
Highlights 

 

• Cavilignum pratchettii is a new Neogene angiosperm from eastern Tennessee, 

U.S.A. 

 

• Cavilignum is based on four-chambered fossil endocarps with open germination 

pores. 

 

• Cavilignum cannot be definitively classified within angiosperms. 

 
• Cavilignum is the first extinct plant macrofossil genus from Gray Fossil Site. 

 



A suite of fossil endocarps representing a new taxon from the early Pliocene Gray 

Fossil Site, Tennessee, U.S.A., is described as Cavilignum pratchettii gen. et sp. nov. 

Cavilignum is represented by circular to oblong endocarps that have a truncate apex, a 

mucronate base, and a smooth outer surface. The endocarp wall has three layers. The 

outermost layer is of uncertain composition. The inner wall structure is fibrous, with an 

outer layer of radially-oriented fibers and an inner layer of circumferentially-oriented 

fibers. The endocarps typically have four chambers (locules) divided by thick septa; two 

narrow canals penetrate the septa from the apex to the base of each endocarp. The 

locules are open apically. Because no evidence of structures that may have sealed the 

chambers was found, Cavilignum is interpreted as having open germination pores. 

Apically-oriented, open germination pores most obviously suggest an affinity with the 

angiosperm family Symplocaceae, but endocarps of Symplocaceae differ from 

Cavilignum in several critical characteristics (e.g., wall histology, presence of a basal 

pit). While several other groups (e.g., Anacardiaceae, Cornales) produce drupaceous 

fruits with endocarps comparable in some characteristics to those of Cavilignum, none 

is structurally congruent enough to suggest an affinity with the new fossil genus. Thus, 

Cavilignum cannot be conclusively assigned to a known extinct or extant angiosperm 

genus or family. Cavilignum is the first extinct plant genus described from the Gray 

Fossil Site macroflora. 
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1. Introduction 18 

 19 

The Neogene is a time of transition, when the relatively warm world of the early 20 

to middle Miocene gave way to a world shaped by global cooling in the late Miocene to 21 

Pliocene, eventually culminating in the widespread northern hemisphere glaciations of 22 

the Pleistocene (e.g., Tiffney, 1985; Tiffney and Manchester, 2001; Zachos et al., 2001; 23 

Milne, 2006). These changes helped to shape the flora of eastern North America, with 24 

certain genera identified from Neogene macrofossil floras—such as Paliurus Mill. (Lott 25 

et al., 2019), Pterocarya Kunth (McCartan et al., 1990), Sargentodoxa Rehder & 26 

E.H.Wilson (Tiffney, 1993; McNair et al., 2019), and Sinomenium Diels (Liu and 27 

Jacques, 2010)—disappearing from the region prior to the present day. Our 28 

understanding of plant taxonomic richness and extinction in eastern North America from 29 

the Neogene to the present is hampered by the sparseness of the known plant 30 

macrofossil record (Fig. 1; Tiffney and Manchester, 2001; Corbett, 2004; Stults et al., 31 

2010; Stults and Axsmith, 2011a, 2015; Lott et al., 2019). The distribution of Neogene 32 

floras in this region is also highly uneven, with the greatest concentration of material 33 

across space and time occurring in the Gulf Coast states, in a band of the Neogene 34 

formations extending from eastern Texas to the Florida panhandle. Among these floras, 35 

Alum Bluff, Citronelle, and Hattiesburg are the best documented (Fig. 1; Berry, 1916a, 36 

b, c; Corbett, 2004; Stults et al., 2010; Stults and Axsmith 2011a, b, 2015; Dockery and 37 

Thompson, 2016; Lott et al., 2019; McNair et al., 2019). Outside of the Gulf Coast 38 

region, the early Miocene Brandon Lignite flora of Vermont is the most thoroughly 39 

studied (see Tiffney, 1994, and references therein; Haggard and Tiffney 1997; Tiffney et 40 
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al., 2018), whereas formal systematic treatments are lacking for many macrofossil taxa 41 

