh-
Nagumo system for modeling neuron spiking dynamics.

The paper is organized as follows. Section 2 gives a review of the parameter esti-
mation inverse problem and the Bayesian solution using sequential Monte Carlo par-
ticle methods, specifically outlining the augmented ensemble Kalman filter. Section
3 describes the parameter tracking and piecewise function approaches to estimating
periodic parameters and discusses aspects of uncertainty relating to each approach.
Section 4 gives numerical results on estimating the external voltage parameter in the
FitzHugh-Nagumo model, and Section 5 provides discussion and future work.
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2 Parameter Estimation and Monte Carlo Particle Methods

The parameter estimation inverse problemcan be summarized as estimating unknown
or uncertain system parameters given some discrete, noisy observations of (possibly
a subset or some function of) the states of the system. More specifically, assume that
an ordinary differential equation (ODE) model of the form

dx
dt
= f (t, x, θ), x(0) = x0 (1)

describes the dynamics of a system, which involves states x = x(t) ∈ Rd and
unknown (or poorly known) parameters θ ∈ Rq . While the model function f :
R × Rd × Rq → Rd is assumed to be known, the initial value x0 ∈ R

d may also
be unknown – in this case, x0 may also be estimated along with the parameters θ.
Further, assume the discrete, noisy observations yk ∈ Rm, k = 1, 2, ...,T , have the
form

yk = g(x(tk), θ) + wk, 0 < t1 < t2 < . . . < tT (2)

where g : Rd×Rq → Rm, m ≤ d, is a known observation function and wk represents
the observation error. The inverse problem is therefore to estimate the parameters θ
and states x(t) at some discrete times from the observations yk .

From the Bayesian perspective, the unknown parameters θ, states x, and obser-
vations y are treated as random variables with probability distributions π(·), and the
solution to the inverse problem is the joint posterior density

π(x, θ | y) ∝ π(y | x, θ)π(x, θ) (3)

which follows from Bayes’ theorem. The likelihood π(y | x, θ) indicates how likely
it is that the data y are observed if the states x and parameters θ were known, and the
prior density π(x, θ) encodes any information known about the states and parameters
before accounting for the data.

There are various approaches to solving Bayesian inverse problems, including
both sequential and nonsequential methods. Nonsequential methods, such asMarkov
chain Monte Carlo (MCMC)-type schemes [3, 19, 18], sample the posterior density
by taking into account the full time series of data at once. Sequential Monte Carlo
particle methods [27, 26, 16], on the other hand, make use of stochastic evolution-
observation models to sequentially update the posterior using a two-step, predictor-
corrector-type scheme, accounting for each data point as it arrives in time. A variety
of Monte Carlo particle methods are available in the literature, including particle
filters [29, 32, 24, 6] and ensemble Kalman-type filters [12, 11, 13, 7]. For a recent
review, see [14].

Given the set Dk = {y1, y2, . . . , yk} of observations up to time tk , sequential
Monte Carlo particle methods update the posterior distribution from time tk to time
tk+1 as follows:

π(xk, θ | Dk) −→ π(xk+1, θ | Dk) −→ π(xk+1, θ | Dk+1) (4)
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The first step (i.e., the prediction step) in the scheme predicts the values of the
states at time tk+1 without knowledge of the data, while the second step (i.e., the
analysis step) updates the predictions by taking into account the data at time tk+1.
Note that if there is no data observed at tk+1, then Dk+1 = Dk and the prediction
density π(xk+1, θ | Dk) is equivalent to the posterior π(xk+1, θ | Dk+1). Starting with
a prior density π(x0, θ0 | D0), D0 = ∅, this updating scheme is repeated until the
final posterior density is obtained when k = T .

