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ABSTRACT 21 

Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen 22 

spread through the populations as captured in the evolutionary history of strains. These timetrees 23 

are inferred by using molecular sequences of pathogenic strains sampled at different times. That 24 

is, temporally sampled sequences enable the inference of sequence divergence times. Here, we 25 

present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees 26 

based on a relative rate framework underlying the RelTime approach that is algebraic in nature 27 

and distinct from all other current methods. RTDT does not require many of the priors demanded 28 

by Bayesian approaches, and it has light computing requirements. In analyses of an extensive 29 

collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the 30 

coverage probabilities of their confidence intervals (CIs) to be excellent. In analyses of empirical 31 

datasets, RTDT produced dates that were similar to those reported in the literature. In comparative 32 

benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we 33 

found that no method performed the best in every scenario. So, we provide a brief guideline for 34 

users to select the most appropriate method in empirical data analysis. RTDT is implemented for 35 

use via a graphical user interface and in high-throughput settings in the newest release of cross-36 

platform MEGA X software, freely available from http://www.megasoftware.net. 37 

  38 

http://www.megasoftware.net/
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AUTHOR SUMMARY  39 

Pathogen timetrees trace the origins and evolutionary histories of strains in populations, hosts, and 40 

outbreaks. The tips of these molecular phylogenies often contain sampling time information 41 

because the sequences were generally obtained at different times during the disease outbreaks and 42 

propagation. We have developed a new method for inferring divergence times and confidence 43 

intervals for phylogenies with tip dates. The new Relative Times with Dated Tips (RTDT) methods 44 

showed excellent performance in the analysis of computer-simulated datasets, producing similar 45 

or better results in several evolutionary scenarios as compared to other fast, non-Bayesian methods. 46 

The new method is available in the cross-platform MEGA software package (version 10.1 and 47 

higher) that provides a graphical user interface and allows usage via a command line in scripting 48 

and high throughput analysis (www.megasoftware.net). 49 

  50 

http://www.megasoftware.net/


4 

 

Introduction 51 

Molecular phylogenetics enables the dating of the origin of pathogens and the emergence of new 52 

strains [1-3]. Typically, strains are sampled from individuals and populations during an ongoing 53 

or historical outbreak [4-9]. When sequences are paired with their sampling times, it becomes 54 

possible to calibrate molecular phylogenies of pathogen sequences and infer the timing of pathogen 55 

evolution. For example, HIV-1 sequences have been sampled at various times and geographic 56 

locations following its initial characterization in 1983 [2, 9, 10]. Analyses of sequences extracted 57 

from circulating strains and “archived” strains from preserved tissue samples have established that 58 

HIV-1 (group M) entered the human populations in the early 20th century in Sub-Saharan Africa 59 

[10] and that subsequently dispersed across the globe [11, 12].   60 

Many competing methods are available to build pathogen timetrees that estimate the timing of 61 

divergence of lineages in the tree [13-22]. In these analyses, the tips in a phylogeny are non-62 

contemporaneous, and sampling times serve as calibrations that provide a means to date historical 63 

sequence divergences. These analyses are different from those used for the estimation of species 64 

divergence times because the sampling times of sequences from different species are effectively 65 

simultaneous. The difference in the sampling years for all sequences in interspecies datasets can 66 

be assumed to be effectively zero when compared to the time-scale of speciation. 67 

The Bayesian framework underlies many of the widely-used tools for building pathogen timetrees 68 

(MCMCTree [15] and BEAST [14]). The use of Bayesian methods requires researchers to specify 69 

a clock prior that governs the change of evolutionary rate over lineages and a coalescent model or 70 

a speciation model (e.g., birth-death process) to generate a tree prior [14, 15]. Such information is 71 

rarely available a priori, and time estimates can vary when using different priors [23], resulting in 72 

alternative biological interpretations [15, 24]. Meanwhile, Bayesian methods often require long 73 

computational times, which makes them infeasible for analyzing datasets with thousands of 74 

sequences in contemporary molecular epidemiology [16, 19, 22].    75 

Here, we present an approach based on the relative rate framework underlying the RelTime method 76 

[25, 26]. The RelTime method is attractive because it is not computationally demanding, and it 77 

does not require explicit clock and coalescent model priors.  Both simulated and empirical analyses 78 

have shown RelTime to perform well for dating species evolution [25-27]. The new approach 79 
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advances RelTime by relaxing the requirement that all tips in the phylogenetic tree are 80 

contemporaneous (i.e., sampling time t = 0), making it suitable for dating of pathogenic strains. 81 

We call it the RelTime with Dated Tips (RTDT) approach. Similar to RelTime, RTDT is an 82 

algebraic approach, so it is lightning fast and distinct from other approaches. For example, 83 

TreeTime [19] is a maximum likelihood approach that uses a normal prior to control the rate 84 

variation to make the clock to be more autocorrelated-like or more independent-like, and it 85 

implements a skyline coalescence model. LSD [16] uses least-squares criteria, and treedater [22] 86 

uses likelihood and least-squares jointly. LSD assumes the rate noise to be independent among 87 

branches within its clock framework, and treedater assumes branch rates to vary independently. In 88 

contrast, RTDT is based on an algebraic relative rate framework and does not make any explicit 89 

assumptions about evolutionary rate autocorrelation and independence varying.  90 

Through the analysis of simulated datasets generated under different assumptions and empirically 91 

derived phylogenies, we compared the accuracy of dates and confidence intervals (CIs) estimated 92 

by RTDT with those produced by software implementing Bayesian methods (BEAST [14] and 93 

MCMCTree [15]) and non-Bayesian approaches (Least Squares Dating, LSD [16], TreeTime [19], 94 

and treedater [22]). These comparisons are more extensive than ever reported before, as our 95 

analyses involved the largest number of methods ever tested and the most extensive collection of 96 

simulated datasets and different rate variation scenarios explored. Furthermore, in the past, studies 97 

of benchmarking these methods have generally reported the accuracy of estimation of substitution 98 

rates or the age of the root node of phylogeny [13, 19, 20, 22]. To et al. [16] reported the average 99 

of the absolute and relative differences in actual and estimated times for all the nodes in simulated 100 

analysis to compare methods. However, this measure does not detect node-specific biases and 101 

patterns. 102 

Therefore, the accuracy of node-by-node age estimates remains to be evaluated, which we have 103 

reported here. Also, previous studies have only used simulated computer datasets in which the 104 

independent branch rate (IBR) model was applied. In addition to datasets simulated under IBR 105 

model, we report the performance of all methods for phylogenies in which branch rates were 106 

autocorrelated (ABR model). This is important because HIV-1 subtype F, HIV-1 subtype D, HIV-107 

2, and influenza phylogenies showed highly significant autocorrelation of rates (Table 1). In fact, 108 

MCMCTree provides an ABR model for tip-dating, and TreeTime implicitly employs rate 109 

correlation, but their performances have not been tested by using datasets that have evolved with 110 
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ABR. Therefore, our analyses produce an extensive assessment of the performance of divergence 111 

time estimation by using available Bayesian and non-Bayesian methods.  112 

Here, we first present the algorithm for the new method, RTDT. We then evaluate the node-by-113 

node accuracy of dates and CIs estimated by RTDT together with Bayesian (BEAST and 114 

MCMCTree) and non-Bayesian (LSD, TreeTime, and treedater) methods using simulated datasets. 115 

