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Abstract

Confidence intervals (Cls) depict the statistical uncertainty surrounding evolutionary divergence
time estimates. They capture variance contributed by the finite number of sequences and sites
used in the alignment, deviations of evolutionary rates from a strict molecular clock in a phylogeny,
and uncertainty associated with clock calibrations. Reliable tests of biological hypotheses demand
reliable Cls. However, current non-Bayesian methods may produce unreliable Cls because they
do not incorporate rate variation among lineages and interactions among clock calibrations
properly. Here, we present a new analytical method to calculate Cls of divergence times estimated
using the RelTime method, along with an approach to utilize multiple calibration uncertainty
densities in these analyses. Empirical data analyses showed that the new methods produce Cls
that overlap with Bayesian highest posterior density (HPD) intervals. In the analysis of computer-
simulated data, we found that RelTime Cls show excellent average coverage probabilities, i.e.,
the actual time is contained within the Cls with a 95% probability. These developments will
encourage broader use of computationally-efficient RelTime approaches in molecular dating

analyses and biological hypothesis testing.



Introduction

Reliable inference of the confidence intervals (Cls) around the estimates of divergence times is
essential for testing biological hypotheses (Burbrink and Pyron 2008; Kumar and Hedges 2016).
Multiple sources contribute to the uncertainty of molecular divergence time estimates (Rannala
and Yang 2007; Zhu et al. 2015; Kumar and Hedges 2016). One of them is the error associated
with branch length estimation in a phylogeny due to the limited number of sites and substitutions
in the sequence alignment (Kumar and Hedges 2016; Warnock et al. 2017). The stochastic nature
of the substitution process (e.g., Poisson process) and the uncertainty involved in accounting for
the unobserved substitutions (multiple-hit correction) result in errors in branch length estimates,
which lead to imprecise time estimates (Kumar and Hedges 2016). However, this error decreases
with an increase in the number of sampled sites (Rannala and Yang 2007; dos Reis and Yang

2013; Zhu et al. 2015) and becomes negligible for large phylogenomic datasets.

The second source of error is the variation of evolutionary rates among branches and
lineages (Zhu et al. 2015; Kumar and Hedges 2016). Because rates and times are confounded,
the variation of rates will naturally result in uncertainty of time estimates (Ho 2014; Zhu et al.
2015). This confounding effect cannot be eliminated by sampling more sites or genes in a dataset
(Zhu et al. 2015; Kumar and Hedges 2016), so it contributes more uncertainty to time estimates
than errors in branch length estimation for a large dataset. The uncertainty associated with clock
calibrations due to the equivocal nature of fossil record presents a third source of error in
divergence time estimation (Zhu et al. 2015; dos Reis et al. 2016; Warnock et al. 2017). The exact
placement of fossil record in a phylogeny and the correct assignment of calibration constraints,
especially the maximum constraint, are often difficult to justify, resulting in high uncertainty in the

estimation of divergence time (Bromham et al. 2018).

In Bayesian analyses, the highest posterior density (HPD) intervals usually represent the
uncertainty of inferred divergence times (Drummond et al. 2006). Bayesian methods compute
HPD intervals directly from the density distribution of posterior times estimated using priors for
branch rate heterogeneity, substitution process and fossil calibrations (dos Reis et al. 2016;
Bromham et al. 2018), so sources contributing to the uncertainties of time estimates are
automatically incorporated in the HPD intervals. Currently, Bayesian HPD intervals are
considered reliable estimates of uncertainties surrounding divergence time estimates, although
they are not always the same as the 95% Cls in the frequentist statistics (Jaynes and Kempthorne

1976; MacKenzie et al. 2017). Unfortunately, the enormous computational burden imposed by



Bayesian approaches has hindered their applications to analyze many phylogenomic datasets
(e.g., Pyron 2014; Li et al. 2019).

In contrast, non-Bayesian methods can analyze large-scale datasets quickly and generate
accurate time estimates (Smith and O’Meara 2012; Tamura et al. 2012; Tamura et al. 2018).
Unfortunately, the broad utility of these methods is still reduced by a lack of reliable calculation of
the uncertainty surrounding divergence times, which are represented by Cls. Non-Bayesian
approaches require the use of analytical formulations or bootstrap approaches to estimate Cls
(Sanderson 2003; Xia and Yang 2011; Tamura et al. 2013). However, site-resampling bootstrap
approaches do not capture the error caused by rate heterogeneity, leading to false precisions of
time estimates. Recognizing the need for incorporating lineage rate variation into Cls, Tamura et
al. (2013) formulated analytical equations for the RelTime method, a non-Bayesian approach that
relaxes the molecular clock. However, this approach may overestimate the amount of variance
and produce overly wide Cls (see below), resulting in low power for statistical testing (Kumar and
Hedges 2016).

