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Abstract—The recent advancement in quantum technology
has initiated a new round of cryptosystem innovation, i.e., the
emergence of Post-Quantum Cryptography (PQC). This new
class of cryptographic schemes is intended to be mathematically
resistant against any known attacks using quantum computers,
but, at the same time, be fully implementable using traditional
semiconductor technology. The National Institutes of Standards
and Technology (NIST) has already started the PQC standard-
ization process, and the initial pool of 69 submissions has been
reduced to 26 Round 2 candidates. Echoing the pace of the
PQC “revolution,” this paper gives a detailed and thorough
introduction to recent advances in the hardware implementation
of PQC schemes, including challenges, new implementation
methods, and novel hardware architectures. Specifically, we
have: (i) described the challenges and rewards of implementing
PQC in hardware; (ii) presented the novel methodology for the
design-space exploration of PQC implementations using high-
level synthesis (HLS); (iii) introduced a new underexplored PQC
scheme (binary Ring-Learning-with-Errors), as well as its novel
hardware implementation for possible lightweight applications.
The overall content delivered by this paper could serve multiple
purposes: (i) provide useful references for the potential learners
and the interested public; (ii) introduce new areas and directions
for potential research to the VTS community; (iii) facilitate the
PQC standardization process and the exploration of related new
ways of implementing cryptography in existing and emerging
applications.
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I. INTRODUCTION

The rapid advancement in quantum computing has triggered
a new round of cryptographic engineering research, as the
existing public-key cryptosystems, such as Rivest Shamir
Adleman (RSA) and elliptic curve cryptography (ECC), are
likely to become vulnerable to the polynomial-time realiza-
tions of the Shor’s algorithm using quantum computers [1],
[2]. As it is anticipated that a well-equipped quantum computer
will become available during the next 10-15 years, alternative
solutions, capable of replacing widely-deployed RSA and ECC
standards, are truly needed. Post-quantum cryptography (PQC)
is defined as a class of cryptosystems that can resist quantum
attacks [1], but at the same time can be implemented using
traditional semiconductor technology. In recent years, PQC
has gained substantial attention from the research community
and governmental institutions. Many research projects, sup-
ported by thorough security analysis, have been carried out

on developing practical and secure PQC schemes. Meanwhile,
the National Institute of Standards and Technology (NIST)
has already initiated the PQC standardization process, and,
as of the first half of 2020, 26 submissions remain under
consideration for future standards [3].

During the first round of the NIST evaluation process,
conducted in the period between Dec. 2017 and Jan. 2019,
the primary attention was focused on security. Initially, only
reference software implementations existed for the majority
of the candidates. Optimized software implementations, taking
advantage of vector instructions of modern microprocessors,
followed. Only then, the first software/hardware and purely
hardware implementations were reported [3].

Although pilot studies, concerning hardware implementa-
tions of earlier versions of PQC algorithms, were conducted
well before an official launch of the NIST standardization
process, the results of these studies need to be used with
considerable caution. This is because multiple changes in the
functionality and parameter values of even well-established
candidates, such as NTRUEncrypt, Rainbow, Unbalanced Oil-
and-Vinegar, McEliece, have been introduced at the launch
of both rounds of the NIST evaluation [4]. Additionally,
the old implementations used very divergent assumptions,
optimization targets, APIs, and sources of randomness. Only a
few candidates in the NIST PQC standardization process have
been fully implemented in hardware to date.

In this paper, we present three aspects of recent advances
in hardware implementation of PQC:

• We give detailed analysis of unique challenges related
to hardware implementation of PQC, ranging from the
fundamental mathematical complexity to the difficulty of
protection against side-channel and fault attacks.

• We introduce an overall design flow for the high-level
synthesis (HLS)-based implementation of the NIST PQC
candidates. Main topics include: (i) motivation for em-
ploying HLS to design accelerators for the NIST PQC
candidates; (ii) proposed optimization steps based on
HLS approach; (iii) practical implementation challenges
and recent advances in the HLS implementation of PQC
schemes.

• We also introduce a new strategy to implement a lattice-
based PQC scheme, called binary Ring-Learning-with-



Errors (BRLWE), on a hardware platform. The BRLWE
is a new variant of the Ring-LWE scheme and has
the potential to be used in many resource-constrained
applications due to its small key size and very low
implementation complexity. The thorough research on
efficient hardware implementation of this new scheme has
not been well reported in the literature to date.

