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Abstract— With inherent algorithmic error resilience of deep
neural networks (DNNs), supply voltage scaling could be a
promising technique for energy efficient DNN accelerator design.
In this paper, we present an error resilient technique to enable
aggressive voltage scaling by exploiting the asymmetric error
resilience (sensitivity) with respect to DNN layers, filters, and
channels. First-order Taylor expansion is used to evaluate
the filter/channel-level weight sensitivities of large scale DNNs
which accurately approximates weight sensitivities from actual
error injection simulations. We also present the heterogeneous
multiply-accumulate (MAC) unit based design approach where
some of the MAC units are designed larger with shorter critical
path delays for robustness to aggressive voltage scaling while
other MAC units are designed relatively smaller. The sensitivity
variations among filter weights can be leveraged to design
DNN accelerator such that the computations with more sensitive
weights are assigned to more robust (larger) MAC units while
the computations with less sensitive weights are assigned to less
robust (smaller) MAC units. Using dynamic programming, the
sizes of MAC units are selected to achieve best DNN accuracy
under ISO area constraint. As a result, the proposed voltage
scalable DNN accelerator can achieve 34% energy savings in post
layout simulations using 65 nm CMOS process with ImageNet
dataset using ResNet-18 compared to state-of-the-art timing error
recovery technique.

Index Terms—Deep neural network resilience, timing error
resilient accelerator, voltage scaling.
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I. INTRODUCTION

EEP neural networks (DNN) are playing an important

role in wide applications e.g., object recognition, tracking
in autonomous vehicles [1], [2] and speech recognition [3].
As recent DNNs contain millions of parameters and per-
form billions of computations involving large-scale dataset,
energy efficient acceleration of DNNs for both mobile devices
and data centers becomes crucial. Recently, various energy-
efficient DNN accelerators have been proposed [4]. Among
them, systolic array based architectures such as, Google TPU
[5] and DaDianNao [6] are widely adopted, where complex
multiplications and additions are performed on large number
of 2D MAC arrays.

Supply voltage scaling is one of the most effective design
techniques to improve energy-efficiency of DNN accelerators
[71, [8] however it increases path delay and lead to timing
errors. Although DNN shows the algorithmic error resiliency
[9], propagation of timing errors incurs significant accuracy
drop especially when the accelerator contains a large num-
ber of MAC units [10]. To handle the timing errors while
maintaining throughput, TE-Drop [10] detects timing errors
using widely used Razor flip-flops [11]-[14], and (if there is
an error) drops the update of multiplication results subsequent
to the erroneous MAC while bypassing the correct partial
sum of shadow latch with delayed clock. However, the above
approach did not consider the relative importance of the
weights. Therefore, some of the MAC results involving the
multiplication of important weights can get ignored.

In this paper, we present an error resilient technique for
voltage scalable DNN accelerator based on the sensitivity
variations of DNN filters and weights. Here, the sensitivity
of a filter weight means the amount of accuracy drop when
bit-flip errors occur in the multiplication with the particular
filter weight. In other words, the errors in the computations
with more sensitive weights give rise to large accuracy drop
while the same errors in the computations with less sensitive
weights lead to relatively less accuracy drop. For the sensitivity
analysis, we propose a fine-grained error profiling method to
obtain the filter/channel-level weight sensitivities with reduced
simulation time especially for large scale DNNs. Based on the
sensitivity analysis, computations with more sensitive weights
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are assigned to more robust MAC units, while those with less
sensitive weights are assigned to less robust MAC units. The
relative robustness (timing error resilience) to supply voltage
scaling can be controlled by using heterogeneous sizing of
MAC units where more robust MAC units can be upsized
while less robust MAC units are downsized. Using dynamic
programming [15], the sizes of MAC units are selected to
achieve best DNN accuracy under ISO-area constraints. In
addition, three sensitivity-maps of 256 x 256 MAC units
are drawn considering data flow while ensuring minor area
overhead. The proposed DNN accelerator with heterogeneous
MAC units allows more aggressive voltage scaling compared
to the accelerators with the MAC units of identical size. The
simulations with ImageNet dataset show that significant energy
savings can be achieved with minor accuracy degradation even
with very aggressive supply voltage scaling.

The rest of the paper is organized as follows. Section II
presents the preliminary of DNN error resilience. The sensitiv-
ity analysis using Taylor expansion is described in Section III.
Voltage scalable DNN accelerator with heterogeneous MAC
units is proposed in Section IV and the experimental results
including the comparisons with previous error resilient tech-
niques are presented in Section V. Finally, conclusions are
drawn in Section VI

II. RELATED WORKS AND BACKGROUND
A. Related Works

1) Timing Error Propagation: By using algorithmic error
resilience, timing errors are propagated through the partial
sum accumulation to reduce the latency overhead for the
re-execution. This scheme can only endure very low timing
error probability below 0.1% [16], as the partial sums can be
changed significantly for timing errors in the high-order bits.

