
High-Level Synthesis in Implementing and
Benchmarking Number Theoretic Transform in
Lattice-based Post-Quantum Cryptography

using Software/Hardware Codesign

Duc Tri Nguyen, Viet B. Dang, and Kris Gaj

George Mason University, Fairfax, USA,
dnguye69,vdang6,kgaj@gmu.edu

Abstract. Compared to traditional hardware development methodolo-
gies, High-Level Synthesis (HLS) offers a faster time-to-market and lower
design cost at the expense of implementation efficiency. Although Soft-
ware/Hardware Codesign has been used in many areas, its usability
for benchmarking of candidates in cryptographic competitions has been
largely unexplored. This paper provides a comparison of the HLS- and
RTL-based design methodologies when applied to the hardware design
of the Number Theoretic Transform (NTT) – a core arithmetic function
of lattice-based Post-Quantum Cryptography (PQC). As a next step, we
apply Software/Hardware Codesign approach to the implementation of
three PQC schemes based on NTT. Then, we integrate our HLS imple-
mentation into the Xilinx SDSoC environment. We demonstrate that an
overhead of SDSoC compared to traditional Bare Metal approach is ac-
ceptable. This paper also shows that an HLS implementation obtained
by modeling a block diagram is typically much better than an imple-
mentation obtained by using design space exploration. We conclude that
the HLS/SDSoC and RTL/Bare Metal approaches generate comparable
results.

1 Introduction

A threat of quantum computers triggered an effort aimed at designing a new class
of cryptographic algorithms, collectively referred to as Post-Quantum Cryptog-
raphy (PQC) [1]. These algorithms have two common features: a) there are
no known attacks capable of breaking these cryptosystems, even assuming the
availability of full-scale quantum computers, b) all PQC algorithms can be imple-
mented using traditional computing platforms, based on standard semiconductor
technology, such as microprocessors and FPGAs. In the standardization process
currently run by the National Institute of Standards and Technology (NIST),
26 candidates remain in Round 2 and need to be evaluated from the point of
view of their hardware efficiency [1]. A large number of candidates and high
complexity of the majority of them make hardware benchmarking extremely
challenging. In order to mitigate these difficulties, a new approach based on a)



2 Duc Tri Nguyen, Viet B. Dang, and Kris Gaj

software/hardware codesign, and b) the development of hardware accelerators
using High-Level Synthesis (HLS) has been proposed [2].

In the traditional RTL approach, a path from developing HDL code to run-
ning it on a target device is quite long, since the developer has to create an
interface between CPU and FPGA. On the other hand, in the Xilinx SDSoC
framework, most of these tasks are performed automatically by the tools.

In the remaining 12 Round 2 lattice-based PQC candidates, 5 use Number
Theoretic Transform (NTT) for polynomial multiplication. After software profil-
ing, we decided to implement the NTT hardware accelerators for NewHope and
Kyber. Since Kyber has been substantially modified between Rounds 1 and 2, we
have decided to compare the implementation efficiencies of these two variants,
further denoted as Kyber R1 and Kyber R2.

This paper demonstrates: a) Advantages of the HLS approach based on block
diagrams vs. the HLS approach based on space exploration. b) Overhead of the
SDSoC/HLS methodology over the Bare Metal/RTL approach.

2 Background

2.1 Number Theoretic Transform

Let n be a power of two, and q be a prime modulus. We define a ring Rq[x] =
Zq[x]/(x

n + 1) as the ring of polynomials of degree n − 1 with coefficients in
Zq (a field of integers in the range [0, q − 1] with addition and multiplication
modulo q). Multiplications in Rq[x] can be performed efficiently in software and
hardware using the NTT, which has the complexity of O(n · log(n)).

If ψ2 = ω mod q exists, then it is recommended that the input polynomials
should be multiplied by ψi before Forward NTT instead of supplementing them
with n most significant terms equal to zero. As a result, the output of Inverse
NTT must be multiplied by ψ−i.

By using NTT, a multiplication in Rq can be computed as follows:

C = NTT−1(C) = NTT−1(A ∗B) = NTT−1(NTT(A) ∗NTT(B))

where ψ2 = ω, A = (a0, ψa1, ψ
2a2, . . . , ψ

n−1an−1), B = (b0, ψb1, ψ
2b2, . . . ,

ψn−1bn−1), C = (c0, ψc1, ψ
2c2, . . . , ψ

n−1cn−1), and a, b, c are polynomials in
Rq[x], with q = 1 mod 2n [3].