The rest of this paper is organized as follows. Section II
discusses the challenges and potential rewards of implement-
ing PQC in hardware. Section III introduces the HLS-based
exploration of PQC implementations on a hardware platform.
A novel BRLWE implementation, as well as the corresponding
algorithm, are proposed in Section IV. Finally, the conclusions
are given in Section V.

II. CHALLENGES AND REWARDS OF POST-QUANTUM
CRYPTOGRAPHY REVOLUTION

Implementing PQC algorithms in hardware involves a
unique set of challenges. Some of these challenges are specific
to the current state of standardization, in which a large
number of candidates still remain, and the primary goal of
the implementation is a fair evaluation of submissions to the
NIST standardization process. Other challenges will remain in
place even after the first PQC standards are published.

At this point, one of the biggest challenges seems to be the
mathematical complexity of the specifications, which are often
written by cryptographers, concerned primarily with demon-
strating the security of their schemes, rather than the ease of
their implementation. Understanding these specifications often
requires a solid background in number theory, abstract algebra,
coding theory, and other related disciplines. Hardware imple-
menters, with a classical background in computer engineering,
are often ill-equipped with understanding these specifications,
which are frequently riddled with complex formulas and high-
level mathematical operations that need to be “deciphered” by
reading and understanding the corresponding C source code.
Clearly, a reference implementation in C, although helpful and
potentially suitable as an input to high-level synthesis (HLS)
tools, may also hide a lot of potential optimizations, possible
only in hardware, and accomplished by performing a given
high-level operation using a different low-level algorithm.

At the current stage of the standardization process, another
major challenge is the fact that the remaining candidates be-
long to five different families: lattice-based, code-based, multi-
variate, symmetric-based, and isogeny-based [3]. Each of these
families has several subfamilies. For example, lattice-based
candidates are divided into schemes with structured (a.k.a.
random) and unstructured (a.k.a. ideal) lattices. Similarly,
code-based schemes have been classified by NIST into three
subfamilies: Algebraic, Short Hamming (a.k.a Quasi-Cyclic),
and Low Rank [3]. Each family or even subfamily requires
a different mathematical background, involves a different set
of basic operations, and poses its own set of optimization
challenges.

In general, basic operations of PQC schemes are very
different from those used by traditional public-key schemes,

such as RSA or ECC. In particular, the operations on large
integers (such as modular multiplication modulo a large prime
or a product of two large primes), determining the complexity
of the majority of current public-key cryptography standards,
remain relevant in only one out of five major PQC families,
isogeny-based cryptography [4]. Some of the new operations,
found in various PQC schemes, offer major advantages, such
as higher potential for parallelization, ability to use opti-
mization methods developed as part of different branches of
science and engineering (such as Fast Fourier Transform [3],
typically associated with digital signal and image processing),
or suitability for very compact implementations. Others pose
new challenges, such as sequential nature, large memory
requirements, or variable execution time.

Some of the underlying operations might have never been
implemented in hardware before. For example, codes used
in code-based cryptography are typically different from those
commonly used to achieve the error-free communication [3].
As a result, there may have never been a strong incentive
to implement the corresponding coding and decoding algo-
rithms in hardware. The in-depth knowledge of coding theory
required for optimized implementations of these algorithms
has been for years beyond the scope of traditional crypto-
graphic engineering, computer arithmetic, or even computer
engineering. Additionally, in other branches of science and
engineering, there is no tradition of making the code of
best implementations available as open-source, which has
been a major factor driving improvements in cryptographic
engineering (see, e.g., [5] and [6]). The number of publications
on hardware implementations of candidates for PQC standards
is still relatively small, and the reported results very difficult
to compare due to divergent assumptions and optimization
targets. Consequently, little is known about an optimal way
of implementing these schemes in hardware, targeting various
optimization criteria, such as minimum area, power, and
energy per bit; maximum speed; and minimum product of
latency times area.

An additional challenge is that a significant percentage of
candidates submitted to Round 1 of the NIST standardization
process has been partially broken. These breakthroughs dis-
couraged any early attempts at hardware and optimized soft-
ware implementations. The common perception was that such
implementations were premature and involved considerable
risk. The worst-case scenario involved a major implementation
and optimization effort, followed by an inability to publish
results because, in the meantime, the target of the investigation
was shown vulnerable to powerful attacks, and hence deemed
unsuitable for future standardization.

