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A B S T R A C T

Narrow magnetic domain walls in rectangular nanowires with perpendicular anisotropy are a vital component
for many spintronic devices. Probing the structure of the domain wall is interesting for applications, and it also
provides a means to accurately determine fundamental material parameters, such as the size of the
Dzyaloshinskii-Moriya interaction strength. The domain wall structure can be inferred using a variety of recent,
novel experiments that measure the stray field above the magnetic wire, but the interpretation of these mea-
surements requires an accurate theoretical method that relates the stray field to the magnetic structure. Here,
various one-dimensional analytic methods for finding stray field are compared to MuMax simulations in order to
determine if there exists an accurate analytic way to interpret a wide range of experiments. This has the ad-
vantage of being fast and simple compared to numerical simulations. Our analytic method relies on approx-
imating the domain wall profile as a piecewise, linear function. It is shown to be accurate for parameters ap-
propriate to CoPtCr nanowires that are 3 nm thick and 40–100 nm wide, and is expected to work broadly for
nanowires that are thinner than the exchange length.

1. Introduction

In the last few years, experiments have measured the stray magnetic
field produced by nano-magnets with new-found spatial resolution.
Magnetic force microscopy, [1] nitrogen-vacancy nano-magnetometry
[2–4] and micro-SQuID (superconducting quantum interference device)
magnetometry [5] are providing new opportunities to measure stray
magnetic fields with exquisite sensitivity and resolution. Precisely
measuring the stray field of nanomagnets and thin films allows one to
infer the underlying magnetization profile and therefore the precise
strength of various important – and sometimes difficult to otherwise
measure –material parameters. For example, Gross and coworkers were
able to accurately determine the Dzyaloshinskii-Moriya interaction
(DMI) in a micorometer-wide ribbon, by precisely measuring the angle
of the magnetization in the center of a domain wall that was nucleated
in the ribbon. [6]

In the step where experimental results are compared to theoretical
predictions, in order to extract parameters such as the DMI strength,
authors typically rely on micromagnetic solvers, such as OOMMF [7] or
MuMax [8], which can be inefficient. Analytic methods have been used
to estimate the stray field above nanomagnets but the models that have

been used to date are approximate and consequently can introduce
unnecessary sources of error into the analysis. In an ideal world, one
would like an error-free, analytic expression as it is much quicker and
easier to make predictions and compare to experimental results than
running numerical simulations. Moreover, an analytical model provides
a means to look at how the stray field varies explicitly as a function of
various magnetic or geometric parameters.

Previously, we presented an extremely accurate, analytic calcula-
tion for the demagnetizing field inside a domain wall in a rectangular
nanowire or ribbon. [9] That work predicted whether a Bloch or Néel
wall will form in a particular magnetic material, as a function of the
ribbon’s aspect ratio. The results matched very well with those from
experiments and micromagnetic simulations. A follow-up work ex-
tended the theory to treat domain walls with DMI present. [10] In this
work, we use an analogous method to analytically find the stray field
above the domain wall region.

We find that our analytic predictions agree very well with micro-
magnetic simulations done using MuMax. It is hoped that the developed
expressions will be useful to scientists and engineers studying magnetic
interactions in nanostructures, and making domain wall devices. In the
supplemental material, we provide a user-friendly Mathematica code
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that the reader can use to simply calculate the stray field anywhere in
space, that is produced by a magnetic, rectangular nanoribbon con-
taining a domain wall. Parameters may be chosen that correspond to
any ferromagnetic material. DMI is not considered in this work as it
greatly complicates domain wall profiles, [10,11] but may be included
in the model in the future.

In Section 2 we describe the analytic method. More details and the
long analytic expressions are provided in the Appendix. In Section III
we will present results for some typical materials, with a comparison to
results found using MuMax. Finally, in Section IV we present conclu-
sions.

2. Analytic method

The geometry of the problem is shown in Fig. 1. An infinitely-long,
rectangular, magnetic nanowire is extended in the z direction. The wire
has width w in the x direction and thickness d in the y direction. We
consider d~ 3 nm and w~ 40–75 nm. The model is also valid for larger w
but the results are less interesting because the wire approaches the thin-
film limit. The thickness d should be smaller than the exchange length
so that the magnetization may be considered uniform in the y direction.
The origin of the Cartesian coordinate system is located at the center of
the wire. A domain wall centered at =z 0 is considered. We assume
out-of-plane magnetic anisotropy so that the magnetization as → −∞z
(+ ∞) goes to ̂− M ys ( ̂+ M ys ), where Ms is the saturation magnetiza-
tion.

