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Computational insights into lipid assisted peptide
misfolding and aggregation in neurodegeneration

Abhilash Sahooa and Silvina Matysiak *ab

Peptide misfolding and aberrant assembly in membranous micro-environments have been associated

with numerous neurodegenerative diseases. The biomolecular mechanisms and biophysical implications of

these amyloid membrane interactions have been under extensive research and can assist in understanding

disease pathogenesis and potential development of rational therapeutics. But, the complex nature and

diversity of biomolecular interactions, structural transitions, and dependence on local environmental

conditions have made accurate microscopic characterization challenging. In this review, using cases of

Alzheimer’s disease (amyloid-beta peptide), Parkinson’s disease (alpha-synuclein peptide) and Huntington’s

disease (huntingtin protein), we illustrate existing challenges in experimental investigations and summarize

recent relevant numerical simulation studies into amyloidogenic peptide–membrane interactions. In

addition we project directions for future in silico studies and discuss shortcomings of current computa-

tional approaches.

1 Introduction

Accumulation of proteinaceous amyloid-like aggregates is a
recurrent theme in numerous diseases associated with neuronal
dysfunction.1 In particular, due to relatively higher and progres-
sively increasing incidence, Alzheimer’s, Parkinson’s and
Huntington’s disease present a significant social and economic
challenge. Despite variations in pathogenic peptide type and
amino acid sequences, oligomeric-aggregates associated with
these diseases share many common structural properties.2

These amyloid fibrillar deposits/inclusions are often character-
ized by single-component-dominant, cross beta structures
with beta sheets positioned perpendicular to fibril axis. While
misfolded amyloid peptides can form mature fibrils and
protofibrils through progressive self-association, an emerging
body of evidence implicates smaller polymorphic pre-fibrillar,
on-pathway and off-pathway oligomers as the primary toxic
species.3–6 A detailed understanding of the molecular mechanisms
and pathological event pathways of early-stage amyloid oligo-
merization can aid towards development of rational therapeutics.
Many common pathways for amyloid aggregation related cytotoxicity
has been outlined – ionic homeostasis, mitochondrial dysfunction,
altered signaling and autophagy. Many of these pathways
involve extensive membrane–peptide interactions.7–10 Moreover,
membranes constitute a significant proportion of cytosolic

components and the amphipathic nature of pathogenic amyloid
peptides and aggregates can amplify toxic membrane associa-
tions and insertion.

Experimental investigations into structural features of amy-
loid oligomer–membrane interaction is limited due to extensive
structural heterogeneity, complex competing interactions –
membrane affinity & peptide aggregation and transient nature
of oligomeric intermediates. Therefore, it is not possible
to study this process using a single traditional biophysical
techniques, which often provide spatio-temporally averaged
information. Oligomer–membrane affinity and binding have
been investigated through chromatography,11 centrifugation,12

density gradient techniques,13 infrared spectroscopy,14–16 mass
spectroscopy,16 and surface plasmon resonance (SPR).17,18

Structural implications of oligomer/fibril–membrane interactions
have been probed using black lipid membranes (BLM),9,19,20

microscopy techniques (atomic force microscopy (AFM),7,20

transmission electron microscopy (TEM)21), fluorescence
microscopy,22,23 nuclear magnetic resonance (NMR),24 electron
paramagnetic resonance (EPR)25,26 and circular dichroism
(CD).24 On the other hand, studies have relied on fluorescence
spectroscopy27–30 to study kinetics and dynamics. Novel variations
and combinations of aforementioned techniques have proved
more successful in characterization of amyloid–membrane
assemblies. Multiple possible structural mechanisms and
models of membrane disruption (Fig. 1) by oligomer–membrane
interactions – membrane-pore model, carpeting model and
detergent model have been proposed to explain experimental
observations.31 Although these models provide possible descrip-
tions of their respective experimental observations, the accurate
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characterization and pathways of membrane disruption is
missing. In addition to diverging interpretations, the intrinsi-
cally disordered nature of aggregating peptides are highly
susceptible to local environmental alterations and generate
experimental artifacts which often remain unaccounted for,
leading to controversial results.

Molecular simulations, aided by statistical thermodynamics
complement and/or serve as surrogates for experiments by
providing both atomic-scale structural and kinetic insights.
The molecular and mechanistic details from in silico observa-
tions can also assist therapeutic drug design. Classical molecular
dynamics involves direct numerical integration of Newton’s
equations, aided by mathematical functions and parameters –
forcefield, that describe the dependence of system’s potential
energy on individual atomic positions to generate time evolution
of molecules.32 It can be particularly ideal for characterizing
transient oligomeric structures which are difficult to study
experimentally and has been widely used to evaluate hetero-
geneous ensemble of structures generated by amyloid peptides.
On the basis of particle-based resolution, molecular dynamics
simulations can be broadly classified into all-atom (AA), united-
atom (UA) and coarse grained (CG).33 The efficiency and accu-
racy of bio-molecular simulations is dependent on mathematical
forcefields and packaged molecular dynamics simulation pro-
grams (GROMACS,34 CHARMM,35 NAMD36 and DLPoly,37 etc.).
Some of the popular chemically specific peptide–lipid forcefield
families are Assisted Model Building and Energy Refinement38,39

(AMBER), Chemistry at HARvard Molecular Mechanics40–42

(CHARMM), GROningen MOlecular Simulation43,44 (GROMOS),
Optimized Potential for Liquid Simulations45,46 (OPLS) and
MARTINI47,48 (a coarse-grained potential). Improvements in
parallel computing architecture and use of graphical processing
units have enabled millisecond level atomistic simulations to
study protein folding and unfolding in an unbiased manner.

While atomistic simulations provide higher resolution and
more detailed insights about the peptide–membrane biomole-
cular systems, the spatio-temporal scales to study large-scale
oligomerization and oligomer–lipid interactions cannot be

reliably achieved by present-day computational machineries.
On the other hand, due to fewer number of particles – resulting
in lowered resolution and a smoother free-energy landscape,
coarse grained (CG) MD can provide a more holistic picture for
such multi-agent phenomena. Here we present a systematic
survey of molecular dynamics simulations – atomistic and coarse
grained to catalouge amyloid monomer/oligomer–membrane
interactions in common neurodegenerative diseases – Alzheimer’s
(AD), Parkinson’s (PD) and Huntington’s disease (HD) to present
a cohesive picture.

