
Implementing and Benchmarking
Three Lattice-based Post-Quantum Cryptography
Algorithms Using Software/Hardware Codesign

Viet B. Dang∗, Farnoud Farahmand∗, Michal Andrzejczak†, Kris Gaj∗
∗ Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, U.S.A.

{vdang6, ffarahma, kgaj}@gmu.edu
† Military University of Technology, Warsaw, Poland

{michal.r.andrzejczak}@gmail.com

Abstract—It has been predicted that within the next ten-
fifteen years, quantum computers will have computational power
sufficient to break current public-key cryptography schemes.
When that happens, all traditional methods of dealing with the
growing computational capabilities of potential attackers, such
as increasing key sizes, will be futile. The only viable solution is
to develop new standards based on algorithms that are resistant
to quantum computer attacks and capable of being executed on
traditional computing platforms, such as microprocessors and
FPGAs. Leading candidates for new standards include lattice-
based post-quantum cryptography (PQC) algorithms. In this
paper, we present the results of implementing and benchmarking
three lattice-based key encapsulation mechanisms (KEMs) that
have progressed to Round 2 of the NIST standardization process.
Our implementations are based on a software/hardware codesign
approach, which is particularly applicable to the current stage of
the NIST PQC standardization process, where the large number
and high complexity of the candidates make traditional hardware
benchmarking extremely challenging. We propose and justify
the choice of a suitable system-on-chip platform and design
methodology. The obtained results indicate the potential for
very substantial speed-ups vs. purely software implementations,
reaching 28x for encapsulation and 20x for decapsulation.

Index Terms—post-quantum cryptography, lattice-based, soft-
ware/hardware codesign, system on chip

I. INTRODUCTION

Hardware benchmarking has played a major role in all
recent cryptographic standardization efforts, including the
AES, eSTREAM, SHA-3 [1]–[4], and CAESAR contests [5],
[6]. Traditionally software and hardware benchmarking were
conducted separately by different groups of experts equipped
with different knowledge and tools. For the post-quantum
cryptography (PQC) standardization process [7], this approach
is hard to maintain. Algorithms competing to become new
PQC standards are too complex and too different from the
current state-of-the-art in public-key cryptography to permit
the development of optimized purely-hardware implementa-
tions for a significant fraction of the remaining candidates by
any single group within the time frame imposed by the NIST
evaluation process.

Since the publication of Round 1 candidates in December
2017, only a few purely-hardware implementations of these
candidates have been reported: [8]–[12], and even fewer are

open source. These implementations use different APIs, target
different platforms, and are aimed at different optimization
targets (e.g., high speed, low area). No conclusions regarding
the ranking of these algorithms in terms of their performance
in hardware can be reached based on such divergent efforts.

In this paper, we present an alternative approach to eval-
uating candidates in cryptographic contests, based on soft-
ware/hardware codesign. This technique has been used for
years in the industry and studied extensively in academia,
with the goal of reaching performance targets using a shorter
development cycle. To the best of our knowledge, no bench-
marking of software/hardware designs was reported during
any previous cryptographic competitions. As a result, mul-
tiple problems specific to cryptographic contests, such as the
choice of the most representative platform(s) and the fairness
of software/hardware partitioning schemes, have never been
addressed. It should be clearly stated that software/hardware
benchmarking is not intended as a replacement for purely-
hardware benchmarking. On the contrary, applying this ap-
proach to the 26 candidates advanced to Round 2, and devel-
oping a library of hardware accelerators for major operations
of these candidates, will make it much easier to develop
hardware-only implementations in subsequent rounds.

Within the proposed framework, the first issue to address is
the choice of a representative device. In particular, we need
a computing platform allowing fast communication across
the software/hardware boundary. We also need reconfigurable
hardware, as timing measurements must be performed experi-
mentally, and the platform must be well-suited for attempting
various software/hardware partitioning schemes.

In recent years several such platforms have emerged. The
most popular in the industry are those based on integrating
an ARM-based processor and FPGA fabric on a single chip.
These devices support software/hardware codesigns based on
a program written in a traditional high-level language and
running on an ARM processor, with the most time-critical
computations of the algorithm performed on a dedicated hard-
ware accelerator. The advantages of these platforms include:
the use of the most popular embedded processor family (ARM)
operating at high speed (1 GHz or above), state-of-the-art



commercial tools (available for free, or at a reduced price for
academic use), availability of inexpensive prototyping boards,
and practical deployment in multiple environments.

