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ABSTRACT. We give a short argument that yields a new lower bound on the
number of subsampled rows from a bounded, orthonormal matrix necessary to
form a matrix with the restricted isometry property. We show that a matrix
formed by uniformly subsampling rows of an N x N Hadamard matrix con-
tains a K-sparse vector in the kernel, unless the number of subsampled rows
is Q(K log Klog(N/K)) — our lower bound applies whenever min(K, N/K) >
log® N. Containing a sparse vector in the kernel precludes not only the restricted
isometry property, but more generally the application of those matrices for uni-
form sparse recovery.

1. INTRODUCTION

In their seminal work on sparse recovery [5], Candés and Tao were led to the
notion of the restricted isometry property (RIP). A gx N matrix M has the restricted
isometry property of order K with constant § > 0 if for all K-sparse vectors z € CV
(i.e. vectors with at most K nonzero entries) we have

(1= 0)lll3 < (M=l < (1 +8)]l]l5.

The significance of this property is that it guarantees that one can recover an
approximately K-sparse vector z* from Mz* via a convex program [5]. Specifically,
they showed that if a matrix M satisfies (2, /2 — 1)-RIP, then the minimizer

T = arg minz;Mx:M:B* ||$H1,

satisfies
1
~ * * *
|7 — 2%z < —=[|z" — 2k,
VEk
where z7, is the best K-sparse approximation of z* — in particular when z* is

exactly K-sparse, it can be efficiently recovered from Max* without any error.

In applications, ¢ is the number of measurements needed to recover a sparse signal.
Therefore, it is of interest to understand the minimal number of rows needed in a
matrix with the RIP property.

It is known that for a properly normalized matrix with independent gaussian
entries, ¢ = O(K log(N/K)) suffices to generate a RIP matrix with high probability
(e.g. [8]). Yet, it is often beneficial to have more structure in the matrix M [13]. For
example, if the matrix M is a submatrix of the discrete Fourier transform matrix,
then the fast Fourier transform algorithm allows fast matrix—vector multiplication,
speeding up the run time of the recovery algorithm [8, Chapter 12]. Additionally,
generating a random submatrix requires fewer random bits and less storage space.
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The first bound on the number of subsampled rows from a Fourier matrix neces-
sary for recovery appeared in the groundbreaking work [5]. They showed that if one
randomly subsamples rows so that the expected number of rows is O(K - log® N),
then concatenating these rows forms a RIP matrix with high probability, after ap-
propriate normalization. Rudelson and Verhsynin later improved this bound to
O(K - log? K - log(K log N) -log N) via a gaussian process argument involving chain-
ing techniques [14]. Their proof was then streamlined and their probability bounds
strengthened [7, 13]. Cheraghchi, Guruswami, and Velingker then proved a bound
of O(K -log® K -log N) [6], and Bourgain established the bound O(K -log K -log? N)
[4]. The sharpest result in this direction is due to Haviv and Regev, who showed
the upper bound O(K - log? K -log N ) through a delicate application of the proba-
bilistic method [10]. It is widely conjectured that for the discrete Fourier transform
g = O(K log N) suffices [14].

It turns out that all proofs in this line of work, including the strongest known
upper bound [10], apply in a more general setting where random matrix M is con-
structed by subsampling rows of any bounded orthonormal matrix — that is an
orthonormal matrix with all entries bounded in magnitude by % for some constant
B. The matrix of the Discrete Fourier Transform satisfy this property with B = 1.

This paper addresses the problem of determining a necessary number of samples
for reconstruction. Our contribution is that — surprisingly — for general bounded
orthonormal matrices, and for a certain range of K, Q(K log? N) samples are needed.
In particular, only a gap of log K remains between our bound and the best known
upper bound. We improve the previous best lower bound Q(K - log N) due to
Bandeira, Lewis, and Mixon [3] which applied to the DFT matrix. Those in turn
improve upon more general lower bounds Q(K - log(N/K)) on the number of rows
for any matrix that satisfies the RIP property [2, 9, 11, 12].