Bayesian and non-Bayesian methods also use different strategies to account for the
uncertainty of fossil record. Non-Bayesian methods are currently limited to the use of minimum
boundaries only, maximum boundaries only, or minimum and maximum boundary pairs as
calibration constraints (Sanderson 2003; Tamura et al. 2013), while Bayesian methods allow the
usage of probability densities as calibrations and automatically accommodate interactions among
them (Inoue et al. 2010; Ho and Duchéne 2014). Mello et al. (2017) presented a simple procedure
to derive minimum and maximum boundaries from the density distributions, but this strategy does
not consider interactions among calibrations and may lead to overestimation of the variance of

divergence times (see below).

Here, we present an analytical approach to estimate Cls for divergence times using the
RelTime method. The new analytical approach accounts for the variance associated with the
branch lengths estimation as well as the variance due to rate heterogeneity in Cl calculation. We
also present a simple approach to derive minimum and maximum boundaries from multiple
calibration densities such that the calibration interactions are accommodated. Both approaches
have been implemented in the MEGA X software for use in graphical and command-line interfaces
(Kumar et al. 2012; Kumar et al. 2018). The 95% Cls produced by RelTime in empirical analyses
are compared with the 95% HPD intervals produced by Bayesian methods to examine the

performance of the new approaches. The approaches presented here may be used, with



modifications, to improve variance calculation of time estimates for other non-Bayesian methods,

e.g., penalized likelihood methods (Sanderson 2002).

New Methods
An analytical method to estimate confidence intervals

Considering a tree with three ingroup sequences (Fig. 1), relative time (f) for each node and
relative rate (r) for each lineage are functions of branch lengths (b) in RelTime, e.qg., r1, r2, 13, ra,
ts, and t5 are given by the following equations when the geometric means are used (similar

equations can be derived when the arithmetic mean is used) (Tamura et al. 2018):
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The variance of the estimated time () for node /i, denoted by v(t;), can be estimated by

the delta method, assuming that there is no covariance among branch lengths (b/’s):
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where N is the total number of branches, f;,(by, ..., by) stands for the analytical function of b;'s to

compute t; (e.g., equation 5 and 6 for £, and ts, respectively), and v(bj) stands for the variance of

branch length for branch j. Therefore, v(b;) is required for computing v(t;).



As mentioned before, the uncertainty of time is related to the number of sampling sites
and the degree of rate heterogeneity. We consider the total variance of branch lengths, v(bj),
which is required to compute v(t;), as a summation of the variance due to site sampling, vs(bj),

and the variance due to rate heterogeneity, vy (bj):

v(b;) = vs(by) + va(by). [eq. 8]
The value of vg(b;) can be estimated by using analytical formulations or a site-resampling

approach. For example, an approximate estimate of this variance can be obtained by the
curvature method when the maximum likelihood method is used (Edwards 1992; Tamura et al.
2013).

However, it is more complex to estimate vk (b;), so we do it indirectly. We first compute

the variance of observed evolutionary rates for all the lineages, V,,s(R):

Vops(R) = %Z?](T}' - T')Z, [eqg. 9]

where R is a random variable representing all relative rates, r;is the relative rate for each branch
J, and 7 is the average of r's. It is important to note that the relative rate for branch j is estimated
as the relative rate for lineage j (Tamura et al. 2018). For example, RelTime computes the relative
rate for bs as the geometric mean of r1 and r;, which is assigned to be the rate for lineage /s in

figure 1.

The variance of observed rates includes not only the variance introduced by rate
heterogeneity, R, (R), but also the sampling variance associated with the branch length
estimation, Sy, (R), because the observed relative rate ris calculated from branch lengths (b/'s)

(e.g., equations 1 - 4). So,
Vobs(R) = Ry(R) + Sy(R). [eq. 10]

The value of S, (R) is obtained by summing the sampling variance of relative rate r; for each

branch j, denoted by s, (7;):
Sy(R) = TV 5,(1y). [eq. 11]
sy(1;) can be estimated by the delta method, assuming that there is no covariance among bj’s:
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where fr].(bl, ..., by) stands for the analytical function of b;/s to compute r; (e.g., equations 1, 2, 3,

and 4 for r1, 2, r3, and rs, respectively).