2 Alzheimer’s disease – Ab peptides

Amyloid plaques and neurofibrillary tangles, contributing to
progressive cognitive decline have been established as hallmarks
for Alzheimer’s disease.49–53 The amyloid cascade hypothesis,
has been widely accepted by neuropathologists as the primary
model of AD pathogenesis. According to this hypothesis, oligo-
merization of Ab peptides initiates a cascade of events, culmi-
nating in neuronal dysfunction and dementia.54–58 Pathogenic
Ab peptides are about 39–43 residue (Fig. 2a) long intrinsically
disordered peptide in aqueous solution and ordered alpha helix
rich structures in apolar environments (Fig. 2b), formed from
successive incisions by b-secretase and g-secretase, which can
aggregate into b-sheet rich aggregates. The interaction of these
Ab-oligomers with neuronal membranes can lead to significant
membrane disruptions.59–65 The interactions are highly hetero-
geneous with significant dependencies on membrane composi-
tion, oligomer structure, peptide/lipid ratio and cellular
environment. We have curated a brief list of experimentally
observed Ab peptide–membrane interactions.

Aggregation kinetics was significantly altered in presence
of brain total lipid extract (BTLE), with reduced lag-times and
slower elongation rates as compared to aggregation in solution.66

Importance of bilayer physical properties – surface charge,
hydrophobicity and roughness in modulating Ab–membrane
interaction, was investigated using atomic force microscopy

Fig. 1 Three modes of membrane disruption due to oligomer–membrane interactions. (a) Carpeting model: accumulation of amyloid aggregates on
membrane surface imparts unequal stress on bilayer, resulting in membrane disruption. (b) Membrane-pore model: oligomers insert into the membrane
creating membrane-pores that destabilizes ionic homeostasis. (c) Detergent model: oligomers on interacting with a membrane can start a micelle-like
effect and remove lipid molecules from the bilayer.
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and membrane mimicking surfaces such as silica, mica, graphite
and Teflon.67–70 These experiments reveal the prominent role of
surface charge and electrostatic interaction between peptides and
membrane in dictating peptide absorption and aggregation.
Particularly, peptide–membrane binding and subsequent aggre-
gation is weaker for 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-
choline (POPC), compared to model membranes created from
anionic lipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-
(10-rac-glycerol) (POPG).71 Beyond membrane composition
induced surface charge, the presence of sterols which modulate
membrane biophysical properties are an important part of
membrane assisted Ab aggregation.

On the other hand, studies have also supported a multi-modal
form of Ab monomer/oligomer assisted membrane disruption.
Kayed et al.72 suggested increased membrane conductance as a
consequence of membrane thinning due to asymmetric pressure
from Ab oligomer–bilayer surface interaction (carpeting model –
Fig. 1). Pore formation due to Ab membrane interactions is
evidenced from doughnut shapes in AFM and release of encapsu-
lated fluorescent dyes from LUVs, leading up to ionic disbalance.7

Moreover micelle-like behavior and subsequent lipid-extraction
by Ab oligomer has been hypothesized from the observation
that a structurally similar peptide, IAPP disrupts membrane by
reduction of membrane surface tension and consequent
removal of lipids.73 Quasi-elastic neutron scattering (QENS)
studies have been extensively employed to study alterations in
lipid dynamics in presence of Ab peptides. Experiments by
Barett et al. reported a discrepancy in Ab 22–40 induced lipid-
lateral diffusion at different fluidity levels of a DMPC/DMPS
membrane.74 In gel state, Ab peptide induced an increase
in lateral diffusion, whereas there was a significant decrease

in in-plane lateral diffusion in a more disordered state. Investiga-
tions by Buchsteiner et al. also revealed an increase in lateral
diffusion of DMPC/DMPS membrane in its liquid crystalline state
on interacting with Ab 25–35.75 These works suggest a decrease in
membrane stability and increased membrane fluidity induced by
interaction with embeded Ab peptide fragments. On the other
hand, QENS studies by Rai et al. using DMPG unilamellar vesicles
and Ab 1–40 peptides suggested an increase in lipid lateral
diffusion in disordered phase with no appreciable changes in gel
phase.76 The effective thinning of DMPG bilayer on addition of Ab
peptide has been implicated for this increased lateral diffusion.
The authors used small angle neutron scattering and neutron
membrane diffraction to report that Ab 1–40 bound strongly to
DMPG headgroup and did not penetrate. This aforementioned
works on lipid dynamics also presents evidence of how differen-
tial binding of Ab peptide with lipid membranes, imposed by
physical properties of lipids, can in turn affect lipid dynamics.

Considering the associated system size and numerical
complexity, all-atom molecular dynamics simulations have pre-
dominantly focused on pre-inserted Ab oligomer–membrane
interactions, simulations with specific shorter peptide segments
and enforced surface-bound interactions. Simulations with differ-
ent explicit and implicit solvent forcefields, along with implemen-
tation of advances sampling techniques have been explored.

2.1 Ab monomer/oligomers–membrane surface interaction

Atomistic molecular dynamics simulations using model zwitter-
ionic (DPPC) and anionic (DOPS) membranes were recently used
to study Ab dimerization on a membrane surface.77 The authors
used two different types of Ab peptide – negatively charged (�3)
for DPPC membrane and neutral for DOPS membrane to

Fig. 2 (a) Amino acids in Ab 1–42 peptide. The red shaded region represents the central hydrophobic core and the characters in red are some of the
familial mutants. (b) In-solution structure of a single monomer in apolar micro-environment (pdb: 1IYT). (c) A representative structure of Ab oligomer
(pdb: 2BEG) in solution. The aggregate is colored to distinguish peptide chains. Ab oligomers are highly dynamic and can have different structure
depending on local environmental changes.
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incorporate local pH alterations in presence of DOPS mem-
branes. The simulations and thermodynamic cycle calculations
predicted that irrespective of dimer’s structure (b-hairpin or
extended) there were stronger peptide–peptide interactions
compared to peptide–lipid interactions for DOPS, actively pro-
moting dimerization. These authors hypothesize the neutral Ab
peptide formed due to reduction in pH closer to PS membrane
contributes to this effect. Stronger peptide–peptide interaction
also presents a possibility of dissociation of peptide-dimer from
lipid bilayer surface. Free energy perturbation calculations and
replica exchange molecular dynamics (REMD), with GROMOS
53a6 force field, of Ab 11–40 trimer suggested ease of trimer’s
membrane (DPPC) insertion and dominance of van der Waals
interactions over electrostatics in trimer-bilayer binding.78