This evaluation of different methods yielded new insights into the performance of tip-dating 116 

methods in building pathogen timetrees, which formed the basis of our brief guidelines for 117 

researchers to select the best method for their dataset. 118 

RESULTS 119 

New Approach (RTDT) for estimating divergence times using temporally sampled sequences  120 

We illustrate the new approach by using a simple example dataset containing four ingroup 121 

sequences (x1, x2, x3, x4) with an outgroup sequence (Fig. 1A) because RTDT requires a phylogeny 122 

with outgroup specified. This is different from some methods (e.g., BEAST), which jointly 123 

estimate phylogenies and divergence times without requiring the specification of outgroup 124 

sequences. In the ingroup, sequence xi is assumed to be sampled in the year of ti (2001, 2003, 2002, 125 

and 2011, for x1, x2, x3, and x4, respectively) and bi’s are the branch lengths, expressed in expected 126 

substitutions per site (Fig. 1A). The goal is to estimate the time at internal nodes, X, Y, and XY: 127 

tX, tY, and tXY. 128 

This phylogeny has a time-scale measured in chronological time (ti) and the number of 129 

substitutions (bi). In the RTDT approach, we first project the path length i (number of 130 

substitutions) from the root to a tip (xi) of the phylogeny under the assumption that xi accumulated 131 

substitutions to the year of the sampling time, ti, with a constant evolutionary rate (Fig. 1B). The 132 

projection is accomplished by first regressing the estimated length (in substitutions/site) from the 133 

node ingroup latest common ancestor (XY, i.e., root) to a tip (xi) in the original tree using the 134 

corresponding sampling time. This slope is used to project root-to-tip length, i, forward in time. 135 

In our example, i = 2.479 × ti – 4957, where -4957 is the intercept of the y-axis, and 2.479 is the 136 

slope. For example, the projected root-to-node length for sequence x1 is 1 = 2.479 × 2001 – 4957 137 

= 3.48. Note that the root in this projection is an “internal-root,” which is located at the position of 138 

zero substitution along the slope (Fig. 1B). 139 
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If the evolutionary rate were shared between branches b1 and b2, then the length from root to the 140 

internal node X, i.e., X, predicted by using 1 and b1 and that predicted by using 2 and b2 should 141 

be the same. In practice, they are not the same: X is predicted to be 1.66 when using 1 and b1 (= 142 

1 − b1 = 3.48 − 1.82) and 1.05 when using 2 and b2 (= 2 − b2 = 8.44 − 7.39), respectively. This 143 

suggests the inequality of evolutionary rates between b1 and b2. Under the RRF framework [25, 144 

26] we, therefore, estimate their relative rates, r1 and r2, respectively, in which these two sister 145 

lineages inherited rates from their common ancestor with the minimum ancestor-descendant rate 146 

change. Assuming that the ancestral rate is equal to 1, we have the relationship, (r1 × r2)1/2 = 1 [25]. 147 

We used the geometric mean because relative rates could be very different from each other. We 148 

then project (recalibrate) b1 and b2 by determining the values of r1 and r2, which reconcile the two 149 

different estimates of x (Fig. 1C). 150 

The projected b1 is b1′ = b1 × (1/r1) and the projected b2 is b2′ = b2 × (1/r2). To determine the 151 

appropriate rate change factors, we first require that the root-to-X length (X) computed using 1 152 

and b1′, i.e., 1 − b1′ = 1 − b1 × (1/r1), and X using 2 and b2′, i.e., 2 – b2 × (1/r2), be identical. 153 

Thus, we obtain the relationship, 1 − b1 × (1/r1) = 2 – b2 × (1/r2). Second, we use the constraint 154 

(r1 × r2)1/2 = 1, to solve for r1 = 0.93 and r2 = 1.08 in the current example. Similarly, for node Y, 155 

we calculate r3 and r4, which gives r3 = 0.99 and r4 = 1.01. 156 

In the next step, we compute the relative rates of bX and bY, i.e., rX and rY, respectively. We 157 

similarly use projected branch lengths, bi′, and projected root-to-tip lengths, i. Here, we use the 158 

shortest root-to-tip length in each lineage of X and Y, because it is closest to a known sampling 159 

time from the root. Because x1 and x3 give the shortest length in the lineages X and Y, respectively, 160 

XY on lineage X is given by 1 – b1′ – bX′, and lineage Y gives 3 – b3′ – bY′ (Fig. 1D). Thus, we 161 

seek to enforce 1 – b1′ – bX′ = 3 – b3′ – bY′. Given that (rX × rY)1/2 = 1, we can calculate rX = 1.07 162 

and rY = 0.93. Note that we previously assigned rX equal to 1, as the ancestral rate of b1 and b2 163 

correspond to rX. Similarly, rY was assigned to be 1. Therefore, the relative rates in the descendant 164 

branches are rescaled. For example, the new relative rate for the branch leading x1 becomes r1_new 165 

= r1 × rX = 0.93 × 1.07 = 1.00. Accordingly, projected branch lengths in the descendant lineages 166 

are rescaled, e.g., b1′ = b1 × (1/r1_new). 167 

Since all tip branch lengths are now projected, we can obtain projected lengths from root to each 168 

internal node, i.e., X, Y, and XY. For example, X is equal to be 1.66 [= 1 − b1′ = 1 − b1 × 169 



8 

 

(1/r1_new) = 3.48 − 1.82 × (1/1.00)] (Fig. 1E). Using X, Y, XY, and the regression line, i = 2.479 170 

× ti – 4957 (Fig. 1B), we obtain divergence times at the nodes XY, X, and Y to be 1999.9, 2000.3, 171 

and 2000.4, respectively (Fig. 1F).  172 

The dates obtained by using the above approaches are point estimates, as the underlying relative 173 

rates framework in the RelTime approach is algebraic in nature in which relative divergence times 174 

in the tree are a direct function of the branch lengths [25, 26]. Tao et al. [28] have proposed an 175 

analytical approach to estimate CIs for RelTime in which the variance contributed by site sampling 176 

and variability of rates among lineages is considered. Using that approach, RTDT produces both 177 

the point time estimate and the 95% CI of each time. 178 

Performance evaluation using simulated HIV data 179 

We first present results from computer simulations conducted using parameters and tree topology 180 

derived from a DNA sequence alignment of subtype F HIV-1 [29] – a representative dataset with 181 

154 strains with various sampling times (years 1987- 2007; Fig. 2). We generated two collections 182 

of simulated datasets using this model phylogeny. In one, evolutionary rates varied independently 183 

from branch to branch (IBR model), and in the other, rates were correlated between ancestor and 184 

descendant branches (ABR model). We also generated a collection of simulated datasets in which 185 

the expected evolutionary rates were the same for all branches (constant branch rates, CBR model), 186 

to serve as the baseline model. Fifty replicates were simulated with each clock model (CBR, ABR, 187 

and IBR). To perform the analysis of RTDT, LSD, TreeTime, treedater, and BEAST, we used the 188 

correct tree topology (branching pattern) in all our analyses because we wish to compare the actual 189 

and estimated times, which would otherwise be not possible if the tree topology contained errors. 190 