2.1 Augmented Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) [12, 11] is a sequential particle approach that,
unlike other particle methods that require importance sampling, moves (or pushes)
particles forward in time based on the prediction and correction steps of the filter.
Assume that the current density π(xk, θ | Dk) is represented by a discrete ensemble

Sk |k =
{(

xnk |k, θ
n
k |k

)}N
n=1

(5)

comprising N joint samples of the states xn
k |k

and parameters θn
k |k

at time k. In the
prediction step of the filter, the state ensemble is updated using the equation

xnk+1 |k = F(xnk |k, θ
n
k |k) + v

n
k+1, vnk+1 ∼ N(0,Ck+1) (6)

for each n = 1, . . . , N , where F is the numerical solution to the ODE system (1)
from time k to k + 1. Note that the parameter samples θn

k |k
are not updated in the

prediction step.
To prepare for the analysis step, in which both the states and parameter values

will be updated, the predicted state ensemble is combined with the current parameter
ensemble into the augmented vectors

znk+1 |k =

[
xn
k+1 |k
θn
k |k

]
∈ Rd+q, n = 1, . . . , N (7)

and ensemble statistics formulas are used to compute the augmented ensemble
mean z̄k+1 |k and covariance Γk+1 |k . The covariance matrix Γk+1 |k contains cross-
correlation information between the states and parameters that is used to update the
parameter values in the next step.

In the analysis step, an observation ensemble

ynk+1 = yk+1 + w
n
k+1, wn

k+1 ∼ N(0,Dk+1), n = 1, . . . , N (8)

is generated around the observation yk+1 to prevent the resulting posterior ensemble
from having too low a variance [11]. The observation ensemble is then compared to
the observation model predictions
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ŷnk+1 = g(xnk+1 |k, θ
n
k |k), n = 1, . . . , N (9)

with g as in (2) in the updating equation

znk+1 |k+1 = znk+1 |k + Kk+1
(
ynk+1 − ŷnk+1

)
, n = 1, . . . , N . (10)

To accommodate nonlinear observations [31], the Kalman gain Kk+1 in (10) is
computed by

Kk+1 = Szŷ
k+1

(
Sŷŷ
k+1 + Dk+1

)−1 (11)

where Szŷ
k+1 gives the cross-correlation between the augmented predictions zn

k+1 |k in

(7) and observation model predictions ŷn
k+1 in (9), Sŷŷ

k+1 is the forecast error covari-
ance, and Dk+1 is the observation noise covariance as in (8). The above algorithm,
known as the augmented EnKF for combined state and parameter estimation [13, 7],
is repeated until the joint posterior density is obtained at k = T .

3 Estimating Periodic Parameters and the Role of Uncertainty

In the traditionalMonteCarlo particlemethods described in Section 2, the parameters
θ are assumed to be constant (or static) parameters, i.e., dθ/dt = 0, and are artificially
evolved over time as the posterior is updated. Depending on the implementation of
the method used, the parameter values may be updated during both the prediction
and analysis steps, or only in the analysis step via their correlation with the state
predictions. In particular, the augmented EnKF outlined in Section 2.1 updates the
parameter estimates only in the analysis step at each data arrival through the use
of cross-correlation information encoded in the Kalman gain (11). The periodic
parameters of interest in this work, however, are known to vary with time but do not
have known time evolution models. The main challenges in this problem therefore
lie in accurately accounting for the time evolution of these parameters while also
maintaining the periodic structure.

One approach is to consider parameter tracking algorithms [34, 20, 30], which
can trace the dynamics of slowly-changing parameters over time by allowing for a
drift in the parameter values during the prediction step of sequential Monte Carlo.
More specifically, the predicted change in the parameter θ(t) is modeled as a random
walk

θnk+1 |k = θ
n
k |k + ξ

n
k+1, ξnk+1 ∼ N(0,Ek+1), n = 1, . . . , N (12)

where Ek+1 defines the covariance of the drift term ξn
k+1. Note that inclusion of

the drift term in (12) is crucial in allowing the algorithm to track the underlying
dynamics of the time-varying parameter. While parameter tracking algorithms are
straightforward to implement, the drift covariance Ek+1, which is typically modeled
as Ek+1 = σ

2
ξ I for some constant σξ , must be chosen carefully in order to avoid filter

divergence [23, 2, 37, 10, 21] and result in a useful parameter estimate. The drift
covariance also plays a direct role in the uncertainty of the resulting parameter esti-
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mate, thereby affecting the corresponding model output predictions [5]. Moreover,
in the case of estimating periodic parameters, parameter tracking algorithms do not
guarantee that periodicity is maintained throughout the estimation process.

