
Sampling from Discrete Distributions in
Combinational Hardware with Application to

Post-Quantum Cryptography
Michael X. Lyons and Kris Gaj

Cryptographic Engineering Research Group
George Mason University
Fairfax, Virginia, U.S.A.
{mlyons3, kgaj}@gmu.edu

Abstract—Random values from discrete distributions are typ-
ically generated from uniformly-random samples. A common
technique is to use a cumulative distribution table (CDT) lookup
for inversion sampling, but it is also possible to use Boolean
functions to map a uniformly-random bit sequence into a value
from a discrete distribution. This work presents a methodology
for deriving such functions for any discrete distribution, encoding
them in VHDL for implementation in combinational hardware,
and (for moderate precision and sample space size) confirming
the correctness of the produced distribution. The process is
demonstrated using a discrete Gaussian distribution with a small
sample space, but it is applicable to any discrete distribution with
fixed parameters. Results are presented for sampling schemes
from several submissions to the NIST PQC standardization
process, comparing this method to CDT lookups on a Xilinx
Artix-7 FPGA. The process produces compact solutions for
distributions up to moderate size and precision.

Index Terms—Boolean functions, centered binomial, combina-
tional logic, constant time, DDG-tree, discrete Gaussian, FPGA,
logic minimization

I. INTRODUCTION

Random values available in hardware and software are
typically distributed uniformly, but many applications require
random values from other distributions. For example, lattice-
based post-quantum cryptography (PQC) schemes often use
random samples drawn from discrete Gaussian distributions,
which maximize entropy for fixed parameters, but on-the-fly
calculations for them require high-precision calculations of
exponentials. A common solution is to use a CDT lookup
for inversion sampling, but it is also possible to use Boolean
functions to map a uniformly-random bit sequence into a value
from a discrete distribution.

This work presents a methodology for sampling from any
discrete distribution in combinational hardware. The process
is described in detail for a discrete Gaussian distribution with
a small sample space, and results are reported for selected
key encapsulation mechanisms (KEMs) and signature schemes
submitted to Round 2 of the NIST PQC standardization
process. This method produces viable solutions that require
fewer resources in the target FPGA than typical CDT lookups
when the number of table entries is moderate.

II. BACKGROUND

A. Definitions

When logic is described as being implemented in software
this means in the form of instructions executed on a general
purpose CPU or embedded processor; in hardware means in
the form of logic elements in devices that are reconfigurable
(e.g. FPGAs) or custom designed (e.g. ASICs).

Logic whose output depends only on the current inputs is
called combinational; if the output also depends on the current
state, it is called sequential as its output is dependent on the
sequence of input states. Combinational circuits may be used
as components in larger circuit assemblies.

An implementation is described as being constant-time if
it always takes a fixed number of clock cycles to produce a
valid output sample, and time-independent if the number of
cycles required may vary but is not related to the value of
a valid sample produced. In this context, combinational logic
is constant-time as the output is available in the same clock
cycle when inputs change.

B. Sampling Methods

Random bits available in software or hardware are typi-
cally uniformly distributed. Several methods are available to
transform sequences of such bits into values from a different
type of distribution (a process which we call redistribution),
including rejection sampling, Karney’s method, Knuth-Yao
sampling, and inversion sampling. This work uses a technique
derived from Knuth-Yao sampling, and implementations of
it are compared to a typical CDT-based inversion sampling
method.

III. PREVIOUS WORK

Knuth and Yao [1] showed that any discrete distribution
can be modeled as a binary tree, with a path from the
root to a terminal node representing the probability of the
associated sample value. A path can be viewed as the sum of
selected negative powers of 2 represented by each level in the
tree. Sampling of values according to the distribution can be
performed by a “random walk”, with a uniform random bit



directing the choice at each branch, until a terminal node is
reached.

Dwarakanath and Galbraith [2] applied the Knuth-Yao algo-
rithm to discrete distributions with the probabilities expressed
as binary fractions to some fixed precision. They demonstrated
the process for a discrete Gaussian distribution, noting that it is
necessary to sample only from the non-negative portion1 with
the probability of 0 halved, and use an additional uniform bit
to select the sign of the result.

Karmakar, Roy, Reparaz, Vercauteren, and Verbauwhede [3]
observed that redistribution based on a Knuth-Yao discrete
distribution generating tree (DDG-tree) is a unique mapping2

between the bits of the input sequence and those of the output
sample; each output sample bit can be produced by a Boolean
function of the input bit sequence. They used bit-slicing to
calculate multiple samples in parallel in software, and in [4]
they describe a method to evaluate the Boolean functions in
constant time in software.

