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Abstract

Gaussian processes (GPs) provide flexible dis-
tributions over functions, with inductive biases
controlled by a kernel. However, in many ap-
plications Gaussian processes can struggle with
even moderate input dimensionality. Learning
a low dimensional projection can help alleviate
this curse of dimensionality, but introduces many
trainable hyperparameters, which can be cumber-
some, especially in the small data regime. We use
additive sums of kernels for GP regression, where
each kernel operates on a different random pro-
jection of its inputs. Surprisingly, we find that as
the number of random projections increases, the
predictive performance of this approach quickly
converges to the performance of a kernel operat-
ing on the original full dimensional inputs, over
a wide range of data sets, even if we are project-
ing into a single dimension. As a consequence,
many problems can remarkably be reduced to one
dimensional input spaces, without learning a trans-
formation. We prove this convergence and its rate,
and additionally propose a deterministic approach
that converges more quickly than purely random
projections. Moreover, we demonstrate our ap-
proach can achieve faster inference and improved
predictive accuracy for high-dimensional inputs
compared to kernels in the original input space.

1. Introduction

Gaussian processes (GPs) are flexible Bayesian non-
parametric models with well-calibrated predictive uncer-
tainties. Gaussian processes can also naturally encode in-
ductive biases, such as smoothness or periodicity, through a
choice of kernel function (Rasmussen and Williams, 2006).
Gaussian processes have been especially impactful in the
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small-data regime, where careful uncertainty representation
is particularly crucial, strong priors provide useful biases
where learning is difficult, and exact inference is tractable.
Additionally, Gaussian processes have been most success-
fully applied to low-dimensional input (predictor) spaces,
such as time series, and spatiotemporal regression problems
(e.g., Wilson and Adams, 2013; Duvenaud, 2014; Herlands
et al., 2019). In these settings, canonical kernels — such as
the RBF or Matérn kernels — provide reasonable similarity
measures over pairs of data instances; for example, if we are
modelling CO; concentrations indexed by time, then CO»
levels at times which are close together in ¢ or ¢; distance
will be treated as highly correlated under these kernels.

For higher dimensional problems, these standard distance
metrics become less compelling. For example, with an RBF
kernel, the fraction of data space with high covariance with
a given point decreases exponentially with dimension. Addi-
tionally, in many online settings where Gaussian processes
are used as regression models, such as Bayesian optimiza-
tion, there is exponential regret with dimensionality (Srini-
vas et al., 2010; Bull, 2011). Furthermore, scalable Gaussian
processes which have a high degree of accuracy often only
apply for up to a few input dimensions (e.g., Wilson and
Nickisch, 2015; Gilboa et al., 2013).

To help circumvent such issues, there are two popular ap-
proaches. The first approach is to learn a projection into
a lower dimensional space, such as through deep kernel
learning (Wilson et al., 2016). While such approaches are
highly flexible, they introduce many hyperparameters to
train, which can be burdensome and impractical in the small
data regime. Alternatively, additive Gaussian processes
(Duvenaud, 2014; Kandasamy et al., 2015; Hastie and Tib-
shirani, 1986) instead consider a sum of kernels, with each
kernel operating on subsets of the input dimensions. This
structure can both help reduce the effective dimensionality
of the problem, and provide a useful inductive bias with
compelling sample complexity (Stone et al., 1985). How-
ever, while assuming a fully additive decomposition of an
untransformed space can provide a useful inductive bias for
many real data sets, it is often too restrictive (Li et al., 2016).
Moreover, methods for learning additive structure, as with
standard projection approaches, are either computationally
expensive or require learning a large number of parameters,
which may overfit or hurt uncertainty estimation.
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In this work, we show how to dramatically reduce the in-
put dimensionality of a given problem, while retaining or
even improving predictive accuracy, without having to learn
projections. Specifically, our contributions are as follows:

e We propose a novel learning-free algorithm for con-
structing additive GPs based on sequences of multiple
random projections (RPA-GP). This results in a Turn-
ing Band style (Matheron, 1973) approximation to a
high-dimensional kernel.

e We prove that RPA-GP converges to a full-degree in-
verse multiquadratic kernel as the number of projec-
tions increase at a rate of O(.J~/2) where J is the
number of projections.

