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Abstract

1. Phenology is one of the most immediate responses to global climate change, but data 

limitations have made examining phenology patterns across greater taxonomic, spatial, and 

temporal scales challenging. One significant opportunity is leveraging rapidly increasing data 

resources from digitized museum specimens and community science platforms, but this 

assumes reliable statistical methods are available to estimate phenology using presence-only 

data. Estimating the onset or offset of key events is especially difficult with incidental data, as 

lower data densities occur towards the tails of an abundance distribution.

2. The Weibull distribution has been recognized as an appropriate distribution to estimate 

phenology based on presence-only data, but Weibull-informed estimators are only available 

for onset and offset. We describe the mathematical framework for a new Weibull-

parameterized estimator of phenology appropriate for any percentile of a distribution and 

make it available in a R package, phenesse. We use simulations and empirical data on open 

flower timing and first arrival of monarch butterflies to quantify the accuracy of our estimator 

and other commonly used phenological estimators for 10 phenological metrics: onset, mean, 

and offset dates, as well as the 1st, 5th, 10th, 50th, 90th, 95th, and 99th percentile dates. Root mean 

squared errors and mean bias of the phenological estimators were calculated for different 

patterns of abundance and observation processes.

3. Results show a general pattern of decay in performance of estimates when moving from mean 

estimates towards the tails of the seasonal abundance curve, suggesting that onset and offset 

continue to be the most difficult phenometrics to estimate. However, with simple phenologies 

and enough observations, our newly developed estimator can provide useful onset and offset 

estimates. This is especially true for the start of the season, when incidental observations may 

be more common.

4. Our simulation demonstrates the potential of generating accurate phenological estimates from 

presence-only data and guides the best use of estimators. The estimator that we developed, 

phenesse, is the least biased and has the lowest estimation error for onset estimates under most 
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simulated and empirical conditions examined, improving the robustness of these estimates for 

phenological research.

 

Keywords: citizen science, global change, incidental data, phenological metrics, R package, seasonal 

abundance curves, simulated data

 

1 Introduction

Global climate change is disrupting the seasonal timing of life history events—the phenology—of 

numerous species worldwide (Parmesan, 2007). Developing accurate phenological metrics 

(phenometrics) from presence-only data has wide utility in the biological sciences, especially given 

the rapidly-increasing number of observations being reported on global biodiversity portals. Plant 

phenology is an ecologically important regulator of ecosystem processes that influences the 

seasonality of albedo, fluxes of water, and nutrient cycling (Richardson et al., 2013). At a community 

level, phenology is important because food webs depend on the developmental timing of interacting 

species (Chuine and Régnière, 2017). The disruption of important ecological interactions can have 

negative demographic effects for interacting species and disrupt ecosystem functions through nutrient 

cycles (Beard et al., 2019).

Historically, most phenological research has used data from long-term ecological research 

projects and standardized monitoring programs to estimate variation in phenology through space or 

time. These programs often collect presence/absence or count data, allowing researchers to use a 

variety of robust statistical methods to model phenology including generalized additive models 

(Moussus et al., 2010; Schmucki et al., 2016) and extensions of occupancy models (Chambert et al., 

2015; Socolar et al., 2017). However, such standardized data are limited in space and time. Instead, 

the fastest growing data resources usable for documenting phenology come from incidental or 

opportunistic community science platforms e.g., iNaturalist, where users share and identify photos of 

biodiversity across the globe (Barve et al., 2020). In 2019, 538,906 digital vouchers of butterflies 

were added to iNaturalist, a 1.8-fold increase from 2018 (as of Feb. 2020). Additionally, initiatives to 

digitize natural history museum specimens have mobilized millions of historical occurrence records 

(Nelson and Ellis, 2018). Existing data resources will only grow as most specimen data are not yet A
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digitized. For instance, it is estimated that only five percent of arthropod specimens housed in North 

American natural history collections are both digitized and georeferenced (Cobb et al., 2019). The 

exponential growth of incidental or opportunistic biodiversity records plus scalable solutions for 

annotating phenology (Brenskelle et al., 2019) provide novel opportunities to better understand past 

and present phenology patterns and associated drivers across greater spatial, temporal, and taxonomic 

scales.

Generating accurate phenology estimates with unstructured community observations is 

challenging because sampling effort is unquantified, and the biases inherent to the observation process 

cannot be fully known (Kelling et al., 2019). This often translates into only having a series of 

presence records over time as an input into calculating phenometric estimates. Additionally, incidental 

data collection is not repeated so phenological estimates using these data must be aggregated to 

arbitrary spatial units, potentially altering phenology patterns across different scales (Keyzer et al., 

2017).

The two most common metrics used with incidental data to estimate timing of a particular 

phenophase or subphase are the mean date of all observations within a year and the first observation 

date of an event in a year (Jones and Daehler, 2018; Ward et al., 2016). Although mean dates have 

consistently been found to be an accurate phenometric (Moussus et al., 2010; Bertin, 2015; 

Miller‐Rushing et al., 2008), they may not always be the most biologically relevant phenometric of 

interest. For example, studies examining phenological mismatch are often interested in understanding 

if the start and end of seasonal abundance curves overlap, while the middle of seasonal abundance 

curve is less critical (Both et al., 2006; Mayor et al., 2017). Additionally, for species with multiple 

broods such as multivoltine insects, mean estimates may reflect a time in-between broods where no 

adult individuals are emerged. It is therefore critical that mathematical frameworks are developed to 

estimate phenometrics that more closely reflect the start and end of seasonal abundance curves. This 

is challenging since first and last observation dates based on incidental data are biased, as the first 

presence observation of a phenological event almost certainly occurs after the true event begins. 