While the b sheet rich region remained completely buried into
the lipid bilayer, the more disordered random coil region
preferred to interact with lipid headgroup. Collision cross
section (CCS), calculated using ion mobility projection approxi-
mation calculation tool79 (IMPACT) suggested similar trimer
CCS while solvated in solution and embedded in membranes.
In contrast, CHARMM27 simulations of Ab 17–42, b-strand–
turn-b-strand pentamer (pdb code: 2BEG (Fig. 2)) binding
to charged – POPC/POPG and zwitterionic – POPC bilayers,
suggests critical importance of electrostatics in this process.80 The
impact of bilayer composition induced membrane biophysical
properties on monomeric Ab peptide binding was investigated by
Ahyayauch et al.81 Their MD simulation studies with OPLS-AA and
model lipid membranes composed of varying concentrations
of PSM (N-palmitoylsphingomyelin)/DMPA (1,2-dimyristoyl-sn-
glycero-3-phosphate)/cholesterol show although charged bilayer
promote binding as compared to uncharged ones, the peptide–
lipid contacts are more numerous in low-charged than high-
charged bilayers. Although, the presence of DMPA (5%) initiated
a conversion to b sheet, the increase in concentration of DMPA
(20%) resulted in retention of initial a helical structure. In
addition, their experimental studies present that binding of
peptides to membranes in Ld (liquid disordered) state is stronger
and less electrostatics-driven than Lo (liquid ordered) phase.
Recently, differences between POPC and POPC–cholesterol–PSM
raft membranes with respect to Ab tetramer–membrane interac-
tions were established by GROMOS-53a6 simulations.82 The
results depict higher insertion and successive disruption (pre-
dicted) of POPC bilayer compared to the model raft. This study
presents a validation of carpeting model for membrane disrup-
tion. Slower self-diffusion of peptide–tetramers and increased
elongation into rod-like structures in presence of lipid rafts were
hypothesized as possible contributors towards experimentally
observed increased fibrillation on raft membranes.83 Davis
et al.84 used constrained (umbrella sampling) and unconstrained
MD to characterize Ab 1–42 interaction with DPPC and DOPS
starting from helical, b-hairpin and random coil structures at
multiple pH values using GROMOS96 force field. Peptides on
DPPC have a more parallel structure, consequently maximizing
peptide–membrane contacts as compared to DOPS, which promotes
a more ‘‘superficial’’ and parallel orientation with N-terminal
hydrophobic groups embedded into the bilayer. While interaction

with PS membranes do not result in a stable secondary structure
enriched monomeric conformation, it does stabilize transient
states with high propensity for aggregation. Another study85 by
the same group using extensive REMD showed that the popula-
tion of D23–K28 interaction that promotes b-hairpins is reduced
in phospholipid bilayers, which promote interaction between
K28 and phosphate. Hoshinho et al.86 measured adhesion and
binding probabilities of Ab 1–42 with membranes containing
GM1 (ganglioside). The interaction of Ab 1–42 with membrane is
driven by interaction of GM1 with peptide aromatic residues and
K28’s amine group. They also reported sequential assembly of
Ab peptides and stronger peptide–peptide hydrophobic inter-
actions capable of transiently removing assembled complex from
membrane. The binding of monomeric Ab to the membrane
was established by interaction of K28 with neuraminic acids,
leading to deformation and increased hydrophobic association
of C-terminus with the membrane.

2.2 Ab monomer/oligomers–membrane insertion and
trans-membrane interactions

Simulations of Ab 1–42 with POPC, POPG and DPPC have
revealed stability of monomers and oligomers embedded into
membranes.87 Zwitterionic membranes, tail unsaturation
and peptide-oligomerization promoted stability of such trans-
membrane structures. The presence of transmembrane structures
lead to enhanced water translocation, in a membrane dependent
fashion. Implicit membrane simulation studies with basin-
exchange parallel tempering have been employed to characterize
stable transmembrane oligomer structures.88 While, b sheet with
a typical strand–turn-strand unit was found to be the most stable
species for oligomers up to size six, octamers assembled into two
distinct tetrameric units. Kargar et al.89 used OPLS-AA force field
to observe relative stability of a part membrane-inserted (DPPC)
Ab 1–40 monomer across multiple temperatures. Insertion of
peptides into the lipid bilayer was observed to increase with
increasing temperature. In addition, strong interactions between
inserted peptide and neighboring phospholipids imparted a tilt
and increased fluidity to locally-close lipid molecules, resulting
in membrane thinning.

All-atom simulations with GROMS96-53a6 force-field to
study dimerization process of closely-placed and membrane-
inserted Ab 1–40 reveal that the aggregation process is led
by the polar N-terminus residues.90 Membranes of varying
compositions behaved differently, with ‘‘strong’’ peptide assem-
blies and significant membrane disruption in POPC compared to
‘‘weak’’ peptide assemblies and stronger peptide–lipid interactions
in POPS and POPE. The strength of peptide assembly (weak/strong)
is inferred from geometry-based parameters – number of heavy
atom contacts and separation of center of masses. Membrane
disruption was particularly low in raft membranes (enriched
with sphingomylin and cholesterol). Simulations by Jang et al.91

using CHARMM27, presented an unbiased and spontaneous
insertion-pathway of truncated Ab 17–42 into DOPC membrane,
using a particular (U-shaped – b-strand–turn-b-strand (p3)
pentameric aggregate) conformation. The simulations revealed
four distinct sequential steps characterizing the pathway for
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membrane insertion – ‘‘initial touch, partial deposition,
oblique insertion and embedded oligomers’’. This study also
reported that dimeric aggregates with a U-shaped motif in
membranous environments were relatively less stable than
pentameric ones, due to a disruption of b sheet contacts.
CHARMM36 simulations of mixed lipid bilayer (POPC & DMPS)
with pre-inserted Ab 25–35 showed development of negative
local membrane curvature.92 In addition, the presence of
membrane modulating drugs such as curcumin, acetylsalicylic
acid (ASA) and melatonin, which partitioned into lipid head–
tail interface led to differential modulation of Ab 25–35 aggre-
gating behavior. While melatonin did not affect Ab 25–35
aggregation, the presence of ASA, that increases membrane
stiffening, increased peptide aggregation. On the other hand
curcumin, which increased lipid surface area to create a softer
and thinner membrane led to a decrease peptide aggregation.
Poojari et al. studied the effect of site-specific mutations
(E22G – arctic mutant, D23G – arctic-type mutant, E22G/D23G,
K16M/K28M and K16M/E22G/D23G/K28M) on transmembrane
stability by using GROMOS96 simulations of POPC-inserted Ab
1–42 peptides–monomers and tetramers.93 The mutants were
chosen to primarily investigate the effect of charged groups at
the trans-membrane region in oligomer stability. While E22G
Ab42 demonstrated the highest stability, D23G showed relatively
lower stability and significant membrane disruption. In general,
all the site-specific mutants were similar or more stable than
wild-type Ab 1–42 peptides.