2) Timing Error Drop (Thundervolt): To deal with the
timing errors in partial sums without latency overhead, the
idea of dropping the multiplication result considering the
timing errors is first introduced in [14]. Thundervolt [10] drops
one multiplication result whenever timing error is detected in
the partial sum. When the timing error occurs in one MAC
unit, the MAC next to the erroneous MAC unit sends the
delayed output from shadow latch to the following MAC which
indicates that the erroneous multiplication is skipped. Since
each output of DNN layers is the summation of huge number
of multiplication results, the error of individual multiplication
results might have less effect on the classification accuracy.
In addition, as DNN filter weights are distributed primar-
ily on small values in most cases [17], the effect of each
multiplication result becomes smaller. However, although the
weight is small, the multiplication result can be large depend-
ing on the input activation. Moreover, the number of large
weights can be larger when using 8-bit integer computations
(widely used in recent DNN inference accelerator such as
google TPU [5]).

B. Deep Neural Networks

1) Basic DNN Operations: As shown in Fig. 1, deep con-
volutional neural networks consist of many subsequent layers
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Fig. 1. An example of deep convolutional neural network architecture.

including convolutional layers, pooling layers, fully connected
layers, and softmax layer (classification). Among those layers,
convolutional layers take up most of the computations. For the
convolution operations with input featuremap (Ifmap: input
activation), filters are used to generate the output feature map
(Ofmap). Here, a filter means one 3D filter and a channel
means all 2D filters of the same depth. As presented in Fig. 1,
for example, six 3 x 3 x6 filters (6 channels) are used in Convl
layer. In this work, sensitivities (to error) of those filters and
channels will be analyzed.

2) Cost Function: DNN maps inputs to output labels by
learning to approximate an unknown relationship between
inputs and outputs. Generally, let X e RP*N be input
data where N is the batch size, i.e., the number of training
examples, and D is the dimension of each example. Let
w! € RP*Pi-1 be a matrix to obtain a D;-dimensional repre-
sentation of outputs at /" layer, whose outputs a’ € RP/*N are
called activations. Let ¢/ : R — R be a non-linear activation
function, e.g., a rectified linear unit (ReLU), which returns
zero output if the input of ReLU is negative and otherwise
returns input itself. This non-linearity is applied to each layer’s
outputs to generate the inputs of next layers. The mathematical
formulation of each layer can be represented as

al‘:¢l‘( igi=] +b) Vi e [1,L] 1)

where L is the number of layers in the network. The network’s
parameters W = {w', w?, ... wl) are trained to minimize the
cost, C (X, W), which is the difference between the outputs
of the network and the target values. In this work, we use a
negative log-likelihood function among various version of cost
function C(-).

3) Integer Quantization: Recently, 8-bit integer quantization
scheme [18] is suggested and widely used for the inference
of DNN accelerator [5]. In the scheme, instead of floating or
fixed point (32-bit or 16-bit), 8-bit of integer values are used
to represent the weights and activations which are multiplied
with each other in MAC units. Since 8-bit integer quantization
shows comparable classification accuracies with reasonable
hardware cost, weights and activations are represented as 8-bit
integers in this work.
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ITII. SENSITIVITY ANALYSIS USING TAYLOR EXPANSION

In this Section, we present an approach to analyze the sensi-
tivities of DNN filter weights using Taylor expansion [19]. For
developing error resilient design techniques, the first task is to
measure the importance of each computational node in DNN.
In the traditional fault injection method, a combination of large
number of error patterns and bit error rates are injected to
worsen the time and cost. The proposed approach can simply
obtain the error resiliencies of each node in a neural network
with a given BER.

With Taylor expansion, the error resilience of each variable
can be expressed as

|AC(wi)| = |C (D, wi) — C (D, w; +¢)| )

where C (D, w; + ¢) is the cost if variable w; is distorted to
a certain noise &, and C (D, w;) is the original cost. Here,
we refer to |AC(w;)| as sensitivity. In other words, if the
sensitivity is large, variable w; is sensitive to noise.

To approximate the sensitivity, we use the first-order Taylor
expansion of the cost function. In a function f (x), the Taylor
expansion around point X = a is expressed as

o]

(n)
reo=> D gy )

!
n=0

where () (a) is the n-th derivative of f(x) at point a. By
adjusting with first-order Taylor expansion, C (D, w; + €) can
be expressed as

oC
C(D,w; +¢)=C(D,w;)+ T (wj + &) — w) + Rem
1
oC
=C(D,w;)+ &+ Rem. 4)
ow;

Here, Rem is the remaining term that can be neglected since
it is assumed to be small.
Finally, by substituting (3) into (1), we get

|AC(w))| = |C (D, w;) — C (Dw; + &)
oC
g

Gwi
From (5), the sensitivity depends on the values of the gradient
and noise itself. As the noise & can vary depending on the
magnitude of the variable and the bit cell which is flipped
over, we can express the noise & as a function of original
bit error rate (BER). Suppose that we have a 3-bit integer
‘010°, and BER is p. The target value can be replaced by
a probability for a given p for 23 cases. For example, if the
integer is flipped and replaced by ‘100’, the probability of that
event is p>(1 — p)'. The power of p terms can be calculated
by the hamming distance of the two binary representations.
Thus, the expectation in such a case where the injected noise
affects the bit cell at the first and second positions, becomes
p2(1 — p)'-val('100'), where val (-) is a function that returns
the real value with a given integer. Although the approach is
used for integer quantization, it is also applicable to fixed-point
or floating-point representations.

Algorithm 1 shows the steps to get the expectation of noise
¢ and the sensitivity, where hamming(-) is the hamming

= |C(D,w;)—C(D,w;)+

_Joc
h Gwi

)

Algorithm 1 Sensitivity Analysis
I:Input : Cost: Cost function of network, D: Training
datasets, w;: The pre-trained integer-type variable, p: Flip
probability of each bit-cell, bit: Bit-width of integer quanti-
zation scheme.

