
LAGraph: A Community Effort to Collect Graph
Algorithms Built on Top of the GraphBLAS

Tim Mattson‡, Timothy A. Davis⇧, Manoj Kumar¶, Aydın Buluç†, Scott McMillan§, José Moreira¶, Carl Yang⇤,†

‡Intel Corporation †Computational Research Division, Lawrence Berkeley National Laboratory
⇧Texas A&M University ¶IBM Corporation §Software Engineering Institute, Carnegie Mellon University

⇤Electrical and Computer Engineering Department, University of California, Davis

Abstract—In 2013, we released a position paper to launch a

community effort to define a common set of building blocks for

constructing graph algorithms in the language of linear algebra.

This led to the GraphBLAS. We released a specification for the C

programming language binding to the GraphBLAS in 2017. Since

that release, multiple libraries that conform to the GraphBLAS

C specification have been produced.

In this position paper, we launch the next phase of this

ongoing community effort: a project to assemble a set of high

level graph algorithms built on top of the GraphBLAS. While

many of these algorithms are well-known with high quality

implementations available, they have not been assembled in one

place and integrated with the GraphBLAS. We call this project

the LAGraph graph algorithms project and with this position paper,

we put out a call for collaborators to join us. While the initial

goal is to just assemble these algorithms into a single framework,

the long term goal is a library of production-worthy code, with

the LAGraph library serving as an open source repository of

verified graph algorithms that use the GraphBLAS.

Index Terms—Graph Algorithms, Linear Algebra, Graph-

BLAS

I. INTRODUCTION

Graphs are an essential abstraction for a wide range of
problems. There are many ways to represent graphs in graph
analytics. One class of methods defines graphs in terms of
adjacency matrices. Expressing graph algorithms as linear
algebra expressions [1] is a mature subject. Multiple high
performance graph libraries based on sparse linear algebra [2],
[3], [4], [5], [6] have been developed. With this “Graphs
as Linear Algebra” approach established, a community of
researchers came together to define common building blocks
for graphs expressed in the language of linear algebra. They
launched this effort with a position paper [7] in 2013 and
formed the GraphBLAS Forum [8]. After three years of steady
work, the GraphBLAS forum completed the mathematical
formalization of the GraphBLAS [9]. With another one and
a half years of work, the group completed the C language
binding to the GraphBLAS [10].

Currently there are multiple implementations of the Graph-
BLAS C specification. We have learned a great deal about how
to define the operations within the GraphBLAS and how to
implement them efficiently. We are now ready to launch the
next phase of the project: to produce a library of high-level
graph algorithms implemented on top of the GraphBLAS. We

call this library of algorithms LAGraph. Just as we launched
the GraphBLAS project with a position paper, we are launching
this next phase of the project with a position paper.

The goals of the LAGraph effort include, first and foremost,
bringing together the full range of known graph algorithms that
can be constructed with the GraphBLAS. From this collection
we will be able to systematically assess the coverage of graph
algorithms based on linear algebra. This will also serve as raw
material in ongoing studies of the fundamental design patterns
exploited by linear algebra-based graph algorithms.

The basic outline of the LAGraph project is summarized in
Figure 1. The library of algorithms is the single box towards the
middle of the figure. These algorithms use the GraphBLAS C
API which exists as a separate implementation for a wide range
of hardware targets at the bottom of the figure. To motivate
our work and stay aligned with the way data scientists use
graph algorithms, we need to appreciate that people will use
a wide range of languages to access the graph algorithms. A
good library must be able to work whether called directly from
C or indirectly through a wrapper in Python. Furthermore, the
developers of the graph algorithm libraries will need a test
harness to validate the algorithms, I/O utilities, and a build
system. All of these components must be addressed as part of
the LAGraph project.
LAGraph may not be a production-worthy library in its

first incarnation. However, we expect the LAGraph effort to
produce such a library over time. Anticipating that goal, we are
constructing the library “as if” it will be used by data analytics
end-users; that is, by people who need the results from graph
algorithms with little concern for how they are implemented.
This requirement of building a library for end-users as opposed
to a library for graph algorithm researchers has far reaching
implications for the design of this software.

We start the paper with a brief summary of the objects and
operations defined in the C specification of the GraphBLAS. We
then summarize some of the early libraries that implement the
GraphBLAS C specification. Next, we describe the repository
where we will build LAGraph. This is important since the
purpose of a position paper is to attract a community of
researchers to join the effort, which in turn means we want
people to understand how to work with and perhaps contribute
algorithms to the repository. We then discuss the challenges

Fig. 1: LAGraph Project Overview. The project consists of
a library of graph algorithms and assorted components to
support algorithm development and validation (a test harness
and I/O utilities). It must interface to a wide range of
languages. Underneath these components is a build system,
implementations of the GraphBLAS, and a variety of hardware
targets.

we faced in writing the early version of LAGraph and what it
suggests about future developments needed in the GraphBLAS
themselves. We close with concluding remarks.

II. THE GRAPHBLAS

Consider a graph represented as an n-by-n adjacency matrix
A, where Aij is the weight of the edge from vertex i to vertex
j, and a second k-by-n matrix B representing a subset (of
size k) of the vertices in the graph, such that Bji is 1 if the
jth element of the subset is vertex i (and all other elements
of B are 0). The traditional matrix product B⇥A over real
arithmetic of these two matrices returns the cost based on
the edge weights of reaching the set of vertices adjacent to
the vertices in B. This fundamental operation can be used to
construct a wide range of graph algorithms.
We extend the range of graph operations by keeping the

basic pattern of a matrix-matrix multiplication, but varying the
operators and the interpretation of the values in the matrices (the
domain). By carefully choosing operators and the domain, we
control the relation between matrix operations familiar in linear
algebra and graph operations, thereby enabling composable
graph algorithms.
In addition to matrix multiplication, the GraphBLAS math

specification defines a range of additional operations over
matrices and vectors. These are summarized in Table I.
In mapping the GraphBLAS as a set of mathematical

operators onto the C programming language we made a number
of fundamental choices [10]. First, the core data structures
required to represent the objects defined by the GraphBLAS
are opaque. The GraphBLAS API defines a contract with
the programmer for how these objects will be used, but the
implementations and underlying data structures are left to the
implementation. This opaqueness is critical if the API is to serve