Using equations 9 — 12, we compute the variance introduced by rate heterogeneity:

2
Ry(R) = 25¥(r; — 7)° - zNzN(w) vs(by)). eq. 13]

Then, we can compute the rate heterogeneity variance for each branch j as being proportional to

its branch length:

2
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Using equations 8, 13 and 14, we can compute the total variance of branch length for
branch j, denoted by v(b;). Then v(b;) can be used to compute the variance of time, v(t;), by

applying equation 7. For example, the variance of tsand fs are given by the following equations:
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For larger numbers of taxa, such analytical formulations become complicated to derive,
especially for deeper nodes. Thus, we compute the variance of divergence times for deeper nodes

from tips to the root recursively. For example, using equations 15 and 16, we can derive

_ (/ibp+by)° ba  bshy
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Therefore, the calculation of v(ts) requires only v(t,), v(b;) and v(b,), which are the variances
for tsand branches bz and b4, respectively. The variance of branches that do not directly connect
tonode 5, i.e., v(b,) and v(b,) in this case (Fig. 1) is not needed, if the value of v(t,) is computed
beforehand. Thus, for any node in a phylogeny, we can calculate the variance of divergence time
recursively from tips to the root by using the variance of times for direct descendant and ancestral

nodes and the variance of directly connected branches. This procedure extraordinarily simplifies



the computation of the variance of inferred time for each internal node in a tree with a large

number of taxa.

It is important to note that times in the equations listed above are relative times, not
absolute times, because no calibrations are involved in the above equations. When one or
multiple calibrations (minimum boundaries only, maximum boundaries only, or minimum and
maximum boundary pairs) are given, RelTime will compute a global time factor (f) by altering
relative times such that all calibration constraints are satisfied. When a range of f values can
satisfy all calibration constraints, RelTime selects the midpoint of the range to be the best estimate
of f. When one or more of the absolute times computed using the f value falls outside the
calibration constraints, RelTime adjusts relative times and f such that the deviations of absolute
times from the calibration constraints are minimized. This process requires local alteration of
relative rates and re-optimization of all other node times in the tree recursively (Tamura et al.
2013). For example, if the minimum age constraint of a node is violated, i.e., the age estimated
using fis younger than the minimum constraint, RelTime decrease its estimate of the evolutionary
rate proportionally in that lineage to adjust the age of this node to be older, such that the
divergence time becomes the same as the minimum age constraint. The resulting slowdown is

transmitted to all the descendant nodes, and it affects the ancestral rates as well.

Similarly, if the maximum age constraint of a node is violated, i.e., the age estimated using
f is older than the maximum constraint, RelTime increases the estimated evolutionary rate
proportionally in that lineage such that the divergence time matches the maximum age constraint.
The effects of this rate change will be transmitted to the descendant and ancestral nodes
automatically. Consequently, RelTime will ensure that the absolute times for calibrated nodes are

consistent with the user-desired calibration constraints.

In the final step, Cls are computed analytically using the final set of relative rates and the
equations given above (e.g., equations 13-17), such that the uncertainty associated with clock
calibrations can be incorporated into the CI calculation in RelTime. If the lower or upper bounds
of Cls fall outside the user-specified calibration constraints, then Cls are truncated based on the
imposed calibration constraints. Therefore, RelTime uses “hard” minimum and maximum bounds
in Cl calculation, as in BEAST (Drummond et al. 2012; Bouckaert et al. 2014; Barba-Montoya et
al. 2017).

An approach to derive effective calibration boundaries from calibration densities



As stated above, calibration uncertainty is another critical source of estimation error in the
inference of divergence times. Bayesian methods use various probability densities to
accommodate the calibration uncertainty. However, the current non-Bayesian methods do not
allow direct use of probability densities and do not provide provisions to incorporate interactions
among calibration constraints. Therefore, we developed a new procedure for use in the RelTime
method to derive calibration boundaries from probability densities that accounts for their

interactions.

