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Abstract 

Confidence intervals (CIs) depict the statistical uncertainty surrounding evolutionary divergence 

time estimates. They capture variance contributed by the finite number of sequences and sites 

used in the alignment, deviations of evolutionary rates from a strict molecular clock in a phylogeny, 

and uncertainty associated with clock calibrations. Reliable tests of biological hypotheses demand 

reliable CIs. However, current non-Bayesian methods may produce unreliable CIs because they 

do not incorporate rate variation among lineages and interactions among clock calibrations 

properly. Here, we present a new analytical method to calculate CIs of divergence times estimated 

using the RelTime method, along with an approach to utilize multiple calibration uncertainty 

densities in these analyses. Empirical data analyses showed that the new methods produce CIs 

that overlap with Bayesian highest posterior density (HPD) intervals. In the analysis of computer-

simulated data, we found that RelTime CIs show excellent average coverage probabilities, i.e., 

the actual time is contained within the CIs with a 95% probability. These developments will 

encourage broader use of computationally-efficient RelTime approaches in molecular dating 

analyses and biological hypothesis testing.  
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Introduction 

Reliable inference of the confidence intervals (CIs) around the estimates of divergence times is 

essential for testing biological hypotheses (Burbrink and Pyron 2008; Kumar and Hedges 2016). 

Multiple sources contribute to the uncertainty of molecular divergence time estimates (Rannala 

and Yang 2007; Zhu et al. 2015; Kumar and Hedges 2016). One of them is the error associated 

with branch length estimation in a phylogeny due to the limited number of sites and substitutions 

in the sequence alignment (Kumar and Hedges 2016; Warnock et al. 2017). The stochastic nature 

of the substitution process (e.g., Poisson process) and the uncertainty involved in accounting for 

the unobserved substitutions (multiple-hit correction) result in errors in branch length estimates, 

which lead to imprecise time estimates (Kumar and Hedges 2016). However, this error decreases 

with an increase in the number of sampled sites (Rannala and Yang 2007; dos Reis and Yang 

2013; Zhu et al. 2015) and becomes negligible for large phylogenomic datasets.  

The second source of error is the variation of evolutionary rates among branches and 

lineages (Zhu et al. 2015; Kumar and Hedges 2016). Because rates and times are confounded, 

the variation of rates will naturally result in uncertainty of time estimates (Ho 2014; Zhu et al. 

2015). This confounding effect cannot be eliminated by sampling more sites or genes in a dataset 

(Zhu et al. 2015; Kumar and Hedges 2016), so it contributes more uncertainty to time estimates 

than errors in branch length estimation for a large dataset. The uncertainty associated with clock 

calibrations due to the equivocal nature of fossil record presents a third source of error in 

divergence time estimation (Zhu et al. 2015; dos Reis et al. 2016; Warnock et al. 2017). The exact 

placement of fossil record in a phylogeny and the correct assignment of calibration constraints, 

especially the maximum constraint, are often difficult to justify, resulting in high uncertainty in the 

estimation of divergence time (Bromham et al. 2018).     

In Bayesian analyses, the highest posterior density (HPD) intervals usually represent the 

uncertainty of inferred divergence times (Drummond et al. 2006). Bayesian methods compute 

HPD intervals directly from the density distribution of posterior times estimated using priors for 

branch rate heterogeneity, substitution process and fossil calibrations (dos Reis et al. 2016; 

Bromham et al. 2018), so sources contributing to the uncertainties of time estimates are 

automatically incorporated in the HPD intervals. Currently, Bayesian HPD intervals are 

considered reliable estimates of uncertainties surrounding divergence time estimates, although 

they are not always the same as the 95% CIs in the frequentist statistics (Jaynes and Kempthorne 

1976; MacKenzie et al. 2017). Unfortunately, the enormous computational burden imposed by 
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Bayesian approaches has hindered their applications to analyze many phylogenomic datasets 

(e.g., Pyron 2014; Li et al. 2019).  

In contrast, non-Bayesian methods can analyze large-scale datasets quickly and generate 

accurate time estimates (Smith and O’Meara 2012; Tamura et al. 2012; Tamura et al. 2018). 

Unfortunately, the broad utility of these methods is still reduced by a lack of reliable calculation of 

the uncertainty surrounding divergence times, which are represented by CIs. Non-Bayesian 

approaches require the use of analytical formulations or bootstrap approaches to estimate CIs 

(Sanderson 2003; Xia and Yang 2011; Tamura et al. 2013). However, site-resampling bootstrap 

approaches do not capture the error caused by rate heterogeneity, leading to false precisions of 

time estimates. Recognizing the need for incorporating lineage rate variation into CIs, Tamura et 

al. (2013) formulated analytical equations for the RelTime method, a non-Bayesian approach that 

relaxes the molecular clock. However, this approach may overestimate the amount of variance 

and produce overly wide CIs (see below), resulting in low power for statistical testing (Kumar and 

Hedges 2016). 