Due to the mathematical and algorithmic complexity of the
PQC algorithms, and the limited amount of previous work,
the workload for even a single algorithm, implemented using
the traditional RTL approach, can easily reach several man-
months. Close collaboration with the algorithm designers is
highly recommended and often indispensable.

The HLS approach, attempted already during the previous
cryptographic competition, the CAESAR contest [6], [7],
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appears to be very appealing (especially in light of a very large
number of candidates and the availability of reference and op-
timized implementations in C). However, using this approach
offers its own set of challenges, especially when used for
ranking candidates competing to become future national and
international standards. These challenges include a potential
for unfair comparisons, due to the lack of any clear indication
when the optimization of the HLS-ready C code should end,
and the limited experience of both hardware designers and
software programmers with the HLS methodology, especially
when applied to algorithms from the domains other than
digital signal and image processing. As a result, different
approaches to this problem emerged, as described in [8]–
[11]. In order to address concerns regarding the fairness of
the comparison, a parallel RTL implementation may still be
required to confirm any HLS-based performance and resource
utilization estimates [7], [9], [10].

Another major challenge is the storage of large public keys,
private keys, and internal state, inside of a hardware module,
which may prohibit truly lightweight implementations and
effect the key agility of all hardware implementations. For
example, one of the primary candidates for adoption as an
early PQC standard, Classic McEliece [3], has public-key
sizes exceeding a quarter of a megabyte, half-a-megabyte, and
one megabyte, for its three major parameter sets, with the
security levels equivalent to various variants of AES. These
numbers need to be compared with the public-key sizes in the
range of 256-512 bytes (2048-4096 bits) for RSA, and 32-64
bytes (256-512 bits) for ECC. NIST Round 2 PQC candidates
belonging to the subfamily based on unstructured lattices have
the second largest set of key sizes, in the range of 4096-
8192 bytes. At the same time, it should be noted that at least
one family, isogeny-based cryptography, has public key sizes
smaller than or equal to those used in RSA. Large public keys
may prevent low-area, low-memory implementations suitable
for the Internet of Things. They may also prevent caching a
large number of keys, thus adding the key loading time to the
overall time required for encryption.

Decryption failures, possible in a significant subset of PQC
schemes, may force repeating time-consuming computations,
and thus increase both average and worst-case decryption
times. Another difficulty is the requirement for random num-
bers, used as inputs for encryption, signature generation,
and key encapsulation with the specific (e.g., the uniform
or Gaussian) distribution. The use of random samplers may
require access to a True Random Number Generator, as
well as conversions between random values with different
distributions. This kind of circuits are rarely used in other
digital system applications and may need to be developed from
scratch. These circuits are also difficult to validate and may
become the source of considerable side-channel leakage.

Not much is known, to date, about the resistance of PQC
schemes against side-channel attacks. Potential threats are
based on timing, power or electromagnetic analysis, and
cache manipulation and leakage. For high-speed hardware and
hardware/software implementations, used as accelerators for

high-end servers, protecting against timing attacks might be
sufficient, as no physical access to the accelerator by a po-
tential attacker is expected. For lightweight implementations,
targeting constrained environments and mobile devices, an
attacker is assumed to have easy physical access to the device
during its regular operation. Thus, additional protection against
power and electromagnetic attacks is expected. Any embedded
software implementation, especially if targeting platforms on
which multiple users share common resources, may require
protection against cache leakage and manipulation attacks.

Unlike it was the case for secret-key algorithms, the ma-
jority of countermeasures against side-channel attacks are
algorithm-specific, and yet unexplored for the majority of PQC
schemes. Their development and experimental validation is
likely to require a very considerable and prolonged effort,
including substantial modifications and extensions of experi-
mental frameworks [12]. Even constant-time implementations,
necessary to protect both high-speed and lightweight imple-
mentations against powerful timing attacks, are non-trivial to
develop for many PQC algorithms [13], [14].

Equally important is protection against fault attacks, in
which attackers induce faults on a particular unit of a hardware
implementation or a specific phase of computations. The more
control the attacker has over the exact nature, location (in time
and space), and outcome of a fault, the harder it is to protect
against these attacks.