e We propose a deterministic algorithm (DPA-GP) to
minimize projection redundancy and achieve faster
convergence to the limiting kernel.

e We demonstrate the surprising result that RPA-GP and
DPA-GP converge very quickly to the regression ac-
curacy of a kernel operating on the full dimensional
inputs, over a wide range of regression problems, even
for projections into a single input dimension.

e We show in a large empirical study that fully additive
GPs can also perform competitively with GPs using
standard kernels, but are outperformed by DPA-GP
with automatic relevance determination on the original
input space, particularly on large data sets and high
dimensional data sets.

e We additionally demonstrate that by exploiting the
additive structure of RPA-GP, we alleviate the curse
of dimensionality computationally for structured ker-
nel interpolation (SKI) (Wilson and Nickisch, 2015),
enabling linear-time training and constant-time predic-
tions over a wide range of problems, including prob-
lems with over 1000 input dimensions.

e We provide GPyTorch (Gardner et al.,, 2018)
code at https://github.com/idelbrid/
Randomly-Projected-Additive-GPs.

The high level idea of random projections to compose addi-
tive kernels has been considered in geostatistics under the
name the turning band method (TBM) (Matheron, 1973),
for 2 and 3-dimensional simulation. However, the execution
and details are very different from what we consider here.
This paper analyzes and demonstrates how learning-free
additive projections can be promising for regression in high
dimensional input spaces.

RPA-GP and DPA-GP are a step towards alleviating the com-
putational and analytical difficulties of high-dimensionality

for Gaussian processes, while retaining a pleasingly
tractable and lightweight representation. We focus our ex-
periments on regression, since regression is the basic foun-
dation for many popular procedures involving Gaussian
processes, such as Bayesian optimization (Mockus, 1975),
and model based reinforcement learning (Deisenroth and
Rasmussen, 2011; Engel et al., 2005), and is in itself a
widespread application for Gaussian processes (Williams
and Rasmussen, 1996; van Beers and Kleijnen, 2004).

2. Background

We briefly review Gaussian process regression and struc-
tured kernel interpolation (SKI) (Wilson and Nickisch,
2015). For more details on Gaussian processes, we refer the
reader to Rasmussen and Williams (2006).

2.1. Gaussian process regression

Formally, a Gaussian process f is a stochastic process over
an index set X (typically elements of X’ are in R?) taking
on real values. Therefore, it can be interpreted as a prior
over functions from & to R. The process evaluated at any
finite collection of points is distributed according to a multi-
variate normal distribution. That is, for any x4, ..., x, € X,
f = [f@1), e f(@0)] ~ N(mx, Kx x). Accordingly,
a Gaussian process is fully determined by its prior mean
function m : X — R and covariance kernel function
k : X x X — R. The prior mean function is often chosen
to be 0 in the case where we have limited knowledge of
f. Therefore, a Gaussian process is almost entirely deter-
mined by k. Standard identities of the multivariate Gaussian
distribution can be applied to find the posterior predictive
distribution under a Gaussian observation model given data
X,y = {(x;,y:)}_, at points X, is

FdX,y, Xo ~ N(fe, cov(f)),
where
f. = Kx, x(Kx x +0*L,) 'y,
cov(fi) = Kx, x. — Kx. x(Kxx +0°I,) 'Kx x..
The computational bottleneck in computing the posterior
distribution is solving the linear system (K x, x +021,) y.

Standard approaches use the Cholesky decomposition,
which requires O(n?) computations.

The log marginal likelihood
1 _
logp(y|X) = = 5y (Kx,x +0%L) "y

1
— 3 log | Kxx +0°I| - glog o

is used for model comparison and optimization. Typically,
one parameterizes the kernel with some number of hyper-
parameters which are tuned by maximizing the marginal
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likelihood. This maximization provides automatic regular-
ization because the determinant | K x_x + 01, | penalizes
quickly varying functions. The computational bottleneck
in computing the marginal likelihood is the determinant,
which has the standard computational cost of O(n?) from
the Cholesky decomposition.