(e.g., Potentilla L., Pterocarya, Trapa L.) preliminarily identified from some other 42 

important floras (e.g., Brandywine, Pipe Creek Sinkhole: McCartan et al., 1990; Farlow 43 

et al., 2001). 44 

The Pliocene Gray Fossil Site (GFS), eastern Tennessee, U.S.A., is an isolated 45 

Neogene paleobiota from the Appalachian region (Fig. 1) that provides data critical for 46 

understanding the evolution of eastern North American vegetation during this time of 47 

climatic and environmental transition. GFS is interpreted as an ancient sinkhole deposit 48 

preserving a paleobiota that is especially rich in fossil vertebrates, but that also includes 49 

abundant and diverse plant microfossil and macrofossil remains (e.g., Parmalee et al., 50 

2002; Wallace and Wang, 2004; Mead et al., 2012; Bourque and Schubert 2015; Ochoa 51 

et al., 2016). The GFS macrofossil flora includes wood, fruits, seeds, and leaves. Over 52 

thirty genera of plants are thought to be represented in the GFS macroflora (Mead et al., 53 

2012; Ochoa et al., 2016), although only a subset have been described (Gong et al., 54 

2010; Liu and Jacques, 2010; Brandon, 2013; Noll, 2013; Huang et al., 2014, 2015). 55 

The described taxa have all been assigned to extant plant genera and show strongest 56 

affinities to taxa from Laurasian continents, especially those found in the modern and 57 

Cenozoic fossil floras of North America and Asia, as well as the Cenozoic flora of 58 

Europe (Gong et al., 2010; Liu and Jacques, 2010; Brandon, 2013; Noll, 2013; Huang et 59 

al., 2014, 2015). Angiosperms described from GFS fruit and seed fossils include extinct 60 

species of Chinese moonseed (Sinomenium macrocarpum Liu & Jacques: Liu and 61 

Jacques, 2010), bladdernut (Staphylea levisemia Huang et al.: Huang et al., 2015), 62 
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hickory (Carya tennesseensis Huang et al.: Huang et al., 2014), tupelo (Nyssa L., sp. 63 

nov.: Noll, 2013), and grapes (Vitis L., 3 species: Gong et al., 2010).  64 

In this study, we describe a new genus and species of angiosperm from GFS 65 

represented by fossil endocarps. These endocarps are unusual in having four, or less 66 

commonly three, open locules. While the endocarps share features with endocarps of 67 

some modern flowering plant groups, most notably Symplocaceae Desf. (Ericales) and 68 

certain Anacardiaceae R.Br. (Sapindales), they also differ in critical ways that exclude 69 

them from these families. Thus, their affinities are unclear, and we interpret them as 70 

representing an extinct Pliocene element of the flora. 71 

 72 

2. Methods 73 

 74 

2.1. Context of the flora 75 

 76 

Gray Fossil Site was discovered during road construction in the year 2000 and 77 

covers up to about 3 ha of land (Parmalee et al., 2002). Although initially macrofossil-78 

bearing sediments at the site were estimated to be late Miocene to early Pliocene in age 79 

(Hemphillian, 4.5–7 million years old) (Paramlee et al. 2002; Wallace and Wang, 2004), 80 

a more recent assessment by Samuels et al. (2018) has narrowed the age range of the 81 

sediments to the early Pliocene (Blancan, 4.5–4.9 million years old). Many vertebrate 82 

fossils have been uncovered at GFS, including a mixture of extinct animals, groups 83 

extirpated from eastern North America but still present elsewhere, and genera still 84 

native to the region; the fauna includes fish, amphibians, reptiles, birds, and mammals 85 
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such as bats (Eptesicus Rafinesque), tapirs (Tapirus Brünnich), extinct North American 86 

camels (cf. Megatylopus Matthew & Cook), red pandas (Pristinailurus bristoli Wallace & 87 

Wang), wolverines (Gulo sudorus Samuels et al.), and mastodons (e.g., Parmalee et al., 88 