: Output :Sen,,: the sensitivity of variable wy

: Gradient Measurement

: gradient,, =0

for data in D do
gradient,, = gradient,, + %Cost(data, wy)

: gradient,, = gradient,,/ range(D)

: Noise Measurement

9: expectation,,, =0

10: for i =0, 1,...2%"do

11: p_term = phamming(bin(w/),hin(i))

(bit—hamming (bin(w;),bin(i)))

wy

12:  g_term=(1—p)

13:  expectation,, = expectation,, + p_term-q_term-
val(int (i))

14: &4, = w; — expectation

15: Sensitivity Calculation

16: Sen,, = ‘gradient, -l

wy

distance between two binary representations, bin(-) is a func-
tion that returns the actual value in its binary representation,
and int(-) is a function that returns the integer representation
of given values. For gradient measurement step, the gradient
is statistically obtained by differentiating and then averaging
over the target variable for entire dataset. For noise mea-
surement step, the expectation is obtained by multiplying the
flipped probability p_term, non-flipped probability g_term,
and the flipped value for all cases. Finally, the sensitivity
of a weight is obtained by multiplying the gradient and the
expectation. The sensitivity can be used in fine-grained or
coarse-grained manners. For coarse-grained, the sensitivity can
be expressed as

1

W D

where M is the length of the vectorised variables w.

We ran the simulations on Convl layer filters of LeNet-5
using the proposed Taylor expansion based sensitivity test
approach. We also use the traditional fault injection method
to obtain the sensitivities. As presented in Fig. 2(a), the sen-
sitivities obtained with the proposed Taylor expansion (plot)
and the actual error resilience (histogram) matches well. We
can notice from the results that #2 filter, that is composed
of 5 x 5 weights, has the largest sensitivity, which means
that small errors in #2 filter weights give rise to large cost
function change. Here, the sensitivity of the filter is the average
sensitivity of 5 x 5 weights. Fig. 2(b) shows the simulated
sensitivities of Conv2 layer channels of LeNet-5. Fig. 3 shows
the simulated sensitivities of individual weights of Conv2 layer
filters in LeNet-5. Interestingly, it is observed that the weights
with large amplitudes do not have large sensitivities, and
the weights with medium amplitudes show relatively larger
sensitivities.

oC
Oy

Sen,, = el, (6)
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Fig. 2. (a) Sensitivity simulation results with varying BERs to each filter.
(b) Sensitivity simulation results with varying BERs to each channel.
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IV. VOLTAGE SCALABLE DNN ACCELERATOR
WITH HETEROGENEOUS MAC UNITS

This section presents the DNN accelerator design with het-
erogeneous sizing of MAC units to enable aggressive supply
voltage scaling by exploiting the sensitivities of filters and
weights. To detect timing errors induced by voltage scaling,
the modification of MAC unit design is first presented. Then,
we present the timing error probability model of MAC units
with supply voltage scaling. The sensitivity map of MAC units
which is the key factor to decide heterogeneous sizes of MAC
units is also presented in this section. Finally, the sizes of MAC
units are selected using dynamic programming to achieve best
DNN accuracy under ISO-area constraints.

A. Modification to MAC Unit Design

Fig. 4(a) shows the typical systolic array based DNN
accelerator architecture [5], [10]. The 2D MAC array contains
256 x 256 MAC units where each MAC unit computes 24-bit
partial sum with 8-bit of weights and activations. For the

computations, weights are preloaded into the MAC array
from weight FIFO and remain stationary until all the related
input activations are computed. In the systolic operation, the
scheduled input activations are streamed into MAC array from
the activation buffers, and the MAC outputs (partial sums) are
accumulated sequentially through top-down direction in 2D
array. In the conventional systolic array based DNN accelerator
design [5], even though an error occurs in the MAC unit
that processes less sensitive weights, the accuracy drop can
be significant since the error occurs in partial sum. For error
resilience, the multiplication with less sensitive weight should
be dropped before accumulating with partial sum when error
occurs. The modified MAC unit is shown in Fig. 4(b). In
the MAC unit, additional 16 bits of flip-flops with 10 bits
of Razor flip-flops [11] are inserted right after multiplier
as an additional pipeline stage to detect timing errors that
occur during the multiplication. As many noncritical flip-flops
do not need Razor flip-flops [11], only 10 bits are used to
protect 16 bits in the critical multiplication data-path. The
power overhead of the additional flip-flops is around 6.86%
compared to conventional design [5] which is paid for timing
error detection. Since the path delays of the non-Razor paths
(adder and MUX) are around half of the MAC unit critical path
delays, the probability of the timing errors in the non-Razor
paths is extremely low even under aggressive supply voltage
scaling. When timing error occurs in the multiplication, the
result can be instantaneously discarded and the non-updated
partial sum goes through the next (bottom) MAC unit. The
latency increases by one clock cycle with the modified MAC
but the throughput of the systolic MAC array is maintained.

In order to exploit the sensitivity variations among
filter/channel-level weights, we assign the computations with
more sensitive weights to more robust MAC units, while
those with less sensitive weights are assigned to less robust
MAC units. The approach can effectively reduce the number
of timing errors that can occur in the multiplications with
more sensitive weights. The relative robustness (timing error
resilience) to voltage scaling among MAC units can be con-
trolled by using heterogeneous sizing of MAC units where
more robust MAC units are upsized while less robust MAC
units are downsized. In the next subsection, we present the
path delay model of MAC units through which we can easily
model the timing error rates of MAC units with supply voltage
scaling.