An alternative approach that maintains periodicity in the parameter estimation is
to model the periodic parameter θ(t) as a piecewise function

θ(t) =



θ1(t) , t ∈
[
0,

p
`

)
θ2(t) , t ∈

[ p
`
,

2p
`

)
...

...

θ`(t) , t ∈
[
(` − 1)p

`
, p

)
(13)

where each θi(t), i = 1, . . . , `, is a function relying on some unknown constant
coefficients, repeated each period p, that can be estimated using traditional Monte
Carlo particle methods. A similar piecewise formulation using nonlinear filtering
was presented in [8] assuming that the period p was known and fixed during the
estimation process. However, in general the period of the parameter may not be
known a priori and may need to be estimated along with the other unknown system
parameters. Therefore, in this work, the period p is assumed to be unknown and is
estimated along with the unknown piecewise function coefficients.

The formulation in (13) can accommodate estimation using piecewise constant
functions or splines of various order. In this study and the numerical experiments that
follow in Section 4, we employ a continuous linear interpolating spline (of degree
1) where

θi(t) = ai + bi(t − ti−1) , t ∈ [ti−1, ti) =
[
(i − 1)p

`
,

ip
`

)
(14)

for i = 1, . . . , `, with constant coefficients ai and bi denoting the y-intercept and
slope of the line θi(t), respectively. Note that the spline knots tj , j = 0, . . . , `, in (14)
depend on both the period p and number of spline segments `. Continuity dictates
that θi(ti) = θi+1(ti) for i = 1, . . . , ` − 1, and it follows from definition of the linear
spline in (14) that θi(ti−1) = ai for i = 1, . . . , `. Since the slope coefficients bi can
be computed directly from the y-intercepts ai , i = 1, . . . , ` + 1, via the formula

bi =
ai+1 − ai
ti − ti−1

=
ai+1 − ai

p/`
=
`

p
(
ai+1 − ai

)
(15)

it suffices to estimate only the values for ai , i = 1, . . . , ` + 1, along with the period p.
Therefore the parameter estimation problem consists of estimating L = ` + 1 spline
coefficients and the period p, for a total of L + 1 unknown static parameters relating
to the periodic parameter of interest.

Various factors must be considered in analyzing the uncertainty relating to the
piecewise formulation (13)–(14). In this study, we consider how the frequency of
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the data in time and the number of linear spline segments ` used in the estimation
affects the resulting periodic parameter estimates and corresponding uncertainty.

4 Numerical Example: External Voltage in FitzHugh-Nagumo

As a numerical example, we consider synthetic data generated from the FitzHugh-
Nagumo system [15] which acts as a simplified version of the Hodgkin-Huxley
system [22] for modeling the spiking dynamics of single neurons. The FitzHugh-
Nagumo equations are given by

dx1
dt
= c

(
x2 + x1 −

x3
1

3
+ v(t)

)
(16)

dx2
dt
= −

1
c

(
x1 − a + bx2

)
(17)

where the state variable x1(t) represents the measurable membrane potential of
the neuron, while x2(t) denotes an unobservable combined effect of various ionic
currents. The parameters a, b, and c are commonly fixed to some known values a
priori, but the external voltage v(t) is an unknown, time-varying parameter.