2.2. Structured kernel interpolation

Structured kernel interpolation (SKI) (Wilson and Nickisch,
2015) uses an approximation to the kernel K x x that per-
mits fast matrix-vector multiplications, which are used to
compute the log marginal likelihood and predictive distri-
butions. Specifically, let U be a regular grid of inducing
points. Wilson and Nickisch (2015) let W be a matrix of
interpolation weights from U to X determined by the prod-
uct of local cubic interpolation weights of the nearest four
inducing points in each dimension (Keys, 1981). The SKI
approximation of base kernel matrix K x x is

~ SKI . T
Kxx~ KX = WKyoW'.

The interpolation matrix W is sparse, having only 4¢
nonzero elements per row. The matrix Ky iy can have
Toeplitz (if d = 1) or Kronecker (if d > 1) structure,
either of which permit fast matrix-vector multiplications
with Ky (Saatgi, 2012) and thus also the approximate
Kx x, due to the sparse interpolation in SKI. The linear
solve (KX + 21,,) ~1y can then be efficiently computed
using linear conjugate gradients, which proceeds by itera-
tive matrix-vector multiplications of K §(K£< + 02I,. The
log determinant can be computed using stochastic Lanczos
quadrature (Dong et al., 2017), which similarly only requires
iterative matrix-vector multiplications of K3 + o21,,.

However, fixing the number of inducing points in each di-
mension, the size of the grid grows exponentially with di-
mension. Therefore, inference using SKI is intractable gen-
erally for dimension d > 5.

3. Related Work

GPs with kernels that fully decompose additively', i.e.

d

k(@) = ki, a)), (1)

i=1

for some sub-kernels {k;}¢_,, are considered “Generalized
Additive Models” (GAM) (Hastie and Tibshirani, 1986) or
“Additive Kriging Models” (AKM) (Durrande et al., 2012).
We refer to the resulting GP as a GAM GP throughout this

"We define the degree of a kernel to be the number of dimen-
sions over which it operates. We say a kernel is additive simply if
it is a sum of lower-degree kernels. Moreover, a GP is additive if
its kernel is additive.

paper. Here, we denote the ith component of vector x as z;
without bold face to indicate that it is a scalar value.

The GAM GP implicitly assumes there are only first-order
interactions in the modeled function. This assumption may
be reasonable inductive bias in some cases; indeed Dur-
rande et al. (2012) make a strong case for using GAM GPs.
However, the assumption that there are no interactions be-
tween input dimensions is often too strong (Li et al., 2016;
Duvenaud et al., 2011). It is natural, then, to consider ad-
ditive combinations of sets of features. Unfortunately, the
space of subsets of features is a power set and therefore
grows exponentially. Therefore, learning additive combina-
tions of kernels on subsets of features is difficult. Extant
approaches to learning additive kernel structure can be di-
vided roughly into enumeration methods, where sub-kernels
consider every combination of feature interactions up to
a degree, search methods, where possible decompositions
are traversed by a search algorithm, and projection-pursuit
where a projected-additive GP is learned by iteratively opti-
mizing projection directions from regression residuals.

Hierarchical Kernel Learning (Bach, 2009) is an enumera-
tion method in which one constructs the sum of kernels in
a hull of possible kernels. Duvenaud et al. (2011) compute
the sum of kernels over every possible feature combination
in O(d?) time by using the Newton-Girard formulae. Du-
venaud et al. (2013) define a grammar over kernels and use
discrete search to optimize kernel structure. Qamar and
Tokdar (2014) uses a sampling approach to search through
additive decompositions. In Bayesian optimization, it is
especially beneficial to learn additive structure where no
features are overlapped between sub-kernels. Gardner et al.
(2017) perform MCMC sampling over such kernel struc-
tures as a search method. Similarly, Wang et al. (2017)
perform a Gibbs sampling procedure to search over feature
partitions. Enumeration methods inherently incorporate a
very large number of sub-kernels, which can be expensive
to compute for high dimensions. Search methods, on the
other hand, are burdened by searching over a combinatorial
space.