B. Timing Error Probability Model of MAC Units

When critical path delay dpq;, is modeled as a Gaussian
random variable over the input vector space, it can be modeled
as an inverter chain of length T [21] if dpq, has the worst-
case delay of T FO4 (fan-out of 4 inverter). Delay dpu; can
be also obtained by the simulation of the target module using
Synopsys Prime time [23]. For the single FO4 delay, the mean
1 with the standard deviation ¢ can be obtained using 2K
Monte Carlo simulations with HSPICE. If FO4 delay of a
single inverter is d;,,, we can calculate the length T as dpap
divided by d;;, . If the clock period is Tk, an input dependent
timing error probability of one critical path can be represented
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Fig. 5. Input dependent timing error probabilities with varying areas of MAC
unit designed with 65nm CMOS.

as follows [21]:

T
— N _
PI o ZN:Tdk /dinv p (1 p)’

where p is the probability that the input signal of the critical
path propagates by one inverter when the critical path is
composed of T inverter chains. We use p = 0.5 [21] in
this paper. If we assume that input dependent timing error
probabilities of all critical paths have the same distribution as
(7), an input dependent timing error probability considering
N (=16 in this work) critical paths can be expressed [21] as
following:

@)

Py=1-(1-P)". 8)

Here, P;n is the probability of one of N critical paths
exceeding a given clock period T, and can be modeled
as the cumulative distribution function (CDF) of a normal
distribution [21]. Fig. 5 presents the input-dependent timing
error probabilities (8) with varying MAC unit areas in 65nm
CMOS process under 0.68V supply voltage and 1.56nsec clock
period.

In addition to the input dependent timing error probability
model, the process variations of critical paths should be also
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considered. Since the critical path delay is modeled as the
inverter chain of length 7', and each inverter delay follows the
Gaussian distribution with mean x and standard deviation o,
the delay of the entire critical path becomes [21]

T
Dparn = D, Dinose ~ N(Tu, To?) ©)

where Dpgp and Dipy i are the delays of the entire critical
path and single inverter, respectively. To calculate the final
timing error probability of P; ny in (8), the length 7' inverter
chain can be obtained from the randomly sampled path delay
Dpan of each MAC unit using delay distribution in (9).
In Fig. 6, a 48 stage inverter delay distributions N(u, o?)
with supply voltage scaling is presented which shows the
larger variations and increasing critical path delays of MAC
units from N(T u, To?) as supply voltage is scaled down.
Fig. 7 also shows the timing error probabilities considering
both input vectors and process variations with varying MAC
unit areas under 0.68V supply voltage and 1.56 nsec clock
period.

As mentioned earlier, the relative robustness (timing error
resilience) to voltage scaling among MAC units is con-
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trolled by different sizing of MAC units with the timing
error probability modeling. A set of possible MAC unit
sizes for heterogeneous MAC sizing is represented as A =
{ag, ay,az, ...,a,—1}, where ag is the minimum area and
ay—1 is the maximum area of MAC units. Sizes ag and
an—1 are decided by the maximum and minimum timing
error probability, respectively, which are determined by the
simulations shown in Fig. 7. In addition, a set of timing
error probabilities of the corresponding A is represented as
P ={f(ao), f(a1), f(a2), ..., fan—1)}, where f(ai) is the
timing error probability of the MAC unit of area ay, obtained
from Fig. 7. Here, the grid (minimum increment step) between
different MAC unit areas is selected as d which satisfies
f(an_1 —d) — f(an_1) = Py, where Py = 107°. For
example, as shown in Fig. 7, A is chosen as {1585.04, 1635.53,
1685.00, 1735.67, 1785.42, 1835.23, 1883.02, 1935.10,
1980.18, 2035.52, 2084.93, 2142.16, 2185.15} with d = 50
and P is {1.33x1072, 1.35x1072, 1.38x1072, 1.41x1072,
1.45x1072,1.49x1072, 1.56x 1072, 1.65x 1072, 1.83x 1072,
2.26x1072, 2.79x 1072, 3.44x1072,9.09%x 10~2} under 0.68
V of supply voltage with 1.56 nsec clock period. The number
of elements in the set A (set P) is 13.

Based on the timing error probability models of MAC
units, we select the sizes of 256 x 256 MAC units among
the possible MAC unit sizes in A = {ap, ay, a2, ..., dy—1}.
Here, the timing error probabilities of the MAC units which
are P = {f(ap), f(a1), f(a2),..., f(ay—1)} and those that
impact the accuracy of DNN should be carefully considered.
In the following subsection, the 2D MAC array sensitivity map
which represents the sensitivity (importance) of each of the
256 x256 MAC unit considering the data flow reflected weight
sensitivities (as the multiplications with weights are mapped
to MAC units) and timing error probabilities is presented.