The pseudo-code of the iterative version of Forward NTT is shown in Algo-
rithm 1. The Inverse NTT is similar to Forward NTT but instead of multiplying
with ωi, we multiply with ω−i.

In this paper, we divide the polynomial multiplication into two modes:
a) NTT: Forward (NTT ) and Inverse NTT (INTT )
b) MUL: Multiplication of the respective coefficients by ψi (PSIS MUL), multi-
plication of the respective coefficients by ψ−i (IPSIS MUL), and coefficient-wise
multiplication of two polynomials (COEF MUL).

Modular multiplication can be performed using two primary approaches:
Montgomery multiplication (REDC) and the method introduced by Longa et
al. in [4] (KRED).



Software/Hardware Codesigns of NTT-based PQC Schemes 3

Algorithm 1 Iterative NTT

Require: F (x) ∈ Rq[x]; ROM [i] = ωi, ωn = 1 mod q
Ensure: F (x) = NTT (F )
1: F ← BitReverse(F )
2: for s = 0 to log2(n)− 1 by 1 do
3: m← 2≪ s
4: ωm ← n/m
5: i← 0
6: for j = 0 to m/2 by 1 do
7: for k = 0 to n by m do
8: u← F [k + j]
9: t← F [k + j +m/2] ∗ROM [i]
10: F [k + j]← u+ t
11: F [k + j +m/2]← u− t

12: i← i+ ωm

3 Previous Work

The theory of NTT is summarized in [3]. Previous hardware implementations of
NTT were reported in [5,6]. The first hardware implementations of NTT targeted
the PQC scheme called Ring-LWE [7]. The most recent efforts aimed specifically
at the efficient implementations of the Round 1 PQC candidate NewHope, qual-
ified to the second round of the NIST PQC standardization process [8, 9].

Efficient implementations of block ciphers, hash functions, and authenticated
ciphers using HLS were reported in [10,11]. In the majority of cases, these imple-
mentations closely matched the performance of RTL implementations in terms
of throughput and throughput-to-area ratio. The first attempts at the use of
HLS for benchmarking of PQC candidates were reported in [2].

4 Block Diagram versus Space Exploration

There are two major approaches to implementing hardware accelerators in HLS:
a) SE/HLS: Identify optimal HLS-ready code using design space exploration
based on HLS directives. The final hardware architecture is unknown until the
best result is achieved.
b) BD/HLS: Develop block diagram corresponding to the presumed optimal
hardware architecture. Write HLS code following this block diagram.

Both SE/HLS and BD/HLS approaches inherit the advantages of HLS: quicker
verification and quicker development than in traditional RTL. As shown in Fig. 1,
in the SE/HLS approach, a small portion of the total development time is spent
on writing HLS-ready code and verifying its functionality. The rest of the time is
devoted to design space exploration using pragma directives. There are over 20
pragma directives in the current version of Vivado HLS; their different combina-
tions lead to different architectures. The impact of a particular pragma directive
is heavily dependent on the code structure and the algorithm. Some directives



4 Duc Tri Nguyen, Viet B. Dang, and Kris Gaj

Fig. 1. BD/HLS versus SE/HLS development timeline

Table 1. Results for BD/HLS vs. results for SE/HLS for 1024-point NTT

Work
BRAM
18K

DSP FF LUT Cycles
Cycles
Reduc.

[12] 11.5 10 16,402 21,167 7,597 1.59

[12] 21.5 19 30,498 38,984 5,291 1.10

This work 10 4 1,342 1,110 4,776 1.0

may have no impact at all, others may dramatically change the speed vs. cost
trade-off. Exploring all possible combinations is often unrealistic. Additionally,
in many cases, code refactoring may give better results than an optimal choice
and placement of directives. As a result, the HLS design by space exploration
may lead to the choice of sub-optimal hardware architecture.

In BD/HLS approach, the large portion of the total development time is
spent on developing a block diagram and implementing it in HLS-ready C. The
rest of the time is spent on verification. Since the exact hardware architecture
is known beforehand, space exploration is not required. With the HLS-ready
code based on a block diagram created manually by an experienced designer,
the BD/HLS approach can significantly outperform the SE/HLS methodology.