TABLE I: A mathematical overview of the fundamental
GraphBLAS operations supported in the specification. A, B,
and C are GraphBLAS matrices; u, v, and w are GraphBLAS
vectors; i and j are single indices; i and j are arrays of indices;
� and ⌦ are arbitrary element-wise operators; the element-
wise � operator is used for the optional accumulation with the
output GraphBLAS object where x �= y implies x = x� y;
and Fu() is a unary function. Although not shown here, the
input matrices A and B may be selected for transposition
prior to the operation, and masks can be used to control which
values are written to the output GraphBLAS object.

Operation name Mathematical description
mxm C �= A� .⌦B
mxv w �= A� .⌦ v
vxm wT �= vT � .⌦A
eWiseMult C �= A⌦B

w �= u⌦ v
eWiseAdd C �= A�B

w �= u� v
reduce (row) w �=

L
j A(:, j)

apply C �= Fu(A)
w �= Fu(u)

transpose C �= AT

extract C �= A(i, j)
w �= u(i)

assign C(i, j) �= A
w(i) �= u

diverse hardware ranging from CPUs to GPUs to specialized
graph hardware. Second, we defined a non-blocking execution
model that allows lazy evaluation. Ultimately, to optimize
sparse linear algebra software we need to aggressively fuse
operations and even restructure algorithms. This requirement
meant that we had to carefully define when results from a
sequence of GraphBLAS operations must be materialized.
Since the release of the GraphBLAS specification, several

implementations of the GraphBLAS have been developed.
These are briefly described below.

A. SuiteSparse:GraphBLAS
SuiteSparse:GraphBLAS is the first full implementation of

the GraphBLAS standard, first released in November of 2017.
It is available at http://suitesparse.com [11].

The design of a GraphBLAS library is flexible, because its
data structures are opaque to the user. SuiteSparse:GraphBLAS
uses a compressed-sparse vector data structure, in four different
forms. A matrix can be stored in row-major order (CSR), or
column-major order (CSC). Each sparse vector consists of a
sorted list of indices, and the corresponding numerical values.
The sparse vectors are packed together into two arrays, and
another “pointer array” (of size equal to the dimension of the
matrix, say n) keeps track of where each row (or column)
starts. The memory taken is O(n+ e) for a CSR matrix with
n rows or a CSC matrix with n columns, and with e entries.
Most graphs have e = O(n) entries, but some graphs (and in
particular, subgraphs) can be hypersparse [12], with e ⌧ n. In
the hypersparse form, the pointer array itself becomes sparse,
and empty vectors take no space at all. The space is reduced
to O(e), so that matrices with enormous dimensions can be

http://suitesparse.com

created, as long as e ⌧ n. SuiteSparse:GraphBLAS exploits
hypersparsity automatically, and all methods can operate on
all four matrix formats in any combination.
The ability to incrementally modify a graph is critical in

many applications. GraphBLAS includes two operations that
can make small incremental changes to a graph/matrix: namely
GrB_setElement and GrB_assign. It would be exceedingly
slow to insert or delete a single entry in a CSR or CSC format,
taking O(n+ e) time per entry inserted or deleted. Instead,
the non-blocking aspect of GraphBLAS is exploited. Fast
deletion of entries is handled by creating zombies, which are
entries tagged for later deletion. Fast insertion is handled with
pending tuples, which is a separate unordered list of (i, j, aij)
for each new entry. When a matrix operation occurs (such
as matrix multiply), all zombies are killed and all pending
tuples are assembled, in a single O(n + e + p log p) step
(for p pending tuples), or O(e + p log p) in the hypersparse
case. As a result, it is just as fast to use a sequence of e

GrB_Matrix_setElement operations to build a matrix, as it
is to create an array of e tuples and use GrB_Matrix_build.
Internally, SuiteSparse:GraphBLAS is building the list itself,
for the user, and then does a GrB_Matrix_build when the
matrix is completed.

To enable high-performance matrix-matrix multiply, a code
generation mechanism is used to build functions for each
semiring that can be created with built-in operators. The
functions can rely on Gustavson’s method [13], a dot product
method, and a heap-based method [14], all with masked
variants. With this code generation mechanism, 6 functions
containing 2 versions of Gustavson’s method (no mask /
with mask), three versions of the dot product (no mask /
with mask / with complemented mask) and one version of
the heap method, automatically expand into the 960 unique
semirings supported by the built-in operators in GraphBLAS
SuiteSparse:GraphBLAS adds a few extensions to the set of
operators; Using the built-in types and operators from the
GraphBLAS C API, 600 unique semirings can be constructed.
All of them are as fast, or much faster, than C=A*B in MATLAB.
Submatrix assignment (C(I,J)=A) can be 100⇥ faster than in
MATLAB, even when non-blocking mode is not exploited.
A current prototype of the package adds an early exit

mechanism for the MIN, MAX, OR, and AND monoids, where
a dot product can terminate as soon as a terminal value is found
in the result (true for OR, for example). This will enable a fast
direction-optimizing BFS [15] to be written in GraphBLAS.
The “pull” is a dot product, and the “push” a saxpy-based
operation (Gustavson’s or the heap method).
Since its creation was commissioned as the GraphBLAS