Qiu et al. compared structural properties and transitions
of partially inserted monomeric Ab peptide in cholesterol
depleted and enriched POPC membranes using GROMOS87.94

Their simulations suggest a protective role of cholesterol by
preventing structural transition – from a helix to b sheet and
decreasing membrane disruption. While the smaller Ab 1–40
preferred a partly inserted conformation, the longer and more
hydrophobic Ab 1–42 remained completely inserted in choles-
terol enriched PC membrane. The presence of cholesterol
resulted in approximately doubling the insertion efficiency of
Ab peptide. The authors also reported an increased membrane
disruption due to inserted form of Ab 1–40, compared to Ab 1–
42, possibly due to hydrophobic length mis-match of the larger
peptide. Xiang et al. investigated Ab 11–42 peptide and oligo-
mer interaction in POPC membranes with varying concentra-
tions of cholesterol using CHARMM36 forcefield.95 Both for
monomeric and trimeric Ab (S-shaped triple-b-strand) system,
increase in cholesterol concentration, pushed the peptide/peptide-
aggregate out from its pre-inserted initial state. The free energy
profile of monomer insertion as a function of membrane’s
cholesterol content suggests ease of initial membrane adhesion
and larger barrier to membrane insertion with increasing
cholesterol concentration. The authors also reported easier
peptide insertion in trimeric form as compared to monomers
and possible water pore formation in N-terminal inserted Ab
11–42 trimer. The protective role of cholesterol and displacement
of sterols to facilitate oligomer membrane insertion has been
established by many previous experimental observations.96,97 This
discrepancy in the two reported studies regarding Ab membrane

insertion may be associated with molecular dynamics force-
fields and/or different lengths of peptide used. It is worth
noting that recent studies have also reported enhanced Ab
peptide aggregation with increasing cholesterol content.98

An accurate description of the influences of sterol content on
Ab–membrane interaction is still not available.

Beyond traditional MD and advanced sampling methods,
Monte Carlo (MC) and coarse-grained molecular dynamics
(CG-MD) simulations are being used to address the long time
and length scale issues of Ab aggregation on membrane. Trans-
membrane stability of Ab 1–42 and related familial mutants
were tested by implicit-membrane Monte Carlo simulations.101

Although the ease of membrane insertion was not different for
wild type and familial/synthetic mutants, significant variations
were reported in the pathway of insertion. The mutants, except
for E22G favored a partially inserted conformation more than
wild-type. Partial insertion of peptides was hypothesized as a
potential reason for increased toxicity of familial and artificial
mutants. Liguori et al. investigated the impact of cholesterol
asymmetry in modulating the extracellular release of Ab 1–42
from a cell-like planar lipid bilayer usingMARTINI simulations.102

Multiple lipid bilayer systems were created with POPC, POPS,
cholesterol and DOPE molecules with different concentrations at
exofacial and cytofacial leaflets to generate this asymmetry while
maintaining anionic nature of cytofacial leaflet. Increase in
concentration of cholesterol in the exofacial leaflet promotes the
extrusion of highly reactive N-terminal residues. In addition peptide–
membrane simulations with two Ab 1–42 conformations – 1IYT (a
helix content of 70%) and 1Z0Q (a helix content of about 30%)
showed that the increase in C-terminal helical content contributes
to increased membrane retention. Multiscale simulations were
employed to study pre-embedded (a helical) peptide aggregation
in POPC lipid bilayer and its impact on bilayer structure.103 First,
coarse grained simulations with MARTINI forcefield was used to
facilitate faster diffusion and aggregation of Ab 1–40 peptide in
POPCmembranes. Then, the coarse grained structures were reverse-
mapped to all-atom structures and simulated with GROMOS96
force field to study stability of secondary structures. While, high
(1 : 36) peptide–lipid ratio favour large aggregations, smaller dimeric
and trimeric aggregates are more favored in simulations with lower
peptide concentrations. In addition, the 300 ns of all-atom study
starting from reverse-mapped trans-membrane aggregate structure
at the end of coarse grained simulation, confirms that the initial a
helix structure is maintained through the simulation time. This
work also proposed a geometry-based analytic framework to explain
super-structures generated in simulations and the impact on
membrane due to peptide aggregation. More recently our group
used in-house developed membrane (WEPMEM)100,104 and peptide
(WEPPROM)100,105 forcefields, that uses explicitly introduced
structural polarization to reproduce accurate electrostatics
(Fig. 3), to study aggregation of the central hydrophobic core –
Ab 16–22 starting from a solvated state in presence of zwitter-
ionic (POPC) and anionic (POPS) model membranes.99 While,
peptide self-association, facilitated primarily by diffusion was
relatively faster in POPC, the emergence of ordered beta sheet
rich aggregations was higher in POPS (Fig. 4). The relatively
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higher compressibility coefficient of POPS membrane forces a
more elongated conformation on peptides compared to U/O like
structures in POPCmembranes, thus exposing peptide backbone
to more peptide–peptide contacts, resulting in higher beta sheet
content.

Several common phenomena emerge from these simula-
tions that are well supported by previous experimental studies.

To summarize, charge on lipid headgroups play a crucial role in
Ab peptide–membrane binding, local environmental alterations,
peptide aggregation and insertion. While peptide self-association
is promoted by the presence of anionic lipid headgroups,
membrane insertion and potential membrane disruption is
higher for zwitterionic membranes.106 Recent circular dichorism
and thioflavin-T studies have reported faster growth of ordered

Fig. 3 (a) Peptide – Water-Explicit Polarizable PROtein Model (WEPPROM) reproduced from Sahoo et al.99 (b) Membrane – Water-Explicit Polarizable
MEMbrane (WEPMEM) model reproduced from Ganesan et al.100 with permission from the PCCP Owner Societies. The partial charges on peptide
backbone (violet) and polarizable beads (yellow) of lipids generate explicit structural polarization and provide directionality to dipolar interactions that can
result in structural transitions.

Fig. 4 Ab 16–22 aggregation in presence of zwitterionic and anionic membranes. Right: The variation of beta sheet content over time. Reproduced
from Sahoo et al.99 with permission from the PCCP Owner Societies.