Likewise, the true offset of an event likely occurs after the last observation is documented.

Recently, Pearse et al. (2017) developed a statistical estimator that fits a Weibull distribution 

to estimate the onset and offset of historic and contemporary phenology based on sparsely sampled, A
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presence-only, incidental observations. By drawing strength across many observations, not simply the 

earliest observation, Pearse et al. (2017) demonstrate that their method provides estimates closer to 

the true onset of a process than the first sample. Still, estimating the true onset or offset of a process 

may be more challenging than estimating a percentile of the phenology curve within the bounds, 

because it is notoriously difficult to model the tails of distributions as there are fewer data points to 

parameterize the model (Pearse et al., 2017).

Our goal was to develop a Weibull-parameterized point estimator that could provide accurate 

estimates of phenology for any percentile of a distribution. Here, we describe the mathematical 

framework used to develop our estimator, which we make available in an R package titled phenesse. 

Using this framework, we quantify the accuracy of our newly developed estimator and three other 

commonly used phenological estimators based on simulated and empirical incidental data. We use 

simulations to assess the accuracy of ten phenometrics estimated using four estimators while varying 

parameters for the underlying seasonal abundance curves and observation process. We vary the 

seasonal abundance curve by changing the modality, duration, and skewness of the underlying 

distributions that we use to draw our simulated observations. The observation process was varied by 

changing the number of observations used to calculate estimates and by changing if the observation 

process was random or skewed towards earlier observations. 

We further evaluate the application of our newly developed estimator on two exemplar 

empirical incidental datasets. The first example compares flowering timing for two plant species, 

using incidental records from the citizen science platform iNaturalist (http://www.inaturalist.org/), 

and more structured data assembled from the National Phenology Network. The second example 

again uses iNaturalist observations, but focuses on the migratory monarch butterfly, in comparison to 

onset timing based on presence/absence reporting from the citizen science resource, Journey North, 

focused specifically on first sightings. This allowed us to test the phenesse estimator based on two 

dynamics fundamental to phenology, the development time of temperature-limited growth (common 

for plants and ectothermic animals) and also arrival timing of volant migrants, which can include 

insects, birds or bats. Our study contributes a quantitative framework to estimate phenological events 

more accurately using presence-only observations and informs future researchers on the phenological 

metrics and methods that can lead to more robust estimates. A
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2 Methods

2.1 Developing a phenology point estimator for any percentile of a distribution

Cooke (1979) constructed bias corrected estimators of the bounds of random variables which were 

better than the extreme order statistics for many classes of random variables. We adapted this 

statistical framework to develop a numerical solution that calculates a point estimate for any 

percentile. The joint distribution of the most recent observations of an event has approximately the 

same Weibull form, regardless of the distribution from which those sightings were sampled (Cooke, 

1980). Therefore, the Weibull distribution is useful to model data integrated across multiple sources 

that may use different sampling regimes.

To estimate any percentile, we estimated the maximum likelihood estimation (MLE) of the 

shape and scale parameters of the Weibull distribution using the fitdistrplus package (Delignette-

Muller et al., 2019). After estimating the shape and scale parameters of the Weibull distribution, we 

plotted the cumulative distribution function (CDF) of the parameterized Weibull distribution. We 

calculated the CDF of the Weibull as where  are the observations,  is the 𝐹(𝑥;𝜆,𝑘) = 1 ― 𝑒( ―𝑥/𝜆)𝑘
𝑥 𝜆

scale parameter, and  is the shape parameter. We then solved for the observation date that 𝑘

corresponded to a CDF of 0.01 and 0.99 respectively to calculate approximate bounds of the Weibull 

distribution parameterized by the original observations. The observation date that corresponds to a 

CDF of 0.01 was calculated as  and the observation date that corresponds to a 𝜆 ∗  ( ―𝑙𝑜𝑔(1 ― 0.01)
1
𝑘)

CDF of 0.99 was calculated as . To ensure a smooth CDF curve, we 𝜆 ∗  ( ―𝑙𝑜𝑔(1 ― 0.99)
1
𝑘)

calculated the CDF of all values in a sequence with increment of 0.5 starting at the observation date 

that corresponds to a CDF of 0.01 and ending at the observation date that corresponds to a CDF of 

0.99.  

The metric here cannot estimate a true onset and offset (e.g. 0th or 100th percentile), we 

instead estimate what we refer to as the pseudo-0th and pseudo-100th percentile. This is calculated by 

subtracting one (day) from the observation date that corresponds to a CDF of 0.01 and adding one 

(day) to the observation date that corresponds to a CDF of 0.99. These new observation dates were 

assigned pseudo-CDF values of -0.001 and 1.001 respectively. In a future release of our R package, 

phenesse, we expect to remove the 0th and 100th percentile estimates, as these estimates are not based A
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on the Weibull distribution but rather an arbitrary cutoff. Instead, users will have to determine what 

quantile value represents the start or termination of a phenophase. 

The Weibull corrected estimate ( ) was calculated as 𝜃

𝜃 = 𝜃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ― 𝐵𝑖𝑎𝑠

𝐵𝑖𝑎𝑠 = (
1
𝐵

𝐵

∑
𝑖 = 1

𝜃𝑖) ― 𝜃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 

= 2 - ( )𝜃  𝜃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 
1
𝐵∑𝐵

𝑖 = 1𝜃𝑖

where  is the original estimate determined as the x-axis value perpendicular to the percentile 𝜃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

of interest (y-axis) given the CDF fit to the original observations (Fig. 1, Step 2),  is the estimate at 𝜃𝑖

iteration i (Fig. 1, Step 4) given the CDF fit to newly sampled observations (Fig. 1, Step 3), and B is 

the number of iterations (500 for estimates included in this study). 