reference implementation, testing is a vital component to the
package. In SuiteSparse:GraphBLAS, each GraphBLAS opera-
tion was written twice: once in high-performance algorithms
in C, and again in a very simple and short MATLAB script,
using dense matrices with the required type. The pattern in
the MATLAB version is held as a separate Boolean matrix.
For example, GrB_assign requires about 3,908 lines of C
(not counting comments), but only 161 lines in MATLAB. Of

those 161 lines, 33 are for error-checking that do not need
to be considered when determining conformance to the spec.
The MATLAB functions are not intended to be fast. Instead,
they exactly mimic the GraphBLAS API Specification, line
by line, so they can be visually inspected for conformance
to the spec. For example, matrix multiply is written with a
brute-force triply-nested for loop. Then, to test the package,
each computation is done both in SuiteSparse:GraphBLAS
(via a MATLAB interface) and in the MATLAB mimic. The
tests pass only if the results are identical in both value and
pattern (even with identical floating-point roundoff error, in
most cases).
The package is extremely robust and production-ready. It

is fully compliant with the GraphBLAS C API. Excluding
SuiteSparse-specific extensions and beta releases, there have
been only 3 bugs in the entire package since its first release,
two of which would be triggered in only rare cases. All three
bugs are fixed, and the current version has no known bugs in
any part of the code.
The current release is single-threaded, but an OpenMP

implementation is in progress. SuiteSparse:GraphBLAS appears
in Debian and Ubuntu Linux distros, and has been released as
part of the RedisGraph database module of the Redis database
systems, by RedisLabs, Inc. [16].

B. IBM GraphBLAS

The IBM GraphBLAS implementation was
announced at IPDPS 2018 and made available at
https://github.com/IBM/ibmgraphblas, fulfilling
the GraphBLAS C API requirement of two conforming
implementations, and promoting that specification from
provisional to definitive. The approach adopted by the
development team was heavily influenced by their experience
with IBM’s Graph Programming Interface [4], [17].

Among the various objectives of the IBM implementation,
we note the desire to experiment with an implementation that
allows multiple data representations and a layered approach
to algorithms, keeping a GraphBLAS API layer on top of
a more fundamental back-end layer that performs the heavy
computation.

Use and operation of the IBM GraphBLAS is straightforward.
The application programmer has access to a C11-compliant
include file (GraphBLAS.h) that defines the API according
to the specification. This include file exposes nothing of the
internals of the run-time. The run-time itself is written in C++
and packaged as a library (libibmgraphblas.so) with C
language bindings. The choice of C++ as the implementation
language has led to a simple and concise specification-
compliant implementation.

One of the jobs of the GraphBLAS.h include file is to convert
the polymorphic version of the API into the nonpolymorphic
one. The nonpolymorphic methods are then directly supported
by the library. Conversion of the polymorphic interface is
accomplished through standard C preprocessor features, pri-
marily in supporting number of arguments polymorphism,

in combination with the standard C11 language Generic
construct to support type polymorphism.
As previously mentioned, the IBM GraphBLAS library is

implemented in C++. The API methods are declared to have
a C interface, so that C user programs can bind to them as
specified. Objects internal to the library are declared as C++
classes, with member methods doing the actual work. We want
to emphasize that this is a C++ implementation of a C API,
and not an API for GraphBLAS that exploits C++ features, as
other efforts are pursuing [18].
The contents of a GraphBLAS vector object are imple-

mented using standard C++ containers. An unordered set
of indices (uset<GrB Index>) is used to represent the
structure of the vector, while an unordered map of indices
to pointers (umap<GrB Index,void*>) represents the ele-
ments. (Currently, uset and umap are just renames for the
std::unordered set and std::unordered map standard
containers of C++, but one could use more specialized
implementations.)
Similarly, the contents of a matrix are represented both

as a standard C++ container vector of rows and a standard
C++ container vector of columns. Accessor methods enforce
consistency of both representations.
In the current IBM GraphBLAS, all methods are fully

blocking. That is, the methods return only after all computations
are fully performed (or an error is detected). Since the
GraphBLAS nonblocking mode allows for deferred execution
but does not require it, this behavior complies with the
specification.

We finish this brief overview of the IBM GraphBLAS with
a discussion of error handling, as we believe it reflects an
important aspect of the interoperability between a C API and a
C++ implementation. The GraphBLAS C API defines two kinds
of errors: API errors and execution errors. API errors reflect
incorrect usage of the API (for example, passing parameters
that are not valid or consistent). Execution errors indicate
that something went wrong during the actual execution of a
method, and can be caused either by programmer error or by
environment issues (for example, not enough memory).
In the IBM GraphBLAS run-time, API errors are detected

through explicit checks in the implementation of each method
in the API layer (the front-end). Execution errors, on the
other hand, occur inside the member methods of the various
objects internal to the library (the back-end). Those methods,
following standard C++ practice, use exceptions to signal an
error. To transform those exceptions into proper GraphBLAS C
API return codes, the body of each GraphBLAS API method
is wrapped by a try/catch block, which then returns the
GraphBLAS execution error code corresponding to the caught
exception.

C. GBTL: GraphBLAS Template Library
The first version of the GraphBLAS Template Library

(GBTL) was written in C++ when the GraphBLAS C API
project was just beginning. It was used, in part, to study early
ideas under discussion in the specification process and was

released as a proof of concept prior to the finalization of the
GraphBLAS API Specification [19], [20]. With the release of
the GraphBLAS C API Specification [10] in 2017, GBTL was
updated to conform to the mathematical behavior defined by the
specification and released as version 2.0 [18]. Unlike the C API
Specification, GBTL is written in C++ and makes judicious use
of templates to make the generic aspects of the GraphBLAS
specification easier to implement and more natural for the
C++ programming language. When the GraphBLAS language
committee starts its work on the C++ language binding to the
GraphBLAS, GBTL will be submitted as a proposed starting
point for the discussion.
Central to GBTL’s design is the concept of a separation