Figure 1 shows the synthetic data and underlying system states generated from
(16)–(17) using initial values x1(0) = 1 and x2(0) = 0.5 and fixed parameters
a = 0.7, b = 0.8, and c = 3, along with the time-varying external voltage parameter
modeled as a periodic, sinusoidal function v(t) = 0.5 sin(ωt+π/2)−1with frequency
ω = 0.1. Therefore, in this example, v(t) plays the role of the periodic parameter
θ(t) described in Section 3. This choice of v(t) varies more slowly than the system
dynamics, making it amenable to particlemethodswith parameter tracking. A similar
example was considered in [5], where the focus was to study the effects of uncertainty
in parameter tracking estimates and their corresponding model output predictions.
The data was generated by observing x1(t) at 1257 equidistant time instances over
the interval [0, 251.2], covering four periods of v(t), and corrupting the observations
with zero-mean Gaussian noise. The standard deviation of the noise was taken to be
20% of the standard deviation of x1(t) over the full time interval.

For the first numerical experiment, we consider estimating the periodic parameter
v(t) using the piecewise formulation (13)–(14) with ` = 10 spline segments (L = 11
knots) and estimating the L = 11 unknown linear spline coefficients a1, . . . , a11,
along with the unknown period p. While various particle methods could be applied,
we employ an augmented EnKF in the style of [7] with N = 150 ensemble members
to estimate the system states x1(t) and x2(t) along with the parameter vector θ =
(a1, . . . , a11, p) ∈ R12 as described; see [7] for implementation details of the filter
beyond those given in Section 2.1.

Assuming that the initial values of the system are not fully known, the prior
ensemble of states is drawn uniformly from 0.5 to 1.5 times the value of the first
observed value of x1(t) and set to 0 for x2(t) (unobserved). The prior ensemble of
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Fig. 1 Noisy observations of the membrane potential x1(t) (top, blue and purple markers) from
the FitzHugh-Nagumo system (16)–(17), along with the unobserved lumped ionic current x2(t)
(bottom, solid black) and external voltage parameter v(t) (bottom, dashed black). In the top panel,
the blue (dots) and purple (asterisks) markers together represent noisy observations taken every 0.2
time units, while the purple markers alone show noisy observations every 2 time units.

parameter values is drawn uniformly fromU(−2, 1) for each of the spline coefficients
a1, . . . , a11 and fromU(55, 75) for the period p. Throughout the estimation process,
a positivity constraint is placed on the period such that pn

k |k
> 0 for all n and k, and

time integration is performed using the Adams-Moulton linear multistep methods of
orders 1 and 2 [28, 25].

Figure 2 shows the resulting linear spline estimates of v(t) computed using the es-
timated parameter means and ±2 standard deviation values for the spline coefficients
a1, . . . , a11 and period p, repeated over four periods. The corresponding estimates of
p are listed in Table 1. For comparison with the piecewise approach, Figure 2 also
shows the resulting mean and ±2 standard deviation curves estimating v(t) using the
augmented EnKF with parameter tracking, where the drift term has prescribed stan-
dard deviation σξ = 0.01. Note that the uncertainty in the resulting estimates of v(t)
is much smaller in the piecewise formulation; however, some parts of the true v(t)
curve are not captured within the uncertainty bounds, specifically near the beginning
of the estimated period (≈ 63.7212) at each repetition. While the uncertainty in the
parameter drift estimate is able to almost fully capture the underlying true v(t), the
mean estimate does not fully maintain the periodicity intrinsic to v(t).

The next numerical experiment explores how the uncertainty in the parameter
estimates using both the piecewise linear spline formulation and parameter tracking
is affected by the frequency of available data over time. To that end, the synthetic
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Fig. 2 Parameter estimates of the external voltage parameter v(t) in the FitzHugh-Nagumo system
(16)–(17) computed using piecewise linear splines with estimated spline coefficients when ` = 10
and period p repeated over four periods (top panel) and parameter tracking (bottom panel). In the
top panel, the linear spline using the augmented EnKF mean estimates of the spline coefficients and
period is shown in solid red, while the linear splines computing using the ±2 standard deviation
parameter estimates are shown in dark grey, filled with light grey. In the bottom panel, the mean
parameter tracking estimating using the augmented EnKF is shown in solid red, while the ±2
standard deviation curves are shown in dark grey, filled with light grey. In both panels, the true v(t)
used in generating the synthetic data is shown in dashed black. Estimates were obtained using the
full synthetic data shown in Figure 1.