The inherently parallel nature of hardware makes it an
obvious candidate platform for calculating these output sam-
ples. This work presents a methodology for determining the
bit-mapping functions for a particular discrete distribution,
minimizing the required logic, generating VHDL code to
evaluate the functions in hardware, and confirming that the
distribution of the output sample values is correct.

IV. COMPLETENESS OF DISCRETE DISTRIBUTIONS

We call a representation of a discrete distribution complete if
the probabilities of the values in its sample space sum exactly
to 1, and incomplete otherwise. If a distribution is complete
then every input bit sequence maps to a valid output sample
value; if it is incomplete then some input bit sequences must
be mapped to an invalid output value/s, and sequential logic at
a higher level will be needed to repeat the process until a valid
value is produced; such higher-level logic is not constant-time,
but is time-independent as the number of iterations required
is independent of the valid sample value eventually produced.

To demonstrate the methodology in this work, a very narrow
discrete Gaussian distribution is used; to the selected precision
it is incomplete, and thus requires handling of the possibility
that an output value is invalid. It has mean σ = 1.5, and proba-
bilities are represented with 5-bit precision. For values outside
the range [−3, 3] the probabilities in this distribution are 0
when truncated to 5 bits; this is equivalent to selecting a tail
cut of 2σ. For each value in the tails the probability expressed
to the chosen precision is 0, but those probabilities cannot
be ignored because the sum of the expressed probabilities is
less than 1, making this distribution incomplete. We assign
the shortfall 0.001 as the probability of generating an invalid
value, and map it to a value outside the implemented sample
space.

1This is sometimes called a “half-Guassian”.
2The mapping for a particular DDG-tree is unique; many equivalent trees

can be constructed for a given distribution by varying the branching and the
ordering of terminal node values across a level.

TABLE I
IMPLEMENTED DISTRIBUTION

Variable Probability
binary decimal binary decimal

000 0 0.0100 0.2500
001 1 0.0110 0.3750
010 2 0.0011 0.1875
011 3 0.0001 0.0625
100 4 0.0010 0.1250

sum 1.0000 1.0000

Table I shows the distribution to be implemented, with
positive probabilities doubled and the invalid probability as-
signed to the first value outside the sample space. The most-
significant bit (MSB) of the input bit sequence is used to
determine whether the result should be negated. A set of
discrete distribution probabilities in this form is sometimes
called a probability matrix3.

V. IMPLEMENTATION IN HARDWARE

Our methodology begins with a process described by
Dwarakanath and Galbraith [2], which in turn adopts the
process described by Knuth and Yao [1] to derive a discrete
distribution generating tree (DDG-tree) from the probability
matrix.

A. DDG-tree

A DDG-tree contains branch nodes (each of which has two
subordinate4 nodes) and terminal nodes5 (each of which has
an associated output sample value). A given output sample
value will be associated with one terminal node for each 1 bit
in its probability as a binary fraction.

Fig. 1 shows the DDG-tree for the implemented distribution.
This work follows the convention from [3], where 0 is assigned

3This is not the same type of data structure as a stochastic matrix, which
sometimes is called a probability matrix (among other names).

4Knuth and Yao call them son nodes, and also descendants.
5This work uses the terminology introduced by Knuth and Yao.

Dwarakanath and Galbraith call these internal vertices and leaves, respec-
tively. Karmakar et al. call them intermediate positions and leaf nodes,
respectively.

Fig. 1. Discrete distribution generating tree (DDG-tree).



TABLE II
COMBINATIONAL LOGIC AFTER MINIMIZATION

Output sample bit Input bit string(s)
o2 = 1 100x
o1 = 1 1x1x
o0 = 1 00xx, 110x, 1110

to the right-hand side of a branch, and terminal node values
at a level are assigned in ascending order left-to-right.

B. Bit strings

The DDG-tree provides one or more paths to each output
sample value, with the probability of each value according to
our modified distribution (assuming the probability of taking
one side of a branch is ). For each terminal node an associated
bit string is derived by concatenating the bits in the path
leading to that node.

C. Mapping and Logic minimization

The bit strings derived from the DDG-tree are mapped to
the bit positions in the output sample value. The bit string(s)
for the 0 output sample value are not mapped; that value will
be generated when the input bit string does not match any of
the mapped expressions.

To minimize the area and the critical path delay of a
hardware implementation, it is necessary to minimize the logic
in the Boolean functions. For this work, a custom Python script
was developed to read a probability matrix, construct a DDG-
tree, derive Boolean functions, minimize the functions using
the Espresso heuristic tool6, and generate VHDL code for the
minimized functions. Table II shows the bit strings for the
example after logic minimization; ’‘x” indicates a “don’t care”
condition in a bit position.