In the proof we consider an example of a bounded orthonormal matrix, the
Hadamard matrix (i.e. the matrix of the Fourier transform on the additive group
7%), and we show that for this specific matrix at least Q(K log K log N/K) samples
is required. More concretely, by a second moment argument, we demonstrate that
for fewer than O(K log K log N/K) subsampled rows, with high probability there
exists a K-sparse vector in the kernel — ruling out both the RIP property, and in
general any hope for sparse recovery algorithm with those matrices. The same proof
can be applied more generally to show that for any prime r one needs to subsam-
ple at least Q(K log K log(N/K)/log(r)) rows of a matrix corresponding to Fourier
transform on the additive group Z;' — for the sake of simplicity of the argument we
do not elaborate on this.
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2. PRELIMINARIES

Throughout this note, we use log to denote the base 2 logarithm. For an integer
n > 1, we set N = 2" and fix a bijection between [N] and Z%; this identification
remains in force for the rest of the paper.
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We say a function x : Z5 — {£1} is a character if it is a group homomorphism.
To an element a € Z%, we associate the character

Xa(@) = (=1)1)

for all x € Z%. The Fourier transform of a function f : Z§ — C is defined to be

. 1
fla) = N > f@)xalz)

T Ly

for all @ € Zy. Let H be the N x N matrix representing the Fourier transform on
the group Z5. In other words,

Hij — L (_1)22:1 ik

VN

When normalized to have +1 entries, the matrix H is also known as a Hadamard
matrix. We refer the reader to [15] for a thorough discussion of Fourier analysis on
finite groups.

The Grassmannian G,, 4 = G, 4q(Zs) is defined as the collection of vector subspaces
of Z3 of dimension d. Our proof uses the following well-known result about the
Fourier transform.

Lemma 2.1. For a subspace V € G, 4, we let 1y € RY be the vector corresponding
to the indicator function for V' with the normalization |1y |2 = 1. Then

H]]_V — ]].‘/L.
where V' is the orthogonal complement of V.

In this way, H implements a bijection between G, 4 and G, ,,—4. We also make
use of the following bounds on the size of Gy, 4.

Lemma 2.2. The size of G,, q is bounded by
2dn=d) |G, 4] < 24—, (2.1)

Proof. A standard counting argument gives the explicit formula

AL on ok
Gl = H 5d ok (2.2)
k=0
Using the inequalities
on—d < % < gn-dtl (2.3)
on each factor individually gives the result. O

We also make use of the following trivial counting lemma.
Lemma 2.3. For U,V € G, ,

max(n — 2k,0) < dim(Ut NV <n— k.
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3. MAIN RESuULT

For a subset @ C [N], we let Hgy denote the matrix generated from the rows of
H indexed by Q. Let 61,...,05 be a set of independent Bernoulli random variables
which take the value 1 with probability p. Random variables §; will indicate which
rows to include in our measurement matrix, Hg, meaning

Q={je[N]:¢; =1}
Note that @ has average cardinality Np and standard concentration arguments can
be used to obtain sharp bounds on its size. We say that a vector v € RY is K-sparse

if it has at most K nonzero entries. The following theorem is our main technical
result.

Theorem 3.1. For min(k,n — k) > 12logn, where N = 2" and K = 2*, there

exists a positive constant ¢ > 0 such that for p < % log K log(N/K), there exists a

K -sparse vector in the kernel of Hg with probability 1 — o(1).!

Proof. We will define p := —In(1 — p) for future convenience, and note that p < p <
2p, for small enough p.

We restrict our attention to the K-sparse vectors that correspond to 1y for V €
Gp,,k, the indicator functions of subspaces of dimension k. For such V, set Xy to be
the indicator function for the event that Q NV = (. Define

X= > Xy (3.1)
VEGn’k

Observe that by Lemma 2.1, if X is non-zero then there exists a K-sparse vector
in the kernel of Hp. We proceed by the second moment method to show that X is
nonzero with high probability. By the second moment method (e.g. [1]),
Var X
PX=0)< —m. 3.2
We can easily obtain an expression for the first moment:
EX = |Gy il - EXv

1
=[Gyl (1 —p)V]

N
= |Gl exp(—p42)
> exp((In2 — 20)k(n — k)).
The second moment requires a more delicate calculation. We partition the sum
into pairs of orthogonal complements with the same dimension of intersection. By
Lemma 2.3, and letting dy denote max(n — 2m,0), we have

Var X >uyvee,, Cov(Xu, Xv)
(EX)? G i]2 (EX )
_ Sty L0 dim(U- vt y=a Cov(Xu Xv)
|G i[? (EXy)?

We can explicitly compute each term in the sum above as follows.