For each calibrated node with an associated probability density, we randomly sample two
dates from the given probability density. We use these two sampled dates as the minimum and
maximum (min-max) constraints for that node and derive such a min-max constraint for every
node for which a probability density is specified. Then, we use all of these min-max boundaries
to conduct RelTime analysis. We retain the RelTime time estimates only for the calibrated nodes,
and then repeat the process of random sampling and dating for 10,000 times. A large number of
iterations of this process ensure that calibration dates with tiny probabilities (0.01%) can be

sampled.

The iterative procedure above produces a distribution of 10,000 inferred dates for each
calibrated node. In the final step, we derive the minimum bound at 2.5% and the maximum bound
at 97.5% of the distribution of inferred dates for each calibrated node. We refer to bounds derived
during this process to be “effective bounds.” These effective bounds can be used together with
the analytical approach described above to infer the divergence times and Cls in RelTime. It is
important to note that effective bounds are used as calibration constraints, not densities. The
actual shapes of the distribution of 10,000 inferred dates may vary slightly if one is to repeat
10,000 resamplings multiple times, but 2.5% and 97.5% boundaries of the distribution are

expected to be stable, producing stable estimates of divergence times and Cls.

Our procedure is analogous to that in Bayesian methods, as both types of methods require
resampling of calibration constraints from user-specified densities, inference of divergence times
using each set of sampled calibrations, and summarization of distributions of time estimates
obtained from using all sets of sampled calibrations. Therefore, the use of effective bounds allows
RelTime to accommodate the interactions among calibration densities. However, it does not mean
that RelTime and Bayesian methods are the same. Bayesian methods conduct calibration
resampling and time inference steps simultaneously during the MCMC integration, whereas these

steps are implemented sequentially in the RelTime method as proposed here.



We compared the effective bounds to calibration bounds derived using Mello et al.
(2017)’s procedure (referenced as “Mello bounds” in the following) (Fig. 2), in which the minimum
bound was placed at 2.5% of the density age, and the maximum bound was placed at 97.5% of
the density age. Effective bounds were similar to the Mello bounds when the user-specified
calibration density was reliable and informative, which meant that the true age of a node fell in
the calibration density with a high probability. For example, effective bounds and Mello bounds
almost overlapped for Homo sapiens — Callithrix jacchus split in which an exponential distribution
was used as the calibration (Fig. 2b) (see the Materials and Methods section). When the user-
specified density was uninformative, e.g., a diffused uniform distribution, Mello bounds were often
diffused and matched the original density (Fig. 2¢). In contrast, our new procedure generated
narrower bounds due to the accommodation of the interactions among different calibration
densities and constraints. These interactions reshaped the original, wider distribution and made

it tighter (Fig. 2¢). Consequently, the use of effective bounds is likely to produce narrower Cls.

In our analysis, when the user-specified calibration was unreliable, i.e., the true age of the
node fell in its calibration density with a low probability, our effective bounds turned out to be
better than Mello bounds. For example, when the true time of Homo sapiens — Callithrix jacchus
split was located in the user-specified exponential density with < 2.5% probability (Fig. 2d), Mello
bounds did not include the true time, resulting in incorrect time estimates. In contrast, our method
did not ignore the low probability regions since it sampled 10,000 times from the user-specified
density to ensure that dates with very low probabilities were considered. Thus, effective bounds
are likely to contain the true time (Fig. 2d), and the use of effective bounds in RelTime may

improve the accuracy and precision of time estimates.

Results and Discussions
RelTime produces Cls comparable to Bayesian HPD intervals in empirical analyses

We applied our methods to five empirical datasets containing nucleotide or protein sequence
alignments from primates, spiders, insects, birds, and sun orchids (Table 1). We first present
results from the primate dataset from Barba-Montoya et al. (2017), which contains a relatively
small alignment of 9,361 base pairs from nine primate species and one outgroup (Fig. 2a; Fig.
S1a). In this phylogeny, every internal node has been assigned a calibration density. Barba-
Montoya et al. (2017) used two calibration strategies in MCMCTree (Yang 2007) and BEAST
(Bouckaert et al. 2014) and compared the time estimates. We examined if the RelTime method

produced estimates comparable to those obtained from Bayesian methods when all analyses
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employed the same alignment, phylogeny, substitution model, and calibration uncertainty

densities (e.g., uniform distributions).