2002; Wallace and Wang, 2004; Hulbert et al., 2009; Boardman and Schubert 2011; 89 

Mead et al., 2012; Bourque and Schubert, 2015; Czaplewski, 2017; Jasinski and 90 

Moscato, 2017; Doughty et al., 2018; Samuels et al., 2018, 2019).  91 

The Pliocene climate at GFS is interpreted as somewhat warmer with less 92 

seasonal temperature variation than the modern climate of Gray, Tennessee (Shunk et 93 

al., 2006; Mead et al., 2012; Noll, 2013; Baumgartner, 2014; Simpson and Mickle, 94 

2019). The site was inhabited by cold-intolerant vertebrates like Alligator Cuvier and 95 

beaded lizards (Shunk et al., 2006; Mead et al., 2012), as well as tropical to warm 96 

temperate plant genera such as Taxodium Rich. (Brandon, 2013; Noll, 2013), 97 

Corylopsis Siebold & Zucc. (Ochoa et al., 2016; Quirk and Hermsen, unpublished data), 98 

Nyssa (Noll, 2013), and Sinomenium (Liu and Jacques, 2010). Evidence from isotopes, 99 

palynomorphs, wood, the carpofossil flora, and the fauna suggests that the environment 100 

surrounding the GFS sinkhole was wooded (e.g., Wallace and Wang, 2004; Shunk et 101 

al., 2006, 2009; DeSantis and Wallace, 2008; Ochoa et al., 2012), although 102 

interpretations of tree density vary. DeSantis and Wallace (2008) interpreted the local 103 

habitat as a “moderately dense” forest based on carbon isotope data from grazing 104 

animals, whereas Ochoa et al. (2012, 2016) interpreted the environment as more open 105 

(woodland to savanna) and subject to disturbance based on the composition of the 106 

flora, the presence of large herbivores, and indicators of drought (wood with false 107 

growth rings, sedimentology) and fire (occurrence of charcoal, perylene, and the 108 
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bamboo genus Arundinaria Michx.). The taxonomic composition and frequency 109 

distribution of the palynomorphs recovered from the GFS sediments indicates that the 110 

dominant tree types were oak (Quercus L.) and hickory (Carya Nutt.), with pine (Pinus 111 

L.) also common (Wallace and Wang, 2004; Ochoa et al., 2012; Worobiec et al., 2013).  112 

 113 

2.2. Fossil specimens 114 

 115 

Excavations at the site are ongoing. Fruits and seeds are collected from GFS as 116 

part of bulk sediment samples. To separate the fossils from the surrounding sediments, 117 

GFS staff and volunteers wet-screen the sediments, after which the screened material 118 

is dried; screened and dried fossils are then picked under dissecting microscopes.  119 

Many specimens of the type of endocarp described for this study have been 120 

recovered from GFS. Of these, many exhibit various degrees of compression; some 121 

were also incomplete, brittle, cracked, or deteriorated at the time of study. The 122 

description herein is based on 35 specimens that were complete or nearly complete, 123 

although they may have experienced compression or cracking; three specimens that 124 

were sectioned transversely by previous investigators; and two additional specimens 125 

that appear to have broken longitudinally on their own (specimen numbers are given 126 

below in the “Systematic Paleontology” section). All fossil material examined for this 127 

study is permanently held at the East Tennessee State University Museum of Natural 128 

History (ETMNH) collections, Gray Fossil Site, Gray, Tennessee, U.S.A. 129 

 130 

2.3. Imaging & measurements 131 
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 132 

Fossil endocarps were studied using a Nikon SMZ1500 stereomicroscope with a 133 

Nikon Digital Sight DS-Fi2 camera head and a Nikon SMZ18 stereomicroscope with a 134 

Nikon DS-Ri2 camera. Images were captured and measurements taken using NIS-135 

Elements software (1991–2018, Laboratory Imaging); ImageJ was also used for 136 

measurements (Rasband 1997–2018). A micro-computed tomography (micro-CT) scan 137 

of three specimens (ETMNH 18139, 18148, and 19561) was performed at Ohio 138 

University using a TriFoil Imaging eXplore CT 120 Small Animal X-Ray CT Scanner 139 