In Table 1, the comparison of the NTT implementations according to two
approaches, BD/HLS and SE/HLS, is summarized. The BD/HLS approach uses
2x, 5x, 22x, 35x, and 1.1x less BRAMs, DSPs, LUTs, FFs and Clock Cycles,
respectively. In [12], the authors experiment with multiple combinations of di-
rectives, applied to multiple loops. However, the final design outcome is still not
as good as in our BD/HLS design.

5 Hardware Design

5.1 NTT Top Level Design

A top-level block diagram of a hardware accelerator for NewHope and Kyber is
shown in in Fig. 2. There are 3 main components: NTT, MUL and Reorder. For
NewHope and Kyber R1, the NTT unit is responsible for the NTT and MUL
modes of operation, described in Section 2.1. In Kyber R2, the NTT unit is only
responsible for the MUL mode. As a result, a dedicated MUL unit must be
added. The role of the Reorder unit is explained at the end of the next section.



Software/Hardware Codesigns of NTT-based PQC Schemes 5

Fig. 2. Top-level block diagram of a hardware accelerator for NewHope and
Kyber

Table 2. Selected NTT-based Round 2 PQC candidates investigated in this
study. N and q are major parameters of NTT. k and m are used in the Longa-
Naehrig modular reduction, and qinv in the Montgomery Reduction.

Candidate Cat (#NTT) n q 2m k k2 qinv

NewHope 1,5 (1) 512/1024 12,289 212 3 23 + 1 213 + 212 − 1

Kyber R1 1,3,5 (2,3,4) 256 7,681 29 15 28 − 25 + 1 213 − 29 − 1

Kyber R2 1,3,5 (2,3,4) 256 3,329 28 13 27 + 25 + 23 + 1 29 + 28 + 1

5.2 Number Theoretic Transform

A block diagram of our NTT implementation, shown in Fig. 3, is based on the
design from [6]. One of the improvements is support for both odd and even
numbers of NTT layers. When log2(n) is odd, the signal X is asserted during
the last iteration to let coefficients A′, B′, C ′, D′ pass directly to the SIPO unit
instead of going through the 2nd NTT layer. On the other hand, when log2(n)
is even, the multiplexers with the select signal X can be eliminated.

Our NTT hardware architecture has a 2x2 butterfly structure, which can
process two layers of NTT with two butterfly units per layer. Four coefficients
are loaded in each clock cycle and placed into registers A, B, C, D. If KRED is
selected as a modular reduction method, the square boxesm1 andm2 are KRED
and KRED2x, respectively. If REDC Montgomery reduction is chosen, m1 can
be removed and m2 represent REDC.

When S = 0, the circuit operates in the MUL mode, used to perform op-
erations PSIS MUL, COEF MUL, and IPSIS MUL. The coefficients in the lines
B and D are multiplied by coefficients from RAM1, which are (ψ4i+1, ψ4i+3)
or (r4i+1, r4i+3) or (ψ

−(4i+1), ψ−(4i+3)), depending on the performed operation.
The obtained results are reduced by the function m2 and stored in Bsave and
Dsave, which go to SIPO B and SIPO D later on. After that, coefficients from
lines A and C are switched to lines B and D, allowing them to be multiplied with
coefficients from RAM2, reduced by m2, and directed to SIPO A and SIPO C,
respectively. When the following outputs of SIPOs: A1st, B2nd,C3rd and D4th
become available, they are concatenated and written back to RAM at the index
where A1st was loaded from.



6 Duc Tri Nguyen, Viet B. Dang, and Kris Gaj

Table 3. Results of the HLS implementations of KRED and REDC

Candidate
Modular
Reduction

DSP LUT FF Slice
Max.
Freq

NewHope
KRED

1 118 100 28 530
KyberR1 1 125 93 32 507
KyberR2 1 150 112 35 502

NewHope
REDC

1 370 357 85 515
KyberR1 1 387 333 69 512
KyberR2 1 391 382 91 476

When S = 1, the circuit operates in theNTTmode use to perform operations
INTT and NTT. Four coefficients go through the 2x2 butterfly structure, and
results are written to SIPOs. Coefficients in lines B and D are multiplied with
ωi
n or ω−i

n , depending on whether the circuit computes NTT or INTT. When
SIPOA is full, four coefficients available at the outputs A1st, A2nd, A3rd, A4th
are concatenated, and stored back to the RAM at the position where A1st was
loaded from. After one clock cycle, the same happens with results accumulated
in SIPOC , and then SIPOB and SIPOD.