C. Sensitivity Map for 2D MAC Array

As depicted in Fig. 8, the sensitivities of all the weights that
are processed in a same MAC unit should be considered to
determine the size (area) of MAC units since 256 x 256 MAC
units process different 256 x 256 filter weights many times to
obtain the accuracy of DNNs. Here, the sensitivity of a MAC
unit is defined as “the summation of the sensitivities of all the
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weights that are processed in the MAC unit”. The sensitivity
of each of MAC unit is scaled to a constant to reflect the
relative importance of different layers. The mapping of those
weights to each of MAC unit is decided by the data flow and
the architecture of DNN accelerator.

For conventional data flow which does not consider the
weight sensitivities, the sensitivity variations among different
MAC units can be small due to averaging effect as shown in
Fig. 9. When 36 sets (X axis in Fig. 9(a)) of 256 x 256 weights
in CONV18 layer of ResNet-18 are mapped to MAC array, the
sensitivity variance (o) of 256 x 256 MAC units is as small as
2.263 x 10~2. For the extreme case, if the sensitivities of all
MAC units are same (zero sensitivity variance), heterogeneous
sizing of MAC units does not show any improvement over
ISO-area MAC units. In the proposed heterogeneous MAC
design, we want to increase the sensitivity gap (variance)
between different MAC units so that the MAC units with high
sensitivities can be designed with larger size (robust) while
the MAC units with low sensitivities can be designed with
smaller size. The sensitivity variance can become large by
using the following three mapping strategies where column-
wise and intra-column sorting is considered.

1) Column-Wise: As shown in Fig. 4(a), different DNN
filters are mapped to different columns of MAC array (column-
wise mapping). To increase the sensitivity difference of the
weights, the columns are sorted using the average values of
the weight sensitivities in each column. For example, in the
column-wise mapping, the column with the weights having
the highest sensitivities (for the sensitivity sorting, the average
values of weight sensitivities in each column are used) is
mapped to the rightmost column of 2D MAC array while
the column with the weights having the lowest sensitivities
is mapping to the leftmost column. As shown in Fig. 9(b),
the sensitivity variance of 256 x 256 MAC units increases to
2.796 x 10~ when column-wise sorting is used. Since sorting
the weights between different columns of MAC array can be
performed off-line, column-wise sorting does not incur any
additional cost and hardware overhead.
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Fig. 10.  An example of the activation propagation in column-wise 2tol  Fig. 11. The data flow and hardware overhead of the column-wise 4tol
sorting. sorting.

2) Column-Wise 2 to 1: The column-wise 2tol sorting sorts
the weights assigned to two consecutive MAC units in a same
column of MAC array. As presented in the data flow in Fig. 4,
since all the MAC units in the same row share same input
activations and sequentially accumulate partial sums from top
MAC to bottom MAC, separately sorting each filters (within
each column) messes up the data flow in systolic array. To sort
the weights of same column while preserving the systolic data
flow with small area overhead, the input activations between
two rows of MAC units are switched as well. As shown in
Fig. 4(b) (dark grey color modules), two 2tol MUXs and
one 8bit flip-flop are added to the pair of MAC units with
additional interconnect routing for the activation paths. Fig. 10
shows an example of the switched activation propagation. In
Fig. 10, AO ~ A3 and BO ~ B3 are heterogeneous MAC
units and AO/A1, A2/A3, BO/B1, B2/B3 (grey/dark grey) are
the pairs which can switch the activations using the modified
MAC units shown in Fig. 4(b). Within one pair of MAC units,

dark grey MAC units have larger sizes (more resilience to
timing errors) than grey MAC units using column-wise 2tol
sorting. In Fig. 10, when the activations are switched between
two successive pairs of MAC units (AO/A1 and BO/B1), ap;
is used in both BO and Al at the same clock cycle while aj;
for B1 is delayed by 2 clock cycles. As shown in the timing
diagram of Fig. 10, the partial sum accumulation (blue arrow)
is not affected by the activation switching. As presented in
Fig. 9(b), the sensitivity variance of 256 x 256 MAC units is
4.038 x 1072 with column-wise 2 to 1 mapping which is about
2 times larger than that of the conventional mapping.

3) Column-Wise 4 to 1: Column-wise 2tol scheme can
be extended to sort more rows of MAC units with larger
area overhead. To allow the sorting of four rows of MAC
units, 2tol MUX is replaced with 4tol MUX, and additional
activation FIFO is needed in each row of MAC units (one
8bit flip-flop per MAC unit) to keep the original data flow.
Fig. 11 shows the connection between different rows of MAC
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units and the flip-flops in the activation FIFO to provide
right activations to each MAC unit. In Fig. 11, @ ~ @ flip-
flops are connected to 4tol MUXs for CO ~ C3 MAC units,
respectively. Depending on different selection signals for the
MUZXs, the activations are selected from one of the four rows
while the partial sum accumulation is maintained. Fig. 9(b)
shows the sensitivity variance of the column-wise 4tol sorting
significantly improves to 1.568 x 1078 (7.5 times larger than
that of conventional mapping) with an area overhead of one
4tol MUX and one 8bit flip-flop per MAC unit.

D. Heterogeneous MAC Unit Sizing Approach

The sizes of 256 x 256 MAC units in 2D array of DNN
accelerator are selected using the sensitivity maps of 2D MAC
array, possible MAC unit sizes in A = {ag, a1, a2, ...,a,—1}
and their corresponding timing error probabilities P =
{f(ao), f(a1), f(a2), ..., f(an—1)}. The MAC array should
be carefully designed such that the sizes of more sensitive
MAC units in 2D sensitivity map are larger, while those of
less sensitive MAC units are selected smaller.