For analyses of primate datasets where uniform densities were used as calibrations, we
observed a high concordance between RelTime and Bayesian time estimates. The linear
regression slopes were 0.97 and 1.03 when Bayesian analyses were conducted in MCMCTree
and BEAST, respectively (Fig. 3a and b). This is a rather small difference. Although the width of
RelTime Cls was slightly smaller than the width of Bayesian HPD intervals, RelTime Cls
overlapped Bayesian HPD intervals for all the nodes (Fig. 4a and b). For primate datasets where
a mixture of uniform and skewed densities were used as calibrations, RelTime estimates were
again similar to Bayesian estimates, with a linear regression slope of 0.96 with MCMCTree (Fig.
3c¢) and 1.00 with BEAST estimates (Fig. 3d). RelTime Cls overlapped with MCMCTree and
BEAST HPD intervals for all the nodes (Fig. 4c and d).

We then analyzed spider and insect datasets to examine the performance of our methods
for larger datasets (>40 species and >50,000 sites). These datasets consisted of protein
sequences and presented more extensive rate variation among branches and lineages as
compared to the primate dataset (Fig. S1b and c). Fewer calibrations were used in these datasets
with eight calibrated nodes in the spider dataset and 38 calibrated nodes in the insect dataset.
This means that 20% - 26% nodes of the phylogeny were assigned calibration values. We again
observed strong concordance between RelTime and Bayesian time estimates, with a linear slope
of 0.98 and 0.98 for the spider and insect dataset, respectively (Fig. 3e and f). The high similarity
between RelTime and Bayesian node times remained even after we excluded nodes on which
user-specified calibrations were assigned (slope is 0.97 and 0.98 for the spider and insect dataset,
respectively). Although Cls produced by RelTime were slightly wider than HPD intervals produced
by the Bayesian method, they were comparable with more than 97% of the nodes in spider and
insect datasets showing overlapping Cls and HPD intervals (Fig. 4e and f). When Cls and HPD
intervals did not overlap, they were less than 5 million years (Myr) apart. Therefore, RelTime Cls

can be considered similar to Bayesian HPD intervals for these two datasets.

Although it is becoming more common to apply many internal calibrations to empirical
studies, researchers may only have a limited number of calibrations because reliable fossil record
for most taxonomic groups is limited. So, we analyzed another two nucleotide sequence
alignments in which only a few calibrations have been used. One of them is a bird phylogeny (Fig.
S$1d) containing 220 ingroup taxa with only 13 calibrations (i.e., 6% nodes are calibrated). Again,

RelTime produced time estimates similar to Bayesian estimates, showing a linear slope of 1.03
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with a slightly weaker linear relationship than seen for other datasets above (Fig. 3g). Cls
produced by RelTime overlapped with HPD intervals provided by the Bayesian method for all the
nodes except for two (Fig. 4g). For these two nodes, Cls and HPD intervals were less than 2 Myr
apart. In the analysis of the sun orchid dataset (Fig. S1e), in which 57 sequences were included,
and only a single internal calibration was used, time estimates obtained from RelTime and
Bayesian methods showed a good linear relationship as well (Fig. 3h). Although RelTime
generated slightly older time estimates than those from the Bayesian method, Cls and HPD

intervals overlapped for all the nodes (Fig. 4h).

These results suggest that the application of our analytical method for computing CI
combined with the approach to derive effective bounds is likely to produce estimates of times and
Cls compatible with Bayesian estimates for datasets with a small and large number of calibrations
when the same alignment, phylogeny, and calibration densities are used. We found that,
compared to the previous implementations in RelTime for estimating Cls (Tamura et al. 2013;
Mello et al. 2017), our new methods effectively improved the Cl inference, because the width of
Cls was reduced by 33% - 64% in the analysis of empirical data. This reduction was seen for both
the calibrated and non-calibrated nodes. We attribute this improvement to the fact that the new
analytical method accounts for the rate heterogeneity better, and the effective bounds reflect
calibration interactions and reshape the original diffused calibration densities to generate
narrower Cls. Consequently, the precision of divergence time estimates is improved. However, it
is essential to note that the use of incorrect calibration constraints or densities can significantly
impact the precision of time estimates (Warnock et al. 2017). Therefore, one needs to examine
the reliability of calibrations before conducting dating analyses (Andujar et al. 2014; Battistuzzi et
al. 2015; Hedges et al. 2018).