Perspective PCCP

Pu
bl

is
he

d 
on

 0
2 

O
ct

ob
er

 2
01

9.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f M
ar

yl
an

d 
- C

ol
le

ge
 P

ar
k 

on
 7

/2
3/

20
20

 1
1:

13
:2

7 
PM

. 
View Article Online

https://doi.org/10.1039/c9cp02765c


This journal is© the Owner Societies 2019 Phys. Chem. Chem. Phys., 2019, 21, 22679--22694 | 22685

Ab 16–28 aggregations in presence of anionic vesicles.107 Neutron
diffraction studies by Dante et al. have also suggested an increased
intercalation of Ab 25–35 in anionic membranes.96 Aggregate sizes
also control the stability of membrane-inserted amyloid species,
with smaller oligomers, which have been hypothesized as the more
toxic entities, deemed more stable than larger fibrils. Cholesterol,
sphingomyelin and gangliosides modulates peptide–lipid associa-
tion by either changing lipid bilayer’s physical properties (e.g. lipid
rafts) or by introducing changes to lipid surface chemistry.
Although the protective role of cholesterol is highlighted in pre-
viously mentioned simulation studies, the complex interplay
between membrane’s cholesterol and ganglioside concentrations
and their mutually cooperative relationship in amyloid formation
has not been investigated through simulations. Recent experi-
mental investigations are also focusing on impact of Ab on
membrane dynamics. This is an exciting direction that can benefit
from computational modelling.

In silico studies have been used to evidence experimental
observations in a much controlled environment and describe
nano-scale interactions, essential for macroscopic features. An
increasing number of studies are exploiting this synergy with
computation to explain and direct experimental studies.81,92,108

Computational and experimental studies of Ab peptides in
solution have reported a wide diversity of aggregate structures
with atomistic resolution. In future, studies should be directed
at understanding extensive bio-mechanical modes of these
oligomer-enabled membrane disruption. Although divalent
metal ions are instrumental in membrane interaction and
peptide aggregation,26,109 due to absence of appropriate accurate
non-polarizable forcefields, computational studies into divalent
ion induced aggregation pathways is missing. In addition, com-
putational studies should also be directed towards molecular
level interactions that result in calcium dysregulation as a con-
sequence to amyloid membrane pores. Recent computational
advances in this direction such as fixed non-bonded interactions
(Nbfix)110 and scaled charges111 to reproduce polarization in a
mean-field ansatz can be helpful.

3 Parkinson’s disease – a-synuclein

Commonly located along synaptic terminals, a-synuclein
(a-syn), a 140 amino acid residue long intrinsically disordered
peptide (IDP) has been neuro-pathologically linked to Parkinson’s
disease.112–114 Unlike Ab peptide aggregates which selectively
impact astrocytic plasma membrane, a-syn oligomers have been
shown as non-selective to membranes and cells. But, both Ab and
a-syn follow common modes of pathogenesis – membrane disrup-
tion leading to calcium dysregulation and production of reactive
oxygen species resulting in mitochondrial depolarization.115 While
a-syn is disordered in cytosolic state, it adopts a more ordered
a-helical form in a lipidic environment.114,116 This lipid-
association also promotes misfolding and subsequent aggregation
into multiple structurally dis-similar transient b-sheet rich fibrillar
structures. These structures are primary constituents of Lewy-
bodies that are hallmarks of PD. a-Syn can be broadly categorized

into three segments, N-terminal residues (1–60) – lipid-binding
motifs, the central hydrophobic non amyloid component (61–95)
responsible for a-syn aggregation and unstructured negatively
charged C terminus (96–140) that are primary metal and peptide
binding sites. In addition, there are seven imperfect eleven residue
long repeat sequences with mostly conserved KTKEGV hexamer
motifs (Fig. 5), spread over N-terminal and NAC domains, that
contribute to a-helical structures and lipid-binding. The lipid-
induced conformational transition into a-helical structure, exposes
NAC domain, increasing the overall hydrophobic surface area and
promoting aggregation.114 Increase in local peptide concentration
by lipid bilayer association, has also been implicated for peptide
aggregation. As with Ab peptides, membrane composition,
particularly membrane charge plays a critical role in modulating
a-syn–membrane interactions, with interactions between negatively
charged lipid group and positively charged lysines tethering the
peptide onto the membrane. Initial studies on peptide interaction
specificity have noted a preference for membranes containing
anionic lipids, with more favorable interactions between PA
(phosphatidic acid)/PI (phosphatidylinositol).117,118 Investiga-
tions by confocal microscopy and atomic force microscopy
have revealed that a-syn interacts with gangliosides through
hydrogen bonds with sugar–alcohols.119 In addition, lipid tail
order also modulates a-syn membrane interaction, with a
preference for more disordered poly-unsaturated tails, which
can generate more packing defects due to loose packing.120,121

Beyond preference for individual lipids, peptides also show a
significantly increased (about 15-fold) binding affinity for
membranes with higher curvature (small unilamellar vesicles) than
large/giant unilamellar vesicles.117,122,123 Membrane disruption
due to a-syn oligomers, have revealed increased tubulations on
membranes, compared to larger fibrils.124,125

The primary mode of a-syn induced PD pathology is asso-
ciated with flattening of membrane curvature.114 Vesicle fusion
is driven by release of curvature induced stress. The membrane
distortion and flattening in presence of a-syn aggregates
releases this stress, preventing fusion.126 Initial attempts
at generating membrane bound conformations of monomeric
a-syn has been attempted with solution NMR and EPR studies
of a-syn in association with membrane-like surfactants (SLAS –
sodium lauroyl sarcosinate and SDS – sodium dodecyl sulfate).127,128

Jao et al. presented a POPG vesicle-bound structure of a-syn,
which were significantly different from structures obtained from
studies using micelles, through site directed spin labelling,
EPR based approaches and simulated annealing molecular
dynamics.129 More recently a combination of solid-state NMR
and solution NMR were used along with small unilamellar
vesicles to decipher the structure of a-syn monomer associated
with the membrane. The results confirmed the three domain
structure of membrane associated a helix with unstructured
C-terminus.130 Due to experimental limitations, most experi-
ments, aimed towards predicting a-syn aggregate structures
have focused on aqueous solvated a-syn.

A full atomic resolution picture and structural details of
a-syn oligomers, particularly in membrane-associated forms is
yet to be reliably determined from experiments. In addition, the
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mechanistic details of a-syn induced membrane disruption and
associated PD pathology remains elusive. Many in silico experi-
ments have been attempted to bridge this gap.