Shuffle and Reordering The order of coefficients is changed in the NTT
mode. Thus, after each NTT operation, one must shuffle and reorder the obtained
coefficients. We apply the in-place matrix transposition proposed in [13]. The
number of clock cycles for 128-, 256-,512- and 1024-point NTT is 50, 63, 194,
255 clock cycles, respectivly. In particular, for the 1024-point NTT, we use 255
clock cycles vs. 1024 clock cycles in [9].

For NewHope and Kyber R1, all five operations from Section 2.1 are sup-
ported by the circuit from Fig. 3. In the case of Kyber R2, PSIS MUL and
IPSIS MUL do not apply. Only NTT and INTT are performed by the NTT
unit. The COEF MUL is performed by a separate unit. Therefore, the NTT
mode of Kyber R2 can be simplified by stripping the dot line and removing
multiplexers to save resources and improve maximum clock frequency.

The precomputed values of all constants are stored in the dual-port memories
RAM1 and RAM2, of the size 2.5n and 3n memory locations, respectively. The
number of bits stored at each memory location is equal to log2q. The memory
map and formulas for the values of constants stored within each specific address
range are shown in Fig. 4.

6 Results

The target device is Zynq UltraScale+ MPSoC ZCU104, with CPU Cortex-
A53 running at 1.2 GHz. All results presented in this section are obtained after
placing and routing.

Results of the HLS implementation of two alternative reduction methods,
KRED and REDC, for the value of q corresponding to investigated candidates,
are shown in Table 3. These results demonstrate that compared to REDC, the



Software/Hardware Codesigns of NTT-based PQC Schemes 7

Table 4. Resources Utilization for HLS and RTL

Algorithm #NTT DSP
BRAM
36K

LUT FF Slice
Freq.
(Mhz)

RTL

NewHope 1 1 4 3 1,040 940 190 476
NewHope 5 1 4 5 842 803 170 476

Kyber R1-1 2 8 2 2,185 2,625 411 500
Kyber R1-3 3 12 3 3,318 3,937 605 500
Kyber R1-5 4 16 4 4,363 5,237 795 500

Kyber R2-1 2 24 5 2,040 3,223 433 500
Kyber R2-3 3 36 8 3,054 5,098 637 500
Kyber R2-5 4 48 10 4,055 6,803 960 500

HLS/RTL

NewHope 1 1.00 1.00 1.00 1.14 1.49 1.26 0.95
NewHope 5 1.00 1.00 1.00 1.32 1.67 1.29 0.96

Kyber R1-1 1.00 1.00 1.00 1.28 1.03 1.45 0.91
Kyber R1-3 1.00 1.00 1.00 1.27 1.03 1.45 0.91
Kyber R1-5 1.00 1.00 1.00 1.27 1.06 1.54 0.91

Kyber R2-1 1.00 1.00 1.40 1.35 1.43 1.57 0.91
Kyber R2-3 1.00 1.00 1.40 1.40 1.51 1.65 0.89
Kyber R2-5 1.00 1.00 1.40 1.47 1.53 1.67 0.89

Table 5. Comparison of the transfer time & overhead between SDSoC and Bare
Metal

Algorithm

Total
Transfer

Size
(bytes)

Times

Total
Transfer
Time
(µs)

Transfer
Ratio

Transfer
Overhead

In Out BM SDSoC
SDSoC/

BM
BM SDSoC

ENCAPSULATION

NewHope 1 2,048 2,048

1

7.91 12.64 1.60 4.51% 7.01%
NewHope 5 4,096 4,096 11.90 19.50 1.64 3.67% 5.87%
Kyber R1-1 1,024 1,536 7.85 9.86 1.26 4.94% 6.12%
Kyber R1-3 1,536 2,048 8.05 11.71 1.46 3.58% 5.12%
Kyber R1-5 2,048 2,560 9.42 13.49 1.43 2.86% 4.04%
Kyber R2-1 1,024 1,536 7.85 9.86 1.26 7.77% 9.54%
Kyber R2-3 1,536 2,048 8.05 11.71 1.46 3.99% 5.69%
Kyber R2-5 2,048 2,560 9.42 13.49 1.43 3.12% 4.40%

