
A High-Level Synthesis Approach to the
Software/Hardware Codesign of

NTT-based Post-Quantum Cryptography Algorithms
Duc Tri Nguyen, Viet B. Dang and Kris Gaj

Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, U.S.A.
{dnguye69, vdang6, kgaj}@gmu.edu

Abstract—Due to an emerging threat of quantum
computing, one of the major challenges facing the
cryptographic community is a timely transition from
traditional public-key cryptosystems, such as RSA
and Elliptic Curve Cryptography, to a new class of
algorithms, collectively referred to as Post-Quantum
Cryptography (PQC). Several promising candidates
for a new PQC standard can have their software and
hardware implementations accelerated using the Num-
ber Theoretic Transform (NTT). In this paper, we
present an improved hardware architecture for NTT,
with the hardware-friendly modular reduction, and
demonstrate that this architecture can be efficiently
implemented in hardware using High-Level Synthesis
(HLS). The novel feature of the proposed architecture
is an original memory write-back scheme, which assists
in preparing coefficients for performing later NTT
stages, saving memory storage used for precomputed
constants. Our design is the most efficient for the
case when log2N is even. The latency of our proposed
architecture is approximately equal to (Nlog2N + 3N)/4
clock cycles. As a proof of concept, we implemented the
NTT operation for several parameter sets used in the
PQC algorithms NewHope, FALCON, qTESLA, and
CRYSTALS-DILITHIUM.

Index Terms—Post-Quantum cryptography, Number
Theoretic Transform, Lattice-based, High-Level Syn-
thesis, programmable logic

I. Introduction

A threat of quantum computers triggered an effort
aimed at designing a new class of cryptographic algo-
rithms, collectively referred to as Post-Quantum Cryp-
tography (PQC) [1]. These algorithms have two common
features: a) there are no known attacks capable of breaking
these cryptosystems, even assuming the availability of full-
scale quantum computers, b) all PQC algorithms can
be implemented using traditional computing platforms,
based on standard semiconductor technology, such as mi-
croprocessors and FPGAs. In the standardization process
currently run by the National Institute of Standards and
Technology (NIST), 26 candidates remain and need to
be evaluated from the point of view of their hardware
efficiency [1]. These candidates represent 5 major fami-
lies: lattice-based, code-based, hash-based, isogeny-based,
and multivariate. A large number of candidates and a
high complexity of the majority of them make hardware

benchmarking extremely challenging. In order to miti-
gate these difficulties, using High-Level Synthesis (HLS)
has been proposed [2]. To make this approach fair, the
performance and resource utilization of the HLS-based
designs should be comparable to that obtained using the
traditional Register-Transfer Level (RTL) approach, or at
least the expected overhead should be comparable across
all compared algorithms.

Several lattice-based candidates in Round 2 of the NIST
PQC standardization process use operations in the poly-
nomial ring Rq = Zq[x]/(xN + 1), with N being a power
of 2. A multiplication in this ring can be sped up by using
the Number Theoretic Transform (NTT). The input and
output of a transform is a polynomial with N coefficients,
which are integers in the range of 0 to q-1. All internal
operations of NTT are performed modulo a prime q.

II. Background

A. Number Theoretic Transform
Multiplications in Rq can be performed efficiently in

software and hardware using the Number Theoretic Trans-
form (NTT). NTT is very similar to the Fast Fourier
Transform (FFT), and can be obtained from FFT by
replacing e−2πik/N with the respective powers of the Nth
primitive root of unity in Zq, denoted by ωN , and doing
transformation over the field Zq, instead of over the field
of complex numbers [3]. By using NTT and Inverse NTT
(INTT), a multiplication in Rq can be computed as:

c = INTT−1(NTT (a) ∗NTT (b))

for a, b, c ∈ Rq, with q ≡ 1 mod 2N . The complexity of
this computation is O(NlogN).

If ψ = √ωN mod q exists, then the multiplication in Rq

does not require padding input with N zero coefficients,
and performing NTT calculations with 2N points. Instead,
the coefficients of the input polynomial must be multiplied
by ψi mod q before the Forward NTT. After the Inverse
NTT, the coefficients of the output polynomial must be
multiplied by ψ−i mod q. In this paper, we divide the
polynomial multiplication into 5 steps:

1) PSIS_MUL: Coefficient-wise multiplication by ψi

2) NTT: Forward NTT transform



TABLE I
Selected NTT-based Round 2 PQC candidates investigated in this study. Major parameters of NTT: N and q. Parameters k

and m of the Longa-Naehrig modular reduction, and the number of adders required to perform functions K-RED and
K-RED-2x.