Bayesian and non-Bayesian methods also use different strategies to account for the 

uncertainty of fossil record. Non-Bayesian methods are currently limited to the use of minimum 

boundaries only, maximum boundaries only, or minimum and maximum boundary pairs as 

calibration constraints (Sanderson 2003; Tamura et al. 2013), while Bayesian methods allow the 

usage of probability densities as calibrations and automatically accommodate interactions among 

them (Inoue et al. 2010; Ho and Duchêne 2014). Mello et al. (2017) presented a simple procedure 

to derive minimum and maximum boundaries from the density distributions, but this strategy does 

not consider interactions among calibrations and may lead to overestimation of the variance of 

divergence times (see below). 

Here, we present an analytical approach to estimate CIs for divergence times using the 

RelTime method. The new analytical approach accounts for the variance associated with the 

branch lengths estimation as well as the variance due to rate heterogeneity in CI calculation. We 

also present a simple approach to derive minimum and maximum boundaries from multiple 

calibration densities such that the calibration interactions are accommodated. Both approaches 

have been implemented in the MEGA X software for use in graphical and command-line interfaces 

(Kumar et al. 2012; Kumar et al. 2018). The 95% CIs produced by RelTime in empirical analyses 

are compared with the 95% HPD intervals produced by Bayesian methods to examine the 

performance of the new approaches. The approaches presented here may be used, with 
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modifications, to improve variance calculation of time estimates for other non-Bayesian methods, 

e.g., penalized likelihood methods (Sanderson 2002). 

 

New Methods 

An analytical method to estimate confidence intervals 

Considering a tree with three ingroup sequences (Fig. 1), relative time (t) for each node and 

relative rate (r) for each lineage are functions of branch lengths (b) in RelTime, e.g., r1, r2, r3, r4, 

t4, and t5 are given by the following equations when the geometric means are used (similar 

equations can be derived when the arithmetic mean is used) (Tamura et al. 2018): 

𝑟1 =
√𝑏1√√𝑏1𝑏2+𝑏4

√𝑏2𝑏3
,       [eq. 1] 

𝑟2 =
√𝑏2√√𝑏1𝑏2+𝑏4

√𝑏1𝑏3
,        [eq. 2] 

𝑟3 =
√𝑏3

√√𝑏1𝑏2+𝑏4

,        [eq. 3] 

𝑟4 =
√√𝑏1𝑏2+𝑏4

√𝑏3
,        [eq. 4] 

𝑡4 =
√𝑏1𝑏2𝑏3

√√𝑏1𝑏2+𝑏4

,         [eq. 5]   

𝑡5 = √𝑏3√√𝑏1𝑏2 + 𝑏4.       [eq. 6]  

The variance of the estimated time (ti) for node i, denoted by 𝑣(𝑡𝑖), can be estimated by 

the delta method, assuming that there is no covariance among branch lengths (bj’s):  

𝑣(𝑡𝑖) = ∑ (
𝜕𝑓𝑡𝑖

(𝑏1,…,𝑏𝑁)

𝜕𝑏𝑗
)

2
𝑁
𝑗 𝑣(𝑏𝑗),       [eq. 7] 

where N is the total number of branches, 𝑓𝑡𝑖
(𝑏1, … , 𝑏𝑁) stands for the analytical function of bj’s to 

compute ti (e.g., equation 5  and 6 for t4 and t5, respectively), and 𝑣(𝑏𝑗) stands for the variance of 

branch length for branch j. Therefore, 𝑣(𝑏𝑗) is required for computing 𝑣(𝑡𝑖).  
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As mentioned before, the uncertainty of time is related to the number of sampling sites 

and the degree of rate heterogeneity. We consider the total variance of branch lengths, 𝑣(𝑏𝑗), 

which is required to compute 𝑣(𝑡𝑖), as a summation of the variance due to site sampling, 𝑣𝑆(𝑏𝑗), 

and the variance due to rate heterogeneity, 𝑣𝑅(𝑏𝑗): 

𝑣(𝑏𝑗) = 𝑣𝑆(𝑏𝑗) + 𝑣𝑅(𝑏𝑗).       [eq. 8]  

The value of 𝑣𝑆(𝑏𝑗)  can be estimated by using analytical formulations or a site-resampling 

approach. For example, an approximate estimate of this variance can be obtained by the 

curvature method when the maximum likelihood method is used (Edwards 1992; Tamura et al. 

2013).   

However, it is more complex to estimate 𝑣𝑅(𝑏𝑗), so we do it indirectly. We first compute 

the variance of observed evolutionary rates for all the lineages, 𝑉𝑜𝑏𝑠(𝑅): 

 𝑉𝑜𝑏𝑠(𝑅) =
1

𝑁
∑ (𝑟𝑗  −  𝑟̅)

2𝑁
𝑗 ,      [eq. 9]  

where R is a random variable representing all relative rates, rj is the relative rate for each branch 

j, and 𝑟̅ is the average of rj‘s. It is important to note that the relative rate for branch j is estimated 

as the relative rate for lineage j (Tamura et al. 2018). For example, RelTime computes the relative 

rate for b4 as the geometric mean of r1 and r2, which is assigned to be the rate for lineage l4 in 

figure 1. 