The primary alternatives are FPGA-based systems with
"soft" processor cores implemented in reconfigurable logic.
Examples include Xilinx MicroBlaze, Intel Nios II, and the
open-source RISC-V, originally developed at the University
of California, Berkeley [13]–[15]. The main advantage of
these systems over "hard" processor cores is flexibility in
the allocation of resources to processor cores, including the
possibility of extending them with special instructions specific
to PQC. Additionally, the developed designs are easy to port
between different FPGA families, and even between FPGAs
and ASICs. A disadvantage compared to the "hard" option
is that the "soft" processors operate at much lower clock
frequencies (typically 200-450 MHz). During this study, we
based our choice of platform primarily on the projected
practical importance during the initial period of deployment of
new PQC standards and the expected speed-up over purely-
software implementations. These priorities led us to choose
devices from the "hard" processor class, among them the Zynq
UltraScale+ family from Xilinx Inc.

With the preferred platform identified, our second major
concern was the fairness of software/hardware benchmarking,
especially in terms of deciding which operations within each
evaluated scheme should be offloaded to hardware. In this
paper, we propose a comprehensive approach to address this
issue, aimed at achieving the best possible trade-off between
the speed-up (compared to software-only implementation) and
the required development time. The proposed methodology
was applied to the evaluation of three key encapsulation mech-
anisms (KEMs) belonging to three different Round 2 PQC
submissions (FrodoKEM [16], Round5 [17], and Saber [18]).

II. BASIC FEATURES OF COMPARED ALGORITHMS

FrodoKEM, Round5, and Saber are based on the Learn-
ing with Errors (LWE), General Learning With Rounding
(GLWR), and Module Learning with Rounding (Mod-LWR)
problems, respectively. The implemented variant of Round5 re-
lies specifically on the RLWR (Ring Learning With Rounding)
variant of GLWR. Major parameters and auxiliary functions
of the investigated algorithms are summarized in Table I.

In all three schemes, the elementary operation is multi-
plication in Zq , where q is a power of two. In FrodoKEM
the most time-consuming operation is a matrix-by-matrix
multiplication, where each element of a matrix is an element
of Zq . In the implemented variant of Round5 the most time-
consuming operation is a polynomial multiplication, where the
n coefficients of one polynomial are elements of Zq , and the
n coefficients of another are in the set {-1, 0, 1}. In Saber,
the most time-consuming operations are matrix-by-vector and
vector-by-vector multiplications, where each element of a
matrix or a vector is a polynomial with n coefficients in
Zq . Additionally, all three algorithms use SHAKE [19] or
cSHAKE [20] as an auxiliary cryptographic operation. Saber
uses SHA3-256 and SHA3-512 in addition to SHAKE128.

TABLE I
PARAMETER SETS OF INVESTIGATED ALGORITHMS

Algorithm Security Degree Modulus Auxiliary
Category n q Functions

FrodoKEM 1 640 215 SHAKE128
Round5 1 586 213 cSHAKE128
Saber 1 256 213 SHAKE128

SHA3-256
SHA3-512

FrodoKEM 3 976 216 SHAKE256
Round5 3 852 212 cSHAKE256
Saber 3 256 213 SHAKE128

SHA3-256
SHA3-512

FrodoKEM 5 1344 216 SHAKE256
Round5 5 1170 213 cSHAKE256
Saber 5 256 213 SHAKE128

SHA3-256
SHA3-512

For a fair comparison, all schemes and parameter sets must
have approximately the same resistance against all known
attacks. Since FrodoKEM and Saber are by default key
encapsulation mechanisms (KEMs) with indistinguishability
under chosen ciphertext-attack (IND-CCA) [21], [22], we
chose a variant of Round5 with the same IND-CCA security.
Additionally, we compared implementation results only for
parameter sets belonging to the same security category, as
defined by NIST in [23].

III. PREVIOUS WORK

Only a few attempts to accelerate software implementations
of post-quantum cryptosystems have been made through soft-
ware/hardware (SW/HW) codesign. A coprocessor consisting
of the PicoBlaze soft core and several parallel acceleration
units for the code-based McEliece cryptosystem was imple-
mented on Spartan-3AN FPGAs by Ghosh et al. [24]. Aysu
et al. [25] built a high-speed implementation of a lattice-
based digital signature scheme using SW/HW codesign tech-
niques. The design targeted the Cyclone IV FPGA family and
consisted of the NIOS II soft processor, a hash unit, and a
polynomial multiplier. Wang et al. [9] reported a SW/HW
implementation of the hash-based digital signature scheme
XMSS. The selected platform was an Intel Cyclone V SoC,
and the software part of the design was implemented using
a RISC-V soft-core processor. All the platforms mentioned
above differed substantially from the platform used in this
work, and the algorithms and their parameters were also
substantially different. As a result, limited information can be
inferred regarding the optimal software/hardware partitioning,
expected speed-up, or expected communication overhead.