Similarly, little is known about the optimal ways of par-
titioning public-key and private-key operations into software
and hardware. Research in this area has just started [9],
[10], [14]–[16]. The total speed-up obtained by offloading
an operation to hardware depends on two major factors: the
percentage of the execution time taken in software by the
operation offloaded to hardware, and the speed-up for the
offloaded operation itself. In order to maximize the first factor,
the priority needs to be given to operations that take the
largest percentage of the execution time. These operations may
involve a single function call, several adjacent function calls,
or a sequence of consecutive instructions. It is preferred that
a given operation is executed only once, or only a few times,
as each transfer of control and data between software and
hardware involves a certain fixed timing overhead, independent
of the size of input and output to the accelerator. In order to
maximize the second factor, the priority needs to be given
to operations that have a high potential for parallelization
in hardware, and a small total size of inputs and outputs
(which will need to be transferred to and from the hardware
accelerator, respectively).

Most of the data required to make informed decisions
regarding software/hardware partitioning can be obtained by
profiling the purely-software implementation, possibly ex-
tended with some small modifications required to gather all
relevant data. However, determining the potential for paral-
lelization requires some knowledge of hardware or at least
basic concepts of concurrent computing.

At the stage of evaluating candidates for future standards,
in order to assure the fairness of the comparison, it is
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instrumental to offload to hardware all operations common
to or similar across the implemented algorithms, and all
operations that contributed significantly to the total execution
time. Nevertheless, it should be understood that this heuristic
procedure may need to be repeated several times because,
after each round of offloading to hardware, different software
operations may emerge as taking the majority of the total
execution time. This process can stop when the development
effort required for offloading the next most-critical operation to
hardware is disproportionately high compared to the projected
speed-up.

In order to simplify the deployment of the newly developed
algorithms in real-life applications, such as hardware accel-
erators for TLS, IPSec, and SSH, the implemented modules
will need to be plug-and-play replacements for existing public-
key cryptography modules, based on classical schemes. To
make matters even more challenging, in the transition period
(likely to last at least several years) hybrid systems, based
on both types of public-key algorithms (classical and post-
quantum) are likely to be used simultaneously (in the parallel
or cascade fashion). Such hybrid systems will protect against
both the progress in quantum computing (by employing a
PQC scheme), as well as potential vulnerability of emerging
new NIST PQC standards to novel and hard-to-predict attacks
using conventional codebreaking machines (by employing an
existing and time-tested NIST standard, such as ECC). An
additional challenge is that the hybrid modes have not been
clearly defined yet and are beyond the scope of the current
NIST standardization effort [4].

Other challenges, present at the time of evaluating candi-
dates for future standards, and common with previous cryp-
tographic competitions, include no clear performance target
(caused by a large variety of future applications and possible
implementations platforms), the fact that the existing field-
programmable gate array (FPGA) and application-specific
integrated circuits (ASIC) tools are not designed to operate
under such assumptions (and instead attempt to always reach
a predefined target, rather than the absolute maximum) [17],
the difficulty of describing resource utilization in FPGAs
using a single metric (due to the use of diverse resources,
such as configurable logic blocks, DSP units, memory blocks,
hardwired embedded microprocessors, etc.), and differences
among the skills and time commitment of hardware designers
responsible for implementing particular algorithms.

The first step in addressing some of the aforementioned
challenges was the development of the PQC Hardware
API [18]. This API includes the minimum compliance criteria,
interface, communication protocol, and timing characteristics,
aimed at the fair evaluation of all developed implementations.
Two approaches to overcome the long development time
have emerged. The first is software/hardware codesign using
either hard-core processors, such as ARM Cortex-A53 present
in Zynq UltraScale+ MPSoC [9], [10], [16], or soft-core
processors, such as RISC-V, embedded inside of traditional
FPGAs, such as Xilinx Artix-7 [14], [15]. The second is
the use of HLS [8], [9]. The results of the corresponding

Table I: A Summary of PQC Algorithms Selected for NIST
Round 2

PQC Signature Encryption/KEM Total
Lattice 3 9 12
Code 0 7 7

Multivariate 4 0 4
Symmetric 2 0 2

Isogeny 0 1 1
Total 9 17 26

RTL and HLS implementations have been compared for the
first time in [9], [10]. Multiple implementations of SCA-
protected implementations of lattice-based PQC schemes have
been reported in [12], [19]–[23]. The next step might be the
creation of the hardware library of basic building blocks of
major PQC schemes competing in Round 2 of the NIST PQC
Standardization Process.