RelTime Cls show high coverage probabilities

We conducted RelTime and Bayesian (MCMCTree) analyses on a broad set of simulation
datasets, containing small and large numbers of sequences, to compare the overall coverage
probabilities, i.e., the proportion of RelTime Cls and Bayesian HPD intervals that included the true
divergence times. In these analyses, we used no ingroup calibrations to avoid confounding the
effect of calibrations on the coverage probabilities of estimated Cls and HPD intervals (see the

Methods and Materials section).

12



RelTime performed well in the analysis of datasets in which branch rates evolved under
an independent branch rate (IBR) model, showing high coverage probabilities (= 95%) in both
small and large simulated datasets (Fig. 5a). The Bayesian analyses also performed well for IBR
datasets, showing high overall coverage probability for datasets containing 50 sequences (97%)
but slightly lower overall coverage probability for datasets containing 100 sequences (84%) (Fig.
5a). Interestingly, the coverage probability of HPD intervals declined further for IBR datasets with
200 sequences (60%). We found that the true divergence times were located close to the
boundaries of HPD intervals. In these cases, the average percent time difference between a true
age and the nearest bound of respective HPD interval was 10%. RelTime showed an overall
coverage probability of 94% for datasets containing 50 sequences and evolving with
autocorrelated rates in a phylogeny (ABR), while the Bayesian method showed slightly lower
coverage probabilities (78%; Fig. 5b). Bayesian coverage probabilities declined for datasets
containing 100 and 200 sequences (52% and 35%, respectively), and the average percent time
difference between the true ages and their nearest HPD interval boundaries was large (20% -

45%). In contrast, RelTime maintained its high coverage probability for large datasets (= 95%).

We found that the posterior distributions of many nodes for ABR datasets were not normal-
like and skewed, which means that the interpretation of HPD intervals is not the same as the Cls,
which has been noted earlier (Jaynes and Kempthorne 1976; MacKenzie et al. 2017). It is also
known that the tree prior assumed in Bayesian analyses can have an impact on the estimation of
divergence times and HPD intervals (Heled and Drummond 2014; Ritchie et al. 2017; Bromham
et al. 2018). This impact is more prominent when there is limited number of calibrations because
the tree prior provides node age priors for nodes without calibrations (Barba-Montoya et al. 2017),
which may explain the observed low coverage probabilities. We expect that the Bayesian method
will perform better if more informative calibrations are applied because the tree prior becomes
less critical, and informative calibrations reduce the uncertainty of time estimates. A more
extensive analysis of this problem is beyond the scope of this article, but we plan to pursue it in

the future.

Conclusions

Our new analytical method to estimate Cls, as well as the approach for deriving effective bounds,
will now allow the use of more biological information, such as the rate variation among lineages
and the probability density of calibrations, in 95% Cls inference. RelTime is computationally

efficient, requiring only a fraction of the time and resources demanded by Bayesian approaches
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(Tamura et al. 2012; Tamura et al. 2018). Results from the analysis of empirical nucleotide and
protein sequence alignments containing small and large numbers of sequences and calibrations
suggest that RelTime will serve as a reliable approach for dating the tree of life and conducting
biological hypothesis testing, especially for large-scale molecular data. We also anticipate that
our new analytical method and the new approach for utilizing calibration densities, with
modifications, can be applied to generate Cls for other non-Bayesian dating methods, e.g.,

penalized likelihood methods (Sanderson 2002).

Materials and Methods
Comparisons of user-specified calibration density, Mello bounds, and effective bounds

We used the BEAST-generated primate timetree published in Barba-Montoya et al. (2017) as the
true tree (Fig. 2a) and simulated an alignment of 9361 sites under HKY+I" (Hasegawa et al. 1985)
model in SeqGen (Grassly et al. 1997) with parameters derived from the original empirical
molecular data. Branch-specific rates were sampled from an uncorrelated lognormal distribution
with a mean rate of 0.0069 substitutions per site per million years ago (Ma) and a standard

deviation of 0.4 (log-scale). The simulated alignment was used to derive effective bounds.