2.2 Setting up the simulation experiments

We simulated biologically plausible seasonal abundance curves, where the number of individuals in a 

landscape varied over time to assess the accuracy of our estimator. We also compare our estimator to 

three commonly-used estimators: phest (Pearse et al., 2017), quantile, and mean. By knowing the 

distribution of the simulated taxa, we could determine how well our estimates compared to 

benchmark values.

We evaluated the effectiveness of our estimator under different classes of seasonal abundance 

distributions. The first shape was a normal, unimodal distribution and could represent a variety of 

biological processes e.g., flowering of plants, arrival of migratory birds. The second shape was an 

asymmetric bimodal distribution, where the second peak in the distribution was larger than the first 

(Fig. 2). Skewed bimodal seasonal abundance distributions could represent emergence of bivoltine 

insect species whose second flight has a larger abundance than the first.

For each seasonal abundance curve, we manipulated the length of the seasonal abundance 

curves by changing the standard deviations (SD). All unimodal distributions had a mean of 200, 

representing the same day of peak abundance, and three different standard deviations: 10, 20, and 40. 

The bimodal distributions had two peaks with the respective means of 150 and 220, with two-thirds of A
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the abundance occurring in the second peak. We did not model a bimodal distribution with a standard 

deviation of 40, because the two peaks overlapped such that the distribution formed a single peak with 

a large standard deviation. We examined the effect of observation skewness by running all our 

simulations under two sampling scenarios. The first assumed random sampling, where the probability 

of observing an individual was the same across the entire phenophase. The second assumed a positive 

skewed scenario, where more observers are capturing incidental reports at the beginning of the season 

rather than the end. Here we set weights for obtaining observations in the 10th percentile at 0.6, 

between the 10th percentile and the mean at 0.3, and after the mean at 0.1. These weights reflect 

potential skewness that may be present in incidental data. For instance, iNaturalist observation 

densities often peak in spring especially in relation to events such as the City Nature Challenge. For 

each unique modality, standard distribution, and sampling combination, we randomly selected 10, 20, 

or 50 individuals without replacement using the sample function in R to generate the “incidental 

observations” used to estimate a suite of phenometrics. We conducted 100 simulations for each 

unique combination of simulation parameters (Table 1).

2.3 Analyzing the accuracy and bias of phenological estimators on simulated data

We evaluated the accuracy of our newly developed estimator, phenesse, by comparing estimated 

values to the benchmark values generated by the simulations. For phenometrics estimating the start 

(onset) and end (offset) processes, we compared our estimates to those generated by the R package 

phest. Phest offers an analytical solution to calculate a Weibull informed estimate of the limits of a 

phenology curve but can only calculate the bounds of a distribution (Pearse et al., 2017). Therefore, 

we only tested the accuracy of the phest estimator for the start (onset) and end (offset) processes. We 

also compared our estimates to the accuracy of the default quantile algorithm from the R Stats 

package for the pseudo-0th, 1st, 5th, 10th, 50th, 90th, 95th, 99th , and pseudo-100th  percentiles of a 

process, where the pseudo-0th and pseudo-100th percentiles represent the estimated onset and offset 

processes respectively. Quantile estimates are commonly used to approximate a phenometric near a 

tail of the distribution (Brooks et al., 2017; Jonzen, 2006). Finally, we assessed the accuracy of a A
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mean phenometric for each simulation experiment by comparing mean estimates to benchmark mean 

values.

For each simulation experiment, we calculated the root mean squared error (RMSE) and mean 

bias of the estimates. RMSE is calculated as:

where P is the estimation of a phenometric and O is the observed benchmark value of the 

corresponding phenometric. Bias metrics can be useful in determining if an estimator consistently 

underestimates or overestimates a benchmark value. Mean bias was calculated as

2.4 Analyzing the accuracy and bias of phenological estimators on empirical data

We further evaluated the application of our phenesse estimator and the other estimators using 

empirical data. We did so by comparing estimated values generated using incidental data to 

benchmark values generated using more structured community science data. We analyzed the 

accuracy of estimating open flower phenology for eastern redbud (Cercis canadensis) and common 

milkweed (Asclepias syriaca), and also estimated the first arrival date of migrating monarch 

butterflies (Danaus plexippus). 

Incidental plant observations recorded on iNaturalist during the year 2019 of redbud and 

milkweed were downloaded from GBIF (2020). We also downloaded open flower status and intensity 

data of redbud and milkweed for 2019 from the NPN. These data are collected by amateur and 

professional scientists and include records of the presence or absence of open flowers, taken 

repeatedly at the same site throughout a year. We generated 30-km hexagonal grids across the United 

States and counted the number of iNaturalist and NPN records for each species found in each grid. 

For each species, grid cells were filtered to those with at least 100 NPN records and 10 iNaturalist 

observations. Inaturalist records in these cells were scored for the presence or absence of open flowers 

using the software tool ImageAnt (https://gitlab.com/stuckyb/imageant). Considering only records 

with open flowers, sufficient data were available for redbud in two cells (one each in New York and A
cc

ep
te

d 
A

rt
ic

le

file:///C:/Users/Mike/Documents/UF2/manuscripts/Phenesse-Simulations/Revisions/2020
https://gitlab.com/stuckyb/imageant


This article is protected by copyright. All rights reserved

Indiana), and milkweed in one cell in Minnesota. Phenometrics were estimated from these incidental 

data using quantile, phenesse, phest, and mean estimators. 

We used generalized additive models (GAMs) to generate benchmark phenometrics using the 

NPN presence/absence data at our three grid cells. We fit the GAMs using the R package mgcv 

(Wood, 2011) to a binomial distribution and specified our smooth terms to be cyclic cubic regression 

splines; day of year was the predictor variable and presence of open flower was the response variable. 