of concerns between implementation of algorithms written in
terms of the GraphBLAS primitives and the implementation
of those primitives on a targeted hardware platform. This
separation of concerns is defined by the GraphBLAS API
Specification as illustrated in Figure 1. Above this API, GBTL
has developed and includes a collection of graph algorithms
written against its C++ API and has already been shown to be
easily translated to the C API (compare Figures 2(c) and 2(d)).
Below the separation/API, different implementations of the
GraphBLAS library can be supported for different hardware
architectures (referred to as “backends”). In this way we
verify that algorithms written once against the API can run on
different targeted hardware. One backend that is provided with
Version 2.0 of GBTL implements a mathematically correct
version of the C API specification and serves as a reference
implementation for verifying correctness. It runs in a single
thread on a CPU (an earlier version of GBTL also had a GPU
implementation). Other backend implementations are currently
under development to optimize performance, use multiple
threads, and to target specialized computer architectures.

D. PyGB: python DSL for GraphBLAS

Another development effort closely related to GBTL is a
DSL (domain-specific language) in Python called PyGB [21].
The goal for PyGB is to closely resemble the GraphBLAS
mathematical notation found in the GraphBLAS math spec [9].
PyGB is a framework designed and implemented to dispatch
dynamically generated and compiled templated classes that
make calls into native GBTL code. It demonstrates how
Python’s syntax and dynamic execution provides a high-level
abstraction with minimal performance penalty. While we leave
a detailed discussion of PyGB to elsewhere [21] we provide a
level-BFS function using PyGB in Figure 2.

Notice how the meaning of the code is straightforward since
the DSL closely tracks the notation from the GraphBLAS math
spec. We believe in the long run, the future of graph algorithms
will depend heavily on such DSLs.

E. GraphBLAST GraphBLAS

GraphBLAST [22] is the first high-performance GPU (graph-
ics processing unit) implementation of GraphBLAS. Inspired by
the design of GBTL, the architecture of GraphBLAST is C++

1 Input: graph, frontier, levels
2 depth 0
3 while nvals(frontier) > 0:
4 depth depth + 1
5 levels[frontier] depth
6 frontier<¬levels,replace> graphT �.⌦ frontier
7 where �.⌦ =

L
.
N

(LogicalSemiring)

(a) Pseudocode

1 def bfs(graph, frontier, levels):
2 depth = 0
3 while frontier.nvals > 0:
4 depth += 1
5 levels[frontier][:] = depth
6 with gb.LogicalSemiring, gb.Replace:
7 frontier[˜levels] = graph.T @ frontier

(b) PyGB

1 template<class Mat, class Frontier, class Levels>
2 void bfs(Mat &graph, Frontier frontier, Levels &levels)
3 {
4 GrB::IndexType depth = 0;
5 while (frontier.nvals() > 0) {
6 ++depth;
7 GrB::assign(levels, frontier, GrB::NoAccumulate(),
8 depth, GrB::AllIndices(), false);
9 GrB::mxv(frontier, GrB::complement(levels),

10 GrB::NoAccumulate(),
11 GrB::LogicalSemiring<GrB::IndexType>(),
12 GrB::transpose(graph), frontier, true);
13 }
14 }

(c) GBTL C++
1 void bfs(GrB_Matrix graph,
2 GrB_Vector frontier,
3 GrB_Vector *levels)
4 {
5 GrB_Index n, nvals;
6 GrB_Matrix_nrows(&n, graph);
7 GrB_Vector_nvals(&nvals, frontier);
8 GrB_Semiring LogicalSemiring;
9 GrB_Descriptor Desc_TranA_ScmpM_Replace;

10 //...
11 GrB_Index depth = 0;
12 while (nvals > 0) {
13 ++depth;
14 GrB_assign(*levels, frontier, GrB_NULL,
15 depth, GrB_ALL, n, GrB_NULL);
16 GrB_mxv(frontier, *levels, GrB_NULL,
17 LogicalSemiring, graph, frontier
18 Desc_TranA_ScmpM_Replace);
19 GrB_Vector_nvals(&nvals, frontier);
20 }
21 }

(d) GraphBLAS C API

Fig. 2: Level-based BFS traversal in math pseudocode, PyGB,
GBTL C++, and using the GraphBLAS C API.

based and maintains a separation of concerns between a top-
level interface defined by the GraphBLAS C API specification
and a low-level backend.
One novel aspect of GraphBLAST is its supports

for performance-oriented optimizations such as direction-
optimization (also known as push-pull traversal), which was
discovered by Beamer, Asanovic and Patterson [15] and general-
ized by Shun and Blelloch [23] to other graph algorithms. Yang,
Buluç and Owens [24] show that this optimization is key for a
GraphBLAS implementation to meet the performance of state-
of-the-art graph frameworks on the GPU such as Gunrock [25].
In each iteration of an GrB_mxv, the GraphBLAST backend
checks whether the vector sparsity has crossed a threshold k. If
it has gone above the threshold, then the traversal will switch
from push to pull. If it has gone below the threshold, then the
traversal will switch from pull to push. If neither outcome has
occurred, then it will use the traversal it used in the previous
iteration.

To support direction-optimization, the GraphBLAST backend
maintains a SparseVector and DenseVector object as shown in
Figure 3. The push traversal is performed using Gustavson’s
method as a sparse-matrix sparse-vector multiply (SpMSpV)
between the SparseVector and the adjacency matrix transpose
in CSC format. The pull traversal is performed in a dot-product
manner as a sparse-matrix dense-vector multiply (SpMV)
between the DenseVector and the adjacency matrix in CSR
format. This raises the issue of having to keep around two
copies of each GrB_Matrix object when it is not symmetric.
An environment variable is used to control whether the user
wants this performance-oriented storage, or whether they want
a more memory-inexpensive storage of only CSR or only CSC
in which case the direction-optimization feature is disabled.
Direction-optimization is a good example of the power

of abstracting away implementation details, and the linear
algebraic approach to graph analytics is at its most powerful.
The end user has two conflicting desires:

1) They want to communicate their request abstractly enough
that they do not have to decide whether the matrix-vector
multiply is implemented as push, pull or any of the myriad
possible ways.