As a result, NIST and other standardization organizations,
as well as cryptographers from all over the world involved in
developing and/or evaluating PQC submissions could greatly
benefit from the involvement of the VTS community. They
count on this community’s contributions to come up with
the most efficient and secure hardware architectures for a
multitude of PQC candidates, as well as less time-consuming,
but accurate and fair, implementation and benchmarking ap-
proaches.

The next 5–10 years are very likely to bring the biggest
revolution in cryptography since the invention of public-
key cryptography in mid-1970s. The majority of software
and hardware implementations of public-key cryptography
will need to be first enhanced and then gradually replaced
by implementations of their PQC counterparts. By getting
involved in implementation of novel PQC schemes, hardware
designers have a unique opportunity to influence the choice
of future cryptographic standards, which are likely to be
developed within the next decade and remain in use for the
significant portion (if not the rest) of the 21st century. An
early involvement offers multiple advantages in terms of new
unexplored research directions, visibility in the cryptographic
community, as well as multiple entrepreneurial opportunities
to make a difference in the emerging post-quantum world.

III. HIGH LEVEL SYNTHESIS-BASED EXPLORATION OF
PQC IMPLEMENTATIONS

As discussed in Section I, NIST has started the PQC stan-
dardization process and has selected 26 candidates for the sec-
ond round. Out of these 26 candidates, 9 are signature schemes
and 17 are encryption/key encapsulation mechanism (KEM)
schemes. Table I gives an overview of all the 26 algorithms.
Both KEMs and signature schemes can be further classified
into lattice-based, code-based, multivariate, symmetric-based
and isogeny-based [4].

All submissions to the NIST standardization process have
the corresponding reference implementation in C/C++. In
some cases, optimized implementations in the same languages
are provided as well. In this section, we will discuss techniques
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to design dedicated hardware accelerators from these software
implementations using HLS. There are several advantages
for designing dedicated accelerators. For example, if these
accelerators are being used in servers, they can be designed to
optimize latency. On the other hand, if these accelerators are
designed for low power Internet of Things (IoT) devices, they
can be designed to optimize area and power. First, we will
explain and motivate the reasons for using HLS for designing
these accelerators.

A. Introduction to High-Level Synthesis

Over the past decade, there has been a wide perfor-
mance gap between Moore’s Law and current technology
development. As a result, researchers have started devel-
oping dedicated customized hardware accelerator to bridge
this gap. Hardware accelerators are being used for deep
learning, cryptography, and image processing, among many
other applications. HLS has found its way to be a popular
method for designing these accelerators. HLS starts with a
high-level C/C++ implementation and translates that to a
RTL (Verilog/VHDL) backend hardware implementation. HLS
incorporates an advantage of being able to perform thorough
design space exploration. The same C/C++ code can be used to
generate multiple RTLs, each with a different area and latency.
Another advantage of using HLS is easy verification. The same
high-level C/C++ testbench can be used for verifying a RTL,
using an unique feature known as C-RTL co-verification.

These advantages have led a lot of premier semiconductor
companies to adopt HLS for designing accelerators. The
prominent commercial tools include Xilinx Vivado HLS and
Mentor Catapault. HLS uses the classical Finite State machine
with Data (FSMD) unit to design hardware components, which
are arranged hierarchically, according to the various function
calls in the C design specification. HLS design flow consists
of the following steps:

• Compiler Phase: In this phase, the HLS compiler reads
in the C description of the algorithm and applies various
compiler-level transformations.

• HLS Phase: This phase is the most critical phase of
HLS. The FSM of the design is obtained, and this is
used for scheduling, i.e., deciding the timing of different
tasks to be performed in the algorithm. The next step in
this phase is binding, where various hardware resources
are allocated to the design units. For example, C-based
arrays can be assigned to memory units. In the final stage,
the controller and datapath are generated. The controller
is obtained from the FSM.

• Backend Phase: In this phase, the controller and datapath
are synthesized to generate the RTL and testbenches. C-
RTL co-simulation verifies the design functionality.

The overall flow of HLS-based design is shown in Figure 1.

B. HLS-based optimizations

As discussed before, HLS provides various optimizations
for detailed design space exploration. In this section, we

Compiler 
Phase

HLS 
Phase

Backend 
Phase

Input:
C Program

Output:
RTL

Figure 1: HLS design flow.

will discuss two such optimizations, loop unrolling and loop
pipelining.