Also, we did not wish to confound the impact of errors in topological inference with that of the 191 

time estimates. In the same vein, we used the correct nucleotide substitution model to keep our 192 

focus on the accuracy of the time estimates, rather than on the problems encountered by the 193 

misspecified substitution models. For each method, 50 time estimates were generated for each 194 

node in the model phylogeny.  195 

RTDT produced average time estimates that were very similar to the actual time for each node in 196 

all simulation scenarios (Fig. 3A, 3F, and 3K). LSD, TreeTime, and treedater also performed well 197 

for the CBR and IBR datasets (Fig. 3B-3D and 3G-3I). However, for the ABR datasets, average 198 

node time estimates across simulated datasets for these methods were often older than the actual 199 
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times (Fig. 3L-3N). This overestimation was more severe for deeper divergences than recent 200 

divergences, especially in the case of the treedater method (Fig. 3N). Interestingly, even though 201 

TreeTime is a likelihood approach in which the ancestor-descendant rate shifts are penalized [19], 202 

which implies rate autocorrelation, its performance was worse than RTDT for ABR datasets.  203 

In BEAST analyses, the use of a strict clock model for the CBR datasets resulted in excellent 204 

performance (Fig. 3E). BEAST with the lognormal clock model also performed well for IBR 205 

databases (Fig. 3J), even though we sampled rates from a truncated uniform distribution in IBR 206 

simulations. The use of BEAST with lognormal distribution is appropriate and effective in these 207 

analyses because the lognormal distribution fits the distribution of evolutionary rates for IBR 208 

datasets. However, BEAST did not perform well for ABR datasets (Fig. 3O), which means its 209 

estimates produced under the assumption of evolutionary rate independence among branches are 210 

not appropriate when this assumption is violated. For ABR datasets, BEAST produced much 211 

earlier dates for deeper divergences and younger dates for more recent divergence. This result is 212 

consistent with those from a previous study where BEAST produced erroneous node times when 213 

evolutionary rates are lineage (clade) specific [30], i.e., there were local similarities in evolutionary 214 

rates.  215 

Overall, all the methods showed similar performance for CBR and IBR datasets, but RTDT 216 

showed good results for ABR datasets as well. For ABR datasets, the average of absolute 217 

difference of estimated node time from its correct time, which is the root mean square error metric 218 

(RMSE; see Methods for the detail) was only five years for RTDT, while the other methods were 219 

7 – 19 years for ABR datasets (Fig. 3K-3O). Also, the estimates of the other non-Bayesian 220 

methods were systematically biased toward older times, as the average of the difference of 221 

estimates from correct times, which is the mean error metric (ME; see Methods for the detail), 222 

were 1.5 to 10.1 years older. For RTDT, the average was only 0.7 years younger. 223 

Next, we evaluated the coverage probabilities, which measure how often the actual node 224 

divergence times were contained in 95% CIs or the highest posterior density intervals (HPDs) of 225 

the estimated times. The treedater method could not be included in these comparisons because it 226 

does not produce a CI for every node. The proportion of nodes with 95% coverage probabilities 227 

are shown in figure 4 for CBR, IBR, and ABR datasets. A vast majority of CIs produced by RTDT 228 

contained their correct times; 82% − 91% of the nodes showed ≥95% coverage probability. All 229 
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other methods showed lower overall coverage probabilities, as the mean proportion of CIs that 230 

contained the actual time across the nodes was less than 77% for the datasets in which rates varied 231 

across lineages.  232 

Performance evaluation using simulated Influenza data 233 

We next generated datasets by using an Influenza A virus phylogeny (Fig. 5A)[15], which 234 

contained a larger number of sequences (289 sequences) than the simulated HIV datasets. Also, 235 

this phylogeny is dramatically different from the HIV phylogeny in figure 2, because of its ladder-236 

like, highly unbalanced shape. We generated 50 datasets each under CBR, IBR, and ABR scenarios 237 

and analyzed them using RTDT, LSD, TreeTime, treedater, and MCMCTree. We used 238 

MCMCTree instead of BEAST because it was employed in the source publication [15] and 239 

because BEAST (lognormal model) required many days for each dataset to converge. 240 

The average node time estimates of RTDT agreed well with their correct times for CBR and IBR 241 

datasets, but average node times were slightly older for deeper divergences for ABR datasets (Fig. 242 

5B1, 5B6, and 5B11). Its performance was similar to or better than all other non-Bayesian 243 

methods. For Bayesian analyses, we used MCMCTree and specified the correct clock model, i.e., 244 

we used the strict, and independent, and autocorrelated clock modes for CBR, IBR, and ABR 245 

datasets, respectively. MCMCTree showed similar accuracy trends as RTDT (Fig. 5B5, 5B10, and 246 

5B15), but performed better than all non-Bayesian methods for ABR datasets when considering 247 

variance among replicates for deeper node time estimates. RTDT estimates were more dispersed 248 

than MCMCTree, resulting in larger RMSE (Fig. 5B11 and 5B15). However, CIs produced by 249 

RTDT showed very high coverage probabilities (>97%), whereas other non-Bayesian methods did 250 

not do as well (23% – 73%). MCMCTree showed intermediate performance for rate variable 251 

datasets (91% – 96%; Fig. 5C). Therefore, RTDT is useful to generate more reliable CIs for 252 

hypothesis testing and useful especially when the dataset is very large, and Bayesian methods 253 

require long computational times.   254 

Effect of the number of time points sampled 255 

We next evaluated the performance of RTDT, LSD, TreeTime, treedater, and BEAST for datasets 256 

simulated by To et al.’s [16], which mimic intra-host evolution. In these datasets, many tips shared 257 

the same sampling times (dates), and the number of distinct sampling times was only three or 258 

eleven. The sequences that were sampled at the same time may belong to different clades (HIV-259 



11 

 

like tree, e.g., Fig. 6A) or the same clade (Flu-like tree, e.g., Fig. 6B). Each dataset consisted of 260 

110 sequences that were 1,000 bases long, and rates varied independently among branches (log-261 

normal distribution of branch rates) [16]. Each simulated phylogeny was different from each other.  262 

In the analysis of To et al.’s datasets with phylogenies similar in shape to the HIV-1 model tree 263 

(Fig. 6A; Fig. 2), all the methods performed well when the number of sampling time points was 264 

larger, i.e., eleven time points (Fig. 6C). These results are consistent with those observed for the 265 

HIV-1 model tree (Fig. 3), with the exception that TreeTime, produced much younger dates for 266 

recent divergence events for some nodes (Fig. 6C3).  267 

However, the performance deteriorated for all the non-Bayesian methods when only three distinct 268 

sampling times were available. They showed higher average absolute error rates than those with 269 

eleven distinct sampling time points (Fig. 6D). We found a low correlation between sampling 270 

times and their root-to-tip lengths in these datasets (r2 < 0.3; Fig. 6D1-6D5). Such datasets often 271 

yielded inferior results, especially for the deep nodes. BEAST also produced erroneous times when 272 

the number of sampling points was small or r2 was low, but it performed better than non-Bayesian 273 

methods (Fig. 6D5). 274 

For ladder-like (Flu-like) phylogenies in To et al.’s datasets (e.g., Fig. 6B), results from eleven 275 

distinct sampling time points showed a good agreement with the actual times for all the methods 276 