3.1 In silico modelling

Submersion of a-syn 1–15 into model bilayer made from POPC/
POPA (1 : 1) was investigated with C36 (lipids), CHARMM22
(peptides) and TIP3P (water) forcefields using umbrella
sampling.131 Simulations reveal hydrophobic residues – M1,
W4, and L8 embedded deep into bilayer and polar residues –
D2, K6, S9, K10, and E13 present at bilayer surface, with L8 and
S9 acting as pivot. Membrane thinning due to a-syn 1–15 has

also been reported. Garten et al. used lipid bilayer simulations
with CHARMM36 forcefield to present a molecular understanding
of higher affinity of a-syn for DPhPC – 1,2-diphytanoyl-sn-glycero-3-
phosphocholine compared to DOPC.132 They observed an increase
in packing defects which exposes the peptide hydrophobic patch
to the bilayer surface in DPhPC compared to DOPC, which can
promote peptide–membrane interactions. Vermaas et al. simu-
lated a-synuclein membrane association and peptide conforma-
tional transition using highly mobile membrane-mimetic model
(HMMM) of PC/PS with CHARMM36 lipid and CHARMM27
protein forcefields.133 The simulations could capture a transition
from an initial broken-helix state to a semi-extended helix state,

Fig. 5 (a) Amino acids in a-synuclein. The shaded region presents mostly conserved KTKGEV hexamers in 11 residue imperfect repeats. (b) A
characteristic structure of a-syn monomer. (c) A representative structure of a-syn oligomer (pdb: 2NOA) in solution. The aggregate is colored to
distinguish multiple chains.
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aided by presence of PS lipids at the inner-edge of peptides.
The study reported a highly variable peptide insertion into
the bilayer. Tsigenly et al. used membrane contact surface
prediction and molecular simulations to categorize membrane
associated oligomers as ‘‘propagating’’ – support addition of
peptide–monomers to oligomers and ‘‘non-propagating’’ – do
not support spontaneous oligomer growth.134 This propagated-
docking generated pentamers and hexamers, with ring like
structures similar to membrane pores. The authors also found
that b-syn, a non-pathogenic member of synuclein family could
inhibit propagating oligomers by binding to it. Perlmutter et al.
suggested screening of negative-charged, acidic lipid head-
groups by a-syn leading to flattening of curved membrane
using simulations of a-syn bound to SDS micelles and DOPS
membranes.135 In addition, their analyses of a-syn familial
mutants suggest an array of destabilizing peptide–lipid inter-
actions in A30P mutants, threonine-based and lysine-based
stabilizing interactions in A53T and E46K mutants.

In addition to atomistic simulations, coarse grained MD with
MARTINI forcefield47 has been used to study peptide associated
membrane deformations. These coarse grained simulations are
particularly advantageous in capturing the large-scale membrane
modulating behavior of a-syn, while preserving molecular
specificity of peptides and lipids. Braun et al. studied genera-
tion of membrane curvature due to presence of a-syn peptides
in an extended a-helix–turn-a-helix state.136 The presence of
a-syn induced negative Gaussian curvature – associated with
fusion and fission states and positive mean curvature on lipid
bilayer composed of POPC and POPS. The authors proposed
that interactions between peptides on membranes can be cast
as interactions between intrinsic local curvature fields. A com-
parative analysis of POPG membrane binding and remodeling
capacity of a-syn 1–78 and a-syn 1–100 was probed using
MARTINI forcefield.137 The decrease in amino acids primarily
from NAC region, reduces membrane association membrane
deformation.MARTINI simulations with DPPC SUVs with a-syn at a
ratio of 200 : 1 presented lowered surface tension and increased
membrane undulations due to a-syn membrane associations.138

Multiple simulations with varying lipid content and fluorescence
correlation spectroscopy were implemented to study tubulations
and peptide induced curvature. Membrane disruption/tubulations,
promoted by increased binding affinity of highly anionic POPG
membranes was higher than POPC/POPG membranes.139 The
analyses also suggest anti-aligned interdigitation between
opposing monolayers during tubulations. Tsigelny et al. used
implicit solvent MD to enumerate distinct amino acid zones for
a-syn wild type and familial mutant membrane contacts and
amino acids (L38, V48, V49, Q62, and T64) that promote inter-
peptide interaction.140 They also reported an enhanced propen-
sity for annular oligomers in E57K, A53T, and H50Q mutants
compared to E46K, E35K, wild-type and A30P.

These results provide an overview of recent computational
advances in our understanding of a-syn membrane interactions.
In agreement with experimental results, and similar to Ab, a-syn
also interacts strongly anionic membranes. But, in contrast to Ab
peptides, where membrane disruption is more pronounced in

disordered-zwitterionic membranes, membrane tubulations in
presence of a-syn is higher in model anionic membranes.
A concurring theme in both experimental and computational
literature is the modulation of local membrane curvature
in presence of a-syn. While computational simulations have
primarily focused on single peptide stability and membrane
disruption, conformational changes (both structural and kinetic
effects) in a-syn due to membrane association is yet to be
investigated. Similar to Ab peptides, experiments have uncovered
the role of cholesterol and gangliosides in driving a-syn insertion
and pore formation. Further in silico investigations into this can
uncover atomic micro-interactions and associated kinetics of
this process. Recent computational and experimental studies
(cryo-EM and solid-state NMR) have uncovered multiple atomic
resolution structures of a-syn fibrils, suggesting extensive struc-
tural polymorphism.141–144 Computational investigations on the
effect of such peptide aggregations on membrane stability can
be quite instructive.

4 Huntington’s disease – huntingtin
protein (htt)

Another neurodegenerative disease that involves progressive
amyloid deposition and associated membrane disruption is
Huntington’s disease.145–147 The pathogenesis of dominantly
inherited Huntington’s disease is linked to fibrillar nano-scale
deposits of huntingtin protein (htt). The mutant genes encode
variants of htt protein with anomalous expanded homopoly-
meric polyQ sequences that aid the aggregation process. While
the flanking amino acid residues, particularly, the first 17
N-terminal amino acid residues (Nt17) modulate aggregation
behavior and lipid binding by formation of amphipathic alpha
helix, the length of polyQ tract directly participates in aggrega-
tion and generation of a variety of aggregate species – oligomers
and larger fibrillar structures. Several reports indicate htt protein
interacts with membrane, either through intracellular vesicular
transport, or by association with endoplasmic reticulum and
Golgi apparatus. In addition, the pathogenesis of Huntington’s
disease is hypothesized to proceed through mitochondrial
dysfunction. But the membrane interactions of htt and polyQ
deposits have not been fully characterized.