Candidate(s) Security N q log2q k 2m #K-RED #K-RED-2x
Category adders adders

NewHope and FALCON 5 1024 12, 289 14 2 + 1 212 2 5
qTESLA 3 1024 8, 404, 993 24 29 + 1 214 2 5
CRYSTALS-Dilithium 1, 2, 3 256 8, 380, 417 23 210 − 1 213 2 5

3) COEF_MUL: Coeffcient-wise multiplication of two
polynomials

4) INTT: Inverse NTT transform
5) IPSIS_MUL: Coefficient-wise multiplication by ψ−i.
Furthermore, we treat PSIS_MUL, COEF_MUL, and

IPSIS_MUL as operations performed in the MUL mode,
and NTT and INTT as operations performed in the NTT
mode.

B. Modular Reduction
An efficient method of performing modular reduc-

tion during the NTT computations was proposed in [4].
This method takes advantage of the special form of q:
q = k · 2m + 1, where k is odd and k < 2m. In Table I,
we demonstrate that for at least four Round 2 PQC
candidates, there exist parameter sets with q meeting
the aforementioned condition. In such cases, the modular
reduction C mod q can be replaced by the simpler function
K-RED(C) [4]. This function returns an integer D, such
that D ≡ kC mod q and |D| < q + |C|/2m. Although
this function alone does not completely reduce the value
of C, it is still referred to as a reduction because it
brings D to the close vicinity of the desired range. For
longer computations, additional reductions may need to be
applied to a limited number of intermediate values. In this
case, as an optimization, two successive reductions K-RED
can be merged into a single reduction K-RED-2x(C) [4].

For the majority of candidates, KRED and KRED2x
can be rewritten, using the shift and add operations, by
taking advantage of the special form of k. For example,
for CRYSTALS-DILITHIUM, k = 210 − 1, and thus
K-RED(C) = kC0 − C1 = (210 − 1)C0 − C1 =
= (C0 ≪ 10)− C0 − C1, and
K-RED-2x(C) = k2C0 − kC1 + C2 =
(C0 ≪ 20)− (C0 ≪ 11) + C0 − (C1 ≪ 10) + C1 + C2.
For all algorithms shown in Table I, K-RED and K-RED-
2x use two and five adders, respectively.

III. Previous Work

The previous comparable hardware implementations
of NTT targeted the PQC schemes such as Ring-
LWE [5], [6], [7], as well as the corresponding lattice-based
signatures schemes [8]. The most recent efforts aimed
specifically at the efficient implementations of the PQC
Key Encapsulation Mechanism (KEM) NewHope [9] [10].

IV. Methodology

A. Hardware Architecture
In the context of NTT, a Radix-R means that R coeffi-

cients are loaded and computed at the same time. We have
simplified the Radix-4 hardware architecture presented
in [6] for the case of even values of log2N , used by the
selected variants (security categories) of the PQC Round
2 candidates summarized in Table I. The simplified block
diagram is shown in Fig. 1, and the corresponding algo-
rithm is shown as Algorithm 1. Similarly to the hardware
design from [6], the proposed architecture has the 2x2
butterfly structure, meaning, it consists of two layers of
NTT, with two butterfly units per each layer. The square
box m1 represents the reduction function KRED, and the
square box m2 the reduction function KRED2x.

When s is set to 0, the circuit operates in the MUL
mode, defined in Section II-A. First, four coefficients are
loaded from the RAM at the top of the block diagram and
placed in the registers located in the diagram immediately
below the RAM. We have named four computational lines
shown in the block diagram A, B, C, and D, respectively.
These lines correspond to four sets of indices: 4i, 4i + 1,
4i+ 2, and 4i+ 3 with i ∈ [0, 1, 2, . . . N/4).

The number of cascade registers placed in front of each
SIPO differs by one, in order to prevent the case in which
two SIPOs are full and attempt to write results back to
the RAM in the same clock cycle. When the following
outputs of SIPOs: A1st, C2nd, B3rd, and D4th are available,
they are concatenated and written back to the RAM.
The same happens every clock cycle afterwards until the
computations are completed.