The variance of observed rates includes not only the variance introduced by rate 

heterogeneity, 𝑅𝑉(𝑅) , but also the sampling variance associated with the branch length 

estimation, 𝑆𝑉(𝑅), because the observed relative rate rj is calculated from branch lengths (bj’s) 

(e.g., equations 1 - 4). So, 

𝑉𝑜𝑏𝑠(𝑅) =  𝑅𝑉(𝑅)  +  𝑆𝑉(𝑅).       [eq. 10]  

The value of 𝑆𝑉(𝑅) is obtained by summing the sampling variance of relative rate rj for each 

branch j, denoted by 𝑠𝑣(𝑟𝑗):  

 𝑆𝑉(𝑅) = ∑ 𝑠𝑣(𝑟𝑗).𝑁
𝑗        [eq. 11] 

𝑠𝑣(𝑟𝑗) can be estimated by the delta method, assuming that there is no covariance among bj’s: 

𝑠𝑣(𝑟𝑗) = ∑ (
𝜕𝑓𝑟𝑗

(𝑏1,…,𝑏𝑁)

𝜕𝑏𝑗
)

2
𝑁
𝑗 𝑣𝑆(𝑏𝑗),     [eq. 12] 



7 
 

where 𝑓𝑟𝑗
(𝑏1, … , 𝑏𝑁) stands for the analytical function of bj’s to compute rj (e.g., equations 1, 2, 3, 

and 4 for r1, r2, r3, and r4, respectively). 

Using equations 9 – 12, we compute the variance introduced by rate heterogeneity: 

 𝑅𝑉(𝑅) =
1

𝑁
∑ (𝑟𝑗  −  𝑟̅)

2
−  ∑ ∑ (

𝜕𝑓𝑟𝑗
(𝑏1,…,𝑏𝑁)

𝜕𝑏𝑗
)

2

𝑣𝑆(𝑏𝑗).𝑁
𝑗

𝑁
𝑗

𝑁
𝑗   [eq. 13] 

Then, we can compute the rate heterogeneity variance for each branch j as being proportional to 

its branch length: 

𝑣𝑅(𝑏𝑗) =
𝑏𝑗

2

∑ 𝑏𝑗
2𝑁

𝑗

𝑅𝑉(𝑅).       [eq. 14] 

Using equations 8, 13 and 14, we can compute the total variance of branch length for 

branch j, denoted by 𝑣(𝑏𝑗). Then 𝑣(𝑏𝑗) can be used to compute the variance of time, 𝑣(𝑡𝑖), by 

applying equation 7. For example, the variance of t4 and t5 are given by the following equations: 

 𝑣(𝑡4) =
𝑏2𝑏3(√𝑏1𝑏2+2𝑏4)

2

16𝑏1(√𝑏1𝑏2+𝑏4)
3 𝑣(𝑏1) +

𝑏1𝑏3(√𝑏1𝑏2+2𝑏4)
2

16𝑏2(√𝑏1𝑏2+𝑏4)
3  𝑣(𝑏2)  

+ 
𝑏1𝑏2

4𝑏3(√𝑏1𝑏2+𝑏4)
𝑣(𝑏3) +

𝑏1𝑏2𝑏3

4(√𝑏1𝑏2+𝑏4)
3 𝑣(𝑏4),           [eq. 15] 

𝑣(𝑡5) =
𝑏2𝑏3

16𝑏1(√𝑏1𝑏2+𝑏4)
𝑣(𝑏1) +

𝑏1𝑏3

16𝑏2(√𝑏1𝑏2+𝑏4)
𝑣(𝑏2)   

           +
√𝑏1𝑏2+𝑏4

4𝑏3
𝑣(𝑏3) +  

𝑏3

4(√𝑏1𝑏2+𝑏4)
𝑣(𝑏4).     [eq. 16] 

For larger numbers of taxa, such analytical formulations become complicated to derive, 

especially for deeper nodes. Thus, we compute the variance of divergence times for deeper nodes 

from tips to the root recursively. For example, using equations 15 and 16, we can derive  

𝑣(𝑡5) =
(√𝑏1𝑏2+𝑏4)

2

(√𝑏1𝑏2+2𝑏4)
2 [𝑣(𝑡4) +

𝑏4

𝑏3
𝑣(𝑏3) +

𝑏3𝑏4

(√𝑏1𝑏2+𝑏4)
2 𝑣(𝑏4)].   [eq. 17]  

Therefore, the calculation of 𝑣(𝑡5) requires only 𝑣(𝑡4), 𝑣(𝑏3) and 𝑣(𝑏4), which are the variances 

for t4 and branches b3 and b4, respectively. The variance of branches that do not directly connect 

to node 5, i.e., 𝑣(𝑏1) and 𝑣(𝑏2) in this case (Fig. 1) is not needed, if the value of 𝑣(𝑡4) is computed 

beforehand. Thus, for any node in a phylogeny, we can calculate the variance of divergence time 

recursively from tips to the root by using the variance of times for direct descendant and ancestral 

nodes and the variance of directly connected branches. This procedure extraordinarily simplifies 
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the computation of the variance of inferred time for each internal node in a tree with a large 

number of taxa.  