With given area constraint of whole MAC array, the problem
can be formulated as follows:

L MN—1
Minimize E : si X f(a;)
=0

MN-—1
sty ai < Amax, (M, N = 256) (10)
=0

where s; is the sensitivity of i;; MAC unit, a; is the area
of iy, MAC unit, f(a;) is the timing error probability as a
function of MAC unit area obtained from Fig. 7, and A,
is the given area constraint. In this work, the area constraint
is set to ISO-area with the conventional MAC array for the
comparison with conventional MAC array with homogeneous
MAC units. The objective function zg@’*l si X f(a;j) (8) is
referred to the expected accuracy degradation in the rest of
the paper.

E. Dynamic Programming Based MAC Array Design

Algorithm 2 shows the overall flow of the proposed hetero-
geneous MAC unit sizing process. The algorithm minimizes
the expected accuracy degradation Exp, which is Zf‘i IZ lgix
f(a;) in (8), under a given area constraint A,,,y-. EXp i m)
represents the minimum sum of the expected accuracy degra-
dation of i +1 MAC units. In the initialization step, Exp g,
can be easily found by a simple table look-up with one
candidate, Expy;y_;[m]. Here, m is the intermediate area
constant to solve the sub-problem of current iteration. For
other table contents, Exp ;¢ ) and MAC i>0,m) are initial-
ized as an infinite number and zero, respectively. As i becomes
larger, Exp;,, can be obtained by accumulating the Exp
value each MAC size, where Expy; ;) has the partial optimal
MAC sizes of MAC (i) = {MACyn—1,--- , MACynN—1-i}
after iterations. To compute Expy; ,,y while using the previ-
ously computed MAC ;—1,m—a), Exp of current iteration step
Expyn—_i—; [u] is calculated, where u is the newly added
area of the (MN — 1 —i),, MAC unit. Expyn_q_; [u] is
also computed by the sensitivity sy y—_1—; corresponding to
(MN —1—1i),;,; MAC unit multiplied by the timing error

Algorithm 2 MAC Unit Size Selection Algorithm Based on

Dynamic Programming
I:Input : Area Constraint (A,,y), Voltage (Vz4), Row
Numbers of MAC array (M), Column Numbers of MAC
array (N), Expected Accuracy Degradation (Exp), Sensi-
tivity (S = {so,---,smun—1}), Possible MAC unit sizes
(U = {uo, -+ ,up—1}), Timing Error Probability Function
(fVaa)

: Output: Optimal MAC sizing MAC ),

: Initial:

: Initialize Exp(g ) < Exppyy—ilm]

: Initialize other sizing sub-problems Exp; ,,y < 00

cfor i < 1toMN — 1 do

form < (i +1) - ugtoApax do
for u < ugtom do

Expyn_1—i [l < sun—1—i - fv,,(u)

9: Expremp <= EXP(i—1m—u) + EXpyn-—1-i[u]

10: If Expmy > EXDiemp then

11: EXp(imy < EXDPromp

12: MAC iy < MACi—1,m—u) U {u}

13: MACypy < MAC i m)

[\

probability at given supply voltage fy,, (1) and MAC sizes.
In other words, the partial MAC sizing M AC ;) that has the
minimum sum of Exp is determined by varying u in the iz,
iteration to compute MAC (), where the MAC ;-1 y—y) is
obtained from the previous step. The minimum sum of Exp
is iteratively searched by solving the sub-problems.

V. EXPERIMENTAL RESULTS
A. Simulation Results

In this section, we present the numerical comparisons
on the accuracy of DNN when supply voltage is scaled
down in DNN accelerators with identical MAC units and
heterogeneous MAC units. With identical MAC units, all the
weights with different sensitivities are processed under same
timing error probabilities. However, with heterogeneous MAC
units, the MAC unit areas are determined by Algorithm 2
considering sensitivity map, where more sensitive weights can
be processed with relatively lower timing error probabilities
while less sensitive weights are processed with larger error
probabilities. Fig. 12(a) shows the sensitivities (log scale) of
256 x 256 MAC units and their corresponding areas obtained
from Algorithm 2 for three mapping strategies, under ISO-
area condition of 1885um? (per one MAC unit) at the supply
voltage of 0.68V. As presented in Fig. 12(a), the sensitivities
of 256 x 256 MAC units vary depending on the mapping
strategy, and the areas of 256 x 256 MAC units are also
changed following the sensitivities. As it goes from column-
wise mapping to column-wise 4tol mapping, the sensitivity
variance increases and the distribution of MAC unit areas
become diversified as well. Fig. 12(b) shows the distributions
of 256 x 256 MAC unit areas for three mapping strategies. We
notice from Fig. 12(b) that most diverse sizes of MAC units
are found in the column-wise 4tol mapping where the largest
error resilience improvement has been observed. Fig. 12(c)
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Fig. 12.  (a) Sensitivities (log scale) of 256 x 256 MAC units and their corresponding areas obtained from Algorithm 2 for three mapping strategies.