D. VHDL code generation

A custom Python script was created to generate combina-
tional VHDL code from the minimized Boolean functions,
represented as bit strings as described above.

The example distribution is incomplete, so the interface
includes a single-bit flag to indicate the validity of the output
value; this simplifies higher-level logic by avoiding a numeric
comparison to test for the special invalid value.

Multiple sets of output can be generated by instantiating
more than one unit of this code (assuming uniformly-random
input bits can be supplied at that rate).

E. Confirmation of the distribution

To confirm that the output sample values are distributed
correctly a custom VHDL testbench was created to generate
every possible input bit sequence and record the input and
output values7. A spreadsheet used to analyze the recorded
data showed that the number of occurrences of each value

6Espresso was also used by Karmakar et al. in [3]. In this work we used
the Espresso implementation from the PyEDA package.

7This process is feasible for small-to-moderate precision and sample space
size, e.g. for input sequences up to 16 bits in length.

in the output range (including the invalid value) was exactly
as expected. Table III shows the results for the example
distribution.

VI. IMPLEMENTATION OF SELECTED PQC SCHEMES

Howe, Khalid, Rafferty, Regazzoni, and O’Neill [5] de-
termined that a variation on Peikert’s CDT method [6] pro-
vided the best balance of throughput and low area among
the independent-time sampling methods considered, under the
constraint that no RAM units are used. They compared their
method to that of Pöppelmann and T. Güneysu [7], which
is constant-time (producing one sample per clock cycle) but
requires about 5x the area and operates at about the speed.

The focus of this work is sampling from reasonably narrow
discrete distributions, using only combinational hardware, and
requiring neither block RAMs nor DSP units. Such hardware
can be incorporated into more complex circuit assemblies,
e.g. to produce multiple samples in parallel by using multiple
instances of the sampling component. In order to compare im-
plementations of our method against a typical CDT lookup we
chose the error distributions from the FrodoKEM submission
to the second round of the NIST post-quantum cryptography
(PQC) selection process [8]. FrodoKEM “approximates a
rounded continuous Gaussian distribution” and is complete, so
there is no need to handle out-of-range values. The specifica-
tion lists integer values for the probabilities (scaled by 216) of
output samples in the range [0, 12], where the probabilities for
negative values in the range are the same as for their positive
counterparts.

Bernstein [9] identified all the key encapsulation mech-
anisms (KEMs) submitted to Round 2 of the NIST PQC
standardization process which are lattice-based and target
indistinguishability under adaptive chosen ciphertext attack
(IND-CCA2). In Table 8.7 he shows the distribution of “short
elements” (polynomial coefficients, vector elements, or ma-
trix elements) for each. To evaluate the effectiveness of our
methodology, we applied it to all the KEMs which use a non-
uniform distribution. Of these only FrodoKEM uses a discrete
Gaussian distribution, so the methodology is also applied to
three signature schemes from two other submissions to Round
2, each of which samples from a discrete Gaussian with a
much larger sample space and with much higher precision
than the FrodoKEM variants.

Each distribution tested was implemented in Xilinx Vivado
2017.4.1 (64-bit), with default options for synthesis and for

TABLE III
DISTRIBUTION COUNTS FROM THE TESTBENCH

Output sample value Frequency Probability
(decimal) (binary)

0 8 0.0100
–1, 1 6, 6 0.0110
–2, 2 3, 3 0.0011
–3, 3 1, 1 0.0001

–4 (invalid) 4 0.0010
sum = 32 sum = 1.0000



TABLE IV
IMPLEMENTATION RESULTS FOR XILINX ARTIX-7 FPGA

Scheme Variant Sample space Precision
(input size) Output size Architecture LUTs MUXes Slices Depth

CRYSTALS-KYBER 4 3 Boolean functions 2 2 1
NewHope 8 4 Boolean functions 5 2

Saber
LightSaber 10 4 Boolean functions 16 4 3
Saber 8 4 Boolean functions 5 2 2
FireSaber 6 3 Boolean functions 2 1 1

LAC
LAC-128 2 2 Boolean functions 1 1 1
LAC-192 3 2 Boolean functions 1 1 1
LAC-256 2 2 Boolean functions 1 1 1

ThreeBears
BabyBear 7 3 Boolean functions 3 1 2
MamaBear 6 2 Boolean functions 2 1 1
PapaBear 5 2 Boolean functions 1 1 1