We consider Bloch walls, where the magnetization inside the do-
main wall rotates in the −y x plane (the magnetization in the domain
wall center is along ± x), plus Néel walls, where the magnetization
rotates in the −y z plane (the magnetization in the domain wall center
is along ± z). We can also use the developed expressions to find the
stray field above a domain wall at some arbitrary angle in between,
since this involves a linear superposition of the formulas. This is par-
ticularly important for DMI systems, and will be explained more later.
DMI favors Néel walls of one chirality [12], so for low values of DMI
“tilted” domain walls may form, that are somewhere between Bloch and
Néel wall types. [13–15,10] In other words, the magnetization at the
center of these walls points at an angle between the x and z axes.

The stray magnetic field is found by solving Maxwell’s equations
with a Green’s function method. One wishes to solve
∇
→

= ⇒ ∇
→

= −∇
→

B H M· 0 · · , in SI units. In addition, the stray field is
represented by the gradient of a scalar magnetostatic potential, namely
→

= −∇H U , since ∇ ×
→

=H 0. The equation to solve therefore becomes
∇ = ∇

→
U M·2 . The corresponding Green’s function equation is the fa-

miliar Coulombic equation from electrostatics, namely
∇ = → − →′G δ r r( )2 with solution = → − →′G π r r1/(4 | |). [16] One is then
able to solve for the stray field of any magnetization distribution by
integrating over the Green’s function multiplied by the source terms
[17]
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The sources of stray field are gradients of the magnetization,
∇′

→
= ∂ + ∂ + ∂′ ′ ′ ′ ′ ′M M M M· x x y y z z . Note that both discontinuities in the

magnetization (ie. at the edges of the nanowire) and smooth gradients
in the magnetization (in the domain wall) produce stray field

→
H . In

some instances, it is convenient to perform an integration by parts on
Eq. (1) so that the Green’s function G is differentiated twice. [18] Here,
this is not necessary as the mathematics in fact may become more
difficult. The various differentiations and integrations in Eq. (1) can all
be done analytically if the magnetization profile

→ →′M r( ) can be written
as a linear piecewise function.

Before getting to the linear piecewise functions for
→
M , we state the

one-dimensional (1D) domain wall profile for both a Bloch wall and a
Néel wall. We note that for very narrow rectangular wires, the mag-
netization profile has been shown to not strictly have 1D dependence,
because the magnetization curves at the edge of the wire. [19] How-
ever, the 1D domain wall profile works remarkably well for wires with
width w = 40–75 nm for the parameters chosen here, and we discuss
this below.

For a Bloch wall in our coordinate system, the 1D magnetization
profile is:
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where θ x( ) is the Heaviside step function. The dimensionless vector
→m z( )B describes the magnetization angle’s dependence on position
along the wire’s length and is found by minimizing a 1D energy func-
tional.[20,21] It is given by
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The± sign in Eq. (3)(a) shows that the domain wall can have one of two
chiralities. The Bloch wall length LB depends on the magnetic material
parameters according to [9]

=
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(4)

where A is the exchange constant, K is the out-of-plane uniaxial ani-
sotropy energy density, μ0 is the permeability of free space, and Ny is a
demagnetizing factor for a rectangular nanowire, given according to the
aspect ratio by [22]
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For a Néel wall, the dimensionless vector→m B in Eq. (2) is replaced with
→m N , given by

=m z( ) 0,x
N (6a)

⎜ ⎟= ⎛
⎝

⎞
⎠

m z z
L

( ) tanh ,y
N

N (6b)

⎜ ⎟= ± ⎛
⎝

⎞
⎠

m z z
L

( ) sech .z
N

N (6c)

The Néel wall length is [9]

Fig. 1. The geometry of a rectangular nanowire with perpendicular magnetic
anisotropy, width w and thickness d. The origin of the Cartesian coordinate
system is at the center of the wire. The z direction is along the infinite wire’s
length. The wire is only a few nanometers thick in the y direction, but a
40–75 nm wide along the x direction. The muted arrows inside the wire re-
present the local magnetization direction in a Néel domain wall. The inset
shows a side-on view.
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In fact, this approximation is a little naïve, as the volume demagneti-
zation contribution of the Néel wall is not included in the estimate for
LN . [9,23] But we will show that this estimate provides satisfactory
results.