2) They want their computation to be described specifically
enough that the computer can optimize for the best
approach for doing the computation.

This desire is met by GrB_mxv, which is at the same time
abstract enough to not limit the computer in choosing push
traversal when it should be choosing pull traversal, yet specific
enough that the computer has enough information to cut corners
and pick the best algorithm.
Table II shows a comparison of how many lines of code it

takes an implementation of GraphBLAS to express a given
algorithm in C++. It is compared with two state-of-the-art graph
frameworks in shared memory, the aforementioned Ligra [23]
and GraphIt [26], which is a DSL designed for expressing
graph algorithms.

Fig. 3: GraphBLAST Vector UML diagram.

Algorithm Ligra [23] GraphIt [26] GraphBLAS

Breadth-first-search 29 22 25
Single-source shortest-path 55 25 25
Local graph clustering 84 N/A 45

TABLE II: Comparison of lines of C++ application code
counted by ‘cloc’ except for numbers of GraphIt, which
come from the paper [26]. N/A means not implemented. The
specific GraphBLAS implementation for this comparison is
GraphBLAST [22].

III. LAGRAPH REPOSITORY

The hypothesis underlying the GraphBLAS is that algorithm
designers can focus on expressing their algorithms in terms
of the high level linear algebra operations defined in the
GraphBLAS while leaving low level optimizations for any
particular hardware platform to the implementation of the
GraphBLAS. Ultimately, we want hardware vendors to be re-
sponsible for creating highly tuned versions of the GraphBLAS
specialized to the features of their systems. Kumar et al. [27]
show that mitigating the adverse impact of memory latency
on performance of algorithms for large graph can lead to
significant improvements. Such optimizations require detailed
knowledge of the underlying system, and hence the low-level
optimizations are best left to hardware vendors. Furthermore,
a tuned linear algebra library delivers better performance than
straight-forward textbook implementation on many basic graph
algorithms [28].
Algorithm designers will naturally wonder how much

performance is lost due to the use of a high level API such as the
GraphBLAS. As shown in [28], a linear algebra implementation

brings inherent efficiency advantages to graph algorithms due
to the more structured access to data afforded by the linear
algebra formulation [28]. The GraphBLAS API is more general,
but we expect its implementations to retain or improve upon
the efficiency advantages. This is an untested hypothesis, since
until now, we have not had multiple implementations of the
GraphBLAS API tuned to the features of a range of platforms.

Testing this hypothesis of the performance potential afforded
by the GraphBLAS is a major outcome we anticipate from the
LAGraph project. By collecting high level graph algorithms and
validating them across an engaged community, we will produce
the library of algorithms needed to evaluate the effectiveness
of the GraphBLAS approach.
Before we can conduct such experiments, however, we

need to collect graph algorithms implemented on top of
the GraphBLAS. We have created a GitHub repository at
https://github.com/GraphBLAS/LAGraph for members of the
LAGraph community to use to contribute GraphBLAS algo-
rithms. The basic elements of the repository include:

• A Build System for creating the LAGraph library and the
test routines.

• A library of utilities including loading matrices from disk
in Matrix Market format [29], evaluating results, and
creating random test matrices.

• A directory of graph algorithms.
• A directory holding a test harness for each algorithm.
We will write documentation, a programmer’s reference

guide and define procedures for how people can add new
algorithms.

IV. DISCUSSION

We are early in the LAGraph project. At this point, we’ve
defined the basic structure of the repository and the overall goals
of the project. We have built an early framework for testing and
core utility routines to support software development. Finally,
we assembled a few algorithms which we are using to test the
basic structure of the software system.
Even at this early phase of the project, we have learned

a great deal about how the GraphBLAS will interact with
end-users. The objects manipulated by the GraphBLAS are
opaque. A GraphBLAS implementation is given complete
freedom in how data structures underlying the GraphBLAS are
implemented. A graph algorithm, however, uses GraphBLAS
as part of a processing pipeline. For example, data may exist
in data frames. A subset of the data is collected and filtered
to produce relationships represented by a graph. Properties of
the graph are computed and based on the result a new branch
in the processing pipeline may be accessed.
The key here is that graphs inside the GraphBLAS are

opaque, but externally they are anything but opaque. This
suggests that we need to define functions to import and export
data in standard sparse array formats into LAGraph. The
initial thinking was that this import functionality would be
part of LAGraph and not the GraphBLAS. The only way to do
that, however, is if we repacked the input sparse format into
separate arrays for column indices, row indices, and values

https://github.com/GraphBLAS/LAGraph

and then use GrB_Matrix_build to construct the GraphBLAS
matrix object. This is extremely inefficient. We need a way
to directly import arrays in standard sparse formats, such as
CSR/CSC (Compressed Sparse Row/Column) formats, into the
GraphBLAS and since the GraphBLAS data types are opaque,
this can only be done as a GraphBLAS routine.
Graph algorithms do not occur in isolation. The LAGraph

library, therefore, needs to return a handle to an opaque
GraphBLAS object so it can be used without incurring
copy overhead in subsequent graph operations. Given the
nonblocking execution model, this raises interesting design
questions about how memory consistency between the library
and the application is managed.

Graphs can be quite large. Hence, the default mode should
avoid copying sparse arrays input to LAGraph into a separate
memory region to hold the opaque GraphBLAS object. We
believe it is important that the memory for the input array be
reused to hold the GraphBLAS object as much as possible.
This means the input array is often “destroyed” (from the
perspective of LAGraph, another external library, or the user
application) and “realloc”ed for the GraphBLAS opaque object.
In the interest of performance and efficient use of memory
resources, the above violates the separation of concerns between
application and library code expected in well engineered
software. There is also the question of communicating to the
library routine how the input sparse array was allocated in the
first place so the right deallocator can be used.