data is subsampled, taking every 10 data points for a total of 126 noisy observations
of x1(t) at equidistant time instances over the interval [0, 251.2]. Figure 1 displays
the subsampled data in purple markers (asterisks) on the top panel. Figure 3 shows
the resulting parameter estimates, using both piecewise linear splines and parameter
tracking, initialized as in the previous numerical experiment. Note that less frequent
observations result in significantly more uncertainty in both the piecewise linear
spline and parameter tracking estimates of v(t). While the linear spline estimate is
able to fairly well approximate and fully capture the true v(t) within the uncertainty
bounds, the parameter tracking algorithm has more difficulty tracking v(t) in this
case – the mean estimate does not maintain periodicity and is also noticeably out of
phase with the true v(t).

The last numerical experiment considered in this paper studies the effect of the
number of linear spline segments ` (corresponding to L = ` + 1 spline knots) on the
piecewise estimation of v(t) and corresponding estimate for the period p. To this end,
the piecewise linear spline estimation is performed using five different choices of `
(namely, ` = 2, 5, 10, 15, 20) and the full synthetic data in Figure 1. Figure 4 shows
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Fig. 3 Parameter estimates of the external voltage parameter v(t) in the FitzHugh-Nagumo system
(16)–(17) computed using piecewise linear splines with estimated spline coefficients when ` = 10
and period p repeated over four periods (top panel) and parameter tracking (bottom panel). In the
top panel, the linear spline using the augmented EnKF mean estimates of the spline coefficients and
period is shown in solid red, while the linear splines computing using the ±2 standard deviation
parameter estimates are shown in dark grey, filled with light grey. In the bottom panel, the mean
parameter tracking estimating using the augmented EnKF is shown in solid red, while the ±2
standard deviation curves are shown in dark grey, filled with light grey. In both panels, the true v(t)
used in generating the synthetic data is shown in dashed black. Estimates were obtained using the
subsampled synthetic data shown in Figure 1.

the resulting linear spline estimates for each ` over one estimated period. Table 1
gives the corresponding estimates of the period p in each case, along with the relative
error comparing the EnKF mean estimate of the period with the true period used
in generating the synthetic data. The relative error in each case is computed via the
formula

relative error =
���� ptrue − pest

ptrue

���� (18)

where pest is the augmented EnKF mean estimate of the period and ptrue ≈ 62.8319
is the true period (up to four decimal places).

The amount of uncertainty in each spline estimate is low, similar to the results
seen in Figure 2 using the full time series of data. It is interesting to note that as the
number of spline segments ` increases, the EnKF estimate of the period p tends to
increase. While the fit of the spline improves from ` = 2 to ` = 10, adding more
spline segments eventually starts to degrade the fit along with overestimating the
period, as is the case when ` = 15 and ` = 20.
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Fig. 4 Parameter estimates of the external voltage parameter v(t) in the FitzHugh-Nagumo system
(16)–(17) computed using piecewise linear splines with estimated spline coefficients when ` =
2, 5, 10, 15 and 20, respectively, and period p, shown over one period. In each panel, the linear
spline using the augmented EnKF mean estimates of the spline coefficients and period is shown in
solid red, while the linear splines computing using the ±2 standard deviation parameter estimates
are shown in dark grey, filled with light grey. The true v(t) used in generating the synthetic data is
shown in dashed black. Estimates were obtained using the full synthetic data shown in Figure 1.
Corresponding period estimates are given in Table 1.

Table 1 Augmented EnKF mean and ±2 standard deviation parameter estimates of the period p of
the piecewise linear spline estimate of the external voltage parameter v(t) for different numbers of
spline segments `. The relative error between the mean estimate and true value of p in each case
is computed using the formula in (18). Values in the table are reported to four decimal places.