We note that rather than using hyperbolic functions for the mag-
netization profile, a Lorentzian profile can be used instead, which has
been done for Néel walls in thin films. [24,25] The hyperbolic functions
are exact solutions for domain walls in thin films, and they have an
extremely close match with our MuMax results for nanowires (to be
shown in Fig. 2).

The linear piecewise approximation for the Bloch wall, also a 1D
approximation, is denoted→ →a z m z( )~ ( )B B and has non-zero components
[9]
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Here, the domain wall length parameters are given in terms of the Bloch
wall width LB according to

=b πL ,Bx B (9a)

=b Lln(4) .By B (9b)

These values give the best fit of the linear piecewise approximations to
the smooth domain wall profiles. Fig. 2 shows the smooth Bloch domain
profile given in Eq. (3) (solid lines), in comparison to the linear pie-
cewise function given in Eq. (8) (dashed lines). In this figure, and all
those that follow, the material parameters are appropriate for CoPtCr
and follow Ref. [26]. These parameters are given in the figure caption.
Panel (a) shows the out-of-plane magnetization and panel (b) shows the
in-plane magnetization. Also drawn on both panels is the domain wall
profile calculated using MuMax micromagnetic simulations (black
dots). The magnetization is shown at the center of the nanowire and
agrees exceptionally well with the 1D analytic expressions (solid lines).
We note that at the edge of the stripe, the magnetization differs slightly
from that in the center, [6] but the difference is under 2% for the
parameters used here.

Similar to the Bloch wall, the linear piecewise approximation for the
Néel wall is denoted→ →a z m z( )~ ( )N N and has non-zero components [9]
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Here, the domain wall length parameters are given in terms of the Néel
wall width LN in Eq. (7) according to

=b πL ,Nx N (11a)

=b Lln(4) .Ny N (11b)

Note that the same parameters will be used for the Néel wall as for the
Bloch wall to plot the stray field components. The only difference is that
the magnetic nanowire width =w 40 nm for the Néel wall and is =w 75
nm for the Bloch wall. This change of width causes the equilibrium
domain wall type to switch. [9]

As with the Bloch wall, we have confirmed that the analytic solution
matches within 1% with the results of a MuMax simulation (details of
simulations are at the end of this section). The variation in the mag-
netization values in the center of the nanowire, compared to at an edge,
is less than 1% for these parameters, supporting the use of a 1D analytic
model.

To arrive at analytic expressions for the stray field in all space
→ →H r( ), one must substitute Eq. (8) or Eq. (10) (the linear piecewise
magnetization profiles), into Eq. (2), which is then in turn substituted
into Eq. (1). This sounds very simple, but the various integrations and
differentiations make the task very lengthy. Here we quote the results in
the Appendix. Also included as a Supplemental Information file is a
Mathematica notebook so that the reader may input magnetic para-
meters and in a matter of seconds calculate stray fields for any nano-
wire of interest, and fit to experimental measurements of stray magnetic
fields.

We note that by using the smooth 1D hyperbolic magnetization
profiles, given in Eq. (3) for the Bloch wall and in Eq. (5) for the Néel
wall, one is able to do all the steps to find

→ →H r( ) analytically, except for
a final integration over ′z . However, this integration over ′z can be done
numerically and is relatively quick. Thus, the results for a linear,
piecewise magnetization profile (“1D linear” as shorthand) can be
compare to those from the 1D smooth magnetization profile (“1D
numerical”), as a preliminary check of the results.