FrodoKEM

Frodo-640 [-12, 12] 16 5 Boolean functions 30 9 4
CDT lookup 35 10 5

Frodo-976 [-10, 10] 16 5 Boolean functions 36 3 12 5
CDT lookup 39 12 4

Frodo-1344 [-6, 6] 16 4 Boolean functions 24 7 4
CDT lookup 22 7 4

Falcon [-19, 19] 72 5 Boolean functions 590 168 8
CDT lookup 655 168 13

qTESLA qTESLA p I [-78, 78] 63 7 Boolean functions 2316 609 7
CDT lookup 1019 273 7

qTESLA qTESLA I [-208, 208] 63 8 Boolean functions 6775 1757 4
CDT lookup 2365 1 623 5

implementation, and the target device xc7a15tcpg236-38. For
each scheme sampling from a discrete Gaussian distributions
a CDT equivalent also was coded in VHDL, along with a
testbench to exercise both implementations. We do not claim
that the CDT implementations are optimal, but given the small
tables used in the FrodoKEM variants (with 12, 10, and 6
rows, respectively,) it seems likely that techniques like those
in [5] would provide only limited improvement. The signature
schemes tested (Falcon, qTESLA) had much larger tables and
much higher precision, so specialized CDT implementations
would likely be more compact than the generic implementa-
tions used here.

The KEM schemes using centered binomial distributions
(CBDs) or similar all had smaller sample spaces, ranging
from {-1, 1} for LAC and two of the Three Bears to {-5,
5} for LightSaber. For the narrowest of these, our method
produced correct results with very few logic units, but it
would be easy to produce comparable results using VHDL
selected signal assignment (with ... select) statements
or indexed lookups of tables of constants.

Table IV shows the results for implementations of the se-
lected PQC algorithms, in terms of lookup table units (LUTs),
multiplexers (MUXes), and slices used on the target device,
and the circuit depth - the maximum number of LUTs and/or
MUXes between any input bit and any output bit, which gives
a good indication of the relative latency. Output size is the
number of bits needed to represent the largest value in the
sample space.

8The target device was arbitrarily chosen – it is the smallest member of
the Xilinx Artix-7 family that has the highest speed grade “3”. Artix-7 is
the hardware family NIST has asked developers to focus on in its PQC
standardization process.

VII. CONCLUSION

The methodology presented in this work produces correct
combinational hardware implementations for sampling from
arbitrary discrete distributions. For distributions with small-to-
moderate precision and sample space size, these implementa-
tions are comparable to and in some cases better than typical
CDT lookups.

REFERENCES

[1] D. E. Knuth and A. Yao, “The complexity of nonuniform random number
generation,” in Algorithms and Complexity: New Direction and Recent
Results, J. Traub, Ed. New York, NY: Academic, 1976, pp. 357–428.

[2] N. C. Dwarakanath and S. D. Galbraith, “Sampling from discrete Gaus-
sians for lattice-based cryptography on a constrained device,” Applicable
Algebra in Engineering, Communication and Computing, vol. 25, no. 3,
pp. 159–180, Jun. 2014.

[3] A. Karmakar, S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede,
“Constant-Time Discrete Gaussian Sampling,” IEEE Transactions on
Computers, vol. 67, no. 11, pp. 1561–1571, Nov. 2018.

[4] A. Karmakar, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “Pushing
the speed limit of constant-time discrete Gaussian sampling. A case study
on the Falcon signature scheme,” in 56th Annual Design Automation
Conference 2019, DAC 2019. Las Vegas, NV, USA: ACM Press, 2019,
pp. 1–6.

[5] J. Howe, A. Khalid, C. Rafferty, F. Regazzoni, and M. O’Neill, “On
Practical Discrete Gaussian Samplers for Lattice-Based Cryptography,”
IEEE Transactions on Computers, vol. 67, no. 3, pp. 322–334, Mar. 2018.

[6] C. Peikert, “An Efficient and Parallel Gaussian Sampler for Lattices,” in
Advances in Cryptology – CRYPTO 2010, vol. 6223. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 80–97.

[7] T. Pöppelmann and T. Guneysu, “Towards Practical Lattice-Based Public-
Key Encryption on Reconfigurable Hardware,” in Selected Areas in
Cryptography – SAC 2013, vol. 8282. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 68–85.

[8] “Post-Quantum Cryptography: Round 2 Submissions,”
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-
Submissions, Apr. 2019.

[9] D. J. Bernstein, “Comparing proofs of security for lattice-based encryp-
tion,” Cryptology ePrint Archive 2019/691, Jul. 2019.


	Introduction
	Background
	Definitions
	Sampling Methods

	Previous Work
	Completeness of Discrete Distributions
	Implementation in Hardware
	DDG-tree
	Bit strings
	Mapping and Logic minimization
	VHDL code generation
	Confirmation of the distribution

	Implementation of Selected PQC Schemes
	Conclusion
	References