# of Spline Segments Estimated p (mean ± 2 std) Relative error (mean)

` = 2 62.7699 ± 0.0523 0.0009
` = 5 63.1169 ± 0.0620 0.0045
` = 10 63.7212 ± 0.0881 0.0142
` = 15 65.9231 ± 0.0540 0.0492
` = 20 73.8291 ± 0.0189 0.1750

5 Discussion

This paper addresses the problem of estimating and quantifying uncertainty in pe-
riodic, time-varying parameters using sequential Monte Carlo parameter estimation
techniques. Estimation approaches using both particle methods with parameter track-
ing and piecewise linear spline (with spline coefficients and periods estimated using
particle methods) are considered, and the role of uncertainty is highlighted in each.
In particular, uncertainty relating to the frequency of available time series data and
the number of spline segments used in the linear spline estimates is tested via nu-
merical experiment on an electrophysiology example estimating the external voltage
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parameter in the FitzHugh-Nagumo system for modeling the spiking dynamics of
single neurons.

As demonstrated in the numerical results in Section 4, there are pros and cons
to using each of the presented approaches for estimating periodic parameters. One
clear computational advantage of the parameter tracking algorithm is its straight-
forward implementation in the sequential Monte Carlo framework and flexibility
in approximating the shape of the parameter of interest. Nothing is assumed about
periodicity a priori, and there is only one parameter to track over time. However,
since nothing is assumed about periodicity in the parameter tracking, the periodicity
of the parameter is therefore neglected in the estimation process and periodicity is
not maintained. The choice of the drift variance also has a significant impact on the
resulting parameter tracking estimate, in terms of both accuracy and uncertainty.
Moreover, the numerical experiments show that the parameter tracking algorithm
has more difficulty tracking the periodic parameter as less frequent time series data
is available.

The piecewise linear spline formulation maintains periodicity by prescribing a
periodic form to the parameter a priori, then estimating the coefficients and period
that best fit the available data via a particle approach. The numerical experiments
show that the frequency of available time series data has a direct impact on the
uncertainty relating to the linear spline estimates, with more frequent data resulting
in tighter uncertainty bounds. The number of spline segments ` also has a significant
effect on both the fit of the resulting spline and the corresponding period estimation.
An interesting problem would be to consider estimating ` along with the period p;
however, this is not straightforward, as ` and p depend on one another in the piecewise
formulation in (13). Instead, one could interpret the problem of choosing ` as amodel
selection problem and could apply available methods for model selection; see, e.g.,
[36, 35, 4, 33]. This remains as future work.

Note that while the linear splines shown in Figures 2 and 3 are formulated to be
continuous within a given period, the piecewise formulation in (13)–(14) does not
necessarily guarantee continuity of the spline between periods. In order to maintain
continuity between periods, an additional constraint that a1 = a` is required (but
not considered in this work). Regarding the period estimation, note that special care
must be taken in the implementation to avoid, e.g., negative or inappropriate values
being assigned for the period of the periodic parameter. A simple approach used
in the numerical results in this paper is to apply a positivity constraint within the
Monte Carlo particle algorithm to retain pn

k |k
> 0 for all n and k. Further, since

periodic parameters are subset of all possible parameters in (1), additional constant
parameters, such as the initial states of the dynamical system, may be estimated
simultaneously in both the parameter tracking and piecewise formulations.

While it is possible to use a variety of parameter estimation techniques, the use
of Monte Carlo particle methods in this work provides a natural framework for
analyzing the time series data typically available in applications where time-varying
parameters are relevant. Moreover, Monte Carlo methods provide a natural measure
of uncertainty in the parameter estimation, which can be used for model prediction
and uncertainty quantification. Future work includes the design and analysis of
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parameter tracking-type Monte Carlo particle algorithms that incorporate structural
characteristics like periodicity into the sequential estimation without relying on a
piecewise functional form for the time-varying parameters.
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