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ABSTRACT

Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen
spread through the populations as captured in the evolutionary history of strains. These timetrees
are inferred by using molecular sequences of pathogenic strains sampled at different times. That
is, temporally sampled sequences enable the inference of sequence divergence times. Here, we
present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees
based on a relative rate framework underlying the RelTime approach that is algebraic in nature
and distinct from all other current methods. RTDT does not require many of the priors demanded
by Bayesian approaches, and it has light computing requirements. In analyses of an extensive
collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the
coverage probabilities of their confidence intervals (Cls) to be excellent. In analyses of empirical
datasets, RTDT produced dates that were similar to those reported in the literature. In comparative
benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we
found that no method performed the best in every scenario. So, we provide a brief guideline for
users to select the most appropriate method in empirical data analysis. RTDT is implemented for
use via a graphical user interface and in high-throughput settings in the newest release of cross-

platform MEGA X software, freely available from http://www.megasoftware.net.
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AUTHOR SUMMARY

Pathogen timetrees trace the origins and evolutionary histories of strains in populations, hosts, and
outbreaks. The tips of these molecular phylogenies often contain sampling time information
because the sequences were generally obtained at different times during the disease outbreaks and
propagation. We have developed a new method for inferring divergence times and confidence
intervals for phylogenies with tip dates. The new Relative Times with Dated Tips (RTDT) methods
showed excellent performance in the analysis of computer-simulated datasets, producing similar
or better results in several evolutionary scenarios as compared to other fast, non-Bayesian methods.
The new method is available in the cross-platform MEGA software package (version 10.1 and
higher) that provides a graphical user interface and allows usage via a command line in scripting

and high throughput analysis (www.megasoftware.net).
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Introduction

Molecular phylogenetics enables the dating of the origin of pathogens and the emergence of new
strains [1-3]. Typically, strains are sampled from individuals and populations during an ongoing
or historical outbreak [4-9]. When sequences are paired with their sampling times, it becomes
possible to calibrate molecular phylogenies of pathogen sequences and infer the timing of pathogen
evolution. For example, HIV-1 sequences have been sampled at various times and geographic
locations following its initial characterization in 1983 [2, 9, 10]. Analyses of sequences extracted
from circulating strains and “archived” strains from preserved tissue samples have established that
HIV-1 (group M) entered the human populations in the early 20" century in Sub-Saharan Africa
[10] and that subsequently dispersed across the globe [11, 12].

Many competing methods are available to build pathogen timetrees that estimate the timing of
divergence of lineages in the tree [13-22]. In these analyses, the tips in a phylogeny are non-
contemporaneous, and sampling times serve as calibrations that provide a means to date historical
sequence divergences. These analyses are different from those used for the estimation of species
divergence times because the sampling times of sequences from different species are effectively
simultaneous. The difference in the sampling years for all sequences in interspecies datasets can

be assumed to be effectively zero when compared to the time-scale of speciation.

The Bayesian framework underlies many of the widely-used tools for building pathogen timetrees
(MCMCTree [15] and BEAST [14]). The use of Bayesian methods requires researchers to specify
a clock prior that governs the change of evolutionary rate over lineages and a coalescent model or
a speciation model (e.g., birth-death process) to generate a tree prior [ 14, 15]. Such information is
rarely available a priori, and time estimates can vary when using different priors [23], resulting in
alternative biological interpretations [15, 24]. Meanwhile, Bayesian methods often require long
computational times, which makes them infeasible for analyzing datasets with thousands of

sequences in contemporary molecular epidemiology [16, 19, 22].

Here, we present an approach based on the relative rate framework underlying the RelTime method
[25, 26]. The RelTime method is attractive because it is not computationally demanding, and it
does not require explicit clock and coalescent model priors. Both simulated and empirical analyses

have shown RelTime to perform well for dating species evolution [25-27]. The new approach
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advances RelTime by relaxing the requirement that all tips in the phylogenetic tree are
contemporaneous (i.e., sampling time ¢ = 0), making it suitable for dating of pathogenic strains.
We call it the RelTime with Dated Tips (RTDT) approach. Similar to RelTime, RTDT is an
algebraic approach, so it is lightning fast and distinct from other approaches. For example,
TreeTime [19] is a maximum likelihood approach that uses a normal prior to control the rate
variation to make the clock to be more autocorrelated-like or more independent-like, and it
implements a skyline coalescence model. LSD [16] uses least-squares criteria, and treedater [22]
uses likelihood and least-squares jointly. LSD assumes the rate noise to be independent among
branches within its clock framework, and treedater assumes branch rates to vary independently. In
contrast, RTDT is based on an algebraic relative rate framework and does not make any explicit

assumptions about evolutionary rate autocorrelation and independence varying.

Through the analysis of simulated datasets generated under different assumptions and empirically
derived phylogenies, we compared the accuracy of dates and confidence intervals (Cls) estimated
by RTDT with those produced by software implementing Bayesian methods (BEAST [14] and
MCMCTree [15]) and non-Bayesian approaches (Least Squares Dating, LSD [16], TreeTime [19],
and treedater [22]). These comparisons are more extensive than ever reported before, as our
analyses involved the largest number of methods ever tested and the most extensive collection of
simulated datasets and different rate variation scenarios explored. Furthermore, in the past, studies
of benchmarking these methods have generally reported the accuracy of estimation of substitution
rates or the age of the root node of phylogeny [13, 19, 20, 22]. To et al. [16] reported the average
of the absolute and relative differences in actual and estimated times for all the nodes in simulated
analysis to compare methods. However, this measure does not detect node-specific biases and

patterns.

Therefore, the accuracy of node-by-node age estimates remains to be evaluated, which we have
reported here. Also, previous studies have only used simulated computer datasets in which the
independent branch rate (IBR) model was applied. In addition to datasets simulated under IBR
model, we report the performance of all methods for phylogenies in which branch rates were
autocorrelated (ABR model). This is important because HIV-1 subtype F, HIV-1 subtype D, HIV-
2, and influenza phylogenies showed highly significant autocorrelation of rates (Table 1). In fact,
MCMCTree provides an ABR model for tip-dating, and TreeTime implicitly employs rate

correlation, but their performances have not been tested by using datasets that have evolved with
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ABR. Therefore, our analyses produce an extensive assessment of the performance of divergence

time estimation by using available Bayesian and non-Bayesian methods.