Round 1

Round 1
Round 2
Round 3

(a) Rolled Loop

(b) Unrolled Loop

Round 2 Round 3

Figure 2: Loop Unrolling.

1) Loop Unrolling: The latency of a design depends on
the cumulative latency of each of the internal components.
For example, consider a loop consisting of three rounds, as
shown in Figure 2(a). If the latency of each round is 2 cycles,
the total latency of the entire operation is 6 cycles. However, if
there are no inter-dependencies, HLS provides an optimization,
known as loop unrolling, as shown in Figure 2(b). In this case,
each round is executed in parallel, and hence, the total latency
depends on the maximum latency of one round, which is 2
cycles. Therefore, we obtain a three times speedup. Hence,
this form of implementation is preferred when latency needs
to be optimized. On the other hand, in a rolled loop, the same
functional unit can be re-used. For example, in Figure 2(a),
only one functional unit is sufficient for all the three rounds.
On the other hand, when a loop is unrolled, each round
requires its own functional unit; thus, resulting in an increased
area overhead.

2) Loop Pipelining: Let us consider a loop with multiple
modules, as shown in Figure 3(a)∗. In the normal scenario,
when there are no pipeline stages, these modules are executed
sequentially, and the overall latency is 8 clock cycles. Loop
pipelining entails re-purposing a module when its role in one
loop is finished. For example, in Figure 3(b), when module
2 starts the first loop, the hardware unit reserving module 1
is empty. As a result, module 1 of loop 2 can proceed with
its operation. Thus, the overall latency is reduced from 8 to 6
cycles. It should be noted that unlike for the loop unrolling,
individual loop latency does not reduce; it is still 4 cycles.

∗In this case, we have two modules.
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Module 1

(a) Non-Pipelined Loop

Module 2 Module 1 Module 2

Module 1

(b) Pipelined Loop

Module 2
Module 1 Module 2

Figure 3: Loop Pipeline.

C. Challenges for HLS-based PQC implementations

Although HLS provides rapid translation of high-level
(C/C++)-based designs to RTL, there are certain restrictions.
All C/C++ constructs are not translatable by HLS, and hence,
these need to be taken care of before the C code is used for
synthesis. In this section, we will describe some of them:

• Dynamic arrays: HLS cannot synthesize dynamic arrays.
Hence, it is important to rewrite them as static array
variables. For example, let us consider a function with
a dynamically sized array as an input parameter. This
function can be instantiated multiple times, with the size
of the array being dynamically allocated in each instant.
HLS will not be able to translate this array into RTL code.
It is necessary to rewrite the function in order to make
this array have a fixed dimension, before using HLS.

• System Function: System functions like “memcpy” can-
not be translated using HLS. It is necessary to either
rewrite those functions or use invariants, such as loops,
to represent them.

• Pointers: HLS can not translate pointers to RTL. There-
fore, pointers must be converted to static variables before
applying HLS.

• Recursion: HLS can not translate recursion to RTL.
Any PQC algorithm with a recursive code needs to be
rewritten before applying HLS.

D. Recent Advances

Application of HLS for designing post-quantum cryptogra-
phy accelerators was first proposed by [8], [24]. The authors
used 13 algorithms in their study, of which, 7 were KEMs
and 6 signature schemes. The algorithms were implemented
on a Xilinx Virtex-7 FPGA. The authors also applied the two
optimization techniques mentioned in Section III-B, for both
encapsulation and decapsulation algorithms. It was shown that
the maximum latency reduction achieved was 45x, while the
maximum increase in area overhead was 12x. The authors
further improved on their approach to develop power, area,
speed, and security (PASS) tradeoffs using a C to ASIC
design flow [25]. The authors developed ASIC designs for two
PQC algorithms – qTESLA and Crystals Dilithium. It was

demonstrated that for both algorithms, higher security level
entails more power, area, and timing overhead. Furthermore,
memory requirements of both algorithms amounted to almost
50% of the total ASIC area. The authors have published
a thorough description of these implementations in [26]. A
video description of HLS-based implementation of the PQC
algorithm CRYSTALS-Dilithium can be found in [27].

In [11], the authors used HLS to perform a design space
exploration for Number Theoretic Transform (NTT) - the core
arithmetic function for lattice-based cryptography. The authors
compared their implementation with the hand-coded RTL
design and concluded that the HLS-generated implementations
have significantly lower performance. However, HLS provides
an important advantage of fast design space exploration, which
is inconvenient using hand-written RTL.