It is important to note that times in the equations listed above are relative times, not 

absolute times, because no calibrations are involved in the above equations. When one or 

multiple calibrations (minimum boundaries only, maximum boundaries only, or minimum and 

maximum boundary pairs) are given, RelTime will compute a global time factor (f) by altering 

relative times such that all calibration constraints are satisfied. When a range of f values can 

satisfy all calibration constraints, RelTime selects the midpoint of the range to be the best estimate 

of f. When one or more of the absolute times computed using the f value falls outside the 

calibration constraints, RelTime adjusts relative times and f such that the deviations of absolute 

times from the calibration constraints are minimized. This process requires local alteration of 

relative rates and re-optimization of all other node times in the tree recursively (Tamura et al. 

2013). For example, if the minimum age constraint of a node is violated, i.e., the age estimated 

using f is younger than the minimum constraint, RelTime decrease its estimate of the evolutionary 

rate proportionally in that lineage to adjust the age of this node to be older, such that the 

divergence time becomes the same as the minimum age constraint. The resulting slowdown is 

transmitted to all the descendant nodes, and it affects the ancestral rates as well. 

Similarly, if the maximum age constraint of a node is violated, i.e., the age estimated using 

f is older than the maximum constraint, RelTime increases the estimated evolutionary rate 

proportionally in that lineage such that the divergence time matches the maximum age constraint. 

The effects of this rate change will be transmitted to the descendant and ancestral nodes 

automatically. Consequently, RelTime will ensure that the absolute times for calibrated nodes are 

consistent with the user-desired calibration constraints.  

In the final step, CIs are computed analytically using the final set of relative rates and the 

equations given above (e.g., equations 13-17), such that the uncertainty associated with clock 

calibrations can be incorporated into the CI calculation in RelTime. If the lower or upper bounds 

of CIs fall outside the user-specified calibration constraints, then CIs are truncated based on the 

imposed calibration constraints. Therefore, RelTime uses “hard” minimum and maximum bounds 

in CI calculation, as in BEAST (Drummond et al. 2012; Bouckaert et al. 2014; Barba-Montoya et 

al. 2017). 

An approach to derive effective calibration boundaries from calibration densities 



9 
 

As stated above, calibration uncertainty is another critical source of estimation error in the 

inference of divergence times. Bayesian methods use various probability densities to 

accommodate the calibration uncertainty. However, the current non-Bayesian methods do not 

allow direct use of probability densities and do not provide provisions to incorporate interactions 

among calibration constraints. Therefore, we developed a new procedure for use in the RelTime 

method to derive calibration boundaries from probability densities that accounts for their 

interactions.  

For each calibrated node with an associated probability density, we randomly sample two 

dates from the given probability density. We use these two sampled dates as the minimum and 

maximum (min-max) constraints for that node and derive such a min-max constraint for every 

node for which a probability density is specified. Then, we use all of these min-max boundaries 

to conduct RelTime analysis. We retain the RelTime time estimates only for the calibrated nodes, 

and then repeat the process of random sampling and dating for 10,000 times. A large number of 

iterations of this process ensure that calibration dates with tiny probabilities (0.01%) can be 

sampled.  

The iterative procedure above produces a distribution of 10,000 inferred dates for each 

calibrated node. In the final step, we derive the minimum bound at 2.5% and the maximum bound 

at 97.5% of the distribution of inferred dates for each calibrated node. We refer to bounds derived 

during this process to be “effective bounds.” These effective bounds can be used together with 

the analytical approach described above to infer the divergence times and CIs in RelTime. It is 

important to note that effective bounds are used as calibration constraints, not densities. The 

actual shapes of the distribution of 10,000 inferred dates may vary slightly if one is to repeat 

10,000 resamplings multiple times, but 2.5% and 97.5% boundaries of the distribution are 

expected to be stable, producing stable estimates of divergence times and CIs.  

 Our procedure is analogous to that in Bayesian methods, as both types of methods require 

resampling of calibration constraints from user-specified densities, inference of divergence times 

using each set of sampled calibrations, and summarization of distributions of time estimates 

obtained from using all sets of sampled calibrations. Therefore, the use of effective bounds allows 

RelTime to accommodate the interactions among calibration densities. However, it does not mean 

that RelTime and Bayesian methods are the same. Bayesian methods conduct calibration 

resampling and time inference steps simultaneously during the MCMC integration, whereas these 

steps are implemented sequentially in the RelTime method as proposed here. 
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We compared the effective bounds to calibration bounds derived using Mello et al. 