SW/HW implementations of three NIST PQC Round 1
candidates (NTRUEncrypt, NTRU-HRSS, and NTRU Prime),
using a similar platform to that used in this paper, were re-
ported in [26]. The implemented algorithms differ substantially
from those investigated in this paper.

To the best of our knowledge, no hardware implemen-
tations of Round5 or Saber have been reported to date.



For FrodoKEM, a full FPGA implementation was presented
in [10]. This design exploits a DSP unit to implement matrix-
by-vector and matrix-by-matrix multiplications. The matrices
are generated on-the-fly; the next matrix row is generated
during the computations involving the current row. In our
design, by increasing the number of DSPs used in the matrix
operations, we were able to reach the limit when the matrix
multiplication speed is nearly equal to the matrix generation
speed.

IV. METHODOLOGY

A. Software/Hardware Codesign Platform

Our target platform is the Xilinx ZCU102 Evaluation Kit,
based on the Xilinx Zynq UltraScale+ MPSoC XCZU9EG-
2FFVB1156E device. This device has two major parts located
on the same chip: a Processing System (PS) and Programmable
Logic (PL). The primary component of the PS is a quad-
core ARM Cortex-A53 Application Processing Unit, running
at 1.2 GHz. As in the software benchmarking experiments
conducted by other groups, we utilize only one core in all our
experiments. The PL includes a programmable FPGA fabric
similar to that of Virtex UltraScale+ FPGAs. The frequency
of operation depends on the particular logic instantiated in
the reconfigurable fabric but typically does not exceed 400
MHz. The software used to implement our solution is the
Xilinx Vivado Design Suite HLx Edition, the Xilinx Software
Development Kit, and Xilinx Vivado HLS, all with version
numbers 2018.2.

A high-level block diagram of the experimental soft-
ware/hardware codesign platform is shown in Fig. 1. The
Hardware Accelerator is connected through the dual-clock
Input and Output FIFOs to the AXI DMA, supporting high-
speed communication with the Processing System. Timing
measurements are performed using the popular Xilinx Logi-
CORE IP unit AXI Timer, which is capable of measuring time
in clock cycles of the 200 MHz system clock. The Hardware
Accelerator can operate at a variable clock frequency, con-
trolled from software using the Clocking wizard unit.

B. Software/Hardware Partitioning

Our first step in evaluating the suitability of cryptographic
algorithms for software/hardware codesign was to profile their
software implementations using one core of the ARM Cortex-
A53. Profiling produces a list of the most time-consuming
functions, including their absolute execution time, percentage
of the total execution time, and the number of times they are
called. We decided which functions to offload to hardware
based on the highest potential for overall speed-up, as well
as the fairness of comparison. The total speed-up obtained
by offloading an operation to hardware depends on two major
factors: the percentage of the execution time taken in software
by the operation offloaded to hardware, and the speed-up for
the offloaded operation itself.

In order to maximize the first factor, we gave priority to
operations that take the largest percentage of the execution
time, preferably more than 90%. These operations may involve
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Fig. 1. Block diagram of software/hardware codesign.

a single function call, several adjacent function calls, or a
sequence of consecutive instructions in C. It is preferred that
a given operation is executed only a few times (ideally only
once), as each transfer of control and data between software
and hardware involves a certain fixed timing overhead, inde-
pendent of the size of input and output to the accelerator.
In order to maximize the second factor, we gave priority
to operations that have a high potential for parallelization
in hardware, and a small total size of inputs and outputs
(which will need to be transferred to and from the hardware
accelerator, respectively).

Most of the data required to make informed decisions re-
garding software/hardware partitioning can be obtained by pro-
filing the purely-software implementation, possibly extended
with some small modifications required to gather all relevant
data. However, determining the potential for parallelization
requires some knowledge of hardware implementation, or at
least of the basic concepts of concurrent computing.

In order to assure fairness in our comparison, we decided
to offload to hardware all operations common to or simi-
lar across the implemented algorithms (e.g., all polynomial
multiplications, all hash-based functions), as well as all op-
erations that contributed significantly to the total execution
time. Nevertheless, it should be understood that this heuristic
procedure may need to be repeated several times because, after
each round of offloading, different software operations may
emerge as taking the majority of the total execution time. This
iterative process can stop when the development effort required
for offloading the next most-critical operation to hardware is
disproportionately high compared to the projected speed-up.

C. Interface of Hardware Accelerators

The interface of a hardware accelerator matches the in-
terface of the Input and Output FIFOs. The default width
of the data bus is 64 bits. Each operation (e.g., load public



key, start encapsulation) is initiated by sending an appropriate
header (in the form of a single 64-bit word) from a program
running on the ARM processor to the data input of a hardware
accelerator. When an operation requires additional data, this
data is transmitted using the subsequent Input FIFO words.
After the hardware accelerator produces results or detects
an error, a header word is sent in the opposite direction. If
additional output data is required, it follows the header and is
arranged in 64-bit words. The specific format of the exchanged
inputs and outputs is left up to the designer of a hardware
accelerator.