To test that the analytic expressions are accurate, their results are
also compared to MuMax micromagnetic simulations (“MuMax”).
These simulations involve splitting the magnetic nanowire into

Fig. 2. The 1D magnetization profile of a Bloch domain wall in a rectangular
nanowire, according to Eq. (3) (solid lines) and using MuMax simulations
(black dots). A linear, piecewise approximation is also shown, as given by Eq.
(8) (dashed lines). Panel (a) shows the out-of-plane magnetization component
my

B as a function of position z, while panel (b) shows the in-plane mx
B compo-

nent. The parameters used are =d 3 nm, =w 75 nm (giving =N 0.93y ),
= ×M 3 10s

5 A/m, = ×K 2 105 J/m3 and = × −A 1 10 11 J/m. The MuMax si-
mulations split the nanowire into × ×1 1 3 nm cells, with 3 nm being the total
thickness of the wire.
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elements that are 1 nm in width and length, and 3 nm thick (the total
thickness of the nanowire). In other words, the nanowire is one mi-
cromagnetic cell thick. A nanowire that is 2 μm long is considered,
which is sufficiently long so that the ends of the wire do not affect the
stray magnetic field above the domain wall in the wire center. The
magnetization is allowed to relax and then the total stray field is con-
structed by treating each micromagnetic element as a single magnetic
dipole moment, and then summing up the dipolar fields from each one.

3. Results

As mentioned earlier, the parameters used throughout are taken
from Ref. [26] and are appropriate for CoPtCr. Namely, they are
thickness =d 3 nm, magnetization = ×M 3 10s

5 A/m, anisotropy
= ×K 2 105 J/m3 and exchange = × −A 1 10 11 J/m. The width of the

nanowire may be varied. Our previous 1D analytic model predicted that
for a nanowire width of ⩽w 55 nm, a Néel wall is energetically fa-
vorable, while for larger widths a Bloch wall is favored. [9] Note that
for all widths used, the domain wall length LB or LN is roughly 8 nm for
these parameters.

To test the analytic expressions for the stray field given in the
Appendix, we first plot the three different components of the stray field
at chosen positions above the nanowire ( >y 1.5 nm), as a function of z
along the wire’s long axis. Then the determination of whether a wall is
of Bloch or Néel type will be discussed.

In all of the plots that follow, the plot labels follow the same con-
vention. The lines are the results from the 1D linear, analytic method.
The square points show some results from doing a 1D numerical in-
tegration of the hyperbolic domain wall profiles. Finally, black dots
show the profiles obtained from MuMax simulations. Few points are
shown so as to not clutter the plots, since three methods of calculation
are compared.

In most plots that follow, the stray field is calculated at three heights
above the nanowire’s center: =y 30 (solid, blue line), 60 (dashed,
yellow line) and 120 nm (dashed, green line). Note that these distances
are quoted from the origin at the center of the 3-nm thick wire, which
places them at heights 28.5 nm, 58.5 nm and 118.5 nm above the top
surface of the wire. Plot legends show exactly which line corresponds to
1D linear results at which height y.

3.1. Hx component

The component of the stray field that is in-plane and in the direction
of the nanowire’s width is examined first. Directly above the center of
the nanowire ( =x 0) the domains contribute nothing to this component
of the stray field, so for this reason we choose to look at the behavior
near the edge of the nanowire. Results are shown in Fig. 3(a) for Hx as a
function of position z for a Bloch wall in a wire of width =w 75 nm, at
=x 37 nm from the center, and at various heights y.
On first inspection, all three methods of calculation seem to agree

very well, justifying the use of the analytic expressions. However, in
Fig. 3(b) the analytic results are subtracted from the MuMax results and
one sees that these differ at the center of the domain wall, up to 0.2 kA/
m for the smallest height of just =y 30 nm. Moreover, the MuMax re-
sults have a stray field that passes through zero at >z 0, rather than
closer to =z 0 as the 1D models predict due to symmetry. In fact, above
the opposite edge of the nanowire ( = −x 37 nm, rather than + 37 nm)
the asymmetry seen in Fig. 3(b) is flipped about =z 0. These facts can
be attributed to small variations in the magnetization profile across the
width of the nanowire (x direction) that were discussed in Section 2 and
were pointed out in Ref. [19]. MuMax data shows that the magneti-
zation components differs by 2% or less at the edge of the wire com-
pared to in the center ( =x 0) but this small difference adds up when
calculating the stray field from the entire structure. The difference
becomes smaller at large distances from the center of the domain wall.
An “S-shaped” domain wall forms [19] with very small in-plane Mz

components ( < × −M M| / | 7 10z s
3), so as to minimize the stray field en-

ergy of the Bloch wall in a nanowire with finite width. Interestingly, the
other stray field components Hy and Hz seem less sensitive to these
small magnetization variations in the x direction. Note that we have
checked that the positions of the domain walls for the various calcu-
lation methods do in fact line up, and this is not a result of one domain
wall being shifted along z compared to another. We also checked that
the MuMax simulations were converged.