A draft of SuiteSparse:GraphBLAS includes a working and
fully-tested implementation of the import/export feature, using
a strategy much like the “move constructor” of C++. For
the export of a CSC matrix, for example, three arrays are
removed from the GraphBLAS matrix A: a pointer array Ap
of size n+1, an index array Ai of size e, and a values array
Ax. The row indices of the jth column of the matrix appear
as the list Ai[Ap[j]...Ap[j+1]], and the values are in the
same locations in Ax. This format is identical to the simple
CSC sparse matrix data structure in CSparse [30], except that
GraphBLAS allows for many built-in types and arbitrary user-
defined types.
The remains of the GraphBLAS object A are then deleted,

but all of its content is now “owned” by the external library
(LAGraph, say), which is then responsible for freeing these
three arrays. Assuming that the opaque GraphBLAS object
A is already in the CSC format, the export takes just O(1)
time, and no new memory is allocated. The external library
(LAGraph, in particular) now has access to the graph. If the
GraphBLAS implementation does not support the CSC format
in its internal opaque data structure, it can allocate these arrays,
populate them, and then free A. The effect is the same; only
the performance differs. Opacity is maintained, while at the
same time reducing time required for the export from ⌦(e)
(for GrB_extractTuples) to as little as O(1).

The import is symmetric with the export: LAGraph (or any
other external library) passes in the three arrays Ap, Ai, and Ax,
which are then either incorporated as-is into the GrB_Matrix A
(taking O(1) time), or copied and freed (taking O(e) time and

memory). Either way, the three arrays are now owned by
GraphBLAS, not the external library, and would be freed at
some point no later than GrB_free(&A). Since the matrix A
is opaque, the GraphBLAS library can select whatever method
it chooses to take ownership of Ap, Ai, and Ax: a copy (in
O(e) time, or a move construction in O(1) time. It may choose
later to realloc these arrays if the number of entries needs
to grow.

After an export of A, and then an import of the same arrays,
the GraphBLAS matrix A is perfectly reconstructed, ideally
in a total of O(1) time. SuiteSparse:GraphBLAS supports the
import/export of all four of its formats: CSR, CSC, and their
hypersparse variants.
A malloc of these Ap, Ai, and Ax arrays by an external

library followed by freeing the same space inside GraphBLAS
with GrB_free(&A) requires both libraries to agree on using
the same malloc/free routines. To do this, the GraphBLAS
API would need to be augmented to allow an external library
to select which malloc/free routines should be used. This
is essential for a MATLAB interface, since a MATLAB
mexFunction must use mxMalloc and mxFree. With the
import/export feature, sparse matrices can be passed between
MATLAB and GraphBLAS in O(1) time, unless typecasting
is required. MATLAB supports all of the built-in types
of GraphBLAS, plus double complex, but only for dense
matrices. For sparse matrices in MATLAB, only double and
double complex are available. A MATLAB interface to the
GraphBLAS is in progress. If the import/export feature is
added to the GraphBLAS C API (as is being considered), this
MATLAB interface would interoperate with any GraphBLAS
library that is compliant with the spec.
The point of these issues is that in designing an effective

library, there are a host of complicated issues to resolve. A
major part of the research contribution of this project will be
how we solve these issues.

V. ALGORITHMS TARGETED BY LAGRAPH

Many graph algorithms have been successfully implemented
in the language of linear algebra. The following is a list of key
algorithms and representative implementations; emphasizing
that this list is not exhaustive.

• Breadth-first search (BFS) [31], [19], [11], including the
direction optimizing BFS [24],

• Shortest-path (both single-source [22], [32], [19] and all-
pairs [33]) calculation,

• Centrality measures, such as Betweenness centrality [2],
• Triangle counting and enumeration [34], [35] as well as
k-truss enumeration [36], [37],

• Connected components [38],
• PageRank [39],
• Graph coloring [40],
• Subgraph counting [41],
• Maximal [42] and maximum [43] cardinality matching
on bipartite graphs,

• Maximal independent set [44], [22].

Machine learning algorithms are also implemented using
libraries that are in the spirit of GraphBLAS:

• Clustering, such as Markov clustering [45] and peer-
pressure clustering [46],

• Deep neural network inference [47],
• Collaborative filtering using Stochastic Gradient De-
scent [39].

Finally, there are algorithms we consider to be important
but has so far not been implemented using a GraphBLAS-like
library:

• A* search,
• Graph neural network training and inference,
• Branch and bound,
• Graph kernels for supervised learning.

VI. CONCLUSION

The GraphBLAS forum started its work in 2013 to standard-
ize the building blocks for graph algorithms formulated from
linear algebra expressions [7]. We now have a C specification
for the GraphBLAS [10] and multiple implementations [11],
[17], [18]. The next step in this journey is to define a library of
high level graph algorithms that are based on the GraphBLAS.
The GraphBLAS was a community effort launched by a

position paper. This is a position paper to launch LAGraph
project, our community effort to collect and validate 1) a set
of high quality basic graph algorithms that run on top of
the GraphBLAS, and 2) support libraries for development of
graph analytics applications. Example of support libraries are
I/O, generation of scale-free graphs, basic measurements on
graphs, and changing representation of graphs. We urge readers
interested in joining us as we work on LAGraph to contact
any of the authors of this position paper.