(Fig. 6E). However, the relationship showed an undulating pattern of high and low dispersion, 277 

with the low dispersions observed for nodes that were located close to the tips. For these datasets, 278 

errors of BEAST (log-normal rate model) estimates were systematically biased toward younger 279 

dates (Fig. 6E5), more so than non-Bayesian methods. The undulating pattern of high and low 280 

dispersion, as well as the systematic error in BEAST, became more severe when the number of 281 

sampling time points was only three (Fig. 6F). Overall, all methods showed limited accuracies on 282 

phylogenies in which the number of different sampling dates was small.  283 

Effects of substitution rates and sampling time intervals 284 

We next analyzed Sagulenko et al. [19] data, which were generated by simulating populations of 285 

size equal to 100 with evolutionary rates from 10–5 to 2 ×10–3 substitutions per site per year. 286 

Sequences were sampled every 10, 20, or 50 generations. When the sampling time interval was 287 

longer (i.e., 50 generations), those phylogenies were ladder-like (Flu-like)(Fig. 7A). On the other 288 

hand, phylogenies with shorter sampling time intervals (10 generations) had more clades, and these 289 
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shapes still Flu-like, but less so (Fig. 7B). Each dataset consisted of 200 sequences with 10,000 290 

bases long.  291 

All the methods showed an excellent performance, when the sampling time interval was larger and 292 

when evolutionary rates were faster, i.e., 50 years sampling time interval with 2 ×10–3 substitution 293 

rate (Fig. 7C5-7C7), except for treedater, which sometimes produced much earlier times (Fig. 294 

7C8). For this sampling time interval, time estimates also agreed well when the evolutionary rate 295 

was slower (10–5), but these estimates were less accurate than when the evolutionary rates were 296 

faster (Fig. 7C1-7C4), as RMSEs were 10 – 11 years for datasets with faster rates as compared to 297 

other datasets (2 – 4 years), except for treedater.   298 

The performances tended to become worse when the sampling intervals were ten years (Fig. 7D). 299 

Time estimates were worse for slower evolutionary rates (10–5), especially for RTDT and 300 

TreeTime (Fig. 7D1 and 7D3). We found that the temporal signals for these datasets (r2 of the 301 

regression between sampling time and root-to-tip lengths) were lower than those with faster 302 

evolutionary rates as well as those with longer sampling time intervals. These results were 303 

consistent with HIV-like simulation with three sampling time points (Fig. 6D). In addition to these 304 

issues, the performance of treedater was abysmal for some datasets and produced much earlier 305 

dates for most of the nodes (Supplementary material Fig. S1). 306 

Effect of phylogenetic and sampling time uncertainties on RTDT estimates 307 

In the above assessment, we assumed correct phylogenies and tip-sampling dates. However, some 308 

relationships in the inferred phylogenies may not be correct, and it is possible that dates for 309 

sampling times for some sequences are either unknown or can only be specified in ranges. While 310 

many available programs have provisions to deal with these uncertainties (e.g., LSD, BEAST, 311 

TreeTime, and treedater), the accuracy of times estimated is yet to be evaluated. Here we report 312 

results from our preliminary analyses to evaluate RTDT’s performance in the face of such 313 

biological realities as an exhaustive comparative benchmarking of all the methods for many 314 

possible types and degrees of phylogenetic and sampling time uncertainties is beyond the scope of 315 

this article.  316 

We first tested the impact of phylogenetic uncertainty on RTDT time estimates. We analyzed To 317 

et al.’s datasets for which inferred phylogenies were made available by them. 8% - 19% of the 318 

partitions in these phylogenies differed from the true phylogenies. We compared the accuracy of 319 
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RTDT estimates of the time to the most recent common ancestor (TMRCA) of all the ingroup 320 

strains because it can be directly compared between the inferred and actual phylogenies when they 321 

are not the same. We found that when the number of sampling time points was large (11), the 322 

estimate of TMRCA obtained using the inferred phylogeny was excellent, as it was, on average, 323 

less than 1 year different from that obtained by using the correct tree. However, when the number 324 

of sampling time points was small (3), the performance was good for Flu-like trees (Fig. 6B; < 1 325 

year difference on average), but unsatisfactory for HIV-like trees (Fig. 6A; 11 years difference on 326 

average). As noted above, RTDT tended to produce much older times for the deepest nodes, 327 

including the TMRCA, even when the correct topologies were used for HIV-like trees (Fig. 6D1). 328 

Therefore, our limited comparisons suggest that RTDT will be useful for datasets in which the 329 

number of sampling time points is large, even if the inferred phylogeny contains errors. To et al. 330 

[16] also reported that TMRCAs estimated by LSD were not affected much by errors in inferred 331 

phylogenies.  332 

We also tested the impact of including sequences with unknown sampling times. Sampling times 333 

for 20% of the randomly selected sequences were forgotten for IBR and ABR datasets evolved 334 

using subtype F HIV-1 phylogeny. We imputed the unknown sampling times by using a linear 335 

regression derived using the known sampling times and their root-to-tip lengths using the actual 336 

phylogenies. RTDT results with and without 20% missing sampling times were very similar 337 

(Supplementary material Fig. S4). Sagulenko et al. [19] and Votz and Frost [22] also analyzed 338 

datasets with unknown sampling times, however, their focus was to test the accuracy of imputed 339 

sampling dates and did not evaluate the impact on the divergence time estimates. Overall, our 340 

analyses suggest that a simple extension of RTDT may make it useful to include sequences with 341 

unknown or uncertain times, but this approach needs to be fully developed in the future and a 342 

comprehensive simulation analyses conducted to assess the absolute and relative efficiencies of 343 

different methods that allow for missing and uncertain sampling dates.  344 

Analyses of empirical datasets 345 

We also explored some empirical datasets (Fig. 2 and 5A and Supplementary material Fig. S2 346 

and Table 1) to test if RTDT was able to reproduce similar divergence times of viral strains as 347 

those reported in the original literature. We began with the HIV-1 subtype F dataset, in which we 348 

used phylogeny and other evolutionary characteristics of this dataset as a model for our HIV 349 
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simulation study (Fig. 2). We found that estimates obtained by Mehta et al. [29] were always older 350 

than those produced by using RTDT (Table 1). Since Mehta et al. [29] used BEAST using a 351 

lognormal rate model, this result was consistent with our simulation results, as all of these nodes 352 

are located deep in the HIV-F phylogeny (Fig. 2), for which BEAST is expected to show a 353 

tendency to infer older dates on ABR data (Fig. 3). Applying CorrTest [31] to this dataset, we 354 

found the autocorrelated clock model to be the best fit (P < 0.05). Fortunately, the difference 355 

between RTDT and BEAST dates do not contradict many of the biological scenarios presented by 356 

Mehta et al. [29], because reported (BEAST) HPDs overlapped RTDT CIs.  357 

We next examined results for Influenza A viral dataset, which served as a model for our influenza 358 

simulations (Fig. 5A). Stadler and Yang [15] reported the divergence times of the most recent 359 

common ancestors of human-classical swine, human clade, and classical swine clade (Fig. 5A and 360 

Table 1). They reported these divergence times with wide ranges (37 – 97 years) because different 361 

Bayesian methods produced different time estimates, e.g., an autocorrelated rate model in 362 

MCMCTree always produced much earlier times than the other rate models in MCMTree and 363 

BEAST (log-normal rate model). We found that RTDT estimates were very similar to BEAST 364 

with the log-normal rate model, e.g., 1813, 1898, 1910, and 1912 by MCMCTree with the 365 

autocorrelated model, independent model, BEAST (log-normal rate model) and RTDT, 366 

respectively for node 1. An ABR model fit this data set (CorrTest, P < 0.001), and our simulations 367 

already showed that all methods produced unreliable node time estimates for deep nodes (Fig. 5B). 368 