DECAPSULATION

NewHope 1 3,072 3,072

2

15.22 21.57 1.42 8.56% 11.69%
NewHope 5 6,144 6,144 19.81 32.13 1.62 5.93% 9.26%
Kyber R1-1 2,048 2,048 15.15 17.99 1.19 9.35% 10.89%
Kyber R1-3 3,072 2,560 15.90 20.76 1.31 7.02% 8.96%
Kyber R1-5 4,096 3,072 17.91 23.47 1.31 5.39% 6.94%
Kyber R2-1 2,048 2,048 15.15 17.99 1.19 11.36% 13.17%
Kyber R2-3 3,072 2,560 15.90 20.76 1.31 7.53% 9.58%
Kyber R2-5 4,096 3,072 17.91 23.47 1.31 5.78% 7.42%



8 Duc Tri Nguyen, Viet B. Dang, and Kris Gaj

Fig. 3. Block diagram of the proposed hardware architecture for fast polynomial
multiplication using NTT. The red lines represent four likely critical paths.

implementation of KRED uses less resources and is comparable in term of per-
formance. Therefore, KRED is selected as a modular reduction method.

The comparison between HLS and RTL is shown in Table 4. The PQC can-
didates are compared at the multiple security levels: 1, 3, and 5. The number of
BRAMs in HLS is higher than in RTL due to a higher abstraction level descrip-
tion of HLS. In particular, the tool duplicates RAM1 and RAM2 for each MUL
component. Thus, the number of BRAMs for Kyber R2 is higher than in RTL.
There are two pairs of RAM1 and RAM2 in a single HLS NTT module, instead
of just one. The number of LUTs, FFs, and Slices is consistently greater in HLS.

Traditional RTL SW/HW Codesign often uses Bare Metal (BM) to han-
dle transfer between CPU and FPGA. The DMA in BM is often implemented
manually. Contrary to that, SDSoC creates an abstraction layer of the inter-
face handler. As a result, switching from software to hardware is very easy. To
demonstrate the overhead of abstraction in using SDSoC, the best selected trans-



Software/Hardware Codesigns of NTT-based PQC Schemes 9

Fig. 4. The memory maps of RAM1 and RAM2, including formulas for values of
constants stored in specific memory ranges. n=log2n, ω = ωn, i ∈ [0, 1, . . . , n/2)
for RAM1 and RAM2, except the gray area of RAM 1, where i ∈ [0, 1, . . . , n/4).
For the KRED, the value of k is given in Table 2. If the REDC is used, k is
assumed to be 1. poly pk and poly sk are NTT domain preloaded public and
secret polynomials.

fer interface in SDSoC is compared with Bare Metal in Table 5. Additionally,
the Transfer Overhead column is the percentage of Total Transfer Time
over the Total SW/HW in Table 6.

In Table 6, timing results are summarized. The HLS/SDSoC approach gener-
ates comparable accelerator speed up for all investigated algorithms. The number
of clock cycles of NTT HW acclerator for polynomial multiplication (excluding
the transfer time) in Encapsulation and Decapsulation phase for NewHope 1,
NewHope 5, Kyber R1, and Kyber R2 are 3300, 6300, 1400, 1300 and 4100,
7900, 2200, 2100, respectively.

The Total SW is the software only execution time, the Total SW NTT
column is the time spent on NTT operations in SW, %SW NTT is the per-
centage of the total execution time in software devoted to NTT, the Total
SW/HW is the total time after offloading the critical function (NTT) to hard-
ware. The Total Speed-up @Max Freq is the ratio between Total SW and
Total SW/HW. This speed-up is roughly equal between the SDSoC and Bare
Metal approaches.