D. Verification and Generation of Results

Functional verification of the hardware description language
(HDL) code is performed by comparing simulation results with
precomputed outputs generated by a reference software imple-
mentation. Fully verified and independently optimized VHDL
code is then combined with the optimized software implemen-
tation of a given PQC candidate. Functional verification of the
integrated software/hardware design is performed by running
the code on the prototyping board and comparing the obtained
outputs with outputs generated by a functionally equivalent
reference implementation, run on the same ARM Cortex-A53
processor. Experimental timing measurements follow, with the
hardware accelerator’s clock set (using the Clocking wizard)
to the optimal target frequency identified during the synthesis
and implementation runs.

V. HARDWARE ACCELERATORS

A. FrodoKEM

The top-level block diagram of the hardware accelera-
tor for FrodoKEM is shown in Fig. 2. The public key
consists of a 128-bit seed_A and an unpacked public-key
matrix B with dimensions n x 8 log2q-bit words. Both of
these elements are assumed to be loaded into the respective
memories of the hardware accelerator, Seed_Asm_Mem and
Matrix_A_and_B_Dual_Mem before encapsulation or de-
capsulation starts.

During encapsulation, the public key is hashed, then the
concatenation of the hashed public key and a uniformly
random µ (sent from the processor) is hashed to obtain
seed_SE. The 256-bit seed_SE is stored in the asymmetric
memory Seed_Asm_Mem, with the 8-bit data input and the
64-bit data output. SHAKE128/256 is used to generate a
pseudorandom sequence r(0)..r(mn−1). This sequence is then
fed to Sampler, which produces a w-bit output for every 16-
bit input word. The first 15 bits represent an unsigned number,
and the least significant bit is the sign bit. The noise is sampled
by comparing the unsigned number with all values stored in a
discrete cumulative distribution table. The smallest index for
which the corresponding table entry is larger than the input
number is returned as the value of the noise. The Sampler
is implemented using a set of comparators and is a purely
combinational circuit. The obtained samples, representing the
coefficients of the vector S′, are stored in the asymmetric
memory Matrix_S’_Asym_Mem.
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Fig. 2. Block diagram of the hardware accelerator for FrodoKEM. All bus
widths are 64-bit unless specified.

The sequence of words generated by SHAKE128/256
is fed to Sampler. The output of Sampler is
stored as subsequent coefficients of E′, in the memory
Matrix_B’_and_V_Dual_Mems.

Subsequently, SHAKE128/256 is used to generate elements
of the n x n matrix A, with each element expressed using
log2q bits. In order to reduce execution time and the size of
the Matrix_A_and_B_Dual_Mem memory, only one row
of the A matrix is generated at a time. This row is used
for the computations of B′ = S′A + E′, in parallel with
calculating the subsequent row of A. The elements of A are
multiplied by the corresponding 8 elements from a column
of S′, read from Matrix_S’_Asym_Mem, sign-extended to
16 bits, and stored in one of the eight registers preceding
the 4MAC units. The temporary results are stored back in
the Matrix_B’_and_V_Dual_Mem. B′ is then transferred
back to the processor using the outfifo_data bus. After
the subsequent computation V = S′B +E′′, V is transferred
to the processor for further computations in software. The
final results received from software are sent to the hardware
SHAKE128/256 unit to compute the shared secret.

The operations performed by the hardware accelerator
during decapsulation are identical to those executed during
encapsulation (with B′ replaced by B′′).



B. Round5

The main computations of Round5 are performed in the
polynomial ring Zq[x]/(Φn+1(x)). The most time consum-
ing operation is multiplication in the aforementioned ring,
described by the equation

ck =
∑

i+j≡k mod n

ai · bj mod q (1)

This operation is executed twice during encapsulation and
three times during decapsulation. Moreover, a polynomial mul-
tiplication in this scheme can be implemented more efficiently
than in the general case, due to a special form of one of
the polynomials. In each Round5 multiplication, one of the
polynomials is always a ternary polynomial, i.e., all of its
coefficients belong to the set {−1, 0, 1}. In this case, the
multiplication is reduced to the addition or subtraction of
coefficients of the second polynomial.