Here, we first present the algorithm for the new method, RTDT. We then evaluate the node-by-
node accuracy of dates and Cls estimated by RTDT together with Bayesian (BEAST and
MCMCTree) and non-Bayesian (LSD, TreeTime, and treedater) methods using simulated datasets.
This evaluation of different methods yielded new insights into the performance of tip-dating
methods in building pathogen timetrees, which formed the basis of our brief guidelines for

researchers to select the best method for their dataset.
RESULTS
New Approach (RTDT) for estimating divergence times using temporally sampled sequences

We illustrate the new approach by using a simple example dataset containing four ingroup
sequences (x1, x2, x3, x4) with an outgroup sequence (Fig. 1A) because RTDT requires a phylogeny
with outgroup specified. This is different from some methods (e.g., BEAST), which jointly
estimate phylogenies and divergence times without requiring the specification of outgroup
sequences. In the ingroup, sequence x; is assumed to be sampled in the year of #: (2001, 2003, 2002,
and 2011, for x1, x2, x3, and x4, respectively) and b:’s are the branch lengths, expressed in expected
substitutions per site (Fig. 1A). The goal is to estimate the time at internal nodes, X, Y, and XY:
tx, ty, and xy.

This phylogeny has a time-scale measured in chronological time (#) and the number of
substitutions (bi). In the RTDT approach, we first project the path length A (number of
substitutions) from the root to a tip (x;) of the phylogeny under the assumption that x; accumulated
substitutions to the year of the sampling time, #, with a constant evolutionary rate (Fig. 1B). The
projection is accomplished by first regressing the estimated length (in substitutions/site) from the
node ingroup latest common ancestor (XY, i.e., root) to a tip (xi) in the original tree using the
corresponding sampling time. This slope is used to project root-to-tip length, A;, forward in time.
In our example, A; = 2.479 x t; — 4957, where -4957 is the intercept of the y-axis, and 2.479 is the
slope. For example, the projected root-to-node length for sequence x1 is A1 = 2.479 x 2001 — 4957
= 3.48. Note that the root in this projection is an “internal-root,” which is located at the position of

zero substitution along the slope (Fig. 1B).
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If the evolutionary rate were shared between branches b1 and b2, then the length from root to the
internal node X, i.e., Ax, predicted by using A1 and b1 and that predicted by using A2 and b2 should
be the same. In practice, they are not the same: Ax is predicted to be 1.66 when using A1 and b1 (=
A1 — b1=3.48 - 1.82) and 1.05 when using A2 and b2 (= A2 - b2 = 8.44 - 7.39), respectively. This
suggests the inequality of evolutionary rates between b1 and b2. Under the RRF framework [25,
26] we, therefore, estimate their relative rates, »1 and r2, respectively, in which these two sister
lineages inherited rates from their common ancestor with the minimum ancestor-descendant rate
change. Assuming that the ancestral rate is equal to 1, we have the relationship, (r1 x r2)"2 =1 [25].
We used the geometric mean because relative rates could be very different from each other. We
then project (recalibrate) b1 and b2 by determining the values of 71 and 2, which reconcile the two

different estimates of Ax (Fig. 1C).

The projected b1 is b1" = b1 x (1/r1) and the projected b2 is b2" = b2 x (1/r2). To determine the
appropriate rate change factors, we first require that the root-to-X length (Ax) computed using A1
and b1', 1.e., &1 — b1 = A1 — b1 % (1/r1), and Ax using A2 and b2, i.e., A2 — b2 x (1/r2), be identical.
Thus, we obtain the relationship, A1 — b1 % (1/r1) = A2 — b2 % (1/r2). Second, we use the constraint
(r1x r2)Y2 =1, to solve for 1= 0.93 and 2= 1.08 in the current example. Similarly, for node Y,

we calculate 73 and r4, which gives 73=0.99 and 4= 1.01.

In the next step, we compute the relative rates of bx and by, i.e., rx and ry, respectively. We
similarly use projected branch lengths, b/, and projected root-to-tip lengths, 4;. Here, we use the
shortest root-to-tip length in each lineage of X and Y, because it is closest to a known sampling
time from the root. Because x1 and x3 give the shortest length in the lineages X and Y, respectively,
Axy on lineage X is given by A1 — b1’ — bx’, and lineage Y gives A3 — b3’ — by’ (Fig. 1D). Thus, we
seek to enforce A1 — b1’ — bx’ = A3 — b3’ — by'. Given that (rx x rv)"?> = 1, we can calculate rx=1.07
and ry = 0.93. Note that we previously assigned rx equal to 1, as the ancestral rate of b1 and b2
correspond to rx. Similarly, »v was assigned to be 1. Therefore, the relative rates in the descendant
branches are rescaled. For example, the new relative rate for the branch leading x1 becomes 71 new
=rxrx=0.93 x 1.07 = 1.00. Accordingly, projected branch lengths in the descendant lineages

are rescaled, e.g., b1’ = b1 X (1/r1_new).

Since all tip branch lengths are now projected, we can obtain projected lengths from root to each
internal node, i.e., Ax, Ay, and Axy. For example, Ax is equal to be 1.66 [= 41 — b1’ = 41 — b1 X

7
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(1/71 new) = 3.48 - 1.82 x (1/1.00)] (Fig. 1E). Using Ax, Ay, Axy, and the regression line, 4; =2.479
x ti—4957 (Fig. 1B), we obtain divergence times at the nodes XY, X, and Y to be 1999.9, 2000.3,
and 2000.4, respectively (Fig. 1F).

The dates obtained by using the above approaches are point estimates, as the underlying relative
rates framework in the RelTime approach is algebraic in nature in which relative divergence times
in the tree are a direct function of the branch lengths [25, 26]. Tao et al. [28] have proposed an
analytical approach to estimate CIs for RelTime in which the variance contributed by site sampling
and variability of rates among lineages is considered. Using that approach, RTDT produces both

the point time estimate and the 95% CI of each time.
Performance evaluation using simulated HIV data

We first present results from computer simulations conducted using parameters and tree topology
derived from a DNA sequence alignment of subtype F HIV-1 [29] — a representative dataset with
154 strains with various sampling times (years 1987- 2007; Fig. 2). We generated two collections
of simulated datasets using this model phylogeny. In one, evolutionary rates varied independently
from branch to branch (IBR model), and in the other, rates were correlated between ancestor and
descendant branches (ABR model). We also generated a collection of simulated datasets in which
the expected evolutionary rates were the same for all branches (constant branch rates, CBR model),
to serve as the baseline model. Fifty replicates were simulated with each clock model (CBR, ABR,
and IBR). To perform the analysis of RTDT, LSD, TreeTime, treedater, and BEAST, we used the
correct tree topology (branching pattern) in all our analyses because we wish to compare the actual
and estimated times, which would otherwise be not possible if the tree topology contained errors.
Also, we did not wish to confound the impact of errors in topological inference with that of the
time estimates. In the same vein, we used the correct nucleotide substitution model to keep our
focus on the accuracy of the time estimates, rather than on the problems encountered by the
misspecified substitution models. For each method, 50 time estimates were generated for each

node in the model phylogeny.