Therefore, this result was also consistent with our simulation results. Nevertheless, CIs of RTDT 369 

were mainly located within the overall HPDs reported (combined HPDs of methods used in the 370 

original study).  371 

Results from the analysis of two other HIV-1 datasets – subtypes B/D [32] and subtype D [33] – 372 

showed high concordance between RTDT and those reported in the original studies (Table 1). In 373 

the case of the HIV-1 subtype B/D dataset [32], phylogenies within clades for some data subsets 374 

were different. RTDT produced similar divergence times even though these trees were different, 375 

consistent with the simulation results (Supplementary material Fig. S4).  376 

However, for Rabies data, reported estimates were much older than RTDT (42 – 82 years 377 

differences), and a reported 95% HPD did not overlap the CI of RTDT. Similarly, for the HIV-2 378 

dataset, RTDT estimates did not agree with those reported, i.e., RTDT produced node times that 379 
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were much younger than those reported in the original study. Also, the reported HPDs did not 380 

overlap the CIs of RTDT. These discrepancies occurred because these data did not contain much 381 

temporal structure, as the root-to-tip lengths and sampling times did not show a good positive 382 

correlation (Supplementary material Figure S3). Tip-dating methods are known to be adversely 383 

affected by such data, and their use is generally not recommended [34, 35]. 384 

Computational time 385 

We also compared the computational time requirements of different methods. We did not use 386 

parallelizations and other optimizations when estimating computational efficiency to ensure a 387 

direct comparison. Nevertheless, Bayesian analyses can be performed with parallelization to 388 

reduce computational time, and non-Bayesian methods can also use parallelization when 389 

estimating branch lengths by maximum likelihood analysis.  In all our analyses, we used simulated 390 

influenza A datasets (one IBR and one ABR datasets) that contained 289 sequences. From these 391 

datasets, we sampled 50, 100, and 150 sequences and ran all the analyses. As expected, all non-392 

Bayesian methods (RTDT, LSD, TreeTime, and treedater) were much faster than the Bayesian 393 

methods (BEAST and MCMCTree). Non-Bayesian analyses completed within a few minutes, even 394 

for the largest dataset (289 sequences; Fig. 8). However, BEAST required >24 hours for even a 395 

small dataset (50 sequences), but MCMCTree was significantly faster than BEAST. Overall, non-396 

Bayesian methods scale well with larger datasets, and their computational time increased 397 

approximately linearly with the number of sequences and sites in a dataset. 398 

 399 

DISCUSSION 400 

We have presented a new relaxed-clock method (RTDT) to estimate times of sequence divergence 401 

using temporally sampled pathogenic strains. This new method is based on the relative rate 402 

framework in the RelTime method [25] but represents a significant advance of this framework as 403 

it removes the requirement that the sequences sampled be contemporaneous. In RTDT, there is no 404 

need to specify autocorrelation vs. independence of rates or to select a statistical distribution for 405 

branch rates, which is an advantage over Bayesian methods where such information is required a 406 
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priori. Besides, RTDT requires orders of magnitude less computational time than Bayesian 407 

approaches, which makes it feasible to analyze large datasets containing thousands of sequences.  408 

In this study, we have also provided results from our evaluation of the performance of RTDT and 409 

compared it with the performance of many other tip-dating methods using an extensive collection 410 

of simulated datasets. Based on the results from these simulations, we have developed a brief 411 

guideline for selecting methods for reconstructing pathogen timetree in empirical data analyses, 412 

which is as follows.  413 

First, it is critical to evaluate if the dataset being analyzed contains sufficient information to 414 

estimate divergence times reliably. If the number of unique sampling time points is rather small, 415 

then the time estimates are likely to be not reliable. Also, if the sequence evolution harbors a weak 416 

temporal signal, then all the methods will tend to produce unreliable time estimates, which was 417 

evident from the difference in the performance for datasets with weak and robust temporal signal 418 

measured through the correlation (r2) between the sampling times and the root-to-tip lengths in the 419 

phylogeny. For datasets not suffering from a weak temporal signal (r2 > 0.3), RTDT may be 420 

preferred, especially when the number of sampling times is large, because it produces excellent 421 

time estimates and their CIs, and it is speedy and available in a user-friendly software (MEGA). 422 

LSD can also produce excellent time estimates, and the CIs produced are generally too narrow and 423 

may not contain correct divergence times (low coverage probabilities).  424 

For datasets with a weak temporal signal, it is best to use Bayesian methods if they are 425 

computationally feasible. Otherwise, LSD may be applied because it is fast. In using the Bayesian 426 

method, the use of the correct clock model is important [36]. So, one should first test if the branch 427 

rates are autocorrelated by using the CorrTest [31] or Bayes factor analysis [37-39], because we 428 

found a strong signal for rate autocorrelation in HIV-1 subtype F, HIV-1 subtype D, HIV-2, and 429 

influenza datasets (Table 1). When the rates are found to be autocorrelated, MCMCTree with ABR 430 

model should be used. If IBR fits the data, then MCMCTree with IBR model or BEAST may be 431 

used. Whenever BEAST is used, we suggest that the lognormal rate model be selected. However, 432 

users need to be aware that BEAST may produce younger dates when a tree is ladder-like. In this 433 

case, one may confirm their results by using RTDT or LSD. 434 

The above guidelines are based on our tests in which we used the correct substitution pattern, 435 

phylogeny, and sampling dates. More advanced guidelines need to be developed through more 436 
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comprehensive investigations that evaluate the robustness of all the Bayesian and non-Bayesian 437 

methods against misspecification of the substitution model and errors in estimated branch lengths, 438 

phylogenetic topologies, sampling times, and the root position. Based on the results of our 439 

preliminary analyses, we cannot recommend using sequences with missing or uncertain sampling 440 

times. Also, there is a lack of in-depth studies that have assessed the accuracies of imputed 441 

sampling times and discovered conditions under which the inclusion of sequences with missing or 442 

uncertain sampling times is genuinely beneficial, except when they are biologically required. 443 

Furthermore, in practical data analysis, it will be challenging to detect sequences with erroneous 444 

sampling times from the data itself, because a change in evolutionary rates on a lineage may leave 445 

a phylogenetic footprint similar to those caused by incorrect sampling times. Of course, one should 446 

carefully examine the relationship between sampling times and root-to-tip lengths to identify and 447 

investigate outliers, which may be affected by errors in recorded sampling times. 448 

We also cannot recommend inferring root of the tree automatically, because of a paucity of the 449 

studies that have assessed the relative efficiencies of different methods in inferring the root and 450 

evaluated the accuracies of the estimates of root times. We have presented one example scenario 451 

(Supplementary material Fig. S5) in which the use of treedater produced a wrong root and poor 452 

time estimates. To et al. had also shown that the time estimates were less accurate when the root 453 

was inferred [16]. The challenge exists because the rates of evolution in the two branches 454 

connecting to the two descending clades of the root cannot always be de-convoluted 455 

unambiguously without an explicit outgroup. So, it is best to root the tree before molecular dating 456 

analysis. 457 

In conclusion, the new RTDT method is expected to be useful estimating times for many datasets 458 

and their confidence intervals, because of RTDT’s computational requirements and accuracy. 459 