The entire encryption and decryption functionality of KEM,
as well as calls to cSHAKE for the secret key and public
key expansion, are implemented in hardware. This approach
allows the generation of the majority of polynomials used
in multiplication directly in hardware, removing the need for
generating them in software and passing through the relatively
slow communication channel. The inputs for encryption and
decryption are passed to the FPGA fabric directly, without
unpacking by CPU. The (un-)packing functions, based on
bit-shifting operations, are implemented in hardware. These
operations are very inexpensive in hardware. Thus, the speed-
up comes from the faster execution of cSHAKE in hardware,
as well as the lower communication overhead, achieved by
sending only the seed for cSHAKE, instead of the expanded
data. The remaining operations, such as rounding, addition,
and subtraction, are also fast and cost-efficient in hardware,
providing additional speed-up. Thus, with the little additional
area, the design is able to execute encryption and decryption
on the input data and return results in the packed format.

The top-level block diagram of r5_cpa_pke is shown in
Fig. 3. The required data is read from the input FIFO using
the port infifo_data. If the incoming data is a seed
for expansion, it is passed directly to the cSHAKE unit.
Otherwise, it is passed to an input port of one of the two
arithmetic modules. The main controller is responsible for
managing the state of the accelerator. After all required data is
received, including the expanded data generated by cSHAKE,
the controller initializes the arithmetic modules and waits till
the end of computations. The last step is to send the result
back to the software.

Encryption and decryption are performed by the arithmetic
modules Rounding and Poly_Mul, shaded with colors in
Fig. 3. Provided with the necessary data and operation type,
the aforementioned modules execute specific instructions. At
first, a polynomial multiplication is performed. Based on the
operation type, the temporary result may be rounded. During
encryption, the message is added to the end of the data flow,
before the results are prepared to be sent back to the software.
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The majority of the area taken by the arithmetic modules is
due to Poly Mul, shown in Fig. 4. We utilize the fact that one
of the arguments is from the set {−1, 0, 1}. Thus, the second
argument is XOR-ed bit-by-bit, in parallel, with the bit b1,
describing the sign of the first argument. Next, the parallel
AND operation is performed, with the bit b0, denoting a zero
value of the ternary coefficient. The result is passed to an adder
and then to an accumulator.

The NTRU_Poly_Mul is surrounded with additional logic
performing necessary operations to prepare polynomials for
multiplication. One of the polynomials is lifted from the ring
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Zq[x]/(Φn+1(x)) to the ring Zq[x]/(Nn+1(x)). The lifted
polynomial is equal to

−a0 + (a0 − a1)x+ (a1 − a2)x
2 + · · ·+ an−1x

n (2)

There are no dependencies between the operands, so each
coefficient is lifted in parallel, and the operation takes exactly
one clock cycle. After multiplication, a polynomial is unlifted
to the previous ring. Unlifting is computed recursively, as ai =
ai−1 − aLi . Unfortunately, this operation must be performed
sequentially and has almost the same latency as multiplication.
The second arithmetic module named Rounding is responsi-
ble for properly shrinking the bit size of coefficients by adding
a rounding constant (specific to a given computational step)
and applying a proper mask.

C. Saber

The top-level block diagram of the hardware accelerator of
Saber is shown in Fig. 5. The public key consists of a 256-bit
seed_A and a vector b, including l polynomials with n=256
coefficients each (where l=2, 3, 4 for the security levels 1, 3, 5,
respectively). The polynomial coefficients have log2q=13 bits
for each security level. Both seed_A and b are assumed to be
loaded into the respective memories of the hardware accelera-
tor, Seed_Mem and Vector_b_and_S_Asym_Mem, using
the 64-bit input bus infifo_data, before encapsulation or
decapsulation starts.

During encapsulation, vector s′ is generated first. The
random value m and the public key is hashed by SHA3-256.

The result is then hashed again using SHA3-512 to obtain the
seed r and K̂ ′, which is used to compute the shared secret
at the end of the encapsulation. The 256-bit seed r is loaded
into Seed_Mem. The generation of s′ involves SHAKE128,
followed by Sampler, generating w-bit integers using a
centered binomial distribution (CBD). The obtained samples,
representing the coefficients of the vector s′, are stored in the
asymmetric memory Matrix_S’_Asym_Mem.

Subsequently, SHAKE128 is used to generate elements
of the l x l matrix A, with each element representing a
polynomial. In order to reduce the execution time and the
size of Matrix_A_Asym_Mem memory, only one row of
the A matrix is generated at a time. This row is used for
the computation of b′ = (As′ + h) mod q (where h is a
constant), in parallel with the calculation of the subsequent row
of A. The elements of A are multiplied by the corresponding
elements of s′, read from Matrix_S’_Asym_Mem, sign-
extended to 13-bits, and stored in the n-stage LFSR. The
temporary results are stored in the registers shown to the
right of MACs in Fig. 5. Each coefficient of b′ is then shifted
right by 3 positions (corresponding to the division by q/p =
213/210 = 8) and transferred back to the processor. In the
subsequent calculation, v′ = bT (s′ mod p), the reduction
mod p is performed on the fly, and the result is transferred
to the processor for further computations in software. The
final results computed in the software are sent to the hardware
SHA3-256 unit to calculate the shared secret.