Although, over the past year, there have not been a plethora
of work on applying HLS to designing PQC accelerators,
we have seen several important articles, as described in this
section. In the future, we expect several more papers on the
same topic, especially on the application of HLS-based design
space exploration to the design of PQC accelerators.

IV. NOVEL IMPLEMENTATION OF BINARY RING-LWE
PQC (A NEW UNDEREXPLORED SCHEME)

A. Overall Introduction

Ring-LWE lattice-based cryptography is one of the most
promising candidates for PQC standardization [4], [28] due
to its relatively low computational complexity and ease of
implementation (as demonstrated by many studies carried
out on hardware platforms [21], [29]–[33]). Recently, a new
variant of Ring-LWE, namely the BRLWE scheme, has been
introduced [32]. Unlike the Ring-LWE, where the errors are
based on Gaussian distribution, the BRLWE scheme uses
binary errors to achieve much smaller computational com-
plexity [32]. The security analysis of the LWE scheme based
on binary errors has been recently given in [34]. Since the
first introduction in [32], where the cryptosystem was realized
only on the software platform, two consecutive reports about
efficient implementation of BRLWE on the hardware platforms
have been released very recently [21], [33], which represent
the major advance in the field.

The BRLWE based PQC has high potential to be used
in the Internet-of-Things (IoT) servers and edge computing
devices, and hence different processing styles of the BRLWE-
based cryptoprocessors need to be thoroughly explored. In this
section, we propose a novel implementation strategy, based on
serial processing, aimed at efficient hardware implementation
of BRLWE. Our strategy includes the following steps:

• A new algorithm for the polynomial multiplication over
hybrid fields – the main operation of the BRLWE scheme
– has been proposed through rigorous mathematical
derivation. This algorithm is based on the concept of
serial processing.

• A high-performance & low-complexity BRLWE architec-
ture for the decryption operation has been developed.
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• A series of thorough complexity analyses and compar-
isons have been carried out to demonstrate the efficiency
of the proposed design over designs reported earlier in
the literature.

B. Information of the BRLWE Scheme

Binary Ring-Learning-with-Errors (BRLWE) Scheme. The
BRLWE scheme uses binary errors to achieve low-complexity
implementation and this scheme overall consists of three
main steps, namely the key generation, encryption, and
decryption, as depicted in Fig. 4. For simplicity of discussion,
we have the following definitions of notations: (i) both Alice
and Bob know the public parameter a (polynomial with integer
coefficients); (ii) r1 and r2 are two binary polynomials, where
r2 is the secret key; (iii) message, denoted by m, is a n-bit
binary polynomial to generate the ciphertext (after encryption);
(iv) f(x) = xn + 1 is the ring polynomial; and (v) n denotes
the BRLWE security level (also the size) and q is used in the
modulo operation determined by the ring. The details of each
step are as follows:

• Key generation. The main operation of the key gener-
ation is p = r1 − a · r2. After this operation, p will be
sent to Bob as the public key. In this step, the secret and
public keys have n and nlog2q bits, respectively.

• Encryption. As shown in Fig. 4, message m (represented
by m = m0 +m1x+ · · ·+mn−1x

n−1) is encoded into˜︁m according to (1). Then, three binary errors e1, e2, and
e3 are employed to deliver the ciphertext c1 and c2 (the
ciphertext has 2nlog2q bits) [21], [32].

(m0, . . . ,mn−1) ⇒
n−1∑︂
i=0

mi(
q

2
)xi. (1)

• Decryption. Alice uses the secret key r2 to decrypt the
received ciphertext ˜︁m into original message m. Note that
a threshold decoder function is used here to produce the
final results. When the coefficient of the final polynomial
is within the range of (q/4, 3q/4), the output is ‘1’ (oth-
erwise the output is ‘0’) [21], [32].

Inverted BRLWE. The very recent report of [33] has pro-
posed an inverted BRLWE scheme, i.e., the coefficients of the
polynomials can be expressed in the two’s complement form if
these coefficients are in the inverted range of (−⌊ q

2⌋, ⌊
q
2⌋−1)

[33] as

S ≥ q/2 : S − q = S + (2k − q) = S + (2k − 2k) = S,

S < −q/2 : S + q = S + 2k = 2k − S = −S = S,
(2)

where in this case q = 2k and S is the number denoted by
the two’s complement form (i.e., S = 2k−S) [33]. Hence, all
the modular additions/subtractions can be computed without
any extra reduction cost. Of course, the original function of
(1) needs to be adjusted as

∑︁n−1
i=0 mi(− q

2 )x
i, while the other

parameter settings follow the same as those in the original
scheme. Note that the proposed structure is also based on this
scheme.