Similar to Ab and a-synuclein, both membranes and oligo-
mers are affected by htt–membrane association. Solution AFM
studies have reported oligomeric and fibrillar deposits over
mica surface.148,149 Studies have demonstrated an alteration in
htt alpha helical content in presence of POPC and POPC/POPS
SUVs.150 AFM studies with TBLE suggests local alterations of
bilayer compressibility on interaction with htt oligomers.151

Amorphous structures and oligomers of htt exon 1 was reported
as the dominant aggregate species in lipid–liquid interface with
significant dependence on the length of polyQ sequence.
Investigations by Chaibva et al. suggested an enhanced peptide
(Nt17Q35P10KK) binding and aggregation propensities with
increase in membrane curvature.152 They pointed at lipid packing
defects associated with membrane curvature as possible

PCCP Perspective

Pu
bl

is
he

d 
on

 0
2 

O
ct

ob
er

 2
01

9.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f M
ar

yl
an

d 
- C

ol
le

ge
 P

ar
k 

on
 7

/2
3/

20
20

 1
1:

13
:2

7 
PM

. 
View Article Online

https://doi.org/10.1039/c9cp02765c


22688 | Phys. Chem. Chem. Phys., 2019, 21, 22679--22694 This journal is© the Owner Societies 2019

mechanism for peptide binding, which then increases local
peptide density to promote subsequent aggregation.

Our group probed the importance of flanking amino acid
sequences (KKQ35KK, KKQ35P11KK, Nt17Q35KK, Nt17Q35P11KK)
to polyQ chain that modulates membrane (single component
DOPC membrane) association and potential implications of
such membrane association, using atomistic simulations.153

The simulations revealed that a majority of peptide sequences,
except for KKQ35P11KK, adopted a higher b sheet content
suggesting a start of fibril formation. In addition, a significant
membrane thinning was reported for Nt17Q35P11KK (Fig. 6),
where the poly-proline sequence that generally impedes
membrane association reversed its effect in presence of Nt17.
Atomistic studies investigated the stability and orientation of
Nt17Q20 peptide in presence of POPE model membranes.154

Nt17 peptide arranges into stable a helix parallel to membrane
surface with Leu and Phe at the hydrophobic core and Ser, Thr,
Lys and Glu at polar headgroup. The polyQ sequence is posi-
tioned in solution to increase accessibility for oligomerization.
Additionally, increase in polyQ sequence was not able to

significantly change the behaviour of Nt17. The acetylation of
Nt17 lysines (K6, K9 and K15) results in significantly reduced
fibrillation rates in solution, forming globular aggregations and
a decreased membrane disruption than wild type.155 Atomistic
approaches were used to investigate molecular interaction
promoting this phenomena. Although there was a decrease in
stabilizing interactions of phosphate groups with acetylated K
and E, an increase in interaction between phosphate and polar
amino acid residues was also reported.

While scarce in number, these simulations keep reiterating
the importance of particular regions of htt protein in driving
membrane interactions. Similar to previously established
experimental observations, peptide aggregation on lipid bilayer
is driven by Nt17 residues with secondary structure modifica-
tions on interaction with membranes. Atomistic interactions
that drive and stabilize this membrane associated structure and
the importance of N-terminal lysines at promoting aggregation
was reported. Due to significantly larger size of peptide
sequence for htt, studies of peptide aggregation has not been
attempted yet. Although, some coarse grained simulations have

Fig. 6 Thickness of membrane of control system and different peptide variants. Reprinted with permission from A. Nagarajan, S. Jawahery and
S. Matysiak, J. Phys. Chem. B, 2014, 118, 6368–6379.
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been used to characterize peptide htt aggregation landscape, CG
studies of htt–membrane interaction has not been attempted
yet. Therefore, in future more studies should attempt to verify
membrane disruption and membrane induced oligomerization
pathways presented from experimental observations and predic-
tions from monomer-based simulations.

5 Non-specific simulations to study
membrane-assisted aggregation

Many non-specific (no specificity in molecular modeling of
amino acids and lipid types) coarse grained simulations of
membrane assisted peptide aggregation have been attempted
to understand the general physics of peptide aggregation in
presence of membranes. These simulations use a reduced
resolution description of a system, leading to lower degrees of
freedom and sampling of longer length and time scales.

Friedman et al. used a ultra-coarse grained 10 bead peptide
model – four partially charged generating dipoles, four hydro-
philic and two hydrophobic beads, with a 3 bead lipid model –
one hydrophilic and two hydrophobic, to study the impact of
peptide amyloidogenicity on membrane/vesicle permeability.156

First, the peptide monomeric conformational landscape was
divided into amyloid competent state (b) with parallel aligned
dipoles perpendicular to fibril axis and amyloid protected state
(p) with all conformations not in b state. Amyloidogenic property
is defined by difference in energy between b and p states, which
can be modulated by varying peptide dihedral angles. The
simulations presented differential behavior of this amyloido-
genic and non-amyloidogenic peptides in presence of lipid
vesicles. While highly amyloidogenic peptides aggregate into
fibrillar structures on vesicles, lipid vesicles can effectively
hinder the growth of non-amyloidogenic sequences. Moreover
their research also showed that growth of amyloid fibrils rather
than mature fibrillar aggregates cause membrane disruption.
More recently, Morriss-Andrews et al. parameterized a simpler
three bead per residue peptide model and a five-bead per residue
lipid model to study membrane induced beta sheet formation
and characterize peptide aggregate absorption pathways. Their
research also categorized several similarities in peptide aggre-
gate morphology and dynamics between membranes and
solid surface.157 While peptides adopt a b sheet rich parallel
orientation on top of both types of surfaces, the aggregates on
membranes are highly dynamic and can reverse kinetics in
response to membrane’s oscillation. In addition, the authors
also observed a lipid reorganization into hexagonal lattice struc-
tures around peptide aggregates, an increased bending modulus
and dampening of fluctuations in membrane thickness with
their model. Our lab studied aggregation of model peptide –
elastin-like octapeptides (GV)4 in presence of hydrophobic
(hexadecane)–hydrophilic (water) interface with WEPPRO.158

The aggregation behavior was dominated by hydrophobic inter-
actions in solution whereas dipole interaction played a more
significant role in b sheet rich aggregate structure formation at
the polar–hydrophobic interface. The presence of an interface

resulted in a faster aggregation into a final ordered conforma-
tion and a decrease in lag phase before ordered aggregation
compared to simulations in aqueous systems.