The secret key s is assumed to be loaded before decapsula-
tion starts. In the first phase of decapsulation, a new calculation
v = b′T s mod p, specific to decapsulation, is performed by
the hardware accelerator. b′ is a part of the ciphertext, and
thus must be loaded prior to the start of decapsulation. In the
second phase of decapsulation, the function Saber.PKE.Enc
is called, and as a result, the hardware accelerator performs
exactly the same operations as during the encapsulation.

VI. RESULTS

The results of profiling for the purely-software implemen-
tations, running on a single core of ARM Cortex-A53, with
the clock frequency of 1.2 GHz, are presented in the left
portions of Table II. For each of the investigated algorithms
and each major operation (Encapsulation and Decapsulation),
three to six most time-consuming functions are identified.
For each of these functions, we provide the execution time
in microseconds, and the percentage of the total execution
time. In the right portions of the same tables, we list in
bold the functions offloaded to hardware. Where functions are
combined, they are listed in the same field of the table, with
sub-indices, such as 1.1, 1.2, 1.3, etc. Single execution time
and a single percentage of the software/hardware execution
time is given for such a combined function.

For each investigated KEM and each major operation
(Encapsulation and Decapsulation), we list in Table III the
total execution time in software (for the optimized software
implementations in C running on ARM Cortex-A53 of Zynq
UltraScale+ MPSoC), the total execution time in software and



TABLE II
RESULTS OF PROFILING FOR FRODOKEM, ROUND5 AND SABER

Function Time
[µs]

Time
[%] Function Time

[µs]
Time
[%]

Software Software/Hardware
FrodoKEM : FrodoKEM-1344 : Encapsulation

1.sa_plus_e 58,577.48 94.36 1.1 sa_plus_e
1.2 Shake128
1.3 sb_plus_e
1.4 hash

1,328.39 60.762. Shake128 1,416.27 2.28
3. sb_plus_e 654.64 1.05
4. hash 569.60 0.92
5. pack 386.22 0.62 2. pack 386.22 17.67
6. unpack 276.00 0.44 3. unpack 276.00 12.62
Other 195.62 0.32 Other 195.62 8.95
Total 62,075.83 100.00 Total 2,186.23 100.00

FrodoKEM : FrodoKEM-1344 : Decapsulation
1. sa_plus_e 58,754.02 94.19 1.1 sa_plus_e

1.2 Shake128
1.3 sb_plus_e
1.4 hash

1,316.52 42.202. Shake128 883.14 1.42
3. unpack 765.56 1.23
4. sb_plus_e 649.68 1.04
5. mul_bs 507.08 0.81 2. unpack 765.56 24.54
6. hash 286.64 0.46 3. mul_bs 507.08 16.25
Other 530.74 0.85 Other 530.74 17.01
Total 62,376.86 100% Total 3,119.9 100.00

Round5 : R5ND-5PKE_0d : Encapsulation
1. pke_encrypt 290.81 86.41 1.1 pke_encrypt

1.2 hash 30.01 94.662. hash 44.10 13.10
3. randombytes 1.52 0.45 3. randombytes 1.67 5.27
Total 336.52 100.00 Total 31.7 100.0

Round5 : R5ND-5PKE_0d : Decapsulation
1. pke_encrypt 287.10 69.05 1.1 pke_encrypt

1.2 pke_decrypt
1.3 hash

42.56 100.002. pke_decrypt 83.61 20.11
3. hash 45.09 10.8
Total 415.80 100.00 Total 42.56 100.00

Saber : FireSaber-KEM : Encapsulation
1. MatrixVecMul 815.40 68.22 2.1 MatrixVecMul

2.2 InnerProduct
2.3 GenMatrix
2.4 GenSecret
2.5 Hash

50.09 67.33
2. InnerProduct 204.60 17.12
3. GenMatrix 92.58 7.75
4. Hash 45.82 3.83
5. GenSecret 12.46 1.04
Other 24.31 2.03 Other 24.31 32.67
Total 1,195.17 100.00 Total 74.40 100.00

Saber : FireSaber-KEM : Decapsulation
1. MatrixVecMul 815.98 59.17 1.1 MatrixVecMul