(3.3)

10(1) indicates a quantity that tends to zero as N — oo. All asymptotic notation is applied
under the assumption that N — oo.
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Claim 3.2. For U,V € G, such that dim(U+ NV~) = d, we have

Cou( Xy, Xv) é(V) = exp(p2?) — 1.
(EXv)

Proof. Observe that
EXpXy =PULNQ=0AVNQ=10)
= exp(—plUT UV ])
= exp(=2p|U™| +plU- NV
= (EXy)* exp(p2?).

We plug this expression back to the sum (3.3), in order to arrive at

n—k

Var X 1
EX)? = Z Z 7’Gn,k‘2 (exp(de) — 1) .

d=do U,V:dim(U+NV+)=d

Let us use T'(n, k,d) to denote number of pairs U,V € G,, x such that dim(U+ N
V1) = d. With this notation, the entire sum simplifies to

n—k

T(n,k,d
=do

We will split this sum into two parts and bound them separately

n—k—3logn L d
S e (et - 1)
d=dy ™
= T(n,k,d)

d=n—k—3logn
=: (1) + (I).

The first part of the summation is easy to control: for d < n —k — 3logn we have
p2? < %, which implies exp(p2?) — 1 < %, and

n—k 3 ogn T(n,k,d) 4c
(I) = Z ‘Gn k’2 g
d=dj ’
4c T(n,k,d)
n = |G i ?
de
—=

IN

o(1). (3.4)

We can now turn our attention to bounding (I7).

Claim 3.3. Ford >n —k — 3logn, we have

T(n,k,d) In(2)
W < exp <—Tk(n — k)> .
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Proof. First, we have the bound T'(n, k,d) < |Gy, 4||Gp—dn—k—al*. Indeed, to choose
two subspaces UL, V* of dimension & with dim(U+ NV+) = d, we can first choose
T = U+ NV as a subspace of F} (there are |G,, 4| ways of doing this), and then we
can consider the quotient space F5 /T and count the number of disjoint subspaces
U/T,V/T C F3/T — the number of such choices is upper bounded by |Gn—d,n—k—d|2
— the number of all pairs of subspaces U/T,V/T € Fy/T.

Applying Lemma 2.2 to |G,, 4| and |G,,—qn—k—d|, We obtain

T(n,k,d) <exp(In(2)[din—d+1)+2(n—k—-d+1)(k+1)]).
The quadratic in the exponent is maximized for d = %’H, hence in the range

d > n — k — 3logn, the maximum is attained exactly at d = n — k — 3logn. This
yields

T(n,k,d) <exp(In(2)[(n —k —3logn)(k + 3logn + 1) 4+ 2(3logn + 1)(k + 1)])

< exp <ln(2) [(n _ k:)(gk) 4 i(n - k)kD

< exp <1n(2) [;(n - k)k]) ,

where the second inequality follows from the fact that min(k,n — k) > 12logn.
On the other hand, using Lemma 2.2 again, we have ﬁ < 272k(n=k) and the

statement of the claim follows by combining these two inequalities. O

Now we can introduce a simple upper bound of the sum (/1)

n—k

E B _ <
d=n—k—3logn |G 2 (eXp(p2 ) 1) < 3(logn)27 eXI’<p2 >

3(log n)2( iz~ 2)kk)
o1), (3.5)

where the first inequality follows from Claim 3.3, the second one follows from p2" % <

<
<

2¢k(n — k), and the third can one be applied as soon as 1n2(02) < 1. The statement of
the Theorem now follows by combining (3.2), (3.4) and (3.5). O

We can now state our main result in terms of sparse recovery.

Theorem 3.4. Let N and K be as in Theorem 3.1. For there to exist a method to re-
cover every K -sparse vector from Hg, for any K such that min(K, N/K) > log® N,
the expected cardinality of the number of rows of Hg must be Q(K log K log(N/K)).
Further, for any constant & > 0, the expected number of rows of Hg must be
Q(K log K log(N/K)) for Hg to have the RIP property.

Proof. By Theorem 3.1, there exists a 2K-sparse vector x in the kernel of Hgy with
high probability if the expected number of rows of Hg is o(K log K log(N/K)). Let
us write z = y—2z where y and z are both K-sparse vectors. Then Hgpy = Hgz, which
proves that Hg is not injective when restricted to the set of all K-sparse vectors.
The statement about the RIP property follows directly from the definition. ]
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