ACKNOWLEDGMENTS

Tim Davis would like to acknowledge the support of
SuiteSparse:GraphBLAS by MIT Lincoln Laboratory, Intel,
and the National Science Foundation (NSF CNS-1514406).
Scott McMillan was supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering
Institute, a federally funded research and development center
[DM19-0234]. Aydın Buluç and Carl Yang are supported by
the Advanced Scientific Computing Research (ASCR) program
within the Office of Science of the DOE under contract number
DE-AC02-05CH11231. Carl Yang is also supported by funding
support from the Defense Advanced Research Projects Agency
(Awards # FA8650-18-2-7835 and HR0011-18-3-0007) and the
National Science Foundation (Awards # OAC-1740333 and
CCF-1629657).

REFERENCES

[1] J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011, vol. 22.

[2] A. Buluç and J. R. Gilbert, “The Combinatorial BLAS: Design,
implementation, and applications,” The Intl. Journal of High Performance
Computing Applications, vol. 25, no. 4, pp. 496 – 509, 2011.

[3] V. Gadepally, J. Bolewski, D. Hook, D. Hutchison, B. Miller, and J. Kep-
ner, “Graphulo: Linear algebra graph kernels for NoSQL databases,” in
Intl. Parallel & Distributed Processing Symposium Workshop (IPDPSW).
IEEE, 2015, pp. 822–830.

[4] K. Ekanadham, W. P. Horn, M. Kumar, J. Jann, J. Moreira, P. Pattnaik,
M. Serrano, G. Tanase, and H. Yu, “Graph Programming Interface (GPI):
A linear algebra programming model for large scale graph computations,”
in Proc. ACM Intl. Conference on Computing Frontiers, ser. CF ’16.
New York, NY, USA: ACM, 2016, pp. 72–81.

[5] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J. Anderson,
S. G. Vadlamudi, D. Das, and P. Dubey, “Graphmat: High performance
graph analytics made productive,” Proceedings of the VLDB Endowment,
vol. 8, no. 11, pp. 1214–1225, 2015.

[6] S. Che, B. M. Beckmann, and S. K. Reinhardt, “Programming GPGPU
graph applications with linear algebra building blocks,” Intl. Journal of
Parallel Programming, pp. 1–23, 2016.

[7] T. Mattson, D. Bader, J. Berry, A. Buluç, J. Dongarra, C. Faloutsos,
J. Feo, J. Gilbert, J. Gonzalez, B. Hendrickson, J. Kepner, C. Leiserson,
A. Lumsdaine, D. Padua, S. Poole, S. Reinhardt, M. Stonebraker,
S. Wallach, and A. Yoo, “Standards for graph algorithm primitives,”
in High Performance Extreme Computing Conf. (HPEC). IEEE, 2013.

[8] “The GraphBLAS Forum,” http://graphblas.org/.
[9] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,

D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
J. Moreira, J. Owens, C. Yang, M. Zalewski, and T. Mattson, “Math-
ematical foundations of the GraphBLAS,” in IEEE High Performance
Extreme Computing (HPEC), 2016.

[10] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the GraphBLAS API for C,” in Graph Algorithms Building Blocks
workshop at IPDPS (GABB). IEEE, 2017.

[11] T. A. Davis, “Algorithm 9xx: SuiteSparse:GraphBLAS: graph algorithms
in the language of sparse linear algebra,” ACM Trans. Math. Software,
2019 (under submission), see http://suitesparse.com.

[12] A. Buluç and J. R. Gilbert, “On the representation and multiplication
of hypersparse matrices,” in IEEE International Symposium on Parallel
and Distributed Processing, April 2008, pp. 1–11.

[13] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication
and permuted transposition,” ACM Trans. Math. Softw., vol. 4, no. 3, pp.
250–269, 1978.

[14] A. Azad, G. Ballard, A. Buluç, J. Demmel, L. Grigori, O. Schwartz,
S. Toledo, and S. Williams, “Exploiting multiple levels of parallelism
in sparse matrix-matrix multiplication,” SIAM Journal on Scientific
Computing (SISC), vol. 38, no. 6, pp. C624–C651, 2016.

[15] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing
breadth-first search,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2012, pp. 1–10.

[16] “RedisGraph module for the Redis database system,” https://oss.redislabs.
com/redisgraph/.

[17] K. Ekanadham, B. Horn, J. Jann, M. Kumar, J. Moreira, P. Pattnaik,
M. Serrano, G. Tanase, and Y. H., “Graph programming interface:
Rationale and specification,” Yorktown Heights, NY, Tech. Rep. RC25508
(WAT1411-052), Nov. 2014.

[18] “GraphBLAS Template Library (GBTL),” https://github.com/cmu-sei/
gbtl.

[19] P. Zhang, M. Zalewski, A. Lumsdaine, S. Misurda, and S. McMillan,
“GBTL-CUDA: Graph algorithms and primitives for GPUs,” in Intl.
Parallel & Distributed Processing Symposium Workshop (IPDPSW).
IEEE, 2016, pp. 912–920.

[20] S. McMillan, “Design and implementation of the GraphBLAS Template
Library (GBTL),” in GraphBLAS: Graph Algorithms in the Language of
Linear Algebra Minisymposium at SIAM Annual Meeting (AN16), July
2016.

[21] J. Chamberlin, M. Zalewksi, S. McMillan, and A. Lumsdaine, “PyGB:
GraphBLAS DSL in Python with dynamic compilation into efficient
C++,” in Graph Algorithms Building Blocks (GABB) Workshop at IEEE
Intl. Parallel and Distributed Processing Symposium, May 2018.

[22] C. Yang, “GraphBLAST library,” http://github.com/gunrock/graphblast,
2015.

[23] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’13. New York, NY, USA: ACM, 2013, pp. 135–146.

http://graphblas.org/
http://suitesparse.com
https://oss.redislabs.com/redisgraph/
https://oss.redislabs.com/redisgraph/
https://github.com/cmu-sei/gbtl
https://github.com/cmu-sei/gbtl
http://github.com/gunrock/graphblast

[24] C. Yang, A. Buluç, and J. D. Owens, “Implementing push-pull efficiently
in GraphBLAS,” in Proceedings of the International Conference on
Parallel Processing, ser. ICPP 2018, Aug. 2018, pp. 89:1–89:11.