RTDT is implemented in the cross-platform MEGA X software (version 10.1 and later) that is 460 

freely available from http://www.megasoftware.net.  461 

  462 
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MATERIAL AND METHODS 463 

Collection and analyses of empirical datasets.  464 

Nucleotide sequence alignments and sampling time information of nine different viruses (see 465 

Table 1 for the detail) were obtained from the supplementary information [15], Dryad Digital 466 

Repository (https://datadryad.org/) [32], or the authors [29, 33, 40]. The HIV-1 Subtype B/D data 467 

[32] was composed of eight datasets, in which each dataset contained sequences of genes (env, 468 

gag, or pol) or the full genome with various numbers of sequences.  469 

Generation and collection of simulated datasets.  470 

We simulated nucleotide sequence alignments along viral timetrees obtained from the original 471 

studies (subtype F HIV-1 [29] and Influenza A [15]) and the respective nucleotide substitution 472 

rates, transition/transversion ratio, CG contents, sequence lengths, and substitution models. The 473 

nucleotide substitution rates were obtained from these original studies (3.2 × 10–3 and 1.7 × 10–3 474 

per site per year for subtype F HIV-1 and Influenza A, respectively). The average 475 

transition/transversion ratios were 2.7 and 2.6, respectively, and the average CG contents were 476 

38% and 41%, respectively. The nucleotide sequence lengths simulated were the same as in the 477 

original datasets (1,293 bps and 1,710 bps, respectively). The tips of branches on the timetrees 478 

were truncated according to the sampling times, which were also obtained from the original 479 

studies. 480 

Using the Seq-Gen software [41] under HKY substitution model [42], 50 alignments were 481 

generated for each timetree with the constant rate (CBR), randomly varying rate (IBR), and 482 

autocorrelated rate (ABR) among branches, following the methods in Tamura et al. [26]. For IBR, 483 

each mutation rate was drawn from a uniform distribution with the interval ranging from 0.5r to 484 

1.5r, where r is the original mutation rate in the simulation above.  For ABR, the rate variation 485 

was autocorrelated between ancestral and descendant lineages. The rate of a descendant branch 486 

was drawn from a lognormal distribution with the mean rate of the ancestral branch and the 487 

variance equal to the time duration, in which the autocorrelation parameter, v in Kishino et al. [43], 488 

was set to 1. Among these datasets, we removed the dataset when it included identical sequences 489 

between different taxa, because identical sequences contain no information for sequence 490 

https://datadryad.org/
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divergence, and there is no way to know if they are sequences of the same strain or of different 491 

strain (which may become evident with longer sequences). Although the presence of real identical 492 

sequences in a dataset may be useful for population genetic analysis, e.g., coalescence and 493 

migration, but RTDT is not meant for those analyses.  494 

In total, we used 50, 49, and 43 datasets for Subtype F HIV-1 with CBR, IBR, and ABR, 495 

respectively, and 50, 50, and 38 datasets for Influenza A virus with CBR, IBR, and ABR, 496 

respectively. Since RTDT, LSD, TreeTime, and treedater require a phylogeny with branch lengths, 497 

we employed MEGA X [44] and estimated branch lengths along correct topologies using the 498 

Maximum Likelihood (ML) method with HKY nucleotide substitution model. These simulated 499 

datasets are available at https://github.com/cathyqqtao/RTDT, and the pipeline for the simulation 500 

is available by request.  501 

We obtained 400 To et al. datasets (simulated alignments and estimated maximum likelihood 502 

phylogenies with correct topologies) from the LSD website [http://www.atgc-503 

montpellier.fr/LSD/]. We excluded 77 datasets because they contained at least two identical 504 

sequences. Lastly, 240 Sagulenkoet al. datasets (simulated alignments and estimated maximum 505 

likelihood phylogenies with correct topologies) were obtained from the authors of ref. [19].  506 

To test the impact of mistakes in the phylogeny, we obtained 400 estimated phylogenies for the 507 

To et al. datasets from the same LSD website. These phylogenies were inferred directly from the 508 

simulated sequence data by using PhyML [45].  509 

To generate datasets with unknown sampling times, we randomly removed the sampling times of 510 

20% of ingroup tips (i.e., 26 sampling times) from the IBR and ABR datasets simulated based on 511 

the Subtype F HIV-1 phylogeny. To perform RTDT analysis, we first imputed these unknown 512 

sampling times by using a regression line that was obtained by analyzing the relationship between 513 

available sampling times and their root-to-tip lengths. If predicted sampling time was in the future, 514 

we assigned it to be the current date.     515 

Analyses of simulated datasets. 516 

All RTDT analyses were conducted using MEGA X [v10.1] [44] by providing estimated ML 517 

phylogenies and correct sampling times without any uncertainties.   518 

https://github.com/cathyqqtao/RTDT
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For LSD (v0.3) [16], TreeTime (v0.6.2) [19], and treedater (v0.3.0) [22] analysis, we provided the 519 

same sampling times and estimated ML phylogenies as used for RTDT, but these ML phylogenies 520 

contained only the ingroup sequences. Thus, we did not use the options (if any) to infer topology 521 

nor to root a tree. These methods were performed with the default parameter settings. For LSD 522 

analysis, the lower bound for the rate was 0.00001, and parameter of variances was 1. We required 523 

that divergence times between tips be older than tip sampling times. For each dataset, CIs were 524 

computed from 100 simulated trees, in which 1,000 bps were used to generate branch lengths of 525 

simulated trees. For TreeTime analysis, we used “--confidence” option to estimate CIs. The strict 526 

clock was used for CBR data, and the relaxed clock with the default setting was used for IBR and 527 

ABR data. More specifically, for the default relaxed clock setting, we set the strength of the 528 

Gaussian priors on branch-specific rate deviation to be 1.0, and the coupling of parent and 529 

offspring rates was set to 0.5 (i.e., -relaxed 1.0 0.5). This default parameter setting represents a 530 

weak correlation. For the analysis of ABR datasets, we also tried parameter settings with stronger 531 

rate correlations, i.e., -relaxed 5.0 1.0, and parameter settings with no correlation, i.e., -relax 1.0 532 

0, for IBR datasets. On average, the difference was < 1 year between these parameter settings. 533 

Therefore, we presented the results with the default setting. For the analysis of Sagulenkoet al. 534 

datasets, we used the inferences of TreeTime and LSD that were provided by the author of ref. 535 

[19].  536 

The correct substitution model was used in Bayesian methods. In BEAST [v1.8.0; 14], the strict 537 

clock model was used for analyzing CBR datasets, and an independent (lognormal) branch rate 538 

model was used for analyzing IBR and ABR datasets. Correct topologies and sampling dates were 539 

provided. The constant population size model was selected for the coalescent tree prior.  The 540 

number of steps that MCMC made was 100,000,000 steps, and trees were sampled every 10,000 541 

steps for CBR datasets. For IBR and ABR datasets, we used 200,000,000 steps and sampled every 542 

10,000 steps. To evaluate if large enough genealogies (trees) were sampled, we used the TRACER 543 

software [46] and confirmed that the number of independent information in the sampled posterior 544 

values (effective sample size; ESS) was at least 200 for most of the datasets. Among sampled trees, 545 

we excluded the first 10% of the trees as burn-in and computed the mean height of each node using 546 

the TreeAnnotator software, which is implemented in the BEAST software. To analyze To et al 547 

datasets, we used the same parameter settings as the original study, i.e., we used the input files 548 

provided at the LSD website [http://www.atgc-montpellier.fr/LSD/].    549 
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Datasets generated based on influenza A evolution were analyzed by using MCMCTree 550 