Projection pursuit, introduced by Friedman and Stuetzle
(1981) and adapted to the Gaussian process setting by Saat¢i
(2012); Gilboa et al. (2013), is different in that one learns
projected-additive GPs. That is, the GP kernel is an ad-
ditive combination of low-dimensional kernels defined on
linear projections of data whose directions are sequentially
optimized. If a large number of projections are used, the
sequential optimization of directions with respect to the
marginal likelihood can be computationally expensive, and
the large number of parameters learned by optimization
may result in overfitting and poor uncertainty estimation (Li
etal., 2016).

A GP using a single non-additive random projection has
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been briefly considered with promising preliminary results
(Wang et al., 2016). However, we find that such methods
can be dramatically improved through sequences of additive
random and deterministic projections, and investigate this
surprising and practically significant result. Additionally,
Guhaniyogi and Dunson (2016) use a GP over random pro-
jections of high-dimensional data having low-dimensional
manifold structure. However, their work does not explore ad-
ditive Gaussian processes and also relies on a model average
of many GPs to account for variation in the random pro-
jections. These methods are also related to multiple-index
models (Xia, 2008), which are a general class of models of
the form G(Px) + 3T 2 + € where P is a parameter matrix,
[ is a parameter vector, and G is an unknown link function,
though P is typically learned.

Composing 1-dimensional stochastic processes along ran-
dom directions to approximate higher-dimensional stochas-
tic processes has been used in the geostatistics community
under the name the “turning bands method” and has since
been studied in detail for simulation of 2 to 3-dimensional
processes (Matheron, 1973; Mantoglou and Wilson, 1982;
Mantoglou, 1987; Lantuéjoul, 2013). Work has been de-
voted to describing the 1-dimensional covariances associ-
ated with common covariances (Christakos, 1987; Gneit-
ing, 1998), quantifying the approximation error (Mantoglou,
1987), and even choosing well-spread directions (Freulon
and Lantuejoul, 1993; Lantuéjoul, 2013). Yet, this direction
of work has not been explored for higher dimensional GPs,
nor for Gaussian process regression.

4. Randomly Projected-Additive GPs

Rather than directly learning additive structure, we project
data onto randomly drawn directions and impose additive
structure on a GP defined over the projections. As a result,
we bypass the need to search over or enumerate all possible
sub-kernels, and the burden of training many hyperparame-
ters in a learned projection.

Formally, let n be the number of data points, d be number of
dimensions, and J be the number sub-kernels. Denoting the
degree of kernel j as D;, we define the randomly projected
additive kernel as

J
kpp(x, x') = Zajkj(P(j)a:,P(j)w’), (2)
j=1

vjelJ],
PY) g N (0,

P e RDy‘Xd’ (3)

D

1> Vre[Djl,celd. &)

We refer to a GP with covariance kernel k,., as a randomly-
projected additive GP (RPA-GP). Matrices { P1)}7_; de-
fine the directions of the projections. The parameters
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Figure 1. Contour plots of 2-dimensional kernels. From left to
right: RBF, GAM RBF, RPA-GP with 16 projections, and DPA-GP
with 16 projections. With enough additive projections, we attain
approximately spherical covariance, and choosing well-placed
directions facilitates convergence.

{aj}‘j’:l determine the amount of variance each sub-kernel
contributes and may be either learned or set as a constant
value 1/.J.

If the sub-kernel degrees D; are large enough relative to
sample size n, the Johnson-Lindenstrauss Lemma guaran-
tees that the /5 distances between points are approximately
preserved with high probability (Sarlos, 2006). Alterna-
tively, we have a similar guarantee if data lie on a low-
dimensional manifold (Baraniuk and Wakin, 2009). There-
fore, if we use RBF sub-kernels, each sub-kernel is a good
approximation of the high-dimensional RBF kernel. More-
over, having multiple random projections increases the like-
lihood of drawing a good random projection but does not
increase kernel dimensionality, similar to the method pre-
sented in Ahmed (2004). However, if the sub-kernel degrees
are small, we have sufficient flexibility given enough projec-
tions. RPA-GP forms a distribution over linear combinations
of ridge functions, which are defined as functions that are
invariant in all but 1 direction. Since linear combinations of
ridge functions are dense in the set of continuous functions,
we are able to approximate any continuous function arbitrar-
ily well given a rich enough set of directions (Cheney and
Light, 2009).