(see associated Research Data). The specimens were placed in a row end-to-end and 140 

scanned in a single session. Micro-CT scans were examined using MicroView software 141 

(2011–2018, Parallax Innovations), and selected slices were saved as TIFF files to 142 

illustrate the internal structure of the endocarps. Adobe Photoshop CC (1990–2018, 143 

Adobe) was used to reorient (rotate or flip) saved slices and construct plates. The 144 

brightness or levels on some photomicrographs were adjusted in Photoshop. 145 

 146 

3. Systematic Paleontology 147 

 148 

Class: Magnoliopsida (angiosperms) 149 

Order: Unknown 150 

Family: Unknown  151 

 Genus: Cavilignum Siegert & Hermsen, gen. nov. 152 

 153 



 8 

Generic diagnosis: Endocarp lignitic, circular to oblong in lateral view, apex 154 

truncate, base mucronate, outer surface smooth. Locules three to four, divided by septa 155 

oriented perpendicularly to one another; locules open at the endocarp apex and closed 156 

at the base. Two small, unbranched canals traversing the full length of the endocarp; 157 

canals open apically on the longer septum to either side of the intersection between the 158 

septa; canals open basally to either side of the basal mucro. Endocarp wall with an 159 

outer layer of unknown composition and two inner fibrous layers; outer layer of fibers 160 

radially oriented and inner layer of fibers circumferentially oriented. 161 

 162 

Type: Cavilignum pratchettii Siegert & Hermsen, sp. nov. (Plates I, II) 163 

Etymology: Cavilignum is a compound of the Latin cavus and lignum meaning 164 

“hollow stone” (or hollow fruit pit), referring to the four hollow locules of the endocarps.   165 

 166 

 Species: Cavilignum pratchettii Siegert & Hermsen, sp. nov. 167 

 Species diagnosis: As for the genus. 168 

Holotype: ETMNH 18149 (Plate I, 1, 9). Held at the East Tennessee State 169 

University Museum of Natural History fossil collections, Gray Fossil Site, Gray, 170 

Tennessee, U.S.A. 171 

Paratypes: ETMNH 18128–18132, 18134–18146, 18148, 18150 (broken 172 

longitudinally), 18151 (sectioned specimen), 18153 (sectioned specimen), 19566 173 

(broken longitudinally), 19557 (sectioned specimen), 19560–19563, 19565, 19569, 174 

19570, 19576, 19578, 19580, 22637–22640, 24514.  175 
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Type locality & stratigraphy: All specimens come from the Gray Fossil Site, Gray, 176 

Tennessee, USA (36.386° N, 82.498° W). Sediments at GFS are considered Blancan 177 

(early Pliocene), 4.5–4.9 Ma (Samuels et al., 2018). 178 

Etymology: The species epithet is named after deceased author Sir Terry 179 

Pratchett, who wrote numerous books and plays throughout his career that inspired 180 

millions. He taught us how to understand the world and our place in it, which is really 181 

what science is about. He told us that, in order to really see the world, you have to 182 

“[o]pen your eyes and then open your eyes again” (Pratchett, 2003). 183 

Description: The specimens represent lignitic endocarps that are circular to 184 

oblong in lateral view, with a truncate apex, a mucronate base, and a smooth outer 185 

surface (Plate I, 1–8). They are 9.4–15.5 mm in length and 8.0–14.2 mm in width, 186 

length/width ratio 0.9–1.5. The endocarps are somewhat flattened in cross-section 187 