Benchmark phenometrics were estimated by extracting values from our predicted GAM models 

(detailed methods in Supporting Information) for comparison to estimators using incidental 

iNaturalist records. 

Incidental monarch butterfly observations recorded on iNaturalist during the year 2018 were 

downloaded from GBIF (2019). Our benchmark data was collected by Journey North community 

scientists that report the first sighting each spring of monarch butterflies migrating from Mexico into 

the United States and Canada (Howard and Davis, 2009). We restricted our study area to only include 

monarch records collected between the longitudinal degrees -94 to -68 and the latitudinal degrees 36 

to 42 to ensure documented butterflies migrated. Records within this area were annotated to verify the 

presence of an adult butterfly. We generated 30-km hexagonal grid cells across the study area. Grid 

cells were considered suitable for analysis if there were at least two Journey North records and 10 

iNaturalist observations of adult monarchs, with at least one Journey north record prior to any 

iNaturalist observation. In total, 40 cells were kept for analysis. In each cell, the benchmark value was 

the earliest day of year of the Journey North records, and the estimated value was the onset estimate 

of the quantile, phenesse, and phest estimators applied to iNaturalist records. Onset was the only 

comparable phenometric using the Journey North data, as these data focused on the first monarch 

observed in a season. Root mean squared error (RMSE) and mean bias of the estimates compared to 

the benchmark values were calculated for both the monarch and open flower examples.

2.5 Code development

 All functions and analyses were developed in R version 3.5.1 (R Core Team, 2018). Simulation 

scripts relied on the tidyverse packages (Wickham et al. 2019) and truncnorm (Mersmann et al., 

2018). Figures used the additional packages cowplot (Wilke, 2018) and latex2exp (Meschiari, 2015). 
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The statistical estimator developed and introduced in this paper is available in the R package phenesse 

(Belitz, 2020).

3 Results

3.1 Accuracy and bias of phenological estimates of onset and offset

Simulation study

When estimating onset phenology under the random sampling scenario, the estimates from our R 

package, phenesse, always produced more accurate estimates (lower RMSE) than estimates produced 

using the R package phest, which itself was more accurate than the quantile estimator (Fig. 3a; Fig. 

4a). Phenesse estimates of offset were also more accurate when the seasonal abundance curve was 

bimodal (Fig. 4), but phenesse and phest generated estimates that were similar in accuracy for offset 

when the seasonal abundance curve was unimodal (Fig. 3). Onset estimates generated under the 

skewed sampling scenario had lower RMSE than estimates generated under the random sampling 

scenario (Fig. 3), except when the seasonal abundance curve was shorter and bimodal (Fig. 4b). 

Conversely, offset estimates generated under the skewed sampling scenario had a higher RMSE than 

estimates generated under the random sampling scenario (Figs 3-4). Generally, an increase in the 

length of the phenological period (increase in SD) decreased the accuracy of onset and offset 

estimates for all estimators (Fig. S1). Across all simulations, neither onset or offset were ever the 

most accurate phenological metric, regardless of the parameters used to set up the simulation 

experiment or the estimator used (Figs S1-S2).

The mean bias calculations revealed that for the unimodal seasonal abundance curves, in 

general, the three estimators all over-estimated the benchmark onset value i.e. they predicted later 

than the actual onset and under-estimated the benchmark offset value (Fig. 5). For the bimodal 

seasonal abundance curve, estimates calculated by phest and the quantile estimator were similar in 

direction of bias to unimodal estimates. However, phenesse estimates underestimated the onset values 

except when observations were selected from the overlapping (20 SD) bimodal seasonal abundance 

curve and sampling was random (Fig. 6). Across all simulation experiments, estimates of onset and 

offset using phenesse generally had lower bias than estimates calculated using phest or the quantile 
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method (Figs S3-S4). The exception to this result was when observations are selected from the non-

overlapping (10 SD) bimodal seasonal abundance curve and sampling was skewed (Fig. S6b). 

Empirical study

Compared to other estimators, phenesse produced the most accurate estimates for both the onset of 

open flowers (Fig. 7A) and the arrival of the first monarch butterfly (Fig. 7C) based on comparisons 

to benchmark observations. Phenesse estimates also had the lowest mean bias in both cases (Fig. 7B, 

7D). The difference between the estimated arrival of the first monarch butterfly and the benchmark 

arrival date decreased as the number of iNaturalist observations used to generate the estimate 

increased, with phenesse showing the least sensitivity to sample size (Fig. S5). Estimates of the 

termination of flowering (offset) were most accurate and least biased using the phest estimator (Fig. 

7A; 7B). All estimators generally underestimated the date of the termination of flowering given our 

benchmark value.

3.2 Accuracy and bias of phenological estimates of the 1st to 99th percentile phenometrics

Simulation study

For the estimates generated using observations from the unimodal seasonal abundance curves and 

random sampling scenario, the mean estimate had the lowest RMSE (Fig. 3a) and bias (Fig. 5a). 

Under the random sampling scenario, RMSE showed a pattern of decay (Fig. 3a; Fig. S1a) and bias 

increased as estimates moved farther from the mean (Fig. 4a; Fig. S3a). Under the skewed sampling 

scenario, RMSE and bias were lowest with quantile estimates of the 1st, 5th, and 10th percentiles and 

increased as the percentile of interest approached offset values (Fig. 3b; Fig. 5b). The bias analyses 

showed that under the skewed sampling scenario, the estimators generally underestimated all 

percentiles except onset (Fig. 5b). Under most unimodal simulation scenarios, the 50th percentile 

estimates calculated using phenesse were more accurate than 50th percentile estimates using the 

quantile estimator (Fig. S1). Although, phenesse estimates were generally more accurate in estimating 

the 90th, 95th, and 99th percentiles of a unimodal seasonal abundance curve, quantile estimates had 

lower RMSE and bias than the phenesse estimator for the 1st, 5th, and 10th phenological metrics (Fig. 