4.1. The expected kernel

We now analyze projected-additive kernels by studying the
functional form of the covariance in comparison to the RBF
kernel. We limit our analysis to the most challenging case
of one-dimensional additive projections, i.e. when each
matrix PY) is a vector 1), though analysis is similar for
higher dimensional projections. Further, we assume unit
length-scale, which can always be achieved by appropriate
scaling of data. For brevity, we defer proofs to the appendix.

Clearly, an additive (GAM) covariance kernel does not de-
cay to zero as the /5 distance between points goes to infinity.
For example, a GAM kernel with RBF additive components
is lower bounded by d%dl along each axis. Conversely, in
expectation, the covariance of a randomly projected additive
kernel with RBF components decays to zero in any given
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direction; if n; are drawn from an isotropic distribution,
an additive randomly projected kernel converges to a high-
dimensional kernel as J — oo. This is made formal in the
following proposition.

Proposition 1. Let ¢: R — [—1,1] be a 1-dimensional
kernel, and let (n;: j > 1) be an i.i.d. sequence of random
vector in R? drawn from an isotropic distribution. Then,
for some expected kernel k.: R v+ [—1,1], for any T € R?,
almost surely

J

. 1

Jim Z;qﬁ(?ﬂf) = Elp(mall7ll2)] =: ke(lI7l]2)-

j=

Corollary 1. If ¢(z) = e~ 2% and my ~ N(0,1,), then
1

A
—_— — kUwQ(T).
Vi+iTl3

Corollary 2. If ¢(z) = cos(x) and 1 ~ N (0, 1), then

ke(T) = (&)

k() = e 3ITIE 2 k(7). (6)

Corollaries (1) and (2) show that for certain choices of
sub-kernel ¢ and projection distribution, we can recover
familiar kernels. The expected kernel in (5) is a rational
quadratic kernel with parameter « = 1/2, also known as
the inverse multiquadratic kernel. Tt is especially relevant
because in this work we focus on the case when the base
kernel is RBF. Note that the spectral density provides a
standard way to derive sub-kernels associated with higher-
dimensional kernels (Mantoglou, 1987). We can also derive
a convergence rate.

Proposition 2. Let ¢, k., (n;: j > 1) be as in Proposition
1. Let § > 0. Then, with probability at least 1 — §, we have
simultaneously for all pairs of points T; 1, i, k € [n],

l

<l

J
4
S 60 7ik) = kelllmill2)| < o log(n?/0)
j=1

1 . Tr
N \/2 sup; varyﬁ(m Tik)) log(n2/5)

Empirically, we see convergence to the performance of a
kernel operating on the original space at a much greater
rate. This empirical result is intuitive because even if the
resulting kernel after additive random projections is not an
inverse multiquadratic kernel, it may still be a good kernel
for the data.

4.2. Reducing projection redundancy

As shown in Proposition 2, sampling directions purely ran-
domly converges at the “slow” simple Monte Carlo rate

of O(1/+/J). 1deally, we would space directions equally.
However, even in only 3-dimensions, this is only possible
for certain values of J = 3,15, ... (Mantoglou, 1987). In
higher dimensions, the problem is highly nontrivial. One
solution is to numerically maximize a measure of distance
between points, such as the antipodal separation distance

8(m1, -, my) = min cos ™ (In; n;|),
J#3

which directly measures the minimal angle between direc-
tions. However, because maximizing J is difficult, we in-
stead minimize the loss

U, .imy) = Z(n;nj/)“. (7
J#5’

Minimizing ¢ has the effect of increasing the separation dis-
tance J between directions, though an optimizer of ¢ does
not necessarily coincide with an optimizer of § unless d > J.
Additionally, given sufficiently large J, a set of directions
{n; }}]:1 that maximize / is a spherical t-design with ¢ = 4
(Womersley, 2018), thus guaranteeing optimal order rate
decay of worst-case error for quadrature of smooth func-
tions. If J < d, orthogonal directions minimize § and /,
so we simply use Gram-Schmidt orthogonalization. Oth-
erwise, we minimize ¢ using gradient descent. We refer
to projected-additive GPs with directions chosen by this
method as Diverse Projected-Additive GPs (DPA-GP). We
visualize the DPA-GP and other kernels in Figure 1.