(Plate I, 9–13; Plate II, 1, 2). We interpret the cross-sectional shape as naturally 188 

elliptical and greater in width than depth; the elliptical shape is exaggerated in some 189 

specimens that show evidence of compression (Plate II, 1). Specimens showing little or 190 

no distortion from compression (Plate I, 9–13) measure 5.7–7.6 mm in depth; the ratio 191 

of the longer radius (width) to the shorter radius (depth) is 1.5–1.9.  192 

The endocarps typically have four locules (Plate I, 9–12), although sometimes 193 

only three fully develop (Plate I, 11, 13; Plate II, 2). The apex of each locule is open, 194 

and the openings of the locules are oval in shape (Plate I, 9–11). The locules measure 195 

about up to about 2.1 mm x 3.9 mm along the radii. In longitudinal view, the locules are 196 

oblong, rounded at the base, truncate apically, and extend nearly the full length of the 197 

endocarp (Plate II, 3–6, 11). 198 
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The locules are partitioned by two septa oriented perpendicularly to each other 199 

(Plate I, 9–13). The longer septum is 0.4–0.8 mm thick, whereas the shorter septum is 200 

0.9–2.8 mm thick. Two narrow canals occur to either side of the intersection between 201 

the septa, measuring about 0.2–0.9 mm wide (Plate I, 9–13; Plate II, 2, 7). They extend 202 

the full length of the endocarp (Plate II, 10, 11). The canals are open at the apex of the 203 

endocarp on the longer septal wall, to either side of the junction between the septa 204 

(Plate I, 9–11). At the base, the openings of the canals can be observed on the outer 205 

surface of the endocarp on either side of the basal mucro, where they sometimes 206 

appear to be slit-like openings (Plate II, 8, 9). The canals may represent the former 207 

positions of vascular bundles, although no vascular tissue was observed within them.  208 

The endocarp wall is 1.3–2.7 mm thick. The outermost layer of the endocarp wall 209 

has an indistinct composition (Plate II, 12, 14). The inner wall is fibrous, with two distinct 210 

fiber orientations in cross section. The outer fibers are radially oriented (Plate I, 12, 13; 211 

Plate II, 1, 2, 12–14). The inner fibers are oriented in a direction perpendicular to the 212 

outer fibers, roughly circumferential or tangential (Plate II, 12, 14). Amber-colored 213 

deposits are present in cracks in the wall of one specimen (Plate II, 14), which may 214 

indicate the presence of resin.  215 

 216 

4. Discussion 217 

 218 

4.1. Structural interpretation of Cavilignum 219 

 220 
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 Cavilignum pratchettii is represented by stony, typically four-chambered 221 

structures, each chamber presumably representing a carpel. The chambers are open at 222 

one end, here interpreted as the apical end (Plate I, 9–11). The apical openings of the 223 

chambers appear to be intrinsic structural features of Cavilignum rather than, for 224 

example, holes created by foraging animals, because they are consistently present and 225 

uniform in appearance. No valves, opercula, or plugs that may once have sealed the 226 

chambers have been discovered attached to or in association with the Cavilignum 227 

structures; there are also no discernable dehiscence scars. Thus, the chambers were 228 

likely persistently open rather than pores revealed upon dehiscence, as in a capsule. 229 

Because the Cavilignum pratchettii structures are dry, stony, four-chambered, and open 230 

but lacking a dehiscence mechanism, we are interpreting them as endocarps with open 231 

germination pores; it is possible that the pores were once covered by additional layers 232 

of the pericarp (e.g., a fleshy mesocarp) that are not preserved.  233 

 234 

4.2. Similar endocarps and potential affinities 235 

 236 

The presence of three (rare) to four locules, lidless germination pores, and a 237 

fibrous endocarp wall are the most obvious characters that distinguish Cavilignum from 238 

endocarps of other angiosperm taxa and that may provide clues to the affinities of the 239 

genus. Specimens here assigned to Cavilignum pratchettii are likely the GFS plant 240 

macrofossils previously reported to have affinities to Symplocaceae (Noll, 2011; Y. Liu, 241 

pers. comm. in table 1 of Ochoa et al., 2016). Symplocaceae include two genera and 242 

about 320 species of trees and shrubs present in tropical to warm temperate climates; 243 
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extant species are distributed in eastern North America to the Caribbean, Central 244 