S1; Fig. S3).

Results for estimates generated using the bimodal seasonal abundance curves were different 

from the unimodal results. Overall, the quantile estimator had lower RMSE and bias than phenesse A
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(Fig. S2; S4). The quantile estimator especially outperformed phenesse under the skewed sampling 

scenario and when estimating the 1st, 5th, 10th, and 50th percentiles (Fig. 4). Mean estimates were 

the most accurate phenometric when observations were generated under the random sampling 

scenario from the longer, overlapping, bimodal seasonal abundance curve (Fig. 4a). Although mean 

estimates under the random sampling scenario were less accurate than the 90th percentile estimates 

when observations were from the shorter bimodal seasonal abundance curve, mean estimates always 

provided unbiased estimates, with bias never being greater than one under the random sampling 

scenario (Fig. 6a; Fig. S4a). However, under the skewed sampling scenario, mean estimates were 

never the most accurate phenometric and always were biased by underestimating the benchmark mean 

value (Fig. 6b). 

Empirical study

Our empirical results were similar to our simulation results with the RMSE and bias increasing 

towards the bounds (Fig. 7A; Fig. 7B). Estimates generated using phenesse had lower RMSE than 

estimates using the quantile estimator except for the 5th and 10th percentiles. Across all percentiles, 

phenesse generated estimates that were less biased than the quantile estimator.

4 Discussion

Researchers are increasingly using incidental data to estimate phenological metrics, in part due to 

exponential growth of digitized museum specimens and observers uploading their photos on platforms 

like iNaturalist. These platforms, now containing tens of millions of imaged and identified organisms, 

can be leveraged to document phenological signals (Taylor and Guralnick, 2019), and provide a 

unique opportunity to answer questions across greater spatial and taxonomic scales (Barve et al., 

2020). Additionally, more than 390 million specimens of preserved plants reside in herbaria across the 

world (Thiers, 2019) and more than 300 million arthropod specimens are housed in North American 

natural history collections (Cobb et al., 2019). The increasing availability of data spanning three 

centuries for both plants and animals promises to allow researchers a better understanding of the 

tempo and mode of seasonal changes, but only if the statistical methods used in the analyses are 

robust and account for underlying biases. A critical question is whether the observation process and 

methods used to control bias in that process can approximate the true biological signal. Simulated A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

data, where the seasonal abundance curves are known, are an invaluable tool to assess the efficiency 

of phenological estimators (Moussus et al., 2010). Using this approach, we demonstrate that 

phenometric accuracy is context dependent, and under certain scenarios, sparsely sampled presence-

only data can approximate the benchmark phenology signal. However, our results also serve as 

another cautionary tale that estimating certain phenometrics can be challenging (Miller-Rushing et al. 

2008), perhaps especially so when using incidental data.

Our simulations indicate that the mean estimator generated the most accurate and unbiased 

estimates from observations drawn from unimodal seasonal abundance curves under the random 

sampling scenario. Mean date has consistently been found to be an accurate phenometric in other 

contexts (Bertin, 2015), and our example using open flower phenology also confirmed mean date to 

be an accurate phenometric. However, in many cases, the middle of the season is not the time of the 

greatest biological meaning, and it is rather the tails of the seasonal abundance curves that are most 

essential. In mismatch studies between interacting species, measuring the overlap of the beginning of 

two (or more) seasonal abundance curves may be critical to understanding potential consequences of 

phenological shifts. For example, if migratory birds fail to breed at a time of high caterpillar 

availability, populations may experience large declines (Both et al., 2006). Although the accuracy and 

bias of phenological estimators showed a general pattern of decay in performance moving from mean 

estimates to the tails, phenesse improves onset estimates compared to previous methods. Accurate 

onset estimates may be possible given enough observations and when the length of the phenophase or 

biological process is short. Additionally, the 5th and 10th quantile estimates performed well across 

most scenarios and provides another phenometric that can be used to approximate early periods of a 

seasonal phenology. 

If focus is on early or late events, the possibility of biased sampling may improve metrics 

when in the same direction of the bias. On the other hand, seasonal sampling bias reduces the 

effectiveness of mean observations, usually the metric that is the most robust. In our open flower 

example, we did find onset to be more accurate than offset and the 5th and 10th percentiles were less 

biased than the mean estimator, suggesting that observations of open flowers are skewed early on 

iNaturalist for redbud and milkweed. Our results confirm that observation biases in incidental data 

can influence the accuracy of phenological estimators and that it is critical to understand the A
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underlying observation process as much as possible and use the best metric given that skew. When 

sampling is skewed early, then detecting onset is more tractable, but offset is likely to be inaccurate.

The ultimate utility of phenesse is in broad-scale assessment of phenology pattern and process. 

Researchers are not typically interested in phenometic estimates in just one limited area, but rather 

understanding phenology across species, space, and time. When using incidental or opportunistic 

records, this often involves spatial stratification using a gridding approach, and making estimates 

across those many grid cells. In most cases, the shape of seasonal abundance curves is not known a 

priori and unsurprisingly, estimators often do not perform well in cases where the underlying 

abundance curve is a skewed bimodal distribution. Even in such cases, useful estimates of phenology 

can still be generated with certain phenometrics and estimators. While more observations help reduce 

bias and error, even as few as 10 records generate relatively small error and bias in some cases. Our 

monarch arrival example suggests that phenesse may be especially useful when data is limited as its 

accuracy is least sensitive to sample size.