RTDT produced average time estimates that were very similar to the actual time for each node in
all simulation scenarios (Fig. 3A, 3F, and 3K). LSD, TreeTime, and treedater also performed well
for the CBR and IBR datasets (Fig. 3B-3D and 3G-31I). However, for the ABR datasets, average

node time estimates across simulated datasets for these methods were often older than the actual
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times (Fig. 3L-3N). This overestimation was more severe for deeper divergences than recent
divergences, especially in the case of the treedater method (Fig. 3N). Interestingly, even though
TreeTime is a likelihood approach in which the ancestor-descendant rate shifts are penalized [19],

which implies rate autocorrelation, its performance was worse than RTDT for ABR datasets.

In BEAST analyses, the use of a strict clock model for the CBR datasets resulted in excellent
performance (Fig. 3E). BEAST with the lognormal clock model also performed well for IBR
databases (Fig. 3J), even though we sampled rates from a truncated uniform distribution in IBR
simulations. The use of BEAST with lognormal distribution is appropriate and effective in these
analyses because the lognormal distribution fits the distribution of evolutionary rates for IBR
datasets. However, BEAST did not perform well for ABR datasets (Fig. 30), which means its
estimates produced under the assumption of evolutionary rate independence among branches are
not appropriate when this assumption is violated. For ABR datasets, BEAST produced much
earlier dates for deeper divergences and younger dates for more recent divergence. This result is
consistent with those from a previous study where BEAST produced erroneous node times when
evolutionary rates are lineage (clade) specific [30], i.e., there were local similarities in evolutionary

rates.

Overall, all the methods showed similar performance for CBR and IBR datasets, but RTDT
showed good results for ABR datasets as well. For ABR datasets, the average of absolute
difference of estimated node time from its correct time, which is the root mean square error metric
(RMSE; see Methods for the detail) was only five years for RTDT, while the other methods were
7 — 19 years for ABR datasets (Fig. 3K-30). Also, the estimates of the other non-Bayesian
methods were systematically biased toward older times, as the average of the difference of
estimates from correct times, which is the mean error metric (ME; see Methods for the detail),

were 1.5 to 10.1 years older. For RTDT, the average was only 0.7 years younger.

Next, we evaluated the coverage probabilities, which measure how often the actual node
divergence times were contained in 95% Cls or the highest posterior density intervals (HPDs) of
the estimated times. The treedater method could not be included in these comparisons because it
does not produce a CI for every node. The proportion of nodes with 95% coverage probabilities
are shown in figure 4 for CBR, IBR, and ABR datasets. A vast majority of CIs produced by RTDT

contained their correct times; 82% — 91% of the nodes showed 295% coverage probability. All
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other methods showed lower overall coverage probabilities, as the mean proportion of Cls that
contained the actual time across the nodes was less than 77% for the datasets in which rates varied

across lineages.
Performance evaluation using simulated Influenza data

We next generated datasets by using an Influenza A virus phylogeny (Fig. SA)[15], which
contained a larger number of sequences (289 sequences) than the simulated HIV datasets. Also,
this phylogeny is dramatically different from the HIV phylogeny in figure 2, because of its ladder-
like, highly unbalanced shape. We generated 50 datasets each under CBR, IBR, and ABR scenarios
and analyzed them using RTDT, LSD, TreeTime, treedater, and MCMCTree. We used
MCMCTree instead of BEAST because it was employed in the source publication [15] and

because BEAST (lognormal model) required many days for each dataset to converge.

The average node time estimates of RTDT agreed well with their correct times for CBR and IBR
datasets, but average node times were slightly older for deeper divergences for ABR datasets (Fig.
5B1, 5B6, and 5B11). Its performance was similar to or better than all other non-Bayesian
methods. For Bayesian analyses, we used MCMCTree and specified the correct clock model, i.e.,
we used the strict, and independent, and autocorrelated clock modes for CBR, IBR, and ABR
datasets, respectively. MCMCTree showed similar accuracy trends as RTDT (Fig. 5B5, 5B10, and
5B15), but performed better than all non-Bayesian methods for ABR datasets when considering
variance among replicates for deeper node time estimates. RTDT estimates were more dispersed
than MCMCTree, resulting in larger RMSE (Fig. 5B11 and 5B15). However, Cls produced by
RTDT showed very high coverage probabilities (>97%), whereas other non-Bayesian methods did
not do as well (23% — 73%). MCMCTree showed intermediate performance for rate variable
datasets (91% — 96%; Fig. SC). Therefore, RTDT is useful to generate more reliable Cls for
hypothesis testing and useful especially when the dataset is very large, and Bayesian methods

require long computational times.
Effect of the number of time points sampled

We next evaluated the performance of RTDT, LSD, TreeTime, treedater, and BEAST for datasets
simulated by To et al.’s [16], which mimic intra-host evolution. In these datasets, many tips shared
the same sampling times (dates), and the number of distinct sampling times was only three or

eleven. The sequences that were sampled at the same time may belong to different clades (HIV-
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like tree, e.g., Fig. 6A) or the same clade (Flu-like tree, e.g., Fig. 6B). Each dataset consisted of
110 sequences that were 1,000 bases long, and rates varied independently among branches (log-

normal distribution of branch rates) [16]. Each simulated phylogeny was different from each other.

In the analysis of To et al.’s datasets with phylogenies similar in shape to the HIV-1 model tree
(Fig. 6A; Fig. 2), all the methods performed well when the number of sampling time points was
larger, i.e., eleven time points (Fig. 6C). These results are consistent with those observed for the
HIV-1 model tree (Fig. 3), with the exception that TreeTime, produced much younger dates for

recent divergence events for some nodes (Fig. 6C3).

However, the performance deteriorated for all the non-Bayesian methods when only three distinct
sampling times were available. They showed higher average absolute error rates than those with
eleven distinct sampling time points (Fig. 6D). We found a low correlation between sampling
times and their root-to-tip lengths in these datasets (7* < 0.3; Fig. 6D1-6D5). Such datasets often
yielded inferior results, especially for the deep nodes. BEAST also produced erroneous times when
the number of sampling points was small or 7> was low, but it performed better than non-Bayesian

methods (Fig. 6D5).