(2017)’s procedure (referenced as “Mello bounds” in the following) (Fig. 2), in which the minimum 

bound was placed at 2.5% of the density age, and the maximum bound was placed at 97.5% of 

the density age. Effective bounds were similar to the Mello bounds when the user-specified 

calibration density was reliable and informative, which meant that the true age of a node fell in 

the calibration density with a high probability. For example, effective bounds and Mello bounds 

almost overlapped for Homo sapiens – Callithrix jacchus split in which an exponential distribution 

was used as the calibration (Fig. 2b) (see the Materials and Methods section). When the user-

specified density was uninformative, e.g., a diffused uniform distribution, Mello bounds were often 

diffused and matched the original density (Fig. 2c). In contrast, our new procedure generated 

narrower bounds due to the accommodation of the interactions among different calibration 

densities and constraints. These interactions reshaped the original, wider distribution and made 

it tighter (Fig. 2c). Consequently, the use of effective bounds is likely to produce narrower CIs.  

In our analysis, when the user-specified calibration was unreliable, i.e., the true age of the 

node fell in its calibration density with a low probability, our effective bounds turned out to be 

better than Mello bounds. For example, when the true time of Homo sapiens – Callithrix jacchus 

split was located in the user-specified exponential density with < 2.5% probability (Fig. 2d), Mello 

bounds did not include the true time, resulting in incorrect time estimates. In contrast, our method 

did not ignore the low probability regions since it sampled 10,000 times from the user-specified 

density to ensure that dates with very low probabilities were considered. Thus, effective bounds 

are likely to contain the true time (Fig. 2d), and the use of effective bounds in RelTime may 

improve the accuracy and precision of time estimates.  

Results and Discussions 

RelTime produces CIs comparable to Bayesian HPD intervals in empirical analyses 

We applied our methods to five empirical datasets containing nucleotide or protein sequence 

alignments from primates, spiders, insects, birds, and sun orchids (Table 1). We first present 

results from the primate dataset from Barba-Montoya et al. (2017), which contains a relatively 

small alignment of 9,361 base pairs from nine primate species and one outgroup (Fig. 2a;  Fig. 

S1a). In this phylogeny, every internal node has been assigned a calibration density. Barba-

Montoya et al. (2017) used two calibration strategies in MCMCTree (Yang 2007) and BEAST 

(Bouckaert et al. 2014) and compared the time estimates. We examined if the RelTime method 

produced estimates comparable to those obtained from Bayesian methods when all analyses 
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employed the same alignment, phylogeny, substitution model, and calibration uncertainty 

densities (e.g., uniform distributions).  

For analyses of primate datasets where uniform densities were used as calibrations, we 

observed a high concordance between RelTime and Bayesian time estimates. The linear 

regression slopes were 0.97 and 1.03 when Bayesian analyses were conducted in MCMCTree 

and BEAST, respectively (Fig. 3a and b). This is a rather small difference. Although the width of 

RelTime CIs was slightly smaller than the width of Bayesian HPD intervals, RelTime CIs 

overlapped Bayesian HPD intervals for all the nodes (Fig. 4a and b). For primate datasets where 

a mixture of uniform and skewed densities were used as calibrations, RelTime estimates were 

again similar to Bayesian estimates, with a linear regression slope of 0.96 with MCMCTree (Fig. 

3c) and 1.00 with BEAST estimates (Fig. 3d). RelTime CIs overlapped with MCMCTree and 

BEAST HPD intervals for all the nodes (Fig. 4c and d).  

 We then analyzed spider and insect datasets to examine the performance of our methods 

for larger datasets (>40 species and >50,000 sites). These datasets consisted of protein 

sequences and presented more extensive rate variation among branches and lineages as 

compared to the primate dataset (Fig. S1b and c). Fewer calibrations were used in these datasets 

with eight calibrated nodes in the spider dataset and 38 calibrated nodes in the insect dataset. 

This means that 20% - 26% nodes of the phylogeny were assigned calibration values. We again 

observed strong concordance between RelTime and Bayesian time estimates, with a linear slope 

of 0.98 and 0.98 for the spider and insect dataset, respectively (Fig. 3e and f). The high similarity 

between RelTime and Bayesian node times remained even after we excluded nodes on which 

user-specified calibrations were assigned (slope is 0.97 and 0.98 for the spider and insect dataset, 

respectively). Although CIs produced by RelTime were slightly wider than HPD intervals produced 

by the Bayesian method, they were comparable with more than 97% of the nodes in spider and 

insect datasets showing overlapping CIs and HPD intervals (Fig. 4e and f). When CIs and HPD 

intervals did not overlap, they were less than 5 million years (Myr) apart. Therefore, RelTime CIs 

can be considered similar to Bayesian HPD intervals for these two datasets.   

 Although it is becoming more common to apply many internal calibrations to empirical 

studies, researchers may only have a limited number of calibrations because reliable fossil record 

for most taxonomic groups is limited. So, we analyzed another two nucleotide sequence 

alignments in which only a few calibrations have been used. One of them is a bird phylogeny (Fig. 

S1d) containing 220 ingroup taxa with only 13 calibrations (i.e., 6% nodes are calibrated). Again, 

RelTime produced time estimates similar to Bayesian estimates, showing a linear slope of 1.03 
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with a slightly weaker linear relationship than seen for other datasets above (Fig. 3g). CIs 

produced by RelTime overlapped with HPD intervals provided by the Bayesian method for all the 

nodes except for two (Fig. 4g). For these two nodes, CIs and HPD intervals were less than 2 Myr 

apart. In the analysis of the sun orchid dataset (Fig. S1e), in which 57 sequences were included, 

and only a single internal calibration was used, time estimates obtained from RelTime and 

Bayesian methods showed a good linear relationship as well (Fig. 3h). Although RelTime 

generated slightly older time estimates than those from the Bayesian method, CIs and HPD 

intervals overlapped for all the nodes (Fig. 4h).  