Estimators such as phenesse may best be used in conjunction with other approaches that 

reduce bias in estimates. In principle, if a species-region combination is known to not have a 

unimodal phenology, such priors could be used in a Bayesian framework to inform models and 

improve estimates (Chevillot et al., 2017). Due to the autocorrelation expected in phenology across 

grid cells, spatial autoregression models could also be developed to model autocorrelated data based 

on neighborhood relationships (Ver Hoef et al., 2018). Weight matrices used to develop the models 

could also include ecological and sampling covariates that are used to improve estimates in sparsely 

sampled areas and produce spatially smoothed results. Phenesse itself can directly inform such spatial 

or temporal weighting approaches. A critical part of our development of scientifically rigorous 

phenology methods is code to calculate confidence intervals for all the estimators used in this study. 

Calculated confidence intervals could be included as a covariate in further statistical analyses to 

weight additional regressions where estimates have smaller confidence intervals.

A disadvantage of the approach we developed is the computational speed of phenesse. Our 

solution to calculate a Weibull-parameterized estimate was a numerical, iterative approach. Therefore, 

the Weibull-parameterized estimates produced by phenesse are computationally more expensive than 

functions that have analytical solutions. This is especially true for confidence intervals given that they A
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are calculated using non-parametric bootstrapping. We recommend using parallel computing 

techniques when using the weib_percentile_ci function in the package phenesse. 

5 Conclusions

We demonstrate the potential of producing more accurate phenological estimates from presence-only 

reporting and provide the first simulation results that can guide the best use of those estimators based 

on study-specific circumstances. Furthermore, our empirical examples using flowering phenology and 

arrival of a migratory butterfly demonstrate the utility of presence-only estimators using real-world 

data. Our Weibull-parameterized estimator improves accuracy of onset estimates and offers a wider 

array of phenometrics than previously available when using a Weibull distribution. Of equal 

importance, phenesse allows calculation of confidence intervals to provide a basis for understanding 

the relative precision and strength of estimated phenometrics.

Our results show that phenesse helps improve prediction of onset in cases where researchers 

are restricted to presence-only data. However, this improvement is context-dependent, as there is 

often a significant amount of bias and error depending on the shape of the underlying seasonal 

abundance curve and potential skew in observations. Additionally, RMSE and bias calculations are 

expected to perform well when observations are sampled from normal distributions. Our simulation 

study may oversimplify real-world phenology curves, inflating estimator performance. However, the 

results of our empirical examples were consistent with the results of our simulations, mitigating these 

concerns.

When the underlying seasonal abundance curve is known, these results can guide selection of 

the most appropriate estimators and phenometrics. Researchers should consider both the underlying 

curve and potential skew in observations to determine the most robust metric for analysis. In studies 

looking to document changes in phenology of a species over time when little or nothing is known 

about that underlying curve, mean estimates may provide the most robust results. Box-cox (Sakia, 

1992) and other transformations offer additional methods that could address skew in variables. Some 

research topics such as studies examining phenological mismatch or changes in the total duration of a 

phenophase may necessitate the estimation of onset or offset values. Developing methods to generate 
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robust estimates towards the tails of the seasonal abundance curve will be important to fully 

leveraging presence-only data in phenological research.

Phenological estimates using incidental data will always be hindered by the unknown variance 

and biases in the observation process. Repeated, structured surveys can provide more accurate 

estimates by gathering information on absences, relative abundance, or survey effort and using 

informed knowledge to better sample across known seasonal abundance. Unfortunately, these 

standardized surveys are limited to select taxonomic groups over limited spatial extents and time 

scales. While our study quantifies the accuracy and bias of different estimators and phenometrics, 

continued research is needed to further develop statistical methodologies to leverage the strengths of 

different data sources into more unitary frameworks for estimating phenologies.
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Data Availability

Code and data to fully reproduce the simulation and empirical analyses, results, and figures can be 

found on GitHub (https://github.com/mbelitz/belitz_etal_phenometrics) and is archived on Zenodo 

(https://doi.org/10.5281/zenodo.3565992). The raw iNaturalist observations used in this paper can be 

found in the following GBIF downloads (https://doi.org/10.15468/dl.fmeqni; 
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https://doi.org/10.15468/dl.2qjve9; https://doi.org/10.15468/dl.pbn3gq). Updated versions of the R 

package phenesse will be released on CRAN (https://cran.r-project.org/web/package=phenesse). 

References

Barve, V.V., Brenskelle, L., Li, D., Stucky, B.J., Barve, N.V., Hantak, M.M., McLean, B.S., Paluh, 

D.J., Oswald, J.A., Belitz, M.W., Folk, R.A., Guralnick, R.P., 2020. Methods for broad-scale 

plant phenology assessments using citizen scientists’ photographs. Appl. Plant Sci. 8, e11315. 

https://doi.org/10.1002/aps3.11315

Beard, K.H., Kelsey, K.C., Leffler, A.J., Welker, J.M., 2019. The Missing Angle: Ecosystem 

Consequences of Phenological Mismatch. Trends Ecol. Evol. 34, 885-888. 

https://doi.org/10.1016/j.tree.2019.07.019

Belitz, M., 2019. phenesse: Estimate Phenological Metrics using Presence-Only Data.

Bertin, R.I., 2015. Climate Change and Flowering Phenology in Worcester County, Massachusetts. 