For ladder-like (Flu-like) phylogenies in To et al.’s datasets (e.g., Fig. 6B), results from eleven
distinct sampling time points showed a good agreement with the actual times for all the methods
(Fig. 6E). However, the relationship showed an undulating pattern of high and low dispersion,
with the low dispersions observed for nodes that were located close to the tips. For these datasets,
errors of BEAST (log-normal rate model) estimates were systematically biased toward younger
dates (Fig. 6ES), more so than non-Bayesian methods. The undulating pattern of high and low
dispersion, as well as the systematic error in BEAST, became more severe when the number of
sampling time points was only three (Fig. 6F). Overall, all methods showed limited accuracies on

phylogenies in which the number of different sampling dates was small.
Effects of substitution rates and sampling time intervals

We next analyzed Sagulenko et al. [19] data, which were generated by simulating populations of
size equal to 100 with evolutionary rates from 10~ to 2 x107> substitutions per site per year.
Sequences were sampled every 10, 20, or 50 generations. When the sampling time interval was
longer (i.e., 50 generations), those phylogenies were ladder-like (Flu-like)(Fig. 7A). On the other

hand, phylogenies with shorter sampling time intervals (10 generations) had more clades, and these

11
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shapes still Flu-like, but less so (Fig. 7B). Each dataset consisted of 200 sequences with 10,000

bases long.

All the methods showed an excellent performance, when the sampling time interval was larger and
when evolutionary rates were faster, i.e., 50 years sampling time interval with 2 107 substitution
rate (Fig. 7C5-7C7), except for treedater, which sometimes produced much earlier times (Fig.
7C8). For this sampling time interval, time estimates also agreed well when the evolutionary rate
was slower (107°), but these estimates were less accurate than when the evolutionary rates were
faster (Fig. 7C1-7C4), as RMSEs were 10 — 11 years for datasets with faster rates as compared to

other datasets (2 — 4 years), except for treedater.

The performances tended to become worse when the sampling intervals were ten years (Fig. 7D).
Time estimates were worse for slower evolutionary rates (107°), especially for RTDT and
TreeTime (Fig. 7D1 and 7D3). We found that the temporal signals for these datasets (#* of the
regression between sampling time and root-to-tip lengths) were lower than those with faster
evolutionary rates as well as those with longer sampling time intervals. These results were
consistent with HIV-like simulation with three sampling time points (Fig. 6D). In addition to these
issues, the performance of treedater was abysmal for some datasets and produced much earlier

dates for most of the nodes (Supplementary material Fig. S1).
Effect of phylogenetic and sampling time uncertainties on RTDT estimates

In the above assessment, we assumed correct phylogenies and tip-sampling dates. However, some
relationships in the inferred phylogenies may not be correct, and it is possible that dates for
sampling times for some sequences are either unknown or can only be specified in ranges. While
many available programs have provisions to deal with these uncertainties (e.g., LSD, BEAST,
TreeTime, and treedater), the accuracy of times estimated is yet to be evaluated. Here we report
results from our preliminary analyses to evaluate RTDT’s performance in the face of such
biological realities as an exhaustive comparative benchmarking of all the methods for many
possible types and degrees of phylogenetic and sampling time uncertainties is beyond the scope of

this article.

We first tested the impact of phylogenetic uncertainty on RTDT time estimates. We analyzed To
et al.’s datasets for which inferred phylogenies were made available by them. 8% - 19% of the

partitions in these phylogenies differed from the true phylogenies: We compared the accuracy of
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RTDT estimates of the time to the most recent common ancestor (TMRCA) of all the ingroup
strains because it can be directly compared between the inferred and actual phylogenies when they
are not the same. We found that when the number of sampling time points was large (11), the
estimate of TMRCA obtained using the inferred phylogeny was excellent, as it was, on average,
less than 1 year different from that obtained by using the correct tree. However, when the number
of sampling time points was small (3), the performance was good for Flu-like trees (Fig. 6B; < 1
year difference on average), but unsatisfactory for HIV-like trees (Fig. 6A; 11 years difference on
average). As noted above, RTDT tended to produce much older times for the deepest nodes,
including the TMRCA, even when the correct topologies were used for HIV-like trees (Fig. 6D1).
Therefore, our limited comparisons suggest that RTDT will be useful for datasets in which the
number of sampling time points is large, even if the inferred phylogeny contains errors. To et al.
[16] also reported that TMRCAs estimated by LSD were not affected much by errors in inferred
phylogenies.

We also tested the impact of including sequences with unknown sampling times. Sampling times
for 20% of the randomly selected sequences were forgotten for IBR and ABR datasets evolved
using subtype F HIV-1 phylogeny. We imputed the unknown sampling times by using a linear
regression derived using the known sampling times and their root-to-tip lengths using the actual
phylogenies. RTDT results with and without 20% missing sampling times were very similar
(Supplementary material Fig. S4). Sagulenko et al. [19] and Votz and Frost [22] also analyzed
datasets with unknown sampling times, however, their focus was to test the accuracy of imputed
sampling dates and did not evaluate the impact on the divergence time estimates. Overall, our
analyses suggest that a simple extension of RTDT may make it useful to include sequences with
unknown or uncertain times, but this approach needs to be fully developed in the future and a
comprehensive simulation analyses conducted to assess the absolute and relative efficiencies of

different methods that allow for missing and uncertain sampling dates.
Analyses of empirical datasets

We also explored some empirical datasets (Fig. 2 and SA and Supplementary material Fig. S2
and Table 1) to test if RTDT was able to reproduce similar divergence times of viral strains as
those reported in the original literature. We began with the HIV-1 subtype F dataset, in which we

used phylogeny and other evolutionary characteristics of this dataset as a model for our HIV
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simulation study (Fig. 2). We found that estimates obtained by Mehta et al. [29] were always older
than those produced by using RTDT (Table 1). Since Mehta et al. [29] used BEAST using a
lognormal rate model, this result was consistent with our simulation results, as all of these nodes
are located deep in the HIV-F phylogeny (Fig. 2), for which BEAST is expected to show a
tendency to infer older dates on ABR data (Fig. 3). Applying CorrTest [31] to this dataset, we
found the autocorrelated clock model to be the best fit (P < 0.05). Fortunately, the difference
between RTDT and BEAST dates do not contradict many of the biological scenarios presented by
Mehta et al. [29], because reported (BEAST) HPDs overlapped RTDT Cls.

We next examined results for Influenza A viral dataset, which served as a model for our influenza
simulations (Fig. SA). Stadler and Yang [15] reported the divergence times of the most recent
common ancestors of human-classical swine, human clade, and classical swine clade (Fig. SA and
Table 1). They reported these divergence times with wide ranges (37 — 97 years) because different
Bayesian methods produced different time estimates, e.g., an autocorrelated rate model in
MCMCTree always produced much earlier times than the other rate models in MCMTree and
BEAST (log-normal rate model). We found that RTDT estimates were very similar to BEAST
with the log-normal rate model, e.g., 1813, 1898, 1910, and 1912 by MCMCTree with the
autocorrelated model, independent model, BEAST (log-normal rate model) and RTDT,
respectively for node 1. An ABR model fit this data set (CorrTest, P <0.001), and our simulations
already showed that all methods produced unreliable node time estimates for deep nodes (Fig. SB).
Therefore, this result was also consistent with our simulation results. Nevertheless, CIs of RTDT
were mainly located within the overall HPDs reported (combined HPDs of methods used in the

original study).