These results suggest that the application of our analytical method for computing CI 

combined with the approach to derive effective bounds is likely to produce estimates of times and 

CIs compatible with Bayesian estimates for datasets with a small and large number of calibrations 

when the same alignment, phylogeny, and calibration densities are used. We found that, 

compared to the previous implementations in RelTime for estimating CIs (Tamura et al. 2013; 

Mello et al. 2017), our new methods effectively improved the CI inference, because the width of 

CIs was reduced by 33% - 64% in the analysis of empirical data. This reduction was seen for both 

the calibrated and non-calibrated nodes. We attribute this improvement to the fact that the new 

analytical method accounts for the rate heterogeneity better, and the effective bounds reflect 

calibration interactions and reshape the original diffused calibration densities to generate 

narrower CIs. Consequently, the precision of divergence time estimates is improved. However, it 

is essential to note that the use of incorrect calibration constraints or densities can significantly 

impact the precision of time estimates (Warnock et al. 2017). Therefore, one needs to examine 

the reliability of calibrations before conducting dating analyses (Andújar et al. 2014; Battistuzzi et 

al. 2015; Hedges et al. 2018).  

 

RelTime CIs show high coverage probabilities 

We conducted RelTime and Bayesian (MCMCTree) analyses on a broad set of simulation 

datasets, containing small and large numbers of sequences, to compare the overall coverage 

probabilities, i.e., the proportion of RelTime CIs and Bayesian HPD intervals that included the true 

divergence times. In these analyses, we used no ingroup calibrations to avoid confounding the 

effect of calibrations on the coverage probabilities of estimated CIs and HPD intervals (see the 

Methods and Materials section).     
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 RelTime performed well in the analysis of datasets in which branch rates evolved under 

an independent branch rate (IBR) model, showing high coverage probabilities (≥ 95%) in both 

small and large simulated datasets (Fig. 5a). The Bayesian analyses also performed well for IBR 

datasets, showing high overall coverage probability for datasets containing 50 sequences (97%) 

but slightly lower overall coverage probability for datasets containing 100 sequences (84%) (Fig. 

5a). Interestingly, the coverage probability of HPD intervals declined further for IBR datasets with 

200 sequences (60%). We found that the true divergence times were located close to the 

boundaries of HPD intervals. In these cases, the average percent time difference between a true 

age and the nearest bound of respective HPD interval was 10%. RelTime showed an overall 

coverage probability of 94% for datasets containing 50 sequences and evolving with 

autocorrelated rates in a phylogeny (ABR), while the Bayesian method showed slightly lower 

coverage probabilities (78%; Fig. 5b). Bayesian coverage probabilities declined for datasets 

containing 100 and 200 sequences (52% and 35%, respectively), and the average percent time 

difference between the true ages and their nearest HPD interval boundaries was large (20% - 

45%). In contrast, RelTime maintained its high coverage probability for large datasets (≥ 95%). 

We found that the posterior distributions of many nodes for ABR datasets were not normal-

like and skewed, which means that the interpretation of HPD intervals is not the same as the CIs, 

which has been noted earlier (Jaynes and Kempthorne 1976; MacKenzie et al. 2017). It is also 

known that the tree prior assumed in Bayesian analyses can have an impact on the estimation of 

divergence times and HPD intervals (Heled and Drummond 2014; Ritchie et al. 2017; Bromham 

et al. 2018). This impact is more prominent when there is limited number of calibrations because 

the tree prior provides node age priors for nodes without calibrations (Barba-Montoya et al. 2017), 

which may explain the observed low coverage probabilities. We expect that the Bayesian method 

will perform better if more informative calibrations are applied because the tree prior becomes 

less critical, and informative calibrations reduce the uncertainty of time estimates. A more 

extensive analysis of this problem is beyond the scope of this article, but we plan to pursue it in 

the future. 

 

Conclusions 

Our new analytical method to estimate CIs, as well as the approach for deriving effective bounds, 

will now allow the use of more biological information, such as the rate variation among lineages 

and the probability density of calibrations, in 95% CIs inference. RelTime is computationally 

efficient, requiring only a fraction of the time and resources demanded by Bayesian approaches 
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(Tamura et al. 2012; Tamura et al. 2018). Results from the analysis of empirical nucleotide and 

protein sequence alignments containing small and large numbers of sequences and calibrations 

suggest that RelTime will serve as a reliable approach for dating the tree of life and conducting 

biological hypothesis testing, especially for large-scale molecular data. We also anticipate that 

our new analytical method and the new approach for utilizing calibration densities, with 

modifications, can be applied to generate CIs for other non-Bayesian dating methods, e.g., 

penalized likelihood methods (Sanderson 2002).  