Int. J. Plant Sci. 176, 107–119. https://doi.org/10.1086/679619

Both, C., Bouwhuis, S., Lessells, C.M., Visser, M.E., 2006. Climate change and population declines 

in a long-distance migratory bird. Nature 441, 81–83. https://doi.org/10.1038/nature04539

Brenskelle, L., Stucky, B.J., Deck, J., Walls, R., Guralnick, R.P., 2019. Integrating herbarium 

specimen observations into global phenology data systems. Appl. Plant Sci. 7, e01231. 

https://doi.org/10.1002/aps3.1231

Brooks, S.J., Self, A., Powney, G.D., Pearse, W.D., Penn, M., Paterson, G.L.J., 2017. The influence 

of life history traits on the phenological response of British butterflies to climate variability 

since the late-19th century. Ecography 40, 1152–1165. https://doi.org/10.1111/ecog.02658

Chambert, T., Kendall, W.L., Hines, J.E., Nichols, J.D., Pedrini, P., Waddle, J.H., Tavecchia, G., 

Walls, S.C., Tenan, S., 2015. Testing hypotheses on distribution shifts and changes in 

phenology of imperfectly detectable species. Methods Ecol. Evol. 6, 638–647. 

https://doi.org/10.1111/2041-210X.12362

Chevillot, X., Drouineau, H., Lambert, P., Carassou, L., Sautour, B., Lobry, J., 2017. Toward a 

phenological mismatch in estuarine pelagic food web? PLOS ONE 12, e0173752. 

https://doi.org/10.1371/journal.pone.0173752A
cc

ep
te

d 
A

rt
ic

le

https://doi.org/10.15468/dl.2qjve9
https://doi.org/10.15468/dl.pbn3gq
https://cran.r-project.org/web/packages/phenesse/index.html
https://doi.org/10.1002/aps3.11315
https://doi.org/10.1111/2041-210X.12362


This article is protected by copyright. All rights reserved

Chuine, I., Régnière, J., 2017. Process-Based Models of Phenology for Plants and Animals. Annu. 

Rev. Ecol. Evol. Syst. 48, 159–182. https://doi.org/10.1146/annurev-ecolsys-110316-022706

Cobb, N.S., Gall, L.F., Zaspel, J.M., Dowdy, N.J., McCabe, L.M., Kawahara, A.Y., 2019. Assessment 

of North American arthropod collections: prospects and challenges for addressing biodiversity 

research. PeerJ 7, e8086. https://doi.org/10.7717/peerj.8086

Cooke, P., 1980. Optimal linear estimation of bounds of random variables. Biometrika 67, 257–258. 

https://doi.org/10.1093/biomet/67.1.257

Cooke, P., 1979. Statistical Inference for Bounds of Random Variables. Biometrika 66, 367–374. 

https://doi.org/10.2307/2335672

Delignette-Muller, M.-L., Dutang, C., Pouillot, R., Denis, J.-B., Siberchicot, A., 2019. fitdistrplus: 

Help to Fit of a Parametric Distribution to Non-Censored or Censored Data.

GBIF., 2019. GBIF occurrence download. https://doi.org/10.15468/dl.fmeqni 

GBIF., 2020. GBIF occurrence download. https://doi.org/10.15468/dl.pbn3gq 

GBIF., 2020. GBIF occurrence download. https://doi.org/10.15468/dl.2qjve9 

Howard, E., Davis, A.K., 2009. The fall migration flyways of monarch butterflies in eastern North 

America revealed by citizen scientists. Journal of Insect Conservation 13(3): 279-286. 

https://doi.org/10.1007/s10841-008-9169-y

Jones, C.A., Daehler, C.C., 2018. Herbarium specimens can reveal impacts of climate change on plant 

phenology: a review of methods and applications. PeerJ 6, e4576. 

https://doi.org/10.7717/peerj.4576

Jonzen, N., 2006. Rapid Advance of Spring Arrival Dates in Long-Distance Migratory Birds. Science 

312, 1959–1961. https://doi.org/10.1126/science.1126119

Kelling, S., Johnston, A., Bonn, A., Fink, D., Ruiz-Gutierrez, V., Bonney, R., Fernandez, M., 

Hochachka, W.M., Julliard, R., Kraemer, R., Guralnick, R., 2019. Using Semistructured 

Surveys to Improve Citizen Science Data for Monitoring Biodiversity. BioScience 69, 170–

179. https://doi.org/10.1093/biosci/biz010

Keyzer, C.W. de, Rafferty, N.E., Inouye, D.W., Thomson, J.D., 2017. Confounding effects of spatial 

variation on shifts in phenology. Glob. Change Biol. 23, 1783–1791. 

https://doi.org/10.1111/gcb.13472A
cc

ep
te

d 
A

rt
ic

le

https://doi.org/10.15468/dl.fmeqni
https://doi.org/10.15468/dl.pbn3gq
https://doi.org/10.15468/dl.2qjve9


This article is protected by copyright. All rights reserved

Mayor, S.J., Guralnick, R.P., Tingley, M.W., Otegui, J., Withey, J.C., Elmendorf, S.C., Andrew, 

M.E., Leyk, S., Pearse, I.S., Schneider, D.C., 2017. Increasing phenological asynchrony 

between spring green-up and arrival of migratory birds. Sci. Rep. 7, 1–10. 

https://doi.org/10.1038/s41598-017-02045-z

mbelitz, 2020, mbelitz/belitz_etal_phenometrics: Code for manuscript resubmission (Version 1.2.0). 

Zenodo. http://doi.org/10.5281/zenodo.3837967  

Mersmann, O., Trautmann, H., Steuer, D., Bornkamp, B., 2018. truncnorm: Truncated Normal 

Distribution.

Meschiari, S., 2015. latex2exp: Use LaTeX Expressions in Plots.