Results from the analysis of two other HIV-1 datasets — subtypes B/D [32] and subtype D [33] —
showed high concordance between RTDT and those reported in the original studies (Table 1). In
the case of the HIV-1 subtype B/D dataset [32], phylogenies within clades for some data subsets
were different. RTDT produced similar divergence times even though these trees were different,

consistent with the simulation results (Supplementary material Fig. S4).

However, for Rabies data, reported estimates were much older than RTDT (42 — 82 years
differences), and a reported 95% HPD did not overlap the CI of RTDT. Similarly, for the HIV-2
dataset, RTDT estimates did not agree with those reported, i.e., RTDT produced node times that
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were much younger than those reported in the original study. Also, the reported HPDs did not
overlap the ClIs of RTDT. These discrepancies occurred because these data did not contain much
temporal structure, as the root-to-tip lengths and sampling times did not show a good positive
correlation (Supplementary material Figure S3). Tip-dating methods are known to be adversely

affected by such data, and their use is generally not recommended [34, 35].
Computational time

We also compared the computational time requirements of different methods. We did not use
parallelizations and other optimizations when estimating computational efficiency to ensure a
direct comparison. Nevertheless, Bayesian analyses can be performed with parallelization to
reduce computational time, and non-Bayesian methods can also use parallelization when
estimating branch lengths by maximum likelihood analysis. In all our analyses, we used simulated
influenza A datasets (one IBR and one ABR datasets) that contained 289 sequences. From these
datasets, we sampled 50, 100, and 150 sequences and ran all the analyses. As expected, all non-
Bayesian methods (RTDT, LSD, TreeTime, and treedater) were much faster than the Bayesian
methods (BEAST and MCMCTree). Non-Bayesian analyses completed within a few minutes, even
for the largest dataset (289 sequences; Fig. 8). However, BEAST required >24 hours for even a
small dataset (50 sequences), but MCMCTree was significantly faster than BEAST. Overall, non-
Bayesian methods scale well with larger datasets, and their computational time increased

approximately linearly with the number of sequences and sites in a dataset.

DISCUSSION

We have presented a new relaxed-clock method (RTDT) to estimate times of sequence divergence
using temporally sampled pathogenic strains. This new method is based on the relative rate
framework in the RelTime method [25] but represents a significant advance of this framework as
it removes the requirement that the sequences sampled be contemporaneous. In RTDT, there is no
need to specify autocorrelation vs. independence of rates or to select a statistical distribution for

branch rates, which is an advantage over Bayesian methods where such information is required a
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priori. Besides, RTDT requires orders of magnitude less computational time than Bayesian

approaches, which makes it feasible to analyze large datasets containing thousands of sequences.

In this study, we have also provided results from our evaluation of the performance of RTDT and
compared it with the performance of many other tip-dating methods using an extensive collection
of simulated datasets. Based on the results from these simulations, we have developed a brief
guideline for selecting methods for reconstructing pathogen timetree in empirical data analyses,

which is as follows.

First, it is critical to evaluate if the dataset being analyzed contains sufficient information to
estimate divergence times reliably. If the number of unique sampling time points is rather small,
then the time estimates are likely to be not reliable. Also, if the sequence evolution harbors a weak
temporal signal, then all the methods will tend to produce unreliable time estimates, which was
evident from the difference in the performance for datasets with weak and robust temporal signal
measured through the correlation (7?) between the sampling times and the root-to-tip lengths in the
phylogeny. For datasets not suffering from a weak temporal signal (+* > 0.3), RTDT may be
preferred, especially when the number of sampling times is large, because it produces excellent
time estimates and their CIs, and it is speedy and available in a user-friendly software (MEGA).
LSD can also produce excellent time estimates, and the CIs produced are generally too narrow and

may not contain correct divergence times (low coverage probabilities).

For datasets with a weak temporal signal, it is best to use Bayesian methods if they are
computationally feasible. Otherwise, LSD may be applied because it is fast. In using the Bayesian
method, the use of the correct clock model is important [36]. So, one should first test if the branch
rates are autocorrelated by using the CorrTest [31] or Bayes factor analysis [37-39], because we
found a strong signal for rate autocorrelation in HIV-1 subtype F, HIV-1 subtype D, HIV-2, and
influenza datasets (Table 1). When the rates are found to be autocorrelated, MCMCTree with ABR
model should be used. If IBR fits the data, then MCMCTree with IBR model or BEAST may be
used. Whenever BEAST is used, we suggest that the lognormal rate model be selected. However,
users need to be aware that BEAST may produce younger dates when a tree is ladder-like. In this

case, one may confirm their results by using RTDT or LSD.

The above guidelines are based on our tests in which we used the correct substitution pattern,

phylogeny, and sampling dates. More advanced guidelines need to be developed through more
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comprehensive investigations that evaluate the robustness of all the Bayesian and non-Bayesian
methods against misspecification of the substitution model and errors in estimated branch lengths,
phylogenetic topologies, sampling times, and the root position. Based on the results of our
preliminary analyses, we cannot recommend using sequences with missing or uncertain sampling
times. Also, there is a lack of in-depth studies that have assessed the accuracies of imputed
sampling times and discovered conditions under which the inclusion of sequences with missing or
uncertain sampling times is genuinely beneficial, except when they are biologically required.
Furthermore, in practical data analysis, it will be challenging to detect sequences with erroneous
sampling times from the data itself, because a change in evolutionary rates on a lineage may leave
a phylogenetic footprint similar to those caused by incorrect sampling times. Of course, one should
carefully examine the relationship between sampling times and root-to-tip lengths to identify and

investigate outliers, which may be affected by errors in recorded sampling times.

We also cannot recommend inferring root of the tree automatically, because of a paucity of the
studies that have assessed the relative efficiencies of different methods in inferring the root and
evaluated the accuracies of the estimates of root times. We have presented one example scenario
(Supplementary material Fig. S5) in which the use of treedater produced a wrong root and poor
time estimates. To et al. had also shown that the time estimates were less accurate when the root
was inferred [16]. The challenge exists because the rates of evolution in the two branches
connecting to the two descending clades of the root cannot always be de-convoluted
unambiguously without an explicit outgroup. So, it is best to root the tree before molecular dating

analysis.

