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In the companion contribution [1], we presented the new CT18 global QCD analysis of par-
ton distribution functions (PDFs). The CT18 analysis updates widely used CT14 PDF sets [2] by
applying NNLO and NLO global fits to an expanded set of experimental measurements that in-
clude high-luminosity data from the ep collider HERA and the Large Hadron Collider. The CT18
experimental data set includes high-statistics measurements from ATLAS, CMS, and LHCb on
production of inclusive jets, W/Z bosons, and top quark pairs, while it retaining crucial legacy
data, such as measurements from the Tevatron and the HERA Run I and Run II combined data.
In this contribution, we review implementation of the new data sets in the CT18 global fit and the
associated physics issues that affect the resulting PDFs and a wide class of QCD predictions based
on them.

By 2018, the LHC collaborations published about three dozen experimental data sets that
can potentially constrain the CT PDFs. In light of the unprecedented precision reached in some
measurements, the latest LHC data must be analyzed using next-to-next-to-leading order (NNLO)
theoretical predictions in perturbative QCD. The final PDFs depend on numerous systematic factors
in the experimental data; and the scope of numerical computations needs to be expanded, too. A
systematic examination of these effects is essential for trustworthy estimates of PDF uncertainties.

Combined HERA I+II DIS data and an x-dependent factorization scale. Even in the
LHC era, the DIS data from ep collider HERA provides the dominant constraints on the CT18
PDFs. This dominance can be established using the ePump and PDFSense statistical tech-
niques reviewed below. CT18 implements the final (“combined”) data set from DIS at HERA-I
and II [3] that supersedes the HERA-I only data set [4] used in CT14 [2]. A transitional PDF set,
CT14HERA2, was released based on fitting the final HERA data [5]. We found fair overall agree-
ment of the HERA I+II data with both CT14 and CT14HERA2 PDFs, and that both PDF ensembles
describe equally well the non-HERA data included in our global analysis. At the same time, we
observed some disagreement (“statistical tension”) between the e+p and e−p DIS cross sections of
the HERA I+II data set. We determined that, at the moment, no plausible explanation conclusively
explains the full pattern of these tensions, as they are distributed across the whole accessible range
of Bjorken x and lepton-proton momentum transfer Q at HERA.

It has been argued that resummation of logarithms lnp(1/x) at x� 1 improves agreement
withe HERA Run I+II data by several tens of units of χ2 [6, 7]. In our analysis, we observe that, by
evaluating the DIS cross sections at NNLO with an x-dependent factorization scale, such as a tuned
scale µ2

F,x = 0.82
(
Q2 +0.3 GeV2/x0.3

)
, instead of the conventional choice µ2

F = Q2, we achieve a
comparable quality of improvement in the description of the HERA DIS data set by the fixed-order
NNLO theoretical prediction as the inclusion of the low-x resummation in [6, 7]. Namely, the
χ2(HERAI+II) reduces by > 50 units in the kinematical region Q > 2 GeV, x > 10−5 of the DIS
data included in the CT18 global fit. The parametric form of the x-dependent scale µ2

F,x is inspired
by qualitative saturation arguments (see, e.g., [8]), and the numerical coefficients in µ2

F,x are chosen
to minimize χ2 for the HERA DIS data.

Fig. 1(left) shows the changes in the candidate CT18 PDFs obtained by fitting DIS with the
x-dependent factorization scale, as compared to the CT18 PDFs with the nominal scale. With the
scale µ2

F,x, we observe reduced u and d (anti-)quark PDFs and increased gluon and strangeness
PDFs at x < 10−2 as compared to the nominal CT18 fit, with some compensating changes occuring
in the same PDFs in the unconstrained region x > 0.5 in order to satisfy the valence and momentum
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Figure 1: Left: The ratios of the candidate CT18 NNLO PDFs obtained with the x-dependent and
standard factorization scales in DIS data sets. Right: The χ2/Npt values for four HERA data sets
in the CT18Z fits with the x-dependent DIS factorization scale and varied statistical weight of the
HERA I +II inclusive DIS data set.

sum rules. The right Fig. 1 shows the χ2/Npt values (divided by the number Npt of experimental
data points) for four HERA data sets (inclusive NC+CC DIS [3], reduced charm, bottom production
cross sections, and H1 longitudinal function FL(x,Q2) [9]) in the fits with the varied statistical
weight w of the HERA I+II inclusive DIS data set [3]. The default CT18 fits correspond to w = 1;
with w = 10, the CT18 fit increasingly behaves as a HERA-only fit. We see that, with the scale
µ2

F,x and w = 10, χ2/Npt for the inclusive DIS data set improves almost to the levels observed in
the “resummed” HERA-only fits without intrinsic charm [6, 7]. The quality of the fit to the charm
SIDIS cross section and H1 FL also improves.