1.2 InnerProduct
1.3 GenMatrix
1.4 GenSecret
1.5 Hash

55.14 69.06
2. InnerProduct 408.96 29.65
3. GenMatrix 92.60 6.71
4. Hash 24.50 1.78
5. GenSecret 12.44 0.90
Other 24.62 1.79 Other 24.62 30.93
Total 1,379.14 100.00 Total 79.84 100.00

hardware (after offloading the most time-consuming operations
to hardware), and the obtained total speed-up. The ARM
processor runs at 1.2 GHz, the DMA for the communication
between the processor and the hardware accelerator at 200
MHz, and the hardware accelerators at the maximum frequen-
cies, specific for the RTL implementations of each algorithm,
listed in Table IV. All execution times were obtained through
experimental measurements using the setup shown in Fig. 1.
The speed-up for each component offloaded to hardware is
given in the column Accel. Speed-up. This speed-up is the
ratio of the execution time of the original component in soft-
ware (column Accel. SW [ms]) and the execution time of the
accelerated component in hardware, including all overheads
(column Accel. HW [ms]). The last column indicates the
percentage of the software-only execution time that is taken
by an accelerated component.

As expected, the total speed-up increases as the security
level increases. This dependency exists because, typically,
for larger parameter values, a higher level of parallelization
can be achieved for the operations offloaded to hardware.
Additionally, the operations offloaded to hardware tend to

account for a larger percentage of the total execution time
in software, as illustrated by the column SW part Sped up by
HW [%] in Table III.

The ranking of the algorithms (1. Round5, 2. Saber, 3.
FrodoKEM) is identical for a) encapsulation and decapsula-
tion, b) software-only and software/hardware implementations,
and c) all three security categories. Only relative ratios among
the execution times of the investigated algorithms are affected.
For the same security category, the speed-ups are generally the
highest for FrodoKEM, followed by Saber, and Round5.

The maximum clock frequencies and the corresponding re-
source utilization obtained using Minerva [27] are summarized
in Table IV. DSP units are utilized in Saber, and to a lower
extent in FrodoKEM. Round5 does not involve any integer
multiplications in hardware, because the coefficients of one of
the multiplied polynomials always belong to the set {-1, 0, 1}
and thus require only additions and/or subtractions.

Due to the timing dependencies, and in particular the bot-
tleneck caused by SHAKE, our implementation of FrodoKEM
cannot be easily sped up by trading additional resources for
speed. This example clearly illustrates the limits imposed by
specific algorithms on the amount of potential parallelization
(and thus the maximum speed-up), which is independent of
the amount of hardware resources available to the designer.
FrodoKEM is also the algorithm with the highest utilization
of BRAMs, which reaches 17.5. Round5 and Saber use only 2
and 3.5 36kb BRAMs, respectively. Round5 uses the highest
number of LUTs, Slices, and flip-flops (FFs), followed by
Saber and FrodoKEM. The amount of resources used (except
the number of BRAMs and DSPs) increases noticeably with
the increase in security level. For FrodoKEM and Saber,
the increase in security level does not significantly affect
the resource utilization (except for the small increase in the
number of BRAMs in FrodoKEM).

FrodoKEM is able to achieve the highest clock frequency,
above 400 MHz, for all parameter sets. This is possible
because of pipelining inside of the FrodoKEM 4MACs unit,
taking advantage of internal registers of DSP units. The same
optimization is not possible for Saber, because immediate
feedback from the output registers is necessary for the op-
eration performed in the next clock cycle.

In Table V, we provide an example of hardware calls for
a specific algorithm, FrodoKEM-1344. main_hw represents
the main functionality of the hardware accelerator. shake256
represents calls to the specific operation within this accelerator.
The ratio between the transfer time and the total HW execution
time depends primarily on the operation executed in hardware,
and, to a lower extent, on the amount of data transferred.

VII. CONCLUSIONS

In this paper, we have demonstrated the feasibility of
a new benchmarking approach, based on software/hardware
codesign, with application to 3 PQC schemes representing
3 submissions qualified to Round 2 of the NIST PQC stan-
dardization process. For all analyzed schemes, and both major
operations (encapsulation and decapsulation) in each, the total



TABLE III
TIMING RESULTS

Algorithm Security Category:
Parameter Set

Total
SW
[ms]

Total
SW/HW

[ms]

Total
Speed-

up

Accel.
SW
[ms]

Accel.
HW
[ms]

Accel.
Speed-

up

SW part
Sped up

by
HW [%]