[25] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens, “Gunrock: GPU graph
analytics,” ACM Transactions on Parallel Computing, vol. 4, no. 1, pp.
3:1–3:49, Aug. 2017.

[26] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe,
“GraphIt: A high-performance DSL for graph analytics,” arXiv preprint
arXiv:1805.00923, 2018.

[27] M. Kumar, M. Serrano, J. Moreira, P. Pattnaik, W. P. Horn, J. Jann,
and G. Tanase, “Efficient implementation of scatter-gather operations for
large scale graph analytics,” in 2016 IEEE High Performance Extreme
Computing Conference (HPEC), Sept 2016, pp. 1–7.

[28] M. Kumar, W. P. Horn, J. Kepner, J. E. Moreira, and P. Pattnaik, “IBM
POWER9 and cognitive computing,” IBM Journal of Research and
Development, vol. PP, pp. 1–1, 06 2018.

[29] R. F. Boisvert, R. Pozo, and K. A. Remington, “The Matrix Market
exchange formats: initial design,” Tech. Rep. NISTIR 5935, 1996.

[30] T. A. Davis, Direct Methods for Sparse Linear Systems. Philadelphia,
PA: SIAM, 2006.

[31] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” in International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2011, p. 65.

[32] U. Sridhar, M. Blanco, R. Mayuranath, D. G. Spampinato, T. M. Low,
and S. McMillan, “Delta-stepping SSSP: from vertices and edges to
GraphBLAS implementations,” in IPDPSW, 2019.

[33] E. Solomonik, A. Buluç, and J. Demmel, “Minimizing communication in
all-pairs shortest paths,” in Proceedings of the IPDPS. IEEE Computer
Society, 2013.

[34] A. Azad, A. Buluç, and J. R. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” in Proceedings of the IPDPSW,
Workshop on Graph Algorithm Building Blocks (GABB), 2015, pp. 804 –
811.

[35] L. Wang, Y. Wang, C. Yang, and J. D. Owens, “A comparative study on
exact triangle counting algorithms on the GPU,” in Proceedings of the
ACM Workshop on High Performance Graph Processing. ACM, 2016,
pp. 1–8.

[36] T. A. Davis, “Graph algorithms via SuiteSparse: GraphBLAS: triangle
counting and k-truss,” in IEEE High Performance extreme Computing
Conference (HPEC), 2018, pp. 1–6.

[37] T. M. Low, D. G. Spampinato, A. Kutuluru, U. Sridhar, D. T. Popovici,
F. Franchetti, and S. McMillan, “Linear algebraic formulation of edge-
centric k-truss algorithms with adjacency matrices,” in 2018 IEEE High
Performance extreme Computing Conference (HPEC). IEEE, 2018, pp.
1–7.

[38] A. Azad and A. Buluç, “LACC: a linear-algebraic algorithm for finding
connected components in distributed memory,” in Proceedings of the
IPDPS, 2019.

[39] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A.
Hassaan, S. Sengupta, Z. Yin, and P. Dubey, “Navigating the maze of
graph analytics frameworks using massive graph datasets,” in Proceedings
of the 2014 ACM SIGMOD international conference on Management of
data. ACM, 2014, pp. 979–990.

[40] M. Osama, M. Truong, C. Yang, A. Buluc, and J. D. Owens, “Graph
coloring on the GPU,” in IPDPSW, 2019.

[41] L. Chen, J. Li, A. Azad, L. Jiang, M. Marathe, A. Vullikanti, A. Nikolaev,
E. Smirnov, R. Israfilov, and J. Qiu, “A GraphBLAS approach for
subgraph counting,” arXiv preprint arXiv:1903.04395, 2019.

[42] A. Azad and A. Buluç, “A matrix-algebraic formulation of distributed-
memory maximal cardinality matching algorithms in bipartite graphs,”
Parallel Computing, 2016.

[43] ——, “Distributed-memory algorithms for maximum cardinality matching
in bipartite graphs,” in Proceedings of the IPDPS. IEEE, 2016.

[44] A. Lugowski, S. Kamil, A. Buluç, S. Williams, E. Duriakova, L. Oliker,
A. Fox, and J. Gilbert, “Parallel processing of filtered queries in attributed
semantic graphs,” Journal of Parallel and Distributed Computing
(JPDC)), vol. 79-80, pp. 115–131, 2015.

[45] A. Azad, G. A. Pavlopoulos, C. A. Ouzounis, N. C. Kyrpides, and
A. Buluç, “Hipmcl: a high-performance parallel implementation of the
markov clustering algorithm for large-scale networks,” Nucleic acids
research, vol. 46, no. 6, pp. e33–e33, 2018.

[46] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “High-performance graph
algorithms from parallel sparse matrices,” in International Workshop on
Applied Parallel Computing. Springer, 2006, pp. 260–269.

[47] J. Kepner, M. Kumar, J. Moreira, P. Pattnaik, M. Serrano, and H. Tufo,
“Enabling massive deep neural networks with the GraphBLAS,” in IEEE
High Performance Extreme Computing Conference (HPEC), 2017, pp.
1–10.

View publication statsView publication stats

https://www.researchgate.net/publication/334769364

	I Introduction
	II The GraphBLAS
	II-A SuiteSparse:GraphBLAS
	II-B IBM GraphBLAS
	II-C GBTL: GraphBLAS Template Library
	II-D PyGB: python DSL for GraphBLAS
	II-E GraphBLAST GraphBLAS

	III LAGraph Repository
	IV Discussion
	V Algorithms targeted by LAGraph
	VI Conclusion
	References