America, and northern South America in the Western Hemisphere and southern and 245 

eastern Asia to eastern Australia in the Eastern Hemisphere (Nooteboom, 1975; Fritsch 246 

et al., 2008, 2015; Liu and Qin, 2012). The vast majority of species in the family are 247 

included within Symplocos Jacq., whereas only two species are assigned to the East 248 

Asian genus Cordyloblaste Hensch. ex Moritzi (Fritsch et al., 2008). Plants in the family 249 

are trees or shrubs that produce drupes with hard or sometimes papery endocarps (see, 250 

e.g., Liu and Qin, 2012; Manchester and Fritsch, 2014; Tiffney et al., 2018). Endocarps 251 

may have one to five chambers and characteristically have open apical germination 252 

pores (Nooteboom, 1975; Mai and Martinetto, 2006; Fritsch et al., 2008; Liu and Qin, 253 

2012). Fossil symplocaceous endocarps are widespread in Cenozoic deposits of the 254 

Northern Hemisphere (e.g., Chandler, 1961a, b; Nooteboom, 1975; Mai & Martinetto, 255 

2006; Manchester and Fritsch, 2014; Fritsch et al., 2015; Tiffney et al., 2018).  256 

While endocarps of Cavilignum are similar to endocarps of members of the family 257 

Symplocaceae in that they have locules that are open apically, they differ in other 258 

characteristics. Symplocos endocarps are often characterized by the presence of an 259 

apical depression in which the germination pores occur; the lip of this depression 260 

sometimes exhibits a thickened apical collar or "bulge" (Mai and Martinetto, 2006). 261 

Cavilignum endocarps show neither depression nor collar (Plate I, 1–11). The base of 262 

Symplocos endocarps is rounded to tapered with a small central pit (Mai and Martinetto, 263 

2006), whereas Cavilignum endocarps are mucronate, i.e., have a short, extended 264 

basal point (Plate I, 1–8). Symplocos endocarps often have a central canal at the 265 

junction of the septa separating the locules (Mai and Martinetto, 2006); Cavilignum, in 266 



 13 

contrast, has dual canals that are offset from the intersection of the septa and that open 267 

to either side of the basal point on the outer surface of the endocarp (Plate I, 9–13; 268 

Plate II, 7, 8, 9). While the structure of the endocarp or drupe wall of Symplocos is 269 

somewhat varied (Liu and Qin, 2012; Manchester and Fritsch, 2014; fig. S2 of Fritsch et 270 

al., 2015; Tiffney et al., 2018), no illustrated sections of Symplocos show a fibrous wall 271 

structure similar to that observed in Cavilignum (Plate II, 12–14).  272 

Cordyloblaste, with the species C. henschelii Mortizi and C. pendula (Wight) 273 

Alston (Fritsch et al. 2008), is sometimes included in Symplocos (Nooteboom, 1975; Wu 274 

and Nooteboom, 1996). Cordyloblaste endocarps are similar to those of Cavilignum in 275 

that they lack an apical bulge (Mai and Martinetto, 2006) and have two to five locules 276 

(Tiffney et al., 2018). However, Cordyloblaste endocarps are circular in cross section 277 

(see fig. S2b in Fritsch et al., 2015); the individual locules are small compared to the 278 

overall diameter of the endocarp (see fig. S2b in Fritsch et al., 2015) and circular to oval 279 

in transverse section (supporting information in Fritsch et al., 2015; Tiffney et al., 2018). 280 

Furthermore, the endocarp wall of Cordyloblaste is “mottled” and penetrated by a 281 

reticulum of “narrow tubes” (Manchester and Fritsch, 2014, p. 72; Fritsch et al., 2015, 282 

appendix S3, p. 15; Tiffney et al., 2018, p. 189), quite distinct from the fibrous wall of 283 

Cavilignum endocarps (Plate II, 12–14).  284 

Another family known for drupaceous fruits with endocarps sharing some 285 

similarities with Cavilignum is Anacardiaceae R.Br. Anacardiaceae are a diverse group 286 

of woody plants found in tropical to temperate climates worldwide (Pell et al., 2011; 287 