Encapsulation
FrodoKEM 1:Frodo-640 16.192 1.223 13.2 15.32190 0.352 43.5 94.62
FrodoKEM 3:Frodo-976 34.609 1.642 21.1 33.72683 0.760 44.3 97.45
FrodoKEM 5:Frodo-1344 62.076 2.186 28.4 61.21799 1.328 46.1 98.62
Round5 1:R5ND-1PKE_0d 0.154 0.019 8.3 0.15350 0.018 8.7 99.35
Round5 3:R5ND-3PKE_0d 0.245 0.024 10.2 0.24385 0.023 10.6 99.54
Round5 5:R5ND-5PKE_0d 0.337 0.202 10.6 0.33502 0.030 11.1 99.56
Saber 1:LightSaber-KEM 0.379 0.053 7.1 0.36904 0.043 8.5 97.46
Saber 3:Saber-KEM 0.725 0.060 12.1 0.71390 0.049 14.5 98.48
Saber 5:FireSaber-KEM 1.195 0.074 16.1 1.12595 0.050 23.4 97.98

Decapsulation
FrodoKEM 1:Frodo-640 16.192 1.319 12.3 15.21528 0.342 44.4 93.97
FrodoKEM 3:Frodo-976 34.649 1.866 18.6 33.53212 0.750 44.7 96.78
FrodoKEM 5:Frodo-1344 62.377 3.120 20.0 60.57344 1.317 46.0 97.11
Round5 1:R5ND-1PKE_0d 0.193 0.024 8.1 0.19273 0.024 8.1 100.00
Round5 3:R5ND-3PKE_0d 0.309 0.033 9.4 0.30946 0.033 9.4 100.00
Round5 5:R5ND-5PKE_0d 0.416 0.042 9.8 0.41580 0.042 9.8 100.00
Saber 1:LightSaber-KEM 0.474 0.056 8.4 0.45872 0.041 11.1 93.97
Saber 3:Saber-KEM 0.867 0.065 13.2 0.84965 0.048 17.6 98.01
Saber 5:FireSaber-KEM 1.379 0.080 17.3 1.35440 0.055 24.6 98.21

TABLE IV
MAXIMUM FREQUENCY AND RESOURCE UTILIZATION

Algorithm Security Category:
Parameter Set

Clock Freq.
[MHz] LUTs Slices FFs 36kb

BRAMs DSPs

FrodoKEM 1:Frodo-640 402 7,213 1,186 6,647 13.5 32
FrodoKEM 3:Frodo-976 402 7,087 1,190 6,693 17 32
FrodoKEM 5:Frodo-1344 417 7,015 1,215 6,610 17.5 32
Round5 1:R5ND-1PKE_0d 260 55,442 10,627 82,341 2 0
Round5 3:R5ND-3PKE_0d 249 73,881 14,307 109,211 2 0
Round5 5:R5ND-5PKE_0d 212 91,166 18,733 151,019 2 0
Saber 1:LightSaber-KEM 322 12,343 1,989 11,288 3.5 256
Saber 3:Saber-KEM 322 12,566 1,993 11,619 3.5 256
Saber 5:FireSaber-KEM 322 12,555 2,341 11,881 3.5 256

TABLE V
HARDWARE CALLS IN DETAILS FOR FRODOKEM-1344

Function Data In
(bytes)

Data Out
(bytes)

Transfer
(µs)

Total HW
(µs)

% in
SW/HW

Encapsulation
shake256 21,520 32 5.50 11.96 0.55
shake256 64 64 5.61 5.66 0.26
shake256 21,164 32 5.55 11.91 0.54
main_hw 32 43,008 24.94 1,298.85 59.41

Decapsulation
shake256 64 64 5.61 5.66 0.18
shake256 21,664 32 5.50 12.01 0.39
main_hw 32 43,008 24.94 1,298.85 41.63

speed-up always exceeded a factor of 7. The highest speed-
ups were accomplished for FrodoKEM, reaching 28.4 for
encapsulation and 20.0 for decapsulation. Due to very large
differences among the investigated algorithms in software-only
implementations, the moderate differences in total speed-ups

did not affect the ranking of candidates after offloading the
most time-consuming operations to hardware.

The hardware accelerator of Round5 has the highest re-
source utilization in terms of LUTs, Slices, and FFs, and
the lowest in terms of DSP units. Saber requires by far the
largest number of DSP units, 8 times more than FrodoKEM.
Its number of Slices is also larger by a factor varying between
1.67 and 1.93, depending on the security category. Due to the
substantial differences in functionality among Slices, DSPs,
and BRAMs, the overall resource utilizations are very difficult
to rank. For the specific MPSoC they are mostly insignificant,
especially if the PL part of this device is dedicated to hardware
accelerators. If the hardware accelerators were to be ported
to ASICs, and shared with other functional units, then the
differences might be significant, but this is difficult to predict
based only on the obtained FPGA results.

Future work will include extending this analysis to the
remaining NIST Round 2 PQC candidates, as well as the



exploration of other software/hardware codesign platforms and
development tools.
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