When s is set to 1, the circuit operates in the NTT mode.
Four coefficient go through the 2x2 butterfly structure,
and the results are written to the respective SIPOs, and
then to the RAM, in the way similar as for the case of
s=0. The reduction function KRED is applied after each
addition and subtraction performed in layer 1, not followed
by a multiplication. It is also applied after loading coeffi-
cients to the first registers in lines C and D. Coefficients in
lines B and D are multiplied by ωi

N or ω−i
N , depending on

whether the circuit computes NTT or INTT. Afterward,
the coefficients in lines B and C are swapped, in order
to perform computations of the next NTT layer. When
SIPOA is full, four coefficients available at the outputs
A1st, C2nd, B3rd, D4th are concatenated, and stored back



Fig. 1. Block diagram of the proposed hardware architecture to
perform fast polynomial multiplication using NTT.

to the RAM. After one clock cycle, the same happens
with results accumulated in SIPOC , and then SIPOB

and SIPOD.
The precomputed values of all constants are stored in

the dual-port memories RAM1 and RAM2. The total
amount of memory required is 2.5N in RAM1 and 3N
in RAM2, the bitwidth is equal to log2q.

The approximate total number of clock cycles, for the
case when log2(N) is even, is: PSIS_MUL: N/4; NTT:
N/4 · log2N/2; COEF_MUL: N/4; INTT: N/4 · log2N/2;
IPSIS_MUL: N/4; Total: (Nlog2N+3N)/4. The red lines
in Fig. 1 represent four likely critical paths in this design.

Algorithm 1 When s = 1 NTT operation, else coefficient-
wise multiplication

1: for (l = 1; l < log2(N); l = l + 2) do
2: m = 1≪ (l − 1);
3: ωidx1 = N ≫ l;ωidx2 = N ≫ (l + 1);
4: NTTidx = NTTidx3 = 0;NTTidx4 = N/4;
5: for (j = 0; j < m; j = j + 1) do
6: for (k = 0; k < N/4; k = k +m) do
7: b = k + j;
8: A = RAM [b]63...48;B = RAM [b]47...32;
9: C = RAM [b]31...16;D = RAM [b]15...0;

10: if s = 0 then
11: idx1 = (b≪ 2) + 1; idx2 = (b≪ 2) + 3;
12: else
13: idx1 = idx2 = NTTidx;
14: end if
15: if s ̸= 0 then
16: A = K-RED(A);C = K-RED(C);
17: end if
18: B = K-RED-2x(B ∗RAM1[idx1]);
19: D = K-RED-2x(D ∗RAM1[idx2]);
20: Bsave = B;Dsave = D;
21: A′ = A+B;B′ = C +D;
22: C ′ = A−B;D′ = C −D;
23: A = A′;B = B′;C = C ′;D = D′;
24: if s = 0 then
25: B = A;D = C;
26: end if
27: if s = 0 then
28: idx3 = (b≪ 2); idx4 = (b≪ 2) + 2;
29: else
30: idx3 = NTTidx3; idx4 = NTTidx4;
31: end if
32: B = K-RED-2x(B ∗RAM2[idx3]);
33: D = K-RED-2x(D ∗RAM2[idx4]);
34: if s = 0 then
35: A = 0;C = 0;
36: else
37: A = K-RED(A);C = K-RED(C);
38: end if
39: A = A+B;B = A−B;
40: C = C +D;D = C −D;
41: if s = 0 then
42: B = Bsave;D = Dsave;
43: end if
44: SIPOA ← A;SIPOB ← B;
45: SIPOC ← C;SIPOD ← D;
46: end for
47: NTTidx = NTTidx + ωidx1;
48: NTTidx3 = NTTidx3 + ωidx2;
49: NTTidx4 = NTTidx4 + ωidx2;
50: end for
51: end for



TABLE II
Results of the implementations of the NTT unit for selected Round 2 PQC Candidates, using Zynq UltraScale+.

Algorithms N q DSPs BRAM
36K LUT FF Slices

Max
Freq

(MHz)
Clock
Cycles

Latency
(µs)

NewHope
& FALCON 1024 12,289

RTL 4 5 849 802 163 476 1,324 2.78
HLS 4 5 865 822 175 455 1,324 2.91
HLS/RTL 1.0 1.0 1.02 1.02 1.07 0.96 1.0 1.05

qTESLA 1024 8,404,993
RTL 8 8 1,286 2,160 283 467 1,363 2.92
HLS 8 8 1,939 3,423 453 455 1,363 2.99
HLS/RTL 1.0 1.0 1.51 1.58 1.60 0.97 1.0 1.03

CRYSTALS-
DILITHIUM 256 8,380,417

RTL 8 2 1,899 2,041 392 445 294 0.66
HLS 8 2 1,977 2,329 401 434 294 0.67
HLS/RTL 1.0 1.0 1.04 1.14 1.02 0.97 1.0 1.02

TABLE III
Comparison with the results of the previous implementation of the NTT unit [10], for Zynq-7000. N = 1024, q = 12, 289.