The analytic expression for the stray field component Hx can be
simplified dramatically by assuming (incorrectly) that the domain wall
length →L 0B . This far simpler result – which is given along with the
full expressions in the Appendix – has very little error, compared to
considering the full structure of the domain wall, as long as the height
above the nanowire z is larger than the domain wall length LB. For
example, if =y 5 nm, one sees up to 50% error in the stray field near
the domain wall region. But if =y 15 nm, the difference is a few per-
cent. Again, this is in contrast to the other components (Hy and Hz)
where ignoring the domain wall region leads to large errors, as will be
discussed below.

3.2. Hy component

The out-of-plane stray field has a dominant contribution from the
domains, reaching constant values above the domain regions for
≫z L| | N B/ . However, the wall region also contributes importantly near
=z 0. Results for Hy are presented as a function of position z along the

wire, at a position that is off a central axis of symmetry (ie. ≠y 0 and
≠x 0). This is so the differences between the Bloch and Néel wall’s

stray field can be seen clearly. Note that for precisely =x 0 the Bloch
domain wall region does not contribute to Hy due to symmetry.

First, in Fig. 4, the out-of-plane component of the stray field near a
=w 40 nm wire containing a Néel wall (NW) is shown at various

heights for =x 19.5 nm (above the wire’s edge), as a function of z. In

Fig. 3. (a) The stray field component Hx as a function of position z along the
long axis of the wire. A Bloch wall with clockwise rotation is centered at =z 0
in a wire with =w 75 nm. The stray field is found above the wire’s edge, at
=x 37 nm. The lines are the 1D linear (analytic) results, the squares are the 1D

numerical integration results, and the black dots are the MuMax simulations.
(b) The difference between the MuMax results and the 1D linear, analytic re-
sults for Hx .
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panel (a), the results for a Néel wall with clockwise chirality (CW) are
shown, while in panel (b) the results with counter-clockwise (CCW)
chirality are shown. In panel (b) only, black dots indicate the results
from MuMax. In all cases, the three calculation methods agree very
well, showing that the 1D linear approximation yielding analytic results
is a robust way to calculate the stray fields. Notice that the stray field
magnitude decreases rapidly with increasing height above the wire.

Comparing the two panels in Fig. 4, one sees a larger magnitude
“shoulder” in the stray field at the edges of the domain wall region for
the CCW wall at =y 30 nm (panel (b), solid line) compared to the CW
wall (panel (a)). This shoulder represents an increase in Hy of around
30% at = ±z 30 nm. This is because the contribution to the out-of-plane
stray field has a large contribution from the domain wall for the CCW
rotation, which constructively adds with the domain contribution at
both sides of the domain wall. For the opposite CW rotation (panel (a)),
the domain wall contribution instead subtracts from the domain con-
tribution. Above the domains, ( → ±∞z ) the Hy magnitude approaches
a constant value, which is the same in both panels.

Fig. 5 is very similar to Fig. 4 except that it shows results for Bloch
walls with (a) CW and (b) CCW rotation. The out-of-plane component of
the stray field near a =w 75 nm wire is shown at =x 37 nm, as a
function of z. Three heights, =y 30, 60 and 120 nm, are again shown.
The difference between all three methods – in all cases considered, both
Bloch and Néel walls – is less than 0.02 kA/m (less than 1%).

Note that the limiting values of Hy out in the domains are different
in Fig. 5 and 4 because the nanowires have different widths and the
stray field is being probed at a different lateral position x. The stray
field profile’s shape in the domain wall region is also very different
between the Bloch and Néel walls; namely, the Bloch wall has an
asymmetric Hy profile about =z 0 (one of the shoulders is bigger than
the other) while for the Néel wall it is symmetric and purely odd. In

Fig. 5 the stray field is asymmetric near =z 0 (the center of the domain
wall) because the domain wall contribution to the out-of-plane stray
field from the Bloch wall (with moment along ̂x ) is even, while the
domain contribution is odd due to its curling nature about the origin.
This results in the skewed plot for Hy. Note that this skew reverses its
direction when the domain wall chirality is reversed (compare panels
(a) and (b)). The skew vanishes at exactly =x 0 (results not shown) as
directly above the center of the wire, the domain wall region con-
tributes nothing to Hy because its dipolar field is purely parallel to ̂± x .