(b) Distribution of 256 x 256 MAC unit areas for three mapping strategies. (c) Grey scale representation of 256 x 256 MAC unit areas over 2D array for

three mapping strategies.

shows the grey scale representation of 256 x 256 MAC unit
areas over 2D array to check the effect of column/row sorting.
In the figure, darkest dots show the MAC units with largest
area while white dots mean smallest ones. Fig. 12(c) also
shows that the heterogeneous sizing MAC units are allocated
differently in 2D array depending on the mapping strategies,
which is consistent with the 2D sensitivity map shown in
Fig. 9(b). As shown in 4 x 4 pixels of the middle and right
figures in Fig. 12(c), MAC areas are sorted by 2 rows and 4
rows in the column-wise 2tol and column-wise 4tol schemes,
resepectively.

In order to evaluate the accuracy of DNN using various
timing error probabilities of MAC units, three convolutional
neural network benchmarks including ResNet-18, ResNet-34
and ResNet-50 are used with ImageNet large scale visual
recognition challenge 2012 (ILSVRC2012) validation data set
(50,000 images) [20]. We use pre-trained networks for all
benchmarks. All of the experiments are built on TensorFlow

[20] for adjusting the sensitivity analysis and timing error
injection on the above benchmarks, which is based on the
timing error probabilities of 256 x 256 MAC units. To reflect
the timing errors of MAC units in TensorFlow simulation,
we first find the error rate of each weight considering the
mapping between weights and MAC units. According to
the error rate of each weight, binary values representing
errors (0: error, 1: no error) are sampled from Bernoulli
distribution. To get the accuracy drop due to timing errors,
weights multiplied with those binary values are used as new
weights for the convolutions in DNN inference. In order to
prevent only one weight error from affecting many following
computations (weightxactivation), every stride of the convo-
lutions are processed in parallel (different conv2d function in
TensorFlow) with different binary values. For more accurate
simulation, the average accuracy drop of 100 inferences is
used. The proposed three mapping strategies are compared
with other error resilient approach [10]. Fig. 13(a) shows
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Fig. 14. Accuracy comparisons among various error resilient architectures with aggressive voltage scaling (from 1.08V to 0.68V) on different benchmarks:
(a) ResNet-18, (b) ResNet-34, (c) ResNet-50.

TABLE I

THE ACCURAY COMPARISONS AMONG VARIOUS ERROR RESILIENT TECHNIQUES

ResNet-18 (Original accuracy : 0.7033) ResNet-34 (Original accuracy : 0.7380) ResNet-50 (Original accuracy : 0.7635)
I1SO A
e 1785 1885 1985 1785 1885 1985 1785 1885 1985
VDD
Scheme Topl Top5 Topl Top5 Topl Top5 Topl Top5 Topl Top5 Topl Top5 Topl Top5 Topl Top5 Topl Top5
[10] 0.6118 0.8322 0.6224 0.8401 0.6334 0.8484 0.6498 0.8582 0.6656 0.8723 0.6857 0.8834 0.6748 0.8762 0.6841 0.8829 0.6934 0.8894
Column-wise 0.6310 0.8516 0.6401 0.8531 0.6501 0.8617 0.6660 0.8691 0.6813 0.8812 0.7027 0.8927 0.6856 0.8857 0.6975 0.8920 0.7264 0.9108
0.68 COlnznt":I]_Wise 0.6499 0.8611 0.6543 0.8630 0.6649 0.8689 0.6851 0.8832 0.6935 0.8892 0.7168 0.9039 0.7165 0.9040 0.7209 0.9074 0.7253 0.9107
Column-wise
4tol 0.6719 0.8755 0.6783 0.8780 0.6885 0.8847 0.6998 0.8926 0.7028 0.8950 0.7194 0.9083 0.7259 0.9103 0.7268 09110 0.7276 09110
[10] 0.6591 0.8628 0.6687 0.8768 0.6892 0.8780 0.6930 0.8856 0.7050 0.8927 0.7210 0.8983 0.7213 0.9032 0.7280 0.9066 0.7292 0.9199
Column-wise 0.6974 0.8914 0.6983 0.8917 0.6997 0.8927 0.7338 0.9117 0.7337 0.9115 0.7344 0.9120 0.7571 0.9276 0.7473 0.9274 0.7578 0.9291
0.73 COI“ZT:I-M“ 0.7004 0.8932 0.7008 0.8933 0.7015 0.8938 0.7360 0.9130 0.7360 0.9129 0.7363 0.9132 0.7604 0.9295 0.7606 0.9294 0.7610 0.9303
Column-wise
4tol 0.7019 0.8941 0.7021 0.8941 0.7024 0.8944 0.7371 0.9137 0.7371 0.9136 0.7373 0.9138 0.7621 0.9305 0.7622 0.9304 0.7626 0.9309
[10] 0.7006 0.8934 0.7010 0.8936 0.7010 0.8936 0.7361 0.9130 0.7363 0.9130 0.7363 0.9132 0.7617 0.9301 0.7619 0.9303 0.7622 0.9304
Column-wise 0.7033 0.8944 0.7034 0.8963 0.7037 0.8946 0.7378 0.9140 0.7373 0.9140 0.7373 0.9142 0.7627 0.9312 0.7629 0.9312 0.7632 0.9314
0.78 COIHZ'::I]_Wise 0.7033 0.8942 0.7034 0.8976 0.7035 0.8948 0.7380 0.9142 0.7378 0.9142 0.7378 0.9143 0.7633 0.9313 0.7630 0.9314 0.7635 0.9317
Column-wise
atol 0.7033 0.8946 0.7034 0.8955 0.7034 0.8949 0.7381 0.9143 0.7380 0.9143 0.7380 0.9143 0.7636 0.9314 0.7636 0.9314 0.7637 0.9314