Miller‐Rushing, A.J., Inouye, D.W., Primack, R.B., 2008. How well do first flowering dates measure 

plant responses to climate change? The effects of population size and sampling frequency. J. 

Ecol. 96, 1289–1296. https://doi.org/10.1111/j.1365-2745.2008.01436.x

Moussus, J.-P., Julliard, R., Jiguet, F., 2010. Featuring 10 phenological estimators using simulated 

data. Methods Ecol. Evol. https://doi.org/10.1111/j.2041-210X.2010.00020.x

Nelson, G., Ellis, S., 2018. The history and impact of digitization and digital data mobilization on 

biodiversity research. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 374. 

https://doi.org/10.1098/rstb.2017.0391

Parmesan, C., 2007. Influences of species, latitudes and methodologies on estimates of phenological 

response to global warming. Glob. Change Biol. 13, 1860–1872. 

https://doi.org/10.1111/j.1365-2486.2007.01404.x

Pearse, W.D., Davis, C.C., Inouye, D.W., Primack, R.B., Davies, T.J., 2017. A statistical estimator for 

determining the limits of contemporary and historic phenology. Nat. Ecol. Evol. 1, 1876–

1882. https://doi.org/10.1038/s41559-017-0350-0

R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing.

Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey, M., 2013. 

Climate change, phenology, and phenological control of vegetation feedbacks to the climate 

system. Agric. For. Meteorol. 169, 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012

A
cc

ep
te

d 
A

rt
ic

le

https://doi.org/10.1111/j.1365-2486.2007.01404.x


This article is protected by copyright. All rights reserved

Sakia, R.M., 1992. The Box-Cox transformation technique: a review. Journal of the Royal Statistical 

Society: Series D (The Statistician), 41(2), 169-178.

Schmucki, R., Pe’er, G., Roy, D.B., Stefanescu, C., Swaay, C.A.M.V., Oliver, T.H., Kuussaari, M., 

Strien, A.J.V., Ries, L., Settele, J., Musche, M., Carnicer, J., Schweiger, O., Brereton, T.M., 

Harpke, A., Heliölä, J., Kühn, E., Julliard, R., 2016. A regionally informed abundance index 

for supporting integrative analyses across butterfly monitoring schemes. J. Appl. Ecol. 53, 

501–510. https://doi.org/10.1111/1365-2664.12561

Socolar, J.B., Epanchin, P.N., Beissinger, S.R., Tingley, M.W., 2017. Phenological shifts conserve 

thermal niches in North American birds and reshape expectations for climate-driven range 

shifts. Proc. Natl. Acad. Sci. 114, 12976–12981. https://doi.org/10.1073/pnas.1705897114

Taylor, S.D., Guralnick, R.P., 2019. Opportunistically collected photographs can be used to estimate 

large-scale phenological trends. BioRxiv. 794396 https://doi.org/10.1101/794396

Thiers, B., 2019. Index Herbariorum: A global directory of public herbaria and associated staff.

Ver Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M., and Fortin, M.J., 2018. Spatial 

autoregressive models for statistical inference from ecological data. Ecological Monographs, 

88(1), 36-59 https://doi.org/10.1002/ecm.1283

Ward, D.H., Helmericks, J., Hupp, J.W., McManus, L., Budde, M., Douglas, D.C., Tape, K.D., 2016. 

Multi-decadal trends in spring arrival of avian migrants to the central Arctic coast of Alaska: 

effects of environmental and ecological factors. J. Avian Biol. 47, 197–207. 

https://doi.org/10.1111/jav.00774

 Wickham et al., 2019. Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, 

https://doi.org/10.21105/joss.01686

Wilke, C.O., 2018. cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.”

Wood, S.N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of 

semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-

36 https://doi.org/10.1111/j.1467-9868.2010.00749.x

A
cc

ep
te

d 
A

rt
ic

le

https://doi.org/10.1002/ecm.1283
https://doi.org/10.1111/jav.00774
https://doi.org/10.1111/j.1467-9868.2010.00749.x


This article is protected by copyright. All rights reserved

Tables

Table 1. Parameters used in the simulation experiments.

Parameter Range of Values Description

Standard 

Distribution

10, 20, 40 The standard distribution of the seasonal abundance 

curve. Increasing the standard distribution had the 

biological effect of increasing the length of the 

phenology period.

Observations 10, 20, 50 The number of observations used to generate our 

phenology estimate.
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Modality Symmetrical Unimodal or 

Skewed Bimodal

The shape of the seasonal abundance curve.

Sample 

Skewness

Random or Positive 

Skewed

Random sampling assumed the probability of 

observing an individual to be the same across the 

entire phenophase. Positive skewed weighted 

probability of sampling an individual earlier in the 

season.

 

Figure Captions

Figure 1 Workflow for developing the Weibull-parameterized point estimator. First, the CDF of the 

Weibull distribution is plotted, after being parameterized by the original observation points (Step 1). 

Next, the observation date relating to the original percentile of interest ( ; 90th in this example) 𝜃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

is determined by calculating the observation date that is perpendicular to the percentile of interest 

(Step 2). To calculate bias, n number of uniform random numbers from a uniform distribution 

between 0 and 1 are generated, where n is the number of original observation dates. New observation 

dates are perpendicular to the horizontal lines determined by the n uniform numbers (Step 3). These 

new observation dates are used to calculate a new CDF and estimate the percentile of interest (Step 4). 

Step 3 and 4 is iterated  times to generate a bias value which is subtracted from the  to 𝑖 𝜃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

calculate the Weibull corrected estimate ( ). In the figure above, black dots represent the original 𝜃

observation points, and the black dashed lines show the . Blue dots and dashed lines represent 𝜃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

new observation dates generated by uniform resampling. 
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