Weeks et al., 2014); they are well represented in the fossil record, including on the basis 288 

of their endocarps (e.g., Chandler, 1961a, b; Tiffney et al., 1994; Herrera et al., 2012; 289 
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Rozefelds et al. 2015; Fu et al., 2017). Endocarps of Anacardiaceae can be 290 

multiloculate (Pell et al., 2011; Herrera et al., 2018, 2019), like Cavilignum. As in 291 

Cavilignum, anacardiaceous endocarps have fibrous walls, although the orientation of 292 

the fibers in anacardiaceous endocarps has been described as “tortuous” (Herrera et 293 

al., 2018, 2019). Germination pores in anacardiaceous endocarps, when present, are 294 

typically sealed by a plug, valve, or other structure (Herrera et al., 2018); no such 295 

structures have been found in the germination pores of Cavilignum. Furthermore, even 296 

when the germination pores of anacardiaceous endocarps are located near the apical 297 

end of the endocarp (as in, e.g., Sclerocarya Hochst. and Choerospondias B.L.Burtt & 298 

A.W.Hill), their apertures are still somewhat lateral in orientation (see Herrera et al., 299 

2018). The germination pores of Cavilignum are truly apical with no lateral deflection 300 

(Plate I, 9–11). Finally, endocarps of Anacardiaceae often have pitted, textured, or 301 

sculptured surfaces and/or internal lacunae (Herrera et al., 2018, 2019), none of which 302 

are observed in Cavilignum (Plate I, 1–8, 12, 13; Plate II, 1–5, 6, 10, 11). 303 

Other endocarps comparable to those of Cavilignum are found in Cornales, 304 

Humiriaceae A.Juss., and Vitex L. Cornalean endocarps are similar to Cavilignum 305 

endocarps in that they can have several locules and a smooth surface; however, 306 

cornalean endocarps open by germination valves (Atkinson et al., 2016, 2017; 307 

Manchester and Collinson, 2019). Endocarps of Humiriaceae, which may have apical 308 

foramina (depressions), have germination valves; some also have a lacunose wall that 309 

appears spongiform in transverse section (Herrera et al. 2010, 2014). Vitex 310 

(Verbenaceae J. St.-Hil.) has a four-chambered endocarp, although the endocarp is 311 

strongly obovoid, has operculate germination pores, and has a single, central channel 312 
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for the vascular tissue (Godley, 1971). No other families of angiosperms produce 313 

endocarps that are particularly comparable to those assigned to Cavilignum. 314 

 315 

4.3. Conclusions 316 

 317 

 The combination of smooth outer surface, four (sometimes three) locules, 318 

truncate apex, basal mucro, open and apical germination pores, two small canals 319 

penetrating the septa that are open apically and basally, and fibrous wall histology 320 

distinguish the new genus Cavilignum from endocarps of other angiosperm taxa, both 321 

living and extinct. While the locule number and open, apical germination pores are 322 

similar to those of members of Symplocaceae, the fibrous wall structure, two small 323 

canals that open to the outside of the endocarp basally, and the presence of a basal 324 

mucro rather than a basal pit preclude assignment to that family. Endocarps from other 325 

families investigated also show critical differences from Cavilignum. Thus, the affinities 326 

of the endocarps remain unresolved. Angiosperm taxa previously described from Gray 327 

Fossil Site have all been assigned to extant genera and support a biogeographic 328 

interpretation of a Pliocene flora with strong connections to fossil and modern Eurasian 329 

and North American floras. Cavilignum is the first report of a new genus of angiosperms 330 

from the Gray Fossil Site macroflora, and it suggests the presence of an extinct 331 

Pliocene element in the flora.  332 

 333 
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Plate captions 659 

 660 

Figure 1. Locations of major Neogene macrofossil floras in eastern North America 661 

discussed in the text. For a review of Miocene localities, see Lott et al. (2019). Miocene: 662 