7 Conclusions

Using HLS and SDSoC are two promising approaches to benchmarking SW/HW
implementations of PQC. With the help of these approaches, the development
time is substantially reduced, with the relatively small penalty in terms of the
total execution time, HW-SW transfer time, and the total speed-up vs. purely
SW implementation. Overhead in terms of resource utilization is more substan-
tial, especially in terms of the number of LUTs, FFs, and Slices. The BD/HLS
approach, based on the use of block diagrams, was shown to be substantially



10 Duc Tri Nguyen, Viet B. Dang, and Kris Gaj

Table 6. Speed up of the Software/Hardware Codesign vs. Pure Software

Algorithm
Total SW

(µs)

Total SW
NTT
(µs)

%SW NTT
Total SW/HW

(µs)

Total
Speed-up

@Max Freq
BM SDSoC BM SDSoC

ENCAPSULATION

NewHope 1 360.3 199.8 55% 175.2 180.3 2.06 2.00
NewHope 5 737.0 438.1 59% 324.0 332.2 2.27 2.22

Kyber R1-1 389.2 240.9 62% 158.9 161.1 2.45 2.42
Kyber R1-3 582.3 368.3 63% 224.8 228.7 2.59 2.55
Kyber R1-5 826.9 509.4 62% 329.6 334.0 2.51 2.48

Kyber R2-1 328.5 237.8 72% 101.1 103.4 3.25 3.18
Kyber R2-3 533.9 343.0 64% 201.5 205.7 2.65 2.60
Kyber R2-5 785.2 495.4 63% 301.8 306.4 2.60 2.56

DECAPSULATION

NewHope 1 427.5 273.5 64% 177.8 184.6 2.40 2.32
NewHope 5 895.7 598.0 67% 334.0 347.1 2.68 2.58

Kyber R1-1 483.2 340.8 71% 161.9 165.2 2.98 2.92
Kyber R1-3 710.4 504.2 71% 226.5 231.8 3.14 3.06
Kyber R1-5 992.1 682.4 69% 332.0 338.0 2.99 2.94

Kyber R2-1 429.5 315.5 73% 133.3 136.6 3.22 3.14
Kyber R2-3 667.8 476.8 71% 211.1 216.8 3.16 3.08
Kyber R2-5 950.8 662.9 70% 310.0 316.4 3.07 3.00

more efficient than the approach, SE/HLS, based on applying various pragmas
to existing code and letting the tool to infer the best possible architecture.

References

1. “NIST Post-Quantum Cryptography Standardization.”
2. F. Farahmand, V. B. Dang, D. T. Nguyen, and K. Gaj, “Evaluating the potential

for hardware acceleration of four ntru-based key encapsulation mechanisms using
software/hardware codesign,” in PQCrypto, 2019, pp. 23–43.

3. E. C.-h. Chu and A. George, Inside the FFT Black Box: Serial and Parallel Fast
Fourier Transform Algorithms, ser. Computational Mathematics Series.

4. P. Longa, M. Naehrig, P. Longa, and M. Naehrig, “Speeding up the Number The-
oretic Transform for Faster Ideal Lattice-Based Cryptography,” in Cryptology and
Network Security - CANS 2016, vol. 10052.

5. T. Pöppelmann and T. Güneysu, “Towards Efficient Arithmetic for Lattice-Based
Cryptography on Reconfigurable Hardware,” in LATINCRYPT 2012.

6. C. Du, G. Bai, and X. Wu, “High-Speed Polynomial Multiplier Architecture for
Ring-LWE Based Public Key Cryptosystems,” in GLSVLSI’16.

7. C. P. Renteria-Mejia and J. Velasco-Medina, “High-Throughput Ring-LWE Cryp-
toprocessors,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

8. T. Oder and T. Guneysu, “Implementing the NewHope-Simple Key Exchange on
Low-Cost FPGAs,” in LATINCRYPT 2017, Havana, Cuba, Sep. 2017.



Software/Hardware Codesigns of NTT-based PQC Schemes 11

9. P.-C. Kuo et al., “High Performance Post-Quantum Key Exchange on FPGAs,”
Cryptology ePrint Archive 2017/690, Feb. 2018.

10. E. Homsirikamol and K. Gaj, “Hardware Benchmarking of Cryptographic Algo-
rithms Using HLS Tools: The SHA-3 Contest Case Study,” in ARC 2015.

11. ——, “A new HLS-based methodology for FPGA benchmarking of candidates in
cryptographic competitions: The CAESAR contest case study,” in FPT 2017.

12. K. Kawamura, M. Yanagisawa, and N. Togawa, “A loop structure optimization
targeting high-level synthesis of fast number theoretic transform,” in ISQED 2018.

13. D. E. Knuth, The Art of Computer Programming, Fundamental Algorithms, 1997.


	High-Level Synthesis in Implementing and Benchmarking Number Theoretic Transform in Lattice-based Post-Quantum Cryptography using Software/Hardware Codesign