 

Materials and Methods 

Comparisons of user-specified calibration density, Mello bounds, and effective bounds 

We used the BEAST-generated primate timetree published in Barba-Montoya et al. (2017) as the 

true tree (Fig. 2a) and simulated an alignment of 9361 sites under HKY+Γ (Hasegawa et al. 1985) 

model in SeqGen (Grassly et al. 1997) with parameters derived from the original empirical 

molecular data. Branch-specific rates were sampled from an uncorrelated lognormal distribution 

with a mean rate of 0.0069 substitutions per site per million years ago (Ma) and a standard 

deviation of 0.4 (log-scale). The simulated alignment was used to derive effective bounds. 

We tested the performance of using effective bounds and Mello bounds under two calibration 

scenarios: reliable and unreliable scenarios. The reliable scenario represents the case where true 

ages of all the nodes are located in their calibration densities with high probabilities. The unreliable 

scenario refers to situations in which true ages of some nodes are found in calibration densities 

with low probabilities, whereas the true ages for some other nodes are found in calibration 

densities with high probabilities. An informative exponential density was used at Homo sapiens – 

Callithrix jacchus split (true age = 44.8Ma) and an uninformative uniform density were used at 

Homo sapiens – Otolemur gamettii split (true age = 68Ma) under both scenarios. In the reliable 

calibration scenario, we assumed that a minimum age of 40Ma at Homo sapiens – Callithrix 

jacchus split and maximum age of 130Ma at Homo sapiens – Otolemur gamettii split were known. 

Therefore, we used an exponential density (mean = 4Ma and offset = 40Ma) and a uniform density 

(min = 40Ma and max = 130Ma) at Homo sapiens – Callithrix jacchus split and at Homo sapiens 

– Otolemur gamettii split, respectively. The true ages of both nodes located in their densities with 

high probabilities. Under the unreliable calibration scenario, we assumed that a minimum age of 

30Ma at Homo sapiens – Callithrix jacchus split and maximum age of 130Ma at Homo sapiens – 

Otolemur gamettii split were known. Therefore, we used an exponential density (mean = 3Ma and 



15 
 

offset = 30Ma) and a uniform density (min = 30Ma and max = 130Ma) at Homo sapiens – Callithrix 

jacchus split and at Homo sapiens – Otolemur gamettii split, respectively. This resulted in the true 

age of Homo sapiens – Callithrix jacchus split located in its density with a low probability (< 2.5%), 

while the true age of Homo sapiens – Otolemur gamettii split located in its density with a high 

probability. 

Empirical analyses 

We obtained empirical datasets that employed different calibration strategies from five published 

studies (Table 1) (Bond et al. 2014; Tong et al. 2015; Barba-Montoya et al. 2017; Nauheimer et 

al. 2018; Oliveros et al. 2019).  Molecular data were obtained from supplementary files of original 

studies. Calibration densities and Bayesian timetrees (including HPD intervals) were provided by 

authors or derived from the original studies, except for Bond et al. (2014)’s data, which was 

obtained from Mello et al. (2017). In RelTime analyses, we used the same alignments, substitution 

models, tree topologies, and calibration densities for ingroup nodes as the original studies to 

ensure comparability with Bayesian results. RelTime analyses were conducted in MEGA X 

(Kumar et al. 2018). For Oliveros et al. (2019)’s data, the published Bayesian timetree was 

summarized from 10 timetrees inferred using 10 different random subsets of the full dataset, 

because BEAST (Drummond et al. 2012) was computationally infeasible to analyze the full 

dataset. Since the original study has shown that 10 subsets provided similar results, we only 

conducted RelTime analysis using one subset. We compared RelTime time estimates and CIs 

with Bayesian time estimates and HPD intervals. We did not test whether the slope between 

RelTime and Bayesian time estimates was one because the p-value will always reject the 

hypothesis of the slope of one when the data sample size is large, which makes its use less 

meaningful (Halsey 2019; Wasserstein et al. 2019). To compare the performance of our methods 

and the previous CI calculation methods for RelTime, we re-analyzed all empirical datasets using 

Mello bounds and the Tamura et al. (2013)’s method, which was implemented in MEGA 7 (Kumar 

et al. 2012; Kumar et al. 2016). All empirical datasets are available at 

https://github.com/cathyqqtao/RelTime-confidence-interval. 

Simulation analyses 

We used the datasets simulated by Tamura et al. (2012), in which sequence alignments were 

generated using independent (IBR) and autocorrelated (ABR) branch rate models. In IBR cases, 

branch rates were sampled from a uniform distribution in the interval [0.5r, 1.5r], where r was the 

evolutionary rate derived from empirical genes. In ABR cases, branch rates were simulated using 

Kishino et al. (2001) model (lognormal distribution) with the initial rate of r and autocorrelation 

https://github.com/cathyqqtao/RelTime-confidence-interval


16 
 

parameter v = 0.1 (time unit = 100Myr). GC contents, transition/transversion ratios, and sequence 

lengths were all derived from empirical genes and varied among datasets. Both ABR and IBR 

scenarios contained 100 simulated datasets, and each dataset contained 400 ingroup sequences. 