In conclusion, the new RTDT method is expected to be useful estimating times for many datasets
and their confidence intervals, because of RTDT’s computational requirements and accuracy.
RTDT is implemented in the cross-platform MEGA X software (version 10.1 and later) that is

freely available from http://www.megasoftware.net.
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MATERIAL AND METHODS

Collection and analyses of empirical datasets.

Nucleotide sequence alignments and sampling time information of nine different viruses (see
Table 1 for the detail) were obtained from the supplementary information [15], Dryad Digital
Repository (https://datadryad.org/) [32], or the authors [29, 33, 40]. The HIV-1 Subtype B/D data

[32] was composed of eight datasets, in which each dataset contained sequences of genes (env,

gag, or pol) or the full genome with various numbers of sequences.

Generation and collection of simulated datasets.

We simulated nucleotide sequence alignments along viral timetrees obtained from the original
studies (subtype F HIV-1 [29] and Influenza A [15]) and the respective nucleotide substitution
rates, transition/transversion ratio, CG contents, sequence lengths, and substitution models. The
nucleotide substitution rates were obtained from these original studies (3.2 x 10 and 1.7 x 1073
per site per year for subtype F HIV-1 and Influenza A, respectively). The average
transition/transversion ratios were 2.7 and 2.6, respectively, and the average CG contents were
38% and 41%, respectively. The nucleotide sequence lengths simulated were the same as in the
original datasets (1,293 bps and 1,710 bps, respectively). The tips of branches on the timetrees
were truncated according to the sampling times, which were also obtained from the original

studies.

Using the Seq-Gen software [41] under HKY substitution model [42], 50 alignments were
generated for each timetree with the constant rate (CBR), randomly varying rate (IBR), and
autocorrelated rate (ABR) among branches, following the methods in Tamura et al. [26]. For IBR,
each mutation rate was drawn from a uniform distribution with the interval ranging from 0.57 to
1.5r, where r is the original mutation rate in the simulation above. For ABR, the rate variation
was autocorrelated between ancestral and descendant lineages. The rate of a descendant branch
was drawn from a lognormal distribution with the mean rate of the ancestral branch and the
variance equal to the time duration, in which the autocorrelation parameter, v in Kishino et al. [43],
was set to 1. Among these datasets, we removed the dataset when it included identical sequences

between different taxa, because identical sequences contain no information for sequence

18


https://datadryad.org/

491
492
493
494

495
496
497
498
499
500
501

502
503
504
505
506

507
508
509

510
511
512
513
514
515

516

517
518

divergence, and there is no way to know if they are sequences of the same strain or of different
strain (which may become evident with longer sequences). Although the presence of real identical
sequences in a dataset may be useful for population genetic analysis, e.g., coalescence and

migration, but RTDT is not meant for those analyses.

In total, we used 50, 49, and 43 datasets for Subtype F HIV-1 with CBR, IBR, and ABR,
respectively, and 50, 50, and 38 datasets for Influenza A virus with CBR, IBR, and ABR,
respectively. Since RTDT, LSD, TreeTime, and treedater require a phylogeny with branch lengths,
we employed MEGA X [44] and estimated branch lengths along correct topologies using the
Maximum Likelihood (ML) method with HKY nucleotide substitution model. These simulated

datasets are available at https://github.com/cathygqtao/RTDT, and the pipeline for the simulation

is available by request.

We obtained 400 To et al. datasets (simulated alignments and estimated maximum likelihood
phylogenies with correct topologies) from the LSD website [http://www.atgc-
montpellier.fi/LSD/]. We excluded 77 datasets because they contained at least two identical
sequences. Lastly, 240 Sagulenkoet al. datasets (simulated alignments and estimated maximum

likelihood phylogenies with correct topologies) were obtained from the authors of ref. [19].

To test the impact of mistakes in the phylogeny, we obtained 400 estimated phylogenies for the
To et al. datasets from the same LSD website. These phylogenies were inferred directly from the

simulated sequence data by using PhyML [45].

To generate datasets with unknown sampling times, we randomly removed the sampling times of
20% of ingroup tips (i.e., 26 sampling times) from the IBR and ABR datasets simulated based on
the Subtype F HIV-1 phylogeny. To perform RTDT analysis, we first imputed these unknown
sampling times by using a regression line that was obtained by analyzing the relationship between
available sampling times and their root-to-tip lengths. If predicted sampling time was in the future,

we assigned it to be the current date.

Analyses of simulated datasets.

All RTDT analyses were conducted using MEGA X [v10.1] [44] by providing estimated ML

phylogenies and correct sampling times without any uncertainties.
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For LSD (v0.3) [16], TreeTime (v0.6.2) [19], and treedater (v0.3.0) [22] analysis, we provided the
same sampling times and estimated ML phylogenies as used for RTDT, but these ML phylogenies
contained only the ingroup sequences. Thus, we did not use the options (if any) to infer topology
nor to root a tree. These methods were performed with the default parameter settings. For LSD
analysis, the lower bound for the rate was 0.00001, and parameter of variances was 1. We required
that divergence times between tips be older than tip sampling times. For each dataset, CIs were
computed from 100 simulated trees, in which 1,000 bps were used to generate branch lengths of
simulated trees. For TreeTime analysis, we used “--confidence” option to estimate Cls. The strict
clock was used for CBR data, and the relaxed clock with the default setting was used for IBR and
ABR data. More specifically, for the default relaxed clock setting, we set the strength of the
Gaussian priors on branch-specific rate deviation to be 1.0, and the coupling of parent and
offspring rates was set to 0.5 (i.e., -relaxed 1.0 0.5). This default parameter setting represents a
weak correlation. For the analysis of ABR datasets, we also tried parameter settings with stronger
rate correlations, i.e., -relaxed 5.0 1.0, and parameter settings with no correlation, i.e., -relax 1.0
0, for IBR datasets. On average, the difference was < 1 year between these parameter settings.
Therefore, we presented the results with the default setting. For the analysis of Sagulenkoet al.
datasets, we used the inferences of TreeTime and LSD that were provided by the author of ref.

[19].