1. Brandon Lignite, early Miocene, Vermont (Tiffney, 1994); 2. Alum Bluff, middle 663 

Miocene, Florida (Berry, 1916a; Corbett, 2004; Jarzen et al., 2010; Lott et al., 2019); 3. 664 

Hattiesburg, middle Miocene, Mississippi (McNair et al., 2019); 4. Brandywine, late 665 

Miocene, Maryland (McCartan et al. 1990). Pliocene: 5. Gray Fossil Site, early 666 

Pliocene, Tennessee; 6. Pipe Creek Sinkhole, early Pliocene, Indiana (Farlow et al., 667 

2001); 7. Citronelle, late Pliocene, Alabama and Florida (Berry, 1916b; Stults et al., 668 

2010; Stults and Axsmith, 2011a, b; 2015). Point map created with SimpleMappr 669 

(Shorthouse, 2010). 670 

 671 

Plate I. Cavilignum pratchettii C. Siegert & Hermsen, gen. et sp. nov. All scale bars = 2 672 

mm. 673 

1–8. Endocarps in lateral view, showing variation in size, shape, and prominence of the 674 

basal mucro. Longitudinal cracks or splits visible on some specimens are interpreted as 675 

artifacts rather than intrinsic structural features. 1. ETMNH 18149 (holotype). 2. ETMNH 676 

18132. 3. ETMNH 18139 4. ETMNH 18128. 5. ETMNH 19562. 6. ETMNH 18143. 7. 677 

ETMNH 18142. 8. ETMNH 18148.  678 

9–11. Apical view of endocarps, showing open locules. 9. ETMNH 18149 (holotype). 10. 679 

ETMNH 18151. 11. ETMNH 19561. 680 
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12–13. Transverse sections of endocarps, showing locules, fibrous wall structure, and 681 

central canals. 12. ETMNH 18151. 13. ETMNH 18153. 682 

 683 

Plate II. Cavilignum pratchettii C. Siegert & Hermsen, gen. et sp. nov. Structural details 684 

of the endocarps. Figures 1–5, 11, are virtual slices from micro-CT scans. Scale bars: 6, 685 

7, 12–14 = 1 mm; 8–10 = 2 mm. 686 

1. Transverse section of endocarp showing collapsed locules. ETMNH 18148. 687 

2. Transverse section of endocarp showing three well-developed locules (A, B, C), and 688 

a central canal (Ca, arrow); second canal obscured by crack in septum between locules 689 

A and B. ETMNH 19561. 690 

3. Longitudinal section of endocarp showing two oblong locules with portions of the 691 

collapsed septa near their apices (upper two locules in 1). ETMNH 18148. 692 

4. Longitudinal section of endocarp showing two locules corresponding to A and B in 2. 693 

ETMNH 19561. 694 

5. Longitudinal section of endocarp perpendicular to section in 4, showing two locules 695 

corresponding to B and C in 2. ETMNH 19561. 696 

6. Endocarp, broken longitudinally, showing two locules. ETMNH 19566.  697 

7. Transverse section of an endocarp at the junction of the septa, showing two canals. 698 

ETMNH 18151. 699 

8. Base of sectioned endocarp, showing two canals opening to the outside. ETMNH 700 

18151. 701 

9. Base of sectioned endocarp, showing two canals opening to the outside. ETMNH 702 

19557. 703 
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10. Endocarp, broken longitudinally, showing the length of one of the central canals. 704 

ETMNH 18150. 705 

11. Longitudinal section of endocarp (perpendicular to section in 4, parallel to section in 706 

5) showing one locule (corresponding to B in 2) and one central canal (corresponding to 707 

canal in 2). ETMNH 19561. 708 

12. Transverse section of an endocarp showing the fibrous endocarp wall. ETMNH 709 

18151. 710 

13. Endocarp, broken longitudinally, showing fibrous wall. ETMNH 18150. 711 

14. Transverse section showing cracks in the endocarp wall with amber-colored 712 

substance. ETMNH 18151. 713 
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