We tested the performance of using effective bounds and Mello bounds under two calibration
scenarios: reliable and unreliable scenarios. The reliable scenario represents the case where true
ages of all the nodes are located in their calibration densities with high probabilities. The unreliable
scenario refers to situations in which true ages of some nodes are found in calibration densities
with low probabilities, whereas the true ages for some other nodes are found in calibration
densities with high probabilities. An informative exponential density was used at Homo sapiens —
Callithrix jacchus split (true age = 44.8Ma) and an uninformative uniform density were used at
Homo sapiens — Otolemur gamettii split (true age = 68Ma) under both scenarios. In the reliable
calibration scenario, we assumed that a minimum age of 40Ma at Homo sapiens — Callithrix
jacchus split and maximum age of 130Ma at Homo sapiens — Otolemur gamettii split were known.
Therefore, we used an exponential density (mean = 4Ma and offset = 40Ma) and a uniform density
(min = 40Ma and max = 130Ma) at Homo sapiens — Callithrix jacchus split and at Homo sapiens
— Otolemur gamettii split, respectively. The true ages of both nodes located in their densities with
high probabilities. Under the unreliable calibration scenario, we assumed that a minimum age of
30Ma at Homo sapiens — Callithrix jacchus split and maximum age of 130Ma at Homo sapiens —

Otolemur gamettii split were known. Therefore, we used an exponential density (mean = 3Ma and
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offset = 30Ma) and a uniform density (min = 30Ma and max = 130Ma) at Homo sapiens — Callithrix
jacchus split and at Homo sapiens — Otolemur gamettii split, respectively. This resulted in the true
age of Homo sapiens — Callithrix jacchus split located in its density with a low probability (< 2.5%),
while the true age of Homo sapiens — Otolemur gamettii split located in its density with a high

probability.
Empirical analyses

We obtained empirical datasets that employed different calibration strategies from five published
studies (Table 1) (Bond et al. 2014; Tong et al. 2015; Barba-Montoya et al. 2017; Nauheimer et
al. 2018; Oliveros et al. 2019). Molecular data were obtained from supplementary files of original
studies. Calibration densities and Bayesian timetrees (including HPD intervals) were provided by
authors or derived from the original studies, except for Bond et al. (2014)’s data, which was
obtained from Mello et al. (2017). In RelTime analyses, we used the same alignments, substitution
models, tree topologies, and calibration densities for ingroup nodes as the original studies to
ensure comparability with Bayesian results. RelTime analyses were conducted in MEGA X
(Kumar et al. 2018). For Oliveros et al. (2019)'s data, the published Bayesian timetree was
summarized from 10 timetrees inferred using 10 different random subsets of the full dataset,
because BEAST (Drummond et al. 2012) was computationally infeasible to analyze the full
dataset. Since the original study has shown that 10 subsets provided similar results, we only
conducted RelTime analysis using one subset. We compared RelTime time estimates and Cls
with Bayesian time estimates and HPD intervals. We did not test whether the slope between
RelTime and Bayesian time estimates was one because the p-value will always reject the
hypothesis of the slope of one when the data sample size is large, which makes its use less
meaningful (Halsey 2019; Wasserstein et al. 2019). To compare the performance of our methods
and the previous ClI calculation methods for RelTime, we re-analyzed all empirical datasets using
Mello bounds and the Tamura et al. (2013)’s method, which was implemented in MEGA 7 (Kumar
et al. 2012; Kumar et al. 2016). All empirical datasets are available at

https://github.com/cathyagtao/RelTime-confidence-interval.

Simulation analyses

We used the datasets simulated by Tamura et al. (2012), in which sequence alignments were
generated using independent (IBR) and autocorrelated (ABR) branch rate models. In IBR cases,
branch rates were sampled from a uniform distribution in the interval [0.5r, 1.5r], where r was the
evolutionary rate derived from empirical genes. In ABR cases, branch rates were simulated using

Kishino et al. (2001) model (lognormal distribution) with the initial rate of r and autocorrelation
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parameter v = 0.1 (time unit = 100Myr). GC contents, transition/transversion ratios, and sequence
lengths were all derived from empirical genes and varied among datasets. Both ABR and IBR
scenarios contained 100 simulated datasets, and each dataset contained 400 ingroup sequences.
Because the Bayesian method required a long runtime for analyzing a dataset with 400
sequences, we subsampled 50, 100, and 200 sequences from the original full datasets and

conducted RelTime and Bayesian analyses for these subsets.