The correct substitution model was used in Bayesian methods. In BEAST [v1.8.0; 14], the strict
clock model was used for analyzing CBR datasets, and an independent (lognormal) branch rate
model was used for analyzing IBR and ABR datasets. Correct topologies and sampling dates were
provided. The constant population size model was selected for the coalescent tree prior. The
number of steps that MCMC made was 100,000,000 steps, and trees were sampled every 10,000
steps for CBR datasets. For IBR and ABR datasets, we used 200,000,000 steps and sampled every
10,000 steps. To evaluate if large enough genealogies (trees) were sampled, we used the TRACER
software [46] and confirmed that the number of independent information in the sampled posterior
values (effective sample size; ESS) was at least 200 for most of the datasets. Among sampled trees,
we excluded the first 10% of the trees as burn-in and computed the mean height of each node using
the TreeAnnotator software, which is implemented in the BEAST software. To analyze To et al
datasets, we used the same parameter settings as the original study, i.e., we used the input files

provided at the LSD website [http://www.atgc-montpellier.fr/LSD/].
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Datasets generated based on influenza A evolution were analyzed by using MCMCTree
[PAMLA.7; 47]. Parameter settings are the same as those in the original study [15], in which
MCMCTree was used to analyze the empirical alignments. Discarding the first 20,000 iterations,
500, 2,000 and 3,000 iterations were made for CBR, IBR, and ABR datasets, respectively, and
trees were sampled every 100 iterations. Strict, independent, and autocorrelated clock model was
used for analyzing datasets generated with the CBR, IBR, and ABR, respectively. ESS was higher

than 200 for most of the nodes for each dataset.
Computation of average of absolute error rate and error rate

To evaluate the average of absolute error rate, we computed the root mean square error (RMSE)

of each method for each simulation, following ref. [16]. RMSE = \/ﬁ Mo @ — ti)?,

where i is the dataset (replicate), m is the total number of datasets, k is node, # is the total number
of nodes, and £;;, and t;;, are the estimated and true times, respectively. This measure cannot detect
the direction of biases (i.e., younger or older estimates than true times), and thus, we additionally
computed mean error (ME), which is the average of the signed difference between estimated node

1 A o :
— o Yr=1(tix — tir). ME less than zero indicates a bias

time from its true time, i.e., ME =

towards overestimation of time because recent times in the Roman calendar have larger numerical

values than earlier times, and a value greater than zero shows a tendency to underestimate time.
Acquisition of computational time

We recorded the computational times of different methods on estimating divergence times and Cls
(or HPDs) in analyses of datasets with different numbers of sequences. We subsampled 50, 100,
and 150 sequences from two influenza A simulated datasets (one for IBR and one for ABR) that
contained 289 sequences. For each subsampled dataset, the number of ingroup and outgroup
sequences were equal to each other. For example, a subset of 50 sequences contained 25 ingroup
sequences and 25 outgroup sequences. For RTDT, we recorded the computational time of inferring
divergence times and Cls with the option of using molecular sequences. For LSD and TreeTime,
we recorded the sum of computational times for inferring the ML tree and for computing the
divergence times and Cls. This computational time represents the total runtime of LSD and
TreeTime analyses for a given molecular alignment. For treedater, we first recorded the sum of

computational times for inferring the ML tree and for computing the divergence times. Then we
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multiplied this runtime by 50 to represent the total runtime of analyzing 50 bootstrap replicates to
get CI of a root node in treedater. For MCMCTree, we used the same chain length as the analysis
of the Influenza A simulation. For BEAST with log-normal rate model, we used 300,000,000
chains to ensure the convergence for the dataset with the largest number of sequences. All analyses

were conducted on a single core without parallelization on the Linux machine with 896 GB RAM.
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Supporting information

S1 Figure. Performance of methods with various substitution rates and sampling time
intervals (Extension of Figure 7). Each point is a node time estimate, and the colors indicate

mutation rates to generate datasets.

S2 Figure. Phylogenies from the published literature for empirical datasets. Phylogenies of
HIV-1 subtype B/D (A), HIV-1 subtype D (B), HIV-2 (C), and rabies (D) are shown. Branch
lengths were the number of substitutions. Sampling times were indicated for a few sequences. A
number along a node is a node ID, which corresponds to that in Table 1. Those node times were
reported in the original study. Phylogenies of HIV-1 subtype F and Influenza A are presented in
Figure 2 and Figure SA, respectively.

S3 Figure. Relationships of root-to-tip lengths and sampling times for empirical data. The

empirical data was listed in Table 1.

S4 Figure. Impact of incorrect sampling times. Each dataset contained incorrect sampling times
0f 20% of ingroup tips. RTDT was performed by using these incorrect sampling times with correct
phylogenies. The average node times across datasets agreed very well with their true times for
both IBR and ABR datasets (A and B, respectively), and these accuracies were similar to when we

provided correct sampling times (Fig. 3).

SS Figure. The prediction of the root position and divergence time. (A) The true timetree,
where R is the root of interest. Sequences were simulated based on the true timetree under an IBR
model for the HIV data. (B) The ML phylogeny for this dataset was correct, except that the position
of root was not available when the outgroup sequence was excluded from the data, and it was better
to use an outgroup (panel C). The treedater program predicted a wrong root and time (1971 rather
than 1982) for the dataset that excluded the outgroup sequence (panel D). The use of outgroup

resulted in a better time estimated (panel E). This means that lengths of two branches (bx and by)
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743  emanating from node R could not be determined reliably without the availability of the outgroup

744  sequence.
745

746

29



747

Table 1: Empirical datasets used in this study

Time Estimates (year) Clock model

Virus Node* RTDT Reported in the Reference CorrTest Reference

HIV-1 Subtype F (154 sequences, 1293 bps)® Autocorrelated Mehta, et al.
Node 1 1985.3 (1980 - 1987) 1980 (1975 - 1985) (2011)
Node 2 1985.1 (1980 - 1988) 1978 (1972 - 1983)
Node 3 1980.0 (1977 - 1982) 1973 (1966 - 1980)

HIV-1 Subtype D (24 sequences, 2173 bps)? Autocorrelated Parczewski, et al.
Node 1 2003 (1999 - 2005) 2001 (1999 - 2005) (2012)
Node2 2000 (1991 - 2003) 1999 (1992 - 2001)
Node 3 1995 (1984 - 1997) 1997 (1994 - 1998)
Node 4 2006 (1998 - 2007) 2003 (1999 - 2005)

HIV-1 Subtypes B/D (38 -133 sequence, 1497 - 8877 bps) *° Mixed* Worobey, et al.
Node 1 1960 - 1966 (1948 - 1971) 1966 - 1969 (1961 - 1972) (2016)
Node 2 1963 - 1969 (1945 - 1974) 1969 -1972 (1966 - 1974)
Node 3 1967 - 1970 (1949 - 1975) 1969 - 1974 (1967 - 1975)

HIV-2 (33 sequences, 1107 bps)” Autocorrelated Stadler and Yang
Node 1 1983 (1978 - 1985) 1938-1941 (1952 - 1973) (2013)
Node 2 1985 (1979 - 1985) 1956 (1922 - 1957)
Node 3 1985 (1975 - 1986) 1961-1964 (1944 - 1966)