[PAML4.7; 47]. Parameter settings are the same as those in the original study [15], in which 551 

MCMCTree was used to analyze the empirical alignments. Discarding the first 20,000 iterations, 552 

500, 2,000 and 3,000 iterations were made for CBR, IBR, and ABR datasets, respectively, and 553 

trees were sampled every 100 iterations. Strict, independent, and autocorrelated clock model was 554 

used for analyzing datasets generated with the CBR, IBR, and ABR, respectively. ESS was higher 555 

than 200 for most of the nodes for each dataset.  556 

 Computation of average of absolute error rate and error rate 557 

To evaluate the average of absolute error rate, we computed the root mean square error (RMSE) 558 

of each method for each simulation, following ref. [16]. RMSE = √
1

𝑚×𝑛
∑ ∑ (𝑡̂𝑖𝑘 − 𝑡𝑖𝑘)

2𝑛
𝑘=1

𝑚
𝑖=1 , 559 

where i is the dataset (replicate), m is the total number of datasets, k is node, n is the total number 560 

of nodes, and 𝑡̂𝑖𝑘 and 𝑡𝑖𝑘 are the estimated and true times, respectively. This measure cannot detect 561 

the direction of biases (i.e., younger or older estimates than true times), and thus, we additionally 562 

computed mean error (ME), which is the average of the signed difference between estimated node 563 

time from its true time, i.e., ME = 
1

𝑚×𝑛
∑ ∑ (𝑡̂𝑖𝑘 − 𝑡𝑖𝑘)

𝑛
𝑘=1

𝑚
𝑖=1 .  ME less than zero indicates a bias 564 

towards overestimation of time because recent times in the Roman calendar have larger numerical 565 

values than earlier times, and a value greater than zero shows a tendency to underestimate time. 566 

Acquisition of computational time  567 

We recorded the computational times of different methods on estimating divergence times and CIs 568 

(or HPDs) in analyses of datasets with different numbers of sequences. We subsampled 50, 100, 569 

and 150 sequences from two influenza A simulated datasets (one for IBR and one for ABR) that 570 

contained 289 sequences. For each subsampled dataset, the number of ingroup and outgroup 571 

sequences were equal to each other. For example, a subset of 50 sequences contained 25 ingroup 572 

sequences and 25 outgroup sequences. For RTDT, we recorded the computational time of inferring 573 

divergence times and CIs with the option of using molecular sequences. For LSD and TreeTime, 574 

we recorded the sum of computational times for inferring the ML tree and for computing the 575 

divergence times and CIs. This computational time represents the total runtime of LSD and 576 

TreeTime analyses for a given molecular alignment. For treedater, we first recorded the sum of 577 

computational times for inferring the ML tree and for computing the divergence times. Then we 578 
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multiplied this runtime by 50 to represent the total runtime of analyzing 50 bootstrap replicates to 579 

get CI of a root node in treedater. For MCMCTree, we used the same chain length as the analysis 580 

of the Influenza A simulation. For BEAST with log-normal rate model, we used 300,000,000 581 

chains to ensure the convergence for the dataset with the largest number of sequences. All analyses 582 

were conducted on a single core without parallelization on the Linux machine with 896 GB RAM.  583 
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Supporting information 715 

S1 Figure. Performance of methods with various substitution rates and sampling time 716 

intervals (Extension of Figure 7). Each point is a node time estimate, and the colors indicate 717 

mutation rates to generate datasets.  718 

 719 

S2 Figure. Phylogenies from the published literature for empirical datasets. Phylogenies of 720 

HIV-1 subtype B/D (A), HIV-1 subtype D (B), HIV-2 (C), and rabies (D) are shown. Branch 721 

lengths were the number of substitutions. Sampling times were indicated for a few sequences. A 722 

number along a node is a node ID, which corresponds to that in Table 1. Those node times were 723 

reported in the original study. Phylogenies of HIV-1 subtype F and Influenza A are presented in 724 

Figure 2 and Figure 5A, respectively.   725 

 726 

S3 Figure. Relationships of root-to-tip lengths and sampling times for empirical data.  The 727 

empirical data was listed in Table 1.  728 

 729 

S4 Figure. Impact of incorrect sampling times. Each dataset contained incorrect sampling times 730 

of 20% of ingroup tips. RTDT was performed by using these incorrect sampling times with correct 731 

phylogenies. The average node times across datasets agreed very well with their true times for 732 

both IBR and ABR datasets (A and B, respectively), and these accuracies were similar to when we 733 

provided correct sampling times (Fig. 3).  734 

 735 

S5 Figure. The prediction of the root position and divergence time. (A) The true timetree, 736 

where R is the root of interest. Sequences were simulated based on the true timetree under an IBR 737 

model for the HIV data. (B) The ML phylogeny for this dataset was correct, except that the position 738 

of root was not available when the outgroup sequence was excluded from the data, and it was better 739 

to use an outgroup (panel C). The treedater program predicted a wrong root and time (1971 rather 740 

than 1982) for the dataset that excluded the outgroup sequence (panel D).  The use of outgroup 741 

resulted in a better time estimated (panel E). This means that lengths of two branches (bx and by) 742 
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emanating from node R could not be determined reliably without the availability of the outgroup 743 

sequence. 744 

 745 

  746 
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   748 

Table 1: Empirical datasets used in this study

Clock model

Virus Node* RTDT Reported in the Reference CorrTest Reference

HIV-1 Subtype F (154 sequences, 1293 bps) a
Autocorrelated Mehta, et al.

Node 1 1985.3 (1980 - 1987) 1980 (1975 - 1985) (2011)

Node 2 1985.1 (1980 - 1988) 1978 (1972 - 1983)

Node 3 1980.0 (1977 - 1982) 1973 (1966 - 1980)

HIV-1 Subtype D (24 sequences, 2173 bps) a
Autocorrelated Parczewski, et al.

Node 1 2003 (1999 - 2005) 2001 (1999 - 2005) (2012)

Node 2 2000 (1991 - 2003) 1999 (1992 - 2001)

Node 3 1995 (1984 - 1997) 1997 (1994 - 1998)

Node 4 2006 (1998 - 2007) 2003 (1999 - 2005)

HIV-1 Subtypes B/D (38 -133 sequence, 1497 - 8877 bps) a,d Mixedx Worobey, et al.

Node 1 1960 - 1966 (1948 - 1971) 1966 - 1969 (1961 - 1972) (2016)

Node 2 1963 - 1969 (1945 - 1974) 1969 -1972 (1966 - 1974)

Node 3 1967 - 1970 (1949 - 1975) 1969 - 1974 (1967 - 1975)

HIV-2 (33 sequences, 1107 bps) b Autocorrelated Stadler and Yang

Node 1 1983 (1978 - 1985) 1938-1941 (1952 - 1973) (2013)

Node 2 1985 (1979 - 1985) 1956 (1922 - 1957)

Node 3 1985 (1975 - 1986) 1961-1964 (1944 - 1966)

Rabies (67 sequences, 1350 bps) a Independent McElhinney, et al.