6 Concluding remarks

Long length and time scales pose significant challenge for
standard molecular dynamics studies involving peptide aggre-
gation in presence of membranes. A better sampling of mole-
cular pathways for the process can be achieved through
emerging non-traditional advanced techniques such as replica
exchange molecular dynamics,159 parallel tempering in the
well-tempered ensemble,160 metadynamics (traditional,161,162

bias-exchange163 and solute tempering164). Most simulation based
studies using advanced sampling techniques have focused on self-
association in solution due to inherent computational simplicity.
Although some advanced sampling studies have been attempted
to study systems involving membranes and aggregating peptides,
more effort is needed along that direction. It should be noted that
although advanced sampling techniques generate sufficient con-
vergence of multiple conformations, many details of the system
dynamics are lost.

Coarse grained simulations, which capture both structure
and dynamics simultaneously can be an viable alternative, with
a definite trade-off of accuracy to increase computational efficiency.
Similar to most advanced sampling methods, most novel coarse
graining techniques with peptide sequence specificity in present
literature – OPEP,165 AWSEM-MD166 and PRIME20167 can only be
applied to study peptide oligomerization in solution, due to
absence of any compatible lipid model. While other simulation
forcefields such as MARTINI which has been used to study peptide
aggregation and membrane–peptide systems, they cannot study
peptide structural transitions which are ubiquitous in membrane
assisted peptide oligomerization. Although recently developed
coarse graining schemes which employ partial charges to repro-
duce structural polarization – WEPMEM-WEPPRO,99,100,104,105,158

do capture unbiased transition to peptide secondary structures,
extensive research needs to be done on their reliability and
transfer-ability to longer peptide sequences. Along this direc-
tion, molecular dynamics simulations with varying resolution,
which involves mapping from atomistic to coarse grained
scales and reverse over multiple iterations can provide desired
accuracy (not accessible from purely coarse grained simula-
tions), while maintaining extensive sampling.

Many controversies and variations in results from traditional
atomistic computational studies can be directly attributed to
forcefield accuracy. A recently published report compared oligo-
merization of Ab 16–22 and its three mutants F19V, F20V and
F19L across five different forcefields – Gromos54a7, OPLS-AA,
AMBER03WS, CHARMM22, and AMBER99SB-ILDN.168 This
study presented quite disparate results with aggregation struc-
tures and kinetics. The authors suggested using a ‘‘consensus
forcefield’’ approach169,170 in which simulations of a particular
system are performed across multiple forcefields to generate
consensus results. A similar work from this group applied
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multiple forcefields (OPLS, AMBER99SB, AMBER99SB-ILDN,
AMBER99SBILDN-NMR and CHARMM22) to study full length
Ab 1–42 monomeric conformations and matched that to obser-
vations from NMR.171 They have reported that CHARMM22
provides the best match with local NMR observables. Another
research compared dimerization of Ab 16–22 across multiple
forcefields and clustered the forcefields on the basis of their
predicted structural and kinetic properties.172 These authors
suggested to use AMBER99-ILDN, AMBER14SB, CHARMM22,
CHARMM36, and CHARMM36m. Similar comparisons across
lipid forcefields has suggested that no single forcefield could
reliably capture all possible membrane properties. These results
present significant pressure to develop more accurate forcefields
that can capture highly dynamic nature of IDP peptides and
structural properties of membranes. Recent advancements in
development and validation of lipid forcefields have been out-
lined by Leonard et al.173

Individually, both peptide and lipid forcefields have been
parameterized to reproduce ab initio data, structural informa-
tion from experiments and thermodynamic properties. But the
dearth of experimental data for peptide–lipid systems has made
refinement and validation of peptide–lipid forcefields difficult.
A recent assessment of atomistic protein–lipid forcefields –
GROMOS54a7, CHARMM36, Amber14sb/Slipids and Amber14sb/
Lipid14 using different experimentally verifiable observables
showed that CHARMM36 forcefield has the highest correlation
with experiments.174 As no current classical molecular forcefield
can be hailed the best, computational scientists should focus on
how predictive a particular forcefield is regarding available experi-
mental observations about that particular chemical system. In
addition, considering the highly non-equilibrium nature of
protein–membrane partitioning, membrane assisted aggrega-
tion and protein induced membrane disruption, forcefields
need to be parameterized using dynamical experiments, beyond
current attempts to model structural properties. Further, the
inaccurate representation of ionic forcefield has continuously
plagued the molecular simulation community. Research efforts
towards developing efficient polarizable or/and multi-body
ion potentials is instrumental in simulating accurate cellular
environments. Beyond electrostatics, it is crucial to capture long-
range Lennard-Jones (LJ) potential to capture transitions from
solution to membrane. Similar to electrostatic potential, recent
research efforts are focusing on representing long range LJ by a
particle-mesh-Ewald (PME) method, which necessitates further
parameterization. More recently, machine learning techniques
have been applied for appropriate parameterization of force-
fields, which opens unique possibilities. On a separate note,
polarizable forcefields (AMBER ff02, CHARMMDrude, AMOEBA,
etc.), which are generally more accurate suffer from high com-
putational complexity and are significantly slower than non-
polarizable ones. Therefore, polarizable forcefields have not
been used to study complex peptide membrane associations.

Moreover, there is a need to simulate peptide aggregation in
a more cell-like representative crowded environments. Local
environments and many long length and time scale processes
are intricately tangled to result in peptide aggregation,

particularly in presence of highly diverse lipidic environments
which may be composed of around 1000 types of lipid mole-
cules and multiple embedded proteins. This astounding com-
plexity poses a problem of how large and diverse should a
simulation system be to appropriately capture interesting
dynamics in a heterogeneous and crowded environment. Simu-
lations of this scale involves molecular communication over
long length/time scales. Owing to the hierarchical nature of
biological systems, development of techniques to accurately
communicate across multiple scales, while preventing errors
from propagating, is essential. Although, with current compu-
tational machineries, it is impossible to capture such time and
length scales by conventional molecular dynamics, over the
next decade, it might be possible to study peptide aggregation
processes over minimal representative cells, particularly with
coarse grained representation. Recent efforts towards creation
of a representative plasma membrane using MARTINI force-
field is a significant step towards this.175 Simulations along this
direction can provide significant insights about accurate patho-
genesis of several neurodegenerative diseases and present
pathways for therapeutic interventions.

With the progressive increase in computational investigations
into biomolecular systems, we are presented with an urgent need
to follow amore open-source approach towards data and protocols
to generate reproducible and avoid erroneous results. Although,
we are still far from a comprehensive picture of peptide-induced
amyloid formation, molecular simulation certainly can be an
effective tool to assist experimental investigations. With advance-
ments in statistical theories, leading up to novel simulation
techniques and molecular forcefields, and continued growth in
high performance computing infrastructure, molecular simula-
tions will continue to unravel mysteries presented by these
complex processes.
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