To examine the performance of RelTime on simulated datasets, we used the minimum
number of calibrations, in order to avoid the possibility that the use of many informative
calibrations mediated the similarity of performance of RelTime and Bayesian methods. In the
Bayesian analysis, we used MCMCTree and a single calibration at the root with a diffused uniform
density (true age = 50 Myr). The use of diffused density could reduce the impact of calibration on
constraining the width of HPD intervals. We used 100 Myr as the time unit and “rgene_gamma =
2 10” and “sigma2_gamma = 2 20” as priors, so the prior values of mean rate, independent rate
variation, and autocorrelation parameter were similar to the true values. The use of lognormal
distribution as the rate model in Bayesian analyses was appropriate because the lognormal
distribution fit the distribution of evolutionary rates for IBR and ABR datasets, although IBR
datasets were simulated using a uniform distribution. We used “BDparas = 2 2 0.1” as the tree
prior because it generated a uniform node age prior, and it was commonly used in practice (Yang
2006). Two independent runs of 100,000 generations each were conducted, and results were
checked for good ESS values (>200) and convergence. In the RelTime analysis, we did not use
any calibrations, so there was no calibration effect on constraining the width of Cls. However,
because no calibration was used, RelTime provided relative times instead of absolution times. To
make the fair comparison between RelTime and Bayesian results, we normalized the RelTime
times (and Cls), Bayesian times (and HPD intervals), and true times to their ingroup root age,
which was analogous to the case where the age of the ingroup crown node was fixed. We
computed the coverage probability using these normalized times. The coverage probability of
each node was the proportion of 100 datasets where the Cl (or HPD interval) of this node
contained the true time. The overall coverage probability was the mean value of the coverage

probabilities of all the ingroup nodes.
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Table 1. Empirical datasets analyzed in this article

Taéorzzlr)nic Data type? Si?):i:: € ST::::; € Sul:::’:;tlion Calibrations®  Software? Reference
Primate (A) N 9 9,361 HKY + G, 8 uniform M(:B“::;_Fee Barba-Montoya et al. (2017)
Primate (B) N 9 9,361 HKY + G, i:‘&f\z;? M(:B'\él:;_;ee Barba-Montoya et al. (2017)
Spider A 40 55447 ~ WAG+G,  8uniform  MCMCTree ?200”10'7? al. (2014); Mello et al.
Insect A 143 220,091 LG+G, 38 uniform  MCMCTree Tong et al. (2015)
Bird N 220 16,780 HKY +G, 13 uniform BEAST Oliveros et al. (2019)
Sun orchid N 57 773 GTR+G, | normal BEAST Nauheimer et al. (2018)

aN = nucleotides; A = amino acids.

bSequence count excludes the outgroup taxa.

¢A Cauchy density distribution and exponential density distribution are used as the skewed
density in MCMCTree and BEAST, respectively.

dSoftware used in the original study for estimating divergence times. Both BEAST and BEAST 2
are referred to as BEAST here.
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Figure Legends

Figure 1. An evolutionary tree of three tips showing branch lengths (b;'s), node times (#s), branch

rates (r’s), and a lineage length (I).

Figure 2. (a) A primate phylogeny with a user-specified uniform calibration density (gray shade)
and an exponential calibration density (green shade). Red dots are the nodes shown in panels b-
e. Effective bounds derived using our method (solid blue line) and bounds derived using Mello et
al. (2017) procedure (solid orange line) are compared when user-specified calibrations are
reliable (b and c) and when user-specified calibration of Homo sapiens — Callithrix jacchus split is

unreliable (d and e). The dashed red line represents the “true simulated age.”

Figure 3. Comparisons of RelTime and Bayesian estimates of divergence times and the
associated uncertainties. Gray bars represent the Bayesian 95% HPD intervals (x-axis) and
RelTime 95% Cls (y-axis). The black dashed line represents a 1:1 ratio. Each graph contains the
slope and coefficient of determination (R?) values of the linear regression through the origin.

Calibrated nodes are shown in green. The dataset name inside each panel refers to table 1.

Figure 4. Comparisons of RelTime 95% Cls (dark red), MCMCTree 95% HPD intervals (gray),
and BEAST 95% HPD intervals (blue). Dots are point estimates of divergence times. The dataset

name inside each panel refers to table 1.

Figure 5. The overall coverage probabilities of RelTime Cls and Bayesian HPD intervals
produced by analyzing datasets with different numbers of sequences simulated under an (a)

independent branch rate, IBR, model and (b) autocorrelated branch rate, ABR, model.
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