We mentioned earlier that the domain wall region contributes
negligibly to Hx , as long as >y 5 nm. It is the domains that dominate
the result. In contrast, for Hy the domain wall region is important for
even relatively large heights above the nanowire, say =y 50 nm, as is
evidenced by the asymmetry in Fig. 5 due to the domain wall’s moment.
Therefore, although letting the domain wall width vanish results in a
vastly simplified expression for Hy (see Appendix) it gives spurious
results (out by over 1 kA/m) in regions of interest.

Our results were also compared to approximate expressions given in
Ref. [3], for Bloch and Néel walls of finite width, but in a thin-film
material where → ∞w . We note that their expression for the out-of-
plane component of the stray field decays as z1/ away from the domain
wall, which is not the behavior seen here where the stray field satu-
rates. Therefore, a numerical comparison is not presented. In Ref. [3],
the approximate expressions are used to motivate and understand the
experiment, and micromagnetics is used to actually interpret the ex-
perimental results. Here, we provide a route to use analytic expressions
to do both.

3.3. Hz component

Consider now the stray field component along the z direction (in-
plane, along the wire’s axis). The case of =w 75 nm (Bloch wall) is
considered, and the resulting Hz component is plotted as a function of
position z in Fig. 6. Positions directly above the center of the wire

Fig. 4. The stray field component Hy as a function of position z along the long
axis of the wire, for Néel walls with (a) CW and (b) CCW rotation, centered at
=z 0 in a wire with =w 40 nm. Again, the lines are the 1D linear (analytic)

results, the squares are the 1D numerical integration results, and the black dots
are the MuMax simulations.

Fig. 5. The same as for Fig. 4, but for Bloch walls with (a) CW and (b) CCW
rotation, centered at =z 0 in a wire with =w 75 nm.
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( =x 0) are taken at three different heights. There is a peak in the field
component directly above the center of the domain wall, due purely to
the stray field contribution from the domains. The moment of a Bloch
domain wall is along the ̂± x direction, so it contributes no stray field at
this precise location ( = =x z 0).

Once again, all three methods of calculation agree well. The dif-
ference between the 1D linear, analytic method and the MuMax results
is less than 1% everywhere. The difference between the 1D numerical
integration and the MuMax results is less than 0.1% everywhere. When
the domain wall region is ignored in the 1D analytic method, then a
very simple expression exists for Hz (see Appendix) but it produces a
result that is 0.44 kA/m too large in magnitude in the center of the
domain wall region ( =z 0).

Fig. 6 is for =x 0, above the central axis of the nanowire. If one
moves to above the edge of the nanowire, say =x 37 nm as considered
when discussing Hy, then the Bloch domain wall region does influence
Hz. Its effect is to make Hz asymmetric about =z 0 (the peak shifts
either left or right, results not shown) because the wall’s contribution to
the stray field is odd while the domains’ contribution is even. Once
again, all three methods of calculation agree within 1%. This time,
ignoring the domain wall’s width in an analytic simplification leads to a
serious problem as the asymmetry about z cannot be recovered without
the domain wall contribution.

3.4. Determining Bloch from Néel walls

The results above all show that the 1D linear approximation works
to calculate complicated magnetic stray fields quickly and accurately.
Below we describe some additional results, which show the utility of
this method for interpreting experiments. Tetienne et al.[3] were able to
determine domain wall types (Bloch versus Néel or something in be-
tween) by measuring the stray field above a nanowire. This relied on a
complicated calibration of the nitrogen-vacancy experiment, using
micromagnetic simulations. The same analysis can be performed more
rapidly and easily using analytic expressions, plus more insight can be
gained on the physical contributions.