Because the Bayesian method required a long runtime for analyzing a dataset with 400 

sequences, we subsampled 50, 100, and 200 sequences from the original full datasets and 

conducted RelTime and Bayesian analyses for these subsets.  

To examine the performance of RelTime on simulated datasets, we used the minimum 

number of calibrations, in order to avoid the possibility that the use of many informative 

calibrations mediated the similarity of performance of RelTime and Bayesian methods. In the 

Bayesian analysis, we used MCMCTree and a single calibration at the root with a diffused uniform 

density (true age ± 50 Myr). The use of diffused density could reduce the impact of calibration on 

constraining the width of HPD intervals. We used 100 Myr as the time unit and “rgene_gamma = 

2 10” and “sigma2_gamma = 2 20” as priors, so the prior values of mean rate, independent rate 

variation, and autocorrelation parameter were similar to the true values. The use of lognormal 

distribution as the rate model in Bayesian analyses was appropriate because the lognormal 

distribution fit the distribution of evolutionary rates for IBR and ABR datasets, although IBR 

datasets were simulated using a uniform distribution. We used “BDparas = 2 2 0.1” as the tree 

prior because it generated a uniform node age prior, and it was commonly used in practice (Yang 

2006). Two independent runs of 100,000 generations each were conducted, and results were 

checked for good ESS values (>200) and convergence. In the RelTime analysis, we did not use 

any calibrations, so there was no calibration effect on constraining the width of CIs. However, 

because no calibration was used, RelTime provided relative times instead of absolution times. To 

make the fair comparison between RelTime and Bayesian results, we normalized the RelTime 

times (and CIs), Bayesian times (and HPD intervals), and true times to their ingroup root age, 

which was analogous to the case where the age of the ingroup crown node was fixed. We 

computed the coverage probability using these normalized times. The coverage probability of 

each node was the proportion of 100 datasets where the CI (or HPD interval) of this node 

contained the true time. The overall coverage probability was the mean value of the coverage 

probabilities of all the ingroup nodes.  
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Table 1. Empirical datasets analyzed in this article  

Taxonomic 
Group 

Data typea 
Sequence 

countb 
Sequence 

length 
Substitution 

model 
Calibrationsc Softwared Reference 

Primate (A) N 9 9,361 HKY + G
5
 8 uniform 

MCMCTree 
BEAST 

Barba-Montoya et al. (2017) 

Primate (B) N 9 9,361 HKY + G
5
 4 uniform 

4 skewed 
MCMCTree 

BEAST 
Barba-Montoya et al. (2017) 

Spider A 40 55,447 WAG + G
5
 8 uniform MCMCTree 

Bond et al. (2014); Mello et al. 
(2017)  

Insect A 143 220,091 LG + G
6
 38 uniform MCMCTree Tong et al. (2015) 

Bird  N 220 16,780 HKY + G
4
 13 uniform BEAST Oliveros et al. (2019) 

Sun orchid N 57 773 GTR + G
4
 I normal BEAST Nauheimer et al. (2018) 

aN = nucleotides; A = amino acids. 
bSequence count excludes the outgroup taxa. 
cA Cauchy density distribution and exponential density distribution are used as the skewed 
density in MCMCTree and BEAST, respectively. 
dSoftware used in the original study for estimating divergence times. Both BEAST and BEAST 2 
are referred to as BEAST here. 
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Figure Legends 

Figure 1. An evolutionary tree of three tips showing branch lengths (bj’s), node times (ti’s), branch 

rates (rj’s), and a lineage length (l4).   

Figure 2. (a) A primate phylogeny with a user-specified uniform calibration density (gray shade) 

and an exponential calibration density (green shade). Red dots are the nodes shown in panels b-

e. Effective bounds derived using our method (solid blue line) and bounds derived using Mello et 

al. (2017) procedure (solid orange line) are compared when user-specified calibrations are 

reliable (b and c) and when user-specified calibration of Homo sapiens – Callithrix jacchus split is 

unreliable (d and e). The dashed red line represents the “true simulated age.”   

Figure 3. Comparisons of RelTime and Bayesian estimates of divergence times and the 

associated uncertainties. Gray bars represent the Bayesian 95% HPD intervals (x-axis) and 

RelTime 95% CIs (y-axis). The black dashed line represents a 1:1 ratio. Each graph contains the 

slope and coefficient of determination (R2) values of the linear regression through the origin. 

Calibrated nodes are shown in green. The dataset name inside each panel refers to table 1. 

Figure 4. Comparisons of RelTime 95% CIs (dark red), MCMCTree 95% HPD intervals (gray), 

and BEAST 95% HPD intervals (blue).  Dots are point estimates of divergence times. The dataset 

name inside each panel refers to table 1. 

Figure 5. The overall coverage probabilities of RelTime CIs and Bayesian HPD intervals 

produced by analyzing datasets with different numbers of sequences simulated under an (a) 

independent branch rate, IBR, model and (b) autocorrelated branch rate, ABR, model.  
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