Rabies (67 sequences, 1350 bps)? Independent McElhinney, et al.
Node 1 1967 (1936 - 1971) 1885 (1848 - 1914) (2011)
Node 2 1971 (1936 - 1972) 1917 (1894 - 1937)
Node 3 1982 (1936 - 1973) 1931 (1914 - 1947)
Node 4 1973 (1936 - 1973) 1941 (1925 - 1955)

Influenza A (289 sequences, 1710 bps)° Autocorrelated Stadler and Yang
Node 1 1912 (1898 - 1916) 1813-1910 (1760 - 1917) (2013)

Node2 1915 (1898 - 1918)
Node3 1928 (1910 - 1930)

1832-1914 (1787 - 1918)
1889-1926 (1857 - 1929)

a: BEAST with lognormal rates

b: MCMCtree with constant and autocorrelated clock models
c: BEAST with lognormal rates and MCMCtree with constant, independent, and autocorrelated clock models.
The range of estimated times based on these different methods was given.
d: The range of time estimates was obtained based on eight different subdatasets.
x: Five datasets showed autocorrelated rates and three independent rates.
748 *: Node IDs were given in Figures. 2, 5A, and Supplementary material Figure S2.
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Figure legends

Figure 1. RelTime with Dated-Tips (RTDT) approach. (A) Phylogeny of five pathogen sequences
(x1, x2, x3, x4, and outgroup), with branch lengths (). The year of sequence sampling (%) is given
in the parenthesis. The internal nodes are indicated by X, Y, and XY. (B) The relationship between
the path lengths from node XY to tip and sampling times. For example, the point of x1 is (2001, bx
+ b1). In the current example, the linear regression expression is 4 = 2.479 X t; — 4957. We locate
a root at the position of 4 = 0 along the regression line. (C-E) Projected phylogeny. Root-To-Tip
lengths were projected using linear regression. We first estimate relative rates at bi-ba, i.e., ri-r4
(C), and then estimate those at deeper positions of the phylogeny, i.e., 7x and ry (D). Lastly, we
estimate the projected length from root to internal nodes, e.g., Ax (E). (F) Estimated timetree. The

final divergence times are estimated by using the regression line in panel B.

Figure 2. Phylogeny of HIV-1 subtype F was used as the model tree. A few sampling times are
shown at the tips. The number along a node is the node ID corresponding to nodes of importance

in the original study [29]; see also Table 1.

Figure 3. Estimates (average node time) for computer-simulated datasets of HIV-1 subtype F. The
model tree is presented in Figure 2. RTDT (blue), LSD (green), TreeTime (red), treedater (purple),
and BEAST (orange) were used for datasets simulated under CBR clock model (A-E), IBR clock
model (F-J), and ABR clock model (K-O). These averages were means from 50 simulated datasets
(replicates) at each node, and error bars indicate standard deviation. For BEAST, we used a strict
rate model for the analyses of datasets with CBR, and log-normal rate models were used for IBR
and ABR datasets. Mean error (ME) and root mean square error (RMSE) are shown within each
panel. Negative values of ME indicate overestimation, and positive values indicate a tendency to

generate underestimates.

Figure 4. The proportion of nodes with 295% coverage probabilities and mean of coverage
probability of CIs or HPDs for computer-simulated datasets of HIV-1 subtype F. The proportion
of nodes with 295% coverage probability is the proportion of nodes in which 295% of Cls and
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HPDs contained the actual time, and mean coverage probability is the mean proportion of Cls and
HPDs that contained the actual time across the nodes. The model tree is presented in Figure 2.
There were 50 simulated datasets (replicates) for each of CBR, IBR, and ABR datasets. Therefore,
each node had 50 CIs or HPDs to compute the coverage probability of a node. We did not use

treedater because it does not produce Cls.

Figure 5. Performance of methods on the ladder-like tree. (A) Phylogeny of Influenza A.
Sampling times are given for some tips. A number along a node is a node ID, which corresponds
to those in Table 1. Fifty datasets were generated along this phylogeny with CBR, IBR or ABR.
(B) Average node time estimates by RTDT (blue), LSD (green), TreeTime (red), treedater (purple),
and MCMCTree (brown) for datasets with CBR, IBR, and ABR. Each time point is an average of
50 simulated datasets, and error bars indicate standard deviations. Error bars of treedater are not
shown for ABR datasets, because these standard deviations were very large. MCMCTree was
performed by using the correct branch rate model for each dataset. Mean error (ME) and root mean
square error (RMSE) are shown within each panel. (C) The proportion of nodes with 295%
coverage probabilities and mean of coverage probabilities of CIs or HPDs. The proportion of nodes
with 295% coverage probability is the proportion of nodes in which 295% of CIs and HPDs
contained the actual time, and mean coverage probability is the mean proportion of CIs and HPDs
that contained the actual time across the nodes. We did not use treedater because it does not

produce Cls.

Figure 6. Performance of methods with a small number of sampling time points. (A and B) An
example of HIV-like phylogeny (A) and Influenza-like phylogeny (B). Tips are colored based on
the sampling times. In this phylogeny, the root age was set to year of 0 (actual age). Datasets were
generated with independent rates. (C-F) Node time estimates by RTDT (blue), LSD (green),
TreeTime (red), treedater (purple), and BEAST with log-normal rate model (orange) for datasets
with eleven sampling time points (C and E for HIV-like and Flu-like phylogeny, respectively) and
three sampling time points (D and F for HIV-like and Flu-like phylogeny, respectively). Mean

error (ME) and root mean square error (RMSE) are shown within each panel.
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Figure 7. Performance of methods with various substitution rates and sampling time intervals. (A
and B) Example phylogenies with sampling time intervals of 50 years (A) and ten years (B).
Phylogenies with sampling time intervals of 50 years are Flu-like (A), while those with ten years
were less ladder-like (B). Mutation rates in these example phylogenies are 2 x 107, Tips are
colored based on the sampling times. (C and D) Node time estimates by RTDT (blue), LSD
(green), TreeTime (red), and treedater (purple) for datasets with sampling time intervals of 50
years (C) and 10 years (D), and mutation rates are slowest (10~; top) or fastest (2 x 107%; bottom)
among the datasets. Mean error (ME) and root mean square error (RMSE) are shown within each
panel. The results of the other mutations rates and those with sampling time intervals of 20 years

are presented in Supplementary Material Figure S1.

Figure 8. Computational time. We used simulated influenza A datasets (one IBR and one ABR
datasets) that contained 289 sequences. From these datasets, we sampled 50, 100, and 150
sequences. For BEAST, we used a log-normal rate model, and correct models were selected for

MCMCTree.
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838  Figure 6
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841  Figure 7
A. 50 years sampling time intervals B. 10 years sampling time intervals
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