4.3. Applying length-scales before projection

If each sub-kernel of an additive kernel learns its own length-
scale, it is not clear that the additive kernel approximates
an expected kernel. Additionally, if the number of additive
kernels J is large, learning separate length-scales introduces
many hyperparameters which are also only indirectly related
to the original inputs.

Alternatively, we propose applying automatic relevance de-
termination scaling directly on the original input space be-
fore the data are projected to a low-dimensional space. To
learn the length scales, we efficiently propagate gradients
through the projections with automatic differentiation. We
define

J
krpARD(woiL'/) = Zajkj(P(j)Aw,P(j)Am’),

Jj=1

where A = diag(o~!). When a; = 1/J for all j and each
k; has unit length-scales, the theory of section 4.1 readily
applies, while permitting flexible treatment of length-scales.

In Section 5, we make the empirical discovery that this
ARD approach provides significant performance gains. To
distinguish this parameterization from others, we refer to
such a model with the -ARD suffix.
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4.4. Scaling to large data sets with high dimension with
SKI

In section 2.2, we described how SKI enables scalable GPs,
but is constrained to input dimensions of about d < 5, if no
kernel structure is exploited. However, if a kernel decom-
poses additively by groups of dimensions, it is possible to
generalize the applicability of SKI to much higher dimen-
sional spaces. Suppose that a kernel decomposes additively,
as in the case of RPA or DPA, i.e.

J
Z (J) /(J)

where x(7) denotes a group of dimensions of point . Then,
the Gram matrix K corresponding to this kernel decom-
poses similarly, so a matrix-vector multiplication can be per-
formed with each kernel separately as Kv = Z'j]:l KWy,
Since we assume that each sub-kernel k; is low-degree,
each matrix-vector multiplication K ?)v can be computed
efficiently using SKI. In particular, in the case that each sub-
kernel is 1-dimensional, inference with such a kernel using
SKI has complexity O(Jc¢(n + mlogm)), where m is the
number of inducing points for each projection and c is the
number of iterations of linear conjugate gradients. Typically,
¢ < n is sufficient to reach convergence within machine
precision, so inference is approximately linear in n (Wilson
and Nickisch, 2015). Moreover, MVMs can be trivially
parallelized across additive components. We demonstrate
this asymptotic scaling empirically in Section 5.5.

5. Experiments

We evaluate RPA-GP and DPA-GP on a wide array of re-
gression tasks. We compare the predictive accuracy of
the proposed methods to GPs with RBF and GAM ker-
nels (section 5.1), study the effect of increasing num-
ber of projections (section 5.2), address the choice of
the number of projections (5.3), compare predictive accu-
racy under various assumptions via synthetic data sets and
on very high-dimensional data (section 5.4), and demon-
strate the superior asymptotic scaling of RPA-GP with
SKI over traditional inference (section 5.5). We imple-
ment all models using GPyTorch (Gardner et al., 2018) and
provide code at https://github.com/idelbrid/
Randomly-Projected-Additive—-GPs.

We note that the most directly relevant comparison is to GP
with a kernel operating on the original input space, such as
the popular RBF-ARD kernel. Kernel learning approaches
have a completely different purpose. For example, deep
kernel learning (Wilson et al., 2016) trains a deep projection
to perform kernel selection, requiring the training of many
hyperparameters, which is cumbersome and even infeasible
for many smaller datasets. On the other hand, the remark-

able feature of our proposed approaches is that they provide
learning-free projections into a single dimension without
sacrificing accuracy compared to a popular kernel operating
on the original input space.

5.1. Benchmarks on UCI data sets

To evaluate RPA and DPA-GP, we compute the normalized
RMSE and negative log likelihood for a large number of
UCI data sets. For full details of the experiment proce-
dure, results for additional models, and the negative log
likelihood (NLL) benchmarks, refer to Appendix B. No-
tably, using SKI for scalable inference, enabled by additive
projections, results in essentially identical performance as
exact inference. Additionally, the NLL for DPA-GP-ARD
is also competitive, indicating that predictive uncertainty is
not worsened by additive random projections.