Selection of new LHC experiments. When selecting the most promising LHC experiments
for the CT18 fit, we had to address a recurrent challenge, the presence of statistical tensions among
various (sub)sets of the latest experimental data from HERA, LHC, and the Tevatron. The quickly
improving precision of the collider data reveals previously irrelevant anomalies either in the ex-
periment or theory. These anomalies are revealed by applying strong goodness-of-fit tests [10].
Figure 2 illustrates the degree of tensions using a representation based on the effective Gaussian

variables SE ≡
√

2χ2
E−
√

2NE −1 [11] constructed from the χ2 values and numbers of data points
for individual data sets E. In a high-quality fit, the probability distribution for SE must be approxi-
mately a standard normal distribution (with a unit half-width). In CTEQ-TEA and global fits from
either CTEQ or other groups, we in fact observe wider SE distributions, cf. Fig. 2, with some
most comprehensive and precise data sets (notably, HERA I+II inclusive DIS [3] and ATLAS 7
TeV Z/W production [12]) having SE values as high as five units or more. The question, then, is
how to select the clean and accurate experiments for the global analysis from the list that grows
day-by-day, while maximally preserving the consistency of the selected experiments.

For example, there are many LHC experimental data sets [13] that are potentially sensitive to
the PDFs, including novel measurements in production of high-pT Z bosons, tt̄ pairs, heavy quarks,
and W +c pairs. Including all such candidate experiments into the full global fit is impractical: CPU
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Figure 2: The effective Gaussian variable (Sn) distribution of all (a) CT18 data sets, and (b) CT18Z
data sets. Two squares and two stars indicate the Sn values for the NuTeV dimuon and CCFR
dimuon data, respectively.

costs grow quickly with the number of experimental data sets at NNLO. Poorly fitted experiments
would increase, not decrease, the final PDF uncertainty. The generation of one error PDF set took
several days of CPU time in the CT14 fit to 33 experiments in a single-thread mode. Adding 20-30
additional experiments with this setup was thus impossible.

Advancements in fitting methodology. The CTEQ-TEA group resolved these challenges
through a multi-prone effort. We developed two programs for fast preliminary analysis to identify
the eligible experimental data sets for the global fit. The PDFSense program [14] was developed
at SMU to predict quantitatively, and before doing the fit, which data sets will have an impact on the
global PDF fit. The ePump program [15] developed at MSU applies PDF reweighting to quickly
estimate the impact of data on the PDFs prior to the global fit. These programs provide help-
ful guidelines for the selection of the most valuable experiments based entirely on the previously
published Hessian error PDFs.

The CTEQ fitting code was parallelized to allow faster turnaround time (one fit within few
hours instead of many days) on high-performance computing clusters. For as much relevant LHC
data as possible, we computed our own tables for APPLGrid/fastNLO fast interfaces [16, 17] for
NLO cross sections (to be multiplied by tabulated point-by-point NNLO/NLO corrections) for
various new LHC processes: production of high-pT Z bosons, jets, tt̄ pairs. The APPLgrid tables
were cross validated against similar tables from other groups (available in the public domain) and
optimized for speed and accuracy.

The resulting family of new PDFs consists of four NNLO PDF ensembles, and the corre-
sponding NLO ones: the default CT18 ensemble and three alternative ensemble, designated as
CT18A, X, and Z. Based on the PDFSense and ePump studies, eleven new LHC data sets have
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been included in all four PDF fits, notably, data at 7 and 8 TeV on lepton pair, jet, and tt̄ production.
Significant effort was spent on understanding the sources of PDF uncertainties. Theoretical uncer-
tainties associated with the scale choice were investigated for the affected processes such as DIS
and high-pT Z production. Other considered theoretical uncertainties were due to the differences
among the NNLO/resummation codes (FEWZ, ResBos, MCFM, NNLOJet++,...) and Monte-Carlo
integration. The important parametrization uncertainty was investigated by repeating the fits for
90+ trial functional forms of the PDFs. [Our post-CT10 fits parametrize PDFs using Bernstein
polynomials, which simplify trying a wide range of parametrization forms to quantify/eliminate
potential biases.] In addition to the default CT18 PDF ensemble, the other three sets were obtained
under alternative assumptions. (a) The CT18A and CT18Z analyses include high-luminosity AT-
LAS 7 TeV W/Z rapidity distributions [12] that show some tension with DIS experiments and
prefer a larger strangeness PDF than the DIS experiments. Inclusion of the ATLAS 7 TeV W/Z
data leads to worse χ2

E values (higher SE values) for dimuon SIDIS production data sensitive to
the strangeness PDF. This can be seen in the comparison of SE distributions in Fig. 2, where the
SE values for CCFR and NuTeV dimuon data sets are elevated in the CT18Z fit on the right, as
compared to the CT18 fit on the left, as a consequence of inclusion of the ATLAS W/Z data in the
CT18Z fit. (b) The CT18X and CT18Z fits use an x-dependent factorization scale in NNLO DIS
cross sections to mimic enhanced higher-order logarithms at small Bjorken x and small Q. This
choice results in the enhanced gluon PDF at small x and reduced gluon at x ∼ 0.01, as discussed
above. Furthermore, the CDHSW data for DIS on heavy nuclei prefer a somewhat harder gluon
PDF at x > 0.1 than other data sets. In the CT18Z fit, we have removed the CDHSW data. The
combination of these choices in the CT18Z results in the NNLO Higgs production cross section via
gluon fusion that is reduced by about 1% compared to the corresponding CT14 and CT18 predic-
tions. Thus, the various choices made during the generation of four CT18(A,X,Z) data sets allow
us to more faithfully explore the full range of the PDF behavior at NNLO that is consistent with
the available hadronic data, with implications for electroweak precision physics measurements and
new physics searches at the LHC.
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