Consider, for example, a nanowire width =w 55 nm, where both
Bloch and Néel walls are predicted to be stable for the parameters used
throughout this work. [9] In Fig. 7 the Hz component of the stray field is
plotted versus position z for a Bloch wall (black line) and Néel walls
with opposite chirality, namely clockwise (CW, solid, red line) and
counterclockwise (CCW, dashed, red line). The stray field is calculated
above the center of the wire at = =x y0, 30 nm. In other words, a line
parallel to the z axis, that is 28.5 nm above the top surface of the

nanowire, is considered. One sees that the magnitude of the stray field
component varies by 50% in the center of the domain wall, depending
on the domain wall type, as has been noted before using approximate
stray field expressions.[3] Note that the stray field curls from the up
domain ( >z 0) to the down domain ( <z 0) creating a Hz component of
the stray field that is negative above the wire. For the two Néel wall
chiralities, the domain wall region contributes to Hz in such a way as to
either enhance (CCW) or diminish (CW) the stray field strength (red
lines). As mentioned earlier when discussing Fig. 6, at precisely =x 0
the Bloch domain wall region does not contribute to Hz (only the do-
mains contribute) so the result for the Bloch wall lies between the two
Néel wall lines (black line).

The introduction of Dzyaloshinskii-Moriya interaction (DMI) can
move the Bloch/Néel transition to larger wire widths, since DMI favors
the Néel wall rotation. [10] In other words, the threshold width of
55 nm discussed earlier may become much larger. In fact, a domain
wall that is neither a Bloch nor a Néel wall may form for moderate
values of DMI. In other words, the magnetization in the center of the
wall does not point along x (Bloch) or along ± z (Néel) but is instead at
some intermediate angle. The measurement of stray fields can therefore
be used to infer DMI strength or the effective magnetic width of na-
nostructures since Hz will have a profile between the two red lines
drawn in Fig. 7.

4. Conclusions

The stray field from a rectangular, magnetic nanowire containing a
domain wall is calculated a variety of ways. The results indicate that the
1D linear approximation for the domain wall profile leads to analytic
expressions for the stray field that are accurate to within 1% of MuMax
simulations in most cases of interest. For the parameters used here,
appropriate for CoPtCr, the Hy and Hz components of the stray field are
within 1% of the MuMax results for a vast range of positions around the
domain wall. The Hx component has an error of 0.2 kA/m, 30 nm above
the domain wall’s center and at the edge of the nanowire, due to small
variations in the domain wall profile across the nanowire width (x di-
rection).

The advantage of the 1D linear expressions for the stray field is that
they are computationally cheap and also allows one to look at how the
fields depend on various parameters such as nanowire dimensions. In
fact, a whole stray field vector plot can be generated in a few seconds,
allowing experimentalists to quickly and accurately compare their re-
sults to theory.

Although a single domain wall in an infinitely-long nanowire has
been considered here, the general idea to linearize magnetization pro-
files in order to find stray fields analytically can be used to study other

Fig. 6. The in-plane Hz component of the stray field for a Bloch wall, as a
function of position z along the wire. The nanowire is 75 nm wide and the stray
field is measured directly above its center ( =x 0) at three different heights. The
lines are the 1D linear (analytic) results, the squares are the 1D numerical in-
tegration results, and the black dots are the MuMax simulation results.

Fig. 7. The Hz component of the stray field directly above the central axis of a
55 nm-wide nanowire ( = =x y0, 30 nm). The 1D linear (analytic) results for a
Néel wall (CW and CCW rotation) and a Bloch wall are shown.
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systems, for example, wires or thin films with multiple domain walls
present, or even skyrmions where cylindrical rather than Cartesian
coordinate systems can be used.
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Appendix A. Analytic expressions for the stray field

Here, the analytic, 1D expressions we developed for the stray field of Bloch and Néel walls in nanowires are provided. To help the reader, we
summarize the key equations below that are needed to produce the stray field. For a Bloch wall, the stray field components are given by.

• Hx : Eqs. (A.2), (A.4) and (A.8),

• Hy: Eqs. (A.10), (A.12) and (A.15),

• Hz: Eqs. (A.17), (A.19), (A.21) and (A.22).

For a Néel wall, the stray field components are given by

• Hx : Eqs. (A.2), (A.6) and (A.8),

• Hy: Eqs. (A.10), (A.13), (A.14) and (A.15),

• Hz: Eqs. (A.17), (A.20), (A.21) and (A.22).