the accuracies of three benchmark CNN models (ResNet-18,
ResNet-34, and ResNet-50) applied to the optimal MAC unit
areas under ISO-area condition of 1885um? with the supply
voltage of 0.68V (shown in Fig. 12). For ResNet-34, when
column-wise/column-wise 2tol/column-wise 4tol are applied
to calculate the sensitivities of MAC units, top-1 accuracy of
three mapping strategies are a way higher than previous error
resilient scheme [10]. The accuracy of column-wise 4tol is
same as the original (without voltage scaling) top-1 accuracy
of ResNet-34. In Fig. 13(b), the accuracies of three map-

ping strategies and previous one are compared according to
different ISO-area conditions (1785um?, 1885um?, 1985um?),
where it is shown that the proposed approaches achieve better
accuracies for different ISO-area conditions. In Fig. 14, the
accuracies of the proposed schemes and previous one [10] are
compared under different supply voltages from 1.08V to 0.68V
for ResNet-18/ ResNet-34/ ResNet-50 models. As shown in
the figure, even with 0.73V of supply voltage, the proposed
three mapping strategies show negligible accuracy degradation
compared to the original accuracy. In Table I, all the accuracy
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TABLE II

THE COMPARISON OF VARIOUS SYSTOLIC ARRAY BASED
DNN ACCELERATORS

Proposed
Designs (5] [10] Col i|Cols i|Col i
(redesigned)|(redesigned)| -0 Wmn-wijLolumn-wi & olumn-wi
se se 2tol se 4tol
Technology 65nm 65nm 65nm 65nm 65nm
Bitwidth
[bits] 8 8 8 8 8
Number of
MAC 65536 65536 65536 65536 65536
Frequency
[MH7] 526 526 641 641 641
Throughput
[10° bits/sec] 16.8 16.8 20.5 20.5 20.5
Area [mm’] 2413 282.4 214.2 220.7 228.7
Power 78.5 72.5 74.6 77.2
Consumption 66.5 @1.08V | @1.08V | @1.08V | @1.08V
[W]p @1.08V 46.4" 33.2° 34.1° 30.5"
@0.78V" | @0.73V" | @0.73V" | @0.68V"

* Scaled Power Consumption = Power Consumption X (Scaled Voltage’/1.08
" Minimum supply voltage with same accuracy loss < 3% for ResNet-18

~

results of the proposed three mapping strategies are presented
with different the benchmark CNN models, varying ISO-area
conditions and supply voltages scaling.

B. Implementation Results

To verify the effectiveness of the heterogeneous MAC unit
sizing approach, the proposed voltage scalable DNN acceler-
ator has been implemented using 65 nm CMOS technology.
The proposed architecture is coded in Verilog and synthesized
using Synopsys Design Compiler. IC complier is used for auto
placing and routing to get the post-layout results including
clock tree and hold buffers. To obtain the power/energy con-
sumption results, Synopsys Primetime PX and ILSVRC2012
validation data set image inputs (50,000 images) are used
in the post-layout simulations in TYPICAL 1.08V (without
voltage scaling), 25° corner @641 MHz. Please note that
activation buffers (SRAM) and weight FIFOs are not counted
in the implementation results since the proposed work is
focused on the datapath (MAC units) design. The baseline
TPU [5] without additional Razor pipeline stage is imple-
mented for comparison. As presented in Table II, the proposed
column-wise 4tol design can achieve 54.1% of energy savings
compared to the baseline TPU [5], at minimum supply voltage
(with same accuracy loss < 3%). In [5] and [10], due to
the longer critical paths of [5] and [10] compared to the
proposed pipelined designs, the area increases to meet the
operating frequency. The previous error-resilient scheme based
architecture [10] is also implemented for comparison. Table II
presents the implementation results and comparisons of the
proposed voltage scalable accelerator and the previous one
[10]. The architecture of [10] which is based on the systolic
array of 256 x 256 MAC units with a Razor flip-flop and a
MUX per one MAC unit is redesigned using 65nm CMOS
technology. As presented in Table II, the proposed accelerator
using column-wise 4tol sorting achieves 34.2% energy savings
compared to that of [10] under same 3% accuracy loss (com-
pare to original accuracy) for ResNet-18. Using column-wise

sorting, the proposed accelerator can achieve 28.5% energy
savings compared to that of [10] with comparable accuracy
(accuracy loss < 0.5%).

VI. CONCLUSION

In this paper, we present the error resilient techniques
for voltage scalable DNN accelerator. We present sensitivity
analysis using Taylor expansion to reduce the simulation time.
When conventional approach is used, the simulation time is
prohibitive to perform the fine-grained error injection for large
scale DNNs. Based on the sensitivity analysis, baseline sys-
tolic array DNN accelerator is redesigned using heterogeneous
MAC units with the sensitivity map for all 256x256 MAC
units, where more sensitive weights are allocated to more
robust MAC units, and less sensitive weights are assigned to
less robust MAC units. Using dynamic programming, the sizes
of MAC units are selected to achieve best DNN accuracy under
ISO-area constraints. The proposed DNN accelerator with het-
erogeneous MAC units allows more aggressive voltage scaling
compared to the accelerators with identical MAC units. The
simulations with ImageNet dataset show that significant energy
savings can be achieved with minor accuracy degradation even
with very aggressive supply voltage scaling.
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