To reiterate, GAM—GP is an additive GP with RBF subkernels
and ARD. RPA-GP-1, DPA-GP, and DPA-GP—-ARD are
additive across 20 1-dimensional projections. RPA-GP-1
uses Gaussian random projections; DPA—GP minimizes the
objective in Equation 7; and DPA-GP-ARD performs the
pre-projection ARD method described in Section 4.3.

5.2. Convergence of random projected-additive GP
accuracy

To study the sensitivity of RPA-GP to the number of pro-
jections and limiting behavior as J — oo, we measure the
RMSE of projected-additive GPs as the number of projec-
tions vary. We show representative plots in Figure 3. In
these experiments, the benefit of DPA-GP-ARD also be-
comes obvious, as we see it is able to converge much more
quickly than the other approaches. By the time J = 20,
represented in Figure 2, the various projection approaches
are more comparable.

5.3. Choosing the number of projections J

One can often achieve good results with a surprisingly small
value of J. Indeed, in Figure 2, we fixed J = 20, and found
that methods projecting into a single dimension often met
or exceeded the performance of kernels operating on the
full input space, over a wide range of datasets with varying
numbers of points and input dimensions.

We also show in Figure 3 that convergence to a good solution
can be very fast in .J, especially with DPA-GP. In general, J
can be determined through cross-validation. Alternatively,
one may refer to Proposition 2 to choose J such that the
projected additive kernel is with in € of its expected kernel.
However, these values are generally overly conservative, as
a reasonable kernel for a given dataset will be found much
more quickly than a close approximation to the IMQ kernel.
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Figure 2. The average RMSE and SEMs of the proposed methods. The proposed methods and GAM-GP perform surprisingly well
compared to RBF-GP. DPA-GP-ARD is able to match the performance of RBF-GP even for large data sets, where the flexibility of
GAM-GP begins to be a limiting factor. Table 2 in Appendix B additionally compares predictive log likelihood, showing a similar trend.
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Figure 3. Representative test RMSE of RPA-GP and DPA-GP as the number of projections vary compared to full-dimensional RBF and
inverse multiquadratic IMQ) kernels. Shaded regions are 2 times the standard deviation over cross-validation, and lines are the average
RMSE. For clarity, we only show the variation for DPA-GP-ARD. In general, there is a fast convergence to the performance of RBF and

IMQ kernels, and DPA-GP consistently improves upon RPA-GP by a small amount, and applying length-scales before (DPA-GP-ARD)
projection dramatically increases performance.

Indeed, with smaller data sets (n < 3000), DPA-ARD em- Additive Function Regression XOR
pirically attains RMSE within five percent of RBF-ARD —— E?ZIGP 101

for J < 20, even if the dimensionality of the dataset is
quite large. For larger datasets, RMSE still is at a local
minimum for J < d, which is a more suitable predictive

—%— DPA-GP-ARD

0.8

Average RMSE
(=]
w

°©
<)
;

. . 7 T 7 0.6 = —
performance-computational cost trade-off. Appendix C con- Gaussian PDF
tains additional p]O ts Gaussian PDF with Irrelevant Features
' = 1.251
E 1.50
. oge ~ 4
5.4. Comparisons to fully-additive kernel % 1.25 1.00
5 0.75
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own right, since the GAM GP ignores interactions between

inputs. To our knowledge it is not known that such a parsi- Figure 4. Top left: RMSE on a sum of sines. GAM is best as

monious representation can achieve comparable results toa ~ cXPected. Top right: RMSE on a very non-additive function: a

kernel acting on the full inputs over this significant range of SmOOth, relaxatloln of the XOR fun.ctlon. B(,’ttom left: RI\,/[SE

experiments, synthetic data 'w1th a r(')tatlon-llnvarlant function. Bottom right:
RMSE synthetic data with half irrelevant features. DPA-GP-ARD

To understand the differences between GAM GP and our ~ can determine irrelevant features effectively.

proposed techniques, we consider additional empirical tests



Randomly Projected Additive Gaussian Processes

orientation400 (d=1935, n=400)