In the following, some shorthand notations will be helpful to reduce the size of the expressions. They are = − ′X x x , = − ′Y y y , = − ′Z z z ,
= → − →′ = + +R r r X Y Z| | 2 2 2 , =arctanh atanh, and =arctan atan. Also note that the domain wall region’s length is given by b b,x y and bz as

shorthand, for the three different magnetization components. These values are determined from material parameters and nanowire dimensions and
are given for Bloch walls in Eqs. (4), (9), and for Néel walls in Eqs. (7), (11) of the main text. Recall that the reason the domain wall region has a
different effective length for the different magnetization components is to ensure that the approximate, linear-piecewise magnetization profiles have
best fit with the hyperbolic, exact profiles (see Fig. 2).

Note that some terms in the expressions that follow are complex, however the total expressions for the stray field components are all purely real.

A.1. Hx component

We start with the stray field component →H r( )x . It is

∫→ = −∂ →′
→ − →′ ∇

′ → →′H r d r
π r r

M r( ) 1
4 | |

· ( ).x x V
3

(A.1)

We can split Eq. (A.1) into three dimensionless contributions, namely
→

≡ → = + +π H r
M

h r h h h4 ( ) ( ) ,x

s
x xx xy xz (A.2)

where each piece is defined as

∫= −∂ →′ ∂
→ →′ =′ ′h d r

M R
M r α x y z1 ( ), , , .xα x V s

α α
3

(A.3)

For the Néel wall =h 0xx because there is no magnetization component along x, but for the Bloch wall it is
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where the square parentheses indicate that the expression needs to be evaluated at ′ =x w/2 and ′ = −x w/2, at ′ =y d/2 and ′ = −y d/2, and at the
ends and middle of the domain wall region, namely ′ =z 0 and ′ = ± = ±z b bx Bx. Note that C is a chirality factor given by

= ⎧
⎨⎩

+ +
− −

x
x

1, Bloch wall moment along ^ (CW),
1, Bloch wall moment along ^ (CCW)

.C
(A.5)

Similarly, for the Bloch wall =h 0xz , but for the Néel wall it is
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where again these expressions are evaluated at the edges of the magnetic nanowire, at the center of the domain wall ( ′ =z 0) and at the domain wall
edges ( ′ = ± = ±z b bz Nz). Again, C is a chirality factor given by

= ⎧
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z
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1, Neel wall moment along ^ (CW),
1, Neel wall moment along ^ (CCW)

.C
(A.7)

The final piece of →H r( )x is common to both the Bloch and Néel walls, since both have out-of-plane magnetization components. It is
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where the domain wall region has length by that is bBy for the Bloch wall and is bNy for the Néel wall.
When the domain wall length is assumed to vanish, then hxy is the only one of the three terms in Hx to survive and one arrives at a simple formula,

that has been used by others, namely
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(A.9)

The consequences of using this assumption are discussed in the main text.

A.2. Hy component

In analogous fashion to what was done to calculate →H r( )x , we can split →H r( )y into three dimensionless contributions, namely

→
≡ → = + +π

H r
M

h r h h h4
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( ) ,y

s
y yx yy yz (A.10)

where each piece is defined as
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3

(A.11)

Then each of the three pieces can be found by differentiating and integrating in the most useful order.
The Bloch wall has non-zero hyx given by
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(A.12)
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The Néel wall has non-zero hyz given by
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where the integrand piece g is defined as
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Both the Bloch and Néel walls have contribution hyy given by
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Assuming that the domain wall has negligible width, then the total component Hy only has contribution from hyy (the domains) and is given by
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Note that here ′ =z 0 in the calculation of → − →′r r| |. In the main text, we explain how this is a poor approximation for Hy compared to using the full
equations above.

A.3. Hz component

→H r( )z is split into three dimensionless contributions, namely
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Then each of the three pieces can be found by differentiating and integrating.
The Bloch wall has non-zero contribution hzx given by
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(A.19)

The Néel wall has non-zero contribution hzz given by
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(A.20)

Both the Bloch and Néel walls have hzy that has a contribution from the domains hzy
dom and a contribution from the domain wall region hzy

DW. In other
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words, = +h h hzy zy zy
dom DW. Most notably, the Néel wall can have two possible chiralities (discussed in the main text) with one chirality reinforcing the

stray field from the domains above the domain wall region, and the other chirality reducing the stray field magnitude there. The domain wall
contribution is
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and the domain contribution is
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Assuming that the domain wall has negligible width, then the total component Hz only has contribution from hzy and is given by (with ′ =z 0)
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Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jmmm.2020.167164.
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