Node 1 1967 (1936 - 1971) 1885 (1848 - 1914) (2011)

Node 2 1971 (1936 - 1972) 1917 (1894 - 1937)

Node 3 1982 (1936 - 1973) 1931 (1914 - 1947)

Node 4 1973 (1936 - 1973) 1941 (1925 - 1955)

Influenza A (289 sequences, 1710 bps)
c Autocorrelated Stadler and Yang

Node 1 1912 (1898 - 1916) 1813-1910 (1760 - 1917) (2013)

Node 2 1915 (1898 - 1918) 1832-1914 (1787 - 1918)

Node 3 1928 (1910 - 1930) 1889-1926 (1857 - 1929)

a: BEAST with lognormal rates 

b: MCMCtree with constant and autocorrelated clock models

c: BEAST with lognormal rates and MCMCtree with constant, independent, and autocorrelated clock models. 

The range of estimated times based on these different methods was given.

d: The range of time estimates was obtained based on eight different subdatasets.

x: Five datasets showed autocorrelated rates and three independent rates.

*: Node IDs were given in Figures. 2, 5A, and Supplementary material Figure S2.

Time Estimates (year)
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Figure legends 749 

Figure 1. RelTime with Dated-Tips (RTDT) approach. (A) Phylogeny of five pathogen sequences 750 

(x1, x2, x3, x4, and outgroup), with branch lengths (bi). The year of sequence sampling (ti) is given 751 

in the parenthesis. The internal nodes are indicated by X, Y, and XY. (B) The relationship between 752 

the path lengths from node XY to tip and sampling times. For example, the point of x1 is (2001, bX 753 

+ b1). In the current example, the linear regression expression is i = 2.479 × ti – 4957. We locate 754 

a root at the position of  = 0 along the regression line. (C-E) Projected phylogeny. Root-To-Tip 755 

lengths were projected using linear regression. We first estimate relative rates at b1-b4, i.e., r1-r4 756 

(C), and then estimate those at deeper positions of the phylogeny, i.e., rX and rY (D). Lastly, we 757 

estimate the projected length from root to internal nodes, e.g., X (E). (F) Estimated timetree. The 758 

final divergence times are estimated by using the regression line in panel B.  759 

 760 

Figure 2. Phylogeny of HIV-1 subtype F was used as the model tree. A few sampling times are 761 

shown at the tips. The number along a node is the node ID corresponding to nodes of importance 762 

in the original study [29]; see also Table 1. 763 

 764 

Figure 3. Estimates (average node time) for computer-simulated datasets of HIV-1 subtype F. The 765 

model tree is presented in Figure 2. RTDT (blue), LSD (green), TreeTime (red), treedater (purple), 766 

and BEAST (orange) were used for datasets simulated under CBR clock model (A-E), IBR clock 767 

model (F-J), and ABR clock model (K-O). These averages were means from 50 simulated datasets 768 

(replicates) at each node, and error bars indicate standard deviation. For BEAST, we used a strict 769 

rate model for the analyses of datasets with CBR, and log-normal rate models were used for IBR 770 

and ABR datasets. Mean error (ME) and root mean square error (RMSE) are shown within each 771 

panel. Negative values of ME indicate overestimation, and positive values indicate a tendency to 772 

generate underestimates.   773 

 774 

Figure 4. The proportion of nodes with ≥95% coverage probabilities and mean of coverage 775 

probability of CIs or HPDs for computer-simulated datasets of HIV-1 subtype F. The proportion 776 

of nodes with ≥95% coverage probability is the proportion of nodes in which ≥95% of CIs and 777 
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HPDs contained the actual time, and mean coverage probability is the mean proportion of CIs and 778 

HPDs that contained the actual time across the nodes. The model tree is presented in Figure 2. 779 

There were 50 simulated datasets (replicates) for each of CBR, IBR, and ABR datasets. Therefore, 780 

each node had 50 CIs or HPDs to compute the coverage probability of a node. We did not use 781 

treedater because it does not produce CIs.  782 

 783 

Figure 5. Performance of methods on the ladder-like tree.  (A) Phylogeny of Influenza A. 784 

Sampling times are given for some tips. A number along a node is a node ID, which corresponds 785 

to those in Table 1. Fifty datasets were generated along this phylogeny with CBR, IBR or ABR. 786 

(B) Average node time estimates by RTDT (blue), LSD (green), TreeTime (red), treedater (purple), 787 

and MCMCTree (brown) for datasets with CBR, IBR, and ABR. Each time point is an average of 788 

50 simulated datasets, and error bars indicate standard deviations. Error bars of treedater are not 789 

shown for ABR datasets, because these standard deviations were very large. MCMCTree was 790 

performed by using the correct branch rate model for each dataset. Mean error (ME) and root mean 791 

square error (RMSE) are shown within each panel. (C) The proportion of nodes with ≥95% 792 

coverage probabilities and mean of coverage probabilities of CIs or HPDs. The proportion of nodes 793 

with ≥95% coverage probability is the proportion of nodes in which ≥95% of CIs and HPDs 794 

contained the actual time, and mean coverage probability is the mean proportion of CIs and HPDs 795 

that contained the actual time across the nodes. We did not use treedater because it does not 796 

produce CIs. 797 

 798 

Figure 6. Performance of methods with a small number of sampling time points. (A and B) An 799 

example of HIV-like phylogeny (A) and Influenza-like phylogeny (B). Tips are colored based on 800 

the sampling times. In this phylogeny, the root age was set to year of 0 (actual age). Datasets were 801 

generated with independent rates. (C-F) Node time estimates by RTDT (blue), LSD (green), 802 

TreeTime (red), treedater (purple), and BEAST with log-normal rate model (orange) for datasets 803 

with eleven sampling time points (C and E for HIV-like and Flu-like phylogeny, respectively) and 804 

three sampling time points (D and F for HIV-like and Flu-like phylogeny, respectively). Mean 805 

error (ME) and root mean square error (RMSE) are shown within each panel. 806 

 807 
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Figure 7. Performance of methods with various substitution rates and sampling time intervals. (A 808 

and B) Example phylogenies with sampling time intervals of 50 years (A) and ten years (B). 809 

Phylogenies with sampling time intervals of 50 years are Flu-like (A), while those with ten years 810 

were less ladder-like (B). Mutation rates in these example phylogenies are 2 × 10–3. Tips are 811 

colored based on the sampling times. (C and D) Node time estimates by RTDT (blue), LSD 812 

(green), TreeTime (red), and treedater (purple) for datasets with sampling time intervals of 50 813 

years (C) and 10 years (D), and mutation rates are slowest (10–5; top) or fastest (2 × 10–3; bottom) 814 

among the datasets. Mean error (ME) and root mean square error (RMSE) are shown within each 815 

panel. The results of the other mutations rates and those with sampling time intervals of 20 years 816 

are presented in Supplementary Material Figure S1.   817 

 818 

Figure 8. Computational time. We used simulated influenza A datasets (one IBR and one ABR 819 

datasets) that contained 289 sequences. From these datasets, we sampled 50, 100, and 150 820 

sequences. For BEAST, we used a log-normal rate model, and correct models were selected for 821 

MCMCTree.  822 

  823 
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Figure 3 829 

 830 

  831 



37 

 

Figure 4 832 

 833 

  834 



38 

 

Figure 5 835 

 836 

  837 



39 

 

Figure 6 838 

 839 

  840 



40 

 

Figure 7 841 

 842 



41 

 

Figure 8 843 

 844 

 845 