DSPs BRAM
18K Slices LUTs FFs

Max
Freq

(MHz)
Clock
cycles

Latency
(µs)

Kuo et al. [10] 8 10 N/A 2,832 1,381 150 2,616 17.44
This work RTL 4 10 357 898 1,117 188 2,032 10.80
This work HLS 4 10 811 1,521 2,695 180 2,032 11.29
HLS/RTL 1.00 1.00 2.27 1.69 2.41 0.96 1.00 1.04

V. Results
The maximum clock frequency and resource utilization

have been generated by performing logic synthesis, plac-
ing, and routing using Vivado 2018.3. Our target platform
is Zynq UltraScale+ MPSoC. The choice of this platform
is consistent with our plan to extend our hardware accel-
erators for NTT into full software/hardware codesigns of
the entire PQC candidates. Our results, shown in Table II,
indicate that the latency in clock cycles, the number of
DSPs, and the number of BRAMs is almost identical for
the RTL- and HLS-based implementations. The penalty
for using HLS in terms of the maximum clock frequency
and latency varies between 2% and 5%. The overhead
in terms of the resource utilization is below 14% for all
investigated candidates, except qTESLA.

The latency of the entire polynomial multiplication,
assuming that one operand is already in the NTT do-
main as a result of precomputations, was reported in [6]
as (Nlog2N/4 + N/2) clock cycles. [5] does not make
the same assumption and reports the latency equal to
(3Nlog2N +N)/4 clock cycles. The latency of our design,
making the same assumption as [6], is (Nlog2N + 3N)/4,
and thus is very similar to that reported in [6], and
significantly smaller than that reported in [5].

All results in Table III were generated using Zynq-7000.
The reported latency of the design by Kuo et al. [10]
does not include the Order-Reverse step, which typically
contributes 40% of latency, while the designs presented
in this paper include the latency of the Reordering step.
Thus, it is clear that both the RTL and HLS designs
presented in this paper outperform the design by Kuo et
al. in terms of all performance metrics (except the number
of FFs for the HLS design).

References
[1] “Post-Quantum Cryptography Standardization,”

https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization,
2019.

[2] F. Farahmand, V. B. Dang, D. T. Nguyen, and K. Gaj,
“Evaluating the Potential for Hardware Acceleration of Four
NTRU-Based Key Encapsulation Mechanisms Using Soft-
ware/Hardware Codesign,” in 10th International Conference
on Post-Quantum Cryptography, PQCrypto 2019, ser. LNCS.
Chongqing, China: Springer, May 2019.

[3] J. M. Pollard, “The Fast Fourier Transform in a Finite Field,”
Mathematics of Computation, vol. 25, no. 114, p. 10, Apr. 1971.

[4] P. Longa, M. Naehrig, P. Longa, and M. Naehrig, “Speeding up
the Number Theoretic Transform for Faster Ideal Lattice-Based
Cryptography,” in Cryptology and Network Security - CANS
2016, vol. 10052. Cham: Springer International Publishing,
2016, pp. 124–139.

[5] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C.
Cheung, D. Pao, and I. Verbauwhede, “High-Speed Polynomial
Multiplication Architecture for Ring-LWE and SHE Cryptosys-
tems,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 62, no. 1, pp. 157–166, Jan. 2015.

[6] C. Du, G. Bai, and X. Wu, “High-Speed Polynomial Multiplier
Architecture for Ring-LWE Based Public Key Cryptosystems,”
in Proceedings of the 26th Edition on Great Lakes Symposium
on VLSI - GLSVLSI ’16. Boston, Massachusetts, USA: ACM
Press, 2016, pp. 9–14.

[7] C. P. Renteria-Mejia and J. Velasco-Medina, “High-Throughput
Ring-LWE Cryptoprocessors,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 25, no. 8, pp. 2332–
2345, Aug. 2017.

[8] T. Guneysu, V. Lyubashevsky, and T. Poppelmann, “Lattice-
Based Signatures: Optimization and Implementation on Recon-
figurable Hardware,” IEEE Transactions on Computers, vol. 64,
no. 7, pp. 1954–1967, Jul. 2015.

[9] T. Oder and T. Guneysu, “Implementing the NewHope-Simple
Key Exchange on Low-Cost FPGAs,” in LATINCRYPT 2017,
Havana, Cuba, Sep. 2017.

[10] P.-C. Kuo, W.-D. Li, Y.-W. Chen, Y.-C. Hsu, B.-Y. Peng, C.-M.
Cheng, and B.-Y. Yang, “High Performance Post-Quantum Key
Exchange on FPGAs,” Cryptology ePrint Archive 2017/690,
Feb. 2018.


	Introduction
	Background
	Number Theoretic Transform
	Modular Reduction

	Previous Work
	Methodology
	Hardware Architecture

	Results
	References