1.0
0.8 —— RBFARD
= GAM
5 0.6 —e— DPA-GP-ARD
—e— RPA-GP
0.41
0 100 200 300

Number of Projections

Figure 5. Comparative performance on the Olivetti face orientation
regression task. With high dimensionality and a non-additive
target function, DPA-GP-ARD outperforms alternatives, though
the number of projections J must be somewhat high.
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Figure 6. Training run time of RPA-GP with SKI compared to
canonical Cholesky decomposition-based inference on synthetic
data following = ~ N (0, I3),y = 312 sin(;)+¢. We note that
runtime behaviour is somewhat data dependent, due to changes
in conditioning of the kernel matrix, but the scaling of SKI re-
mains approximately linear, compared to the cubic scaling of the
Cholesky decomposition.

on synthetic data and very high-dimensional data sets.

Synthetic regression tasks: In Figure 4, we test each
method as we increase the number of data points on ad-
ditive synthetic data. GAM, as expected, performs better for
target functions that are truly additive. Conversely, GAM
can perform poorly if the function is not additive. For target
functions that are rotation-invariant, all of GAM, DPA-GP,
and DPA-GP-ARD perform equivalently as expected. How-
ever, if irrelevant features are introduced, which we conjec-
ture is a frequent occurrence in real regression problems,
DPA-GP-ARD performs better than GAM. Irrelevant fea-
tures introduce noise into the projections, but ARD prunes
irrelevant features, effectually reducing the input dimension.

High dimensional regression tasks: Following Wilson
et al. (2016) and Hinton and Salakhutdinov (2008), we
construct regression data sets of three different sizes from
the Olivetti faces data set. We uniformly subsample images,
uniformly sample a rotation in [—90, 90], crop the rotated

images, and use the rotations as regression targets. DPA-GP-
ARD outperforms RBF and GAM GPs with when n is small
compared to d. Results with n = 400 images are presented
in Figure 5. We additionally test on three genomics data
sets, finding that DPA-GP-ARD and GAM GP generally
perform comparably and provide figures in the appendix.

5.5. Scaling to large data sets

To demonstrate the asymptotic computational complexity
of RPA-GP with SKI, we train both RPA-GP with SKI and
a GP with RBF kernel using Cholesky-based inference for
120 Adam iterations on synthetic data sets with d = 100
and a varying number data points. We use RPA-GP with
20 1-dimensional projections and 512 inducing points per
projection. We run this experiment on a 1.8 GHz Intel i5
processor and 8 GB of RAM. The results in Figure 6.

Note that it is infeasible to run SKI without RPA-GP with a
reasonable number of inducing points on data sets with this
number of input dimensions; even if d = 6 and we have 100
inducing points in each dimension, the resulting 1 trillion
inducing points cannot be stored in memory.

6. Conclusion

We proposed novel learning-free algorithms to construct ad-
ditive Gaussian processes by using sums of low-dimensional
kernels operating over random (RPA-GP) projections. We
demonstrated the remarkable result that these approaches
achieve the performance of kernels operating over the full-
dimensional input space even when projecting into a one-
dimensional space and without learning the projections.

Moreover, we showed that RPA-GP converges to the inverse
multiquadratic kernel and proposed a novel deterministic
algorithm (DPA-GP) to reduce projection redundancy that
indeed improves regression performance. Finally, as an
added benefit, we demonstrated that by exploiting the addi-
tive structure of RPA-GP, we essentially reduce inference
from a d dimensional problem to J 1-dimensional prob-
lems, enabling the application of SKI (Wilson and Nick-
isch, 2015) and thereby reducing standard GP computa-
tional complexity from O(n3) to O(Je(n + m)), where
J is the number of random projections, c¢ is the number
of linear conjugate gradients iterations, and m is the num-
ber of inducing points. These results are of great practical
significance: we have shown that GP regression, which is
the backbone of many procedures, can often be effectively
reduced to one-dimension without requiring the training of
a projection. These approaches also naturally generalize
the applicability of popular scalable inference procedures,
such as SKI, which have been conventionally constrained to
lower dimensional spaces.

In short, we demonstrate the pleasing result that a range of
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regression problems can be reduced to a single input dimen-
sion, while retaining or even improving accuracy, without
having to learn a projection. In a single dimension, methods
become much easier to analyze and scale, leading to a rich
variety of future research directions.
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