Alice

r2: secret key p: public key

p

c1,c2:
ciphertext ˜

 ˜
 

  r1,r2: binary polynomial;
 p=r1-ar2;

  e1,e2,e3: binary errors; 
m=encode(m);

 c1=ae1+e2; c2=pe1+e3+m;

  m=decode(c1r2+c2);

a: public parameter
(known by both parties)

key generation

encryption

decryption

Bob

Figure 4: Three steps of the BRLWE scheme.

C. Proposed BRLWE Algorithm

As seen from Fig. 4, the main operations of each step can
be summarized as

key generation :
⨂︂

→
⨁︂

→ p

encryption :
⨂︂

→
⨁︂

→ c1⨂︂
→

⨁︂
→

⨁︂
→ c2

decryption :
⨂︂

→
⨁︂

→ m,

(3)

where
⨂︁

and
⨁︁

denote the corresponding polynomial multi-
plication and addition, respectively (the subtraction in the key
generation step is executed by the addition under the two’s
complement representation).

From (3), it is clear the main operation involved within this
scheme is the polynomial multiplication over the ring Zq/f(x)
(f(x) = xn + 1), where one polynomial is represented in the
integer field and the other is expressed in the binary field.
The polynomial addition and subtraction in the ring are very
straightforward but the multiplication involves the modulo
operation over the ring polynomial f(x) = xn + 1 [32] and
hence is more complicated.

Let us firstly consider the major operation for the three steps
of the BRLWE scheme, i.e., the polynomial multiplication
followed by the addition (there is the slight adjustment on
the encryption step due to one extra addition). For simplicity
of presentation, one can actually use the operation of the
decryption step as a basic module, which can be easily
extended to other steps.
Definition 1. Define that the main operation in the decryption
step is H = BD mod f(x) + G, where H =

∑︁n−1
i=0 hix

i,
B =

∑︁n−1
i=0 bix

i, D =
∑︁n−1

i=0 dix
i, and G =

∑︁n−1
i=0 gix

i,
for hi, di, and gi are integers and bi ∈ {0, 1}. Note that (in
this case) B, D, and G correspond to r2, c1, and c2 of the
decryption step of Fig. 4, respectively.

Define again

T = BD mod f(x), (4)
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where f(x) = xn + 1 and T =
∑︁n−1

i=0 tix
i (ti is integer). We

can then have

T =

n−1∑︂
i=0

bix
iD mod f(x) =

n−1∑︂
i=0

biD
(i), (5)

where D(i) = xiD mod f(x) and D(0) = D. Define again
D(i) =

∑︁n−1
j=0 d

(i)
j xj , we can have

D(i+1) =xi+1D mod f(x) = D(i)x

=(d
(i)
0 + d

(i)
1 x+ d

(i)
2 x2 + · · ·+ d

(i)
n−1x

n−1)x

=d
(i)
0 x+ d

(i)
1 x2 + d

(i)
2 x3 + · · ·+ d

(i)
n−1x

n.

(6)

Considering f(x) = xn + 1 (xn + 1 ≡ 0 ⇒ xn ≡ −1),
which can be substituted into (8) to have (D is an integer
polynomial)

D(i+1) = −d
(i)
n−1 + d

(i)
0 x+ d

(i)
1 x2 + · · ·+ d

(i)
n−2x

n−1. (7)

Meanwhile, we also have D(i+1) = d
(i+1)
0 + d

(i+1)
1 x +

d
(i+1)
2 x2 + · · · + d

(i+1)
n−1 xn−1, which can be used to compare

with (7) to have

d
(i+1)
0 = −d

(i)
n−1, d

(i+1)
1 = d

(i)
0 , . . . , d

(i+1)
n−1 = d

(i)
n−2, (8)

which can be used to transform (5) into the form of

t0 =(d0,−dn−1,−dn−2, . . . ,−d1)⊙ (b0, b1, . . . , bn−1),

t1 =(d1, d0,−dn−1, . . . ,−d2)⊙ (b0, b1, . . . , bn−1),

· · · · · · · · ·
tn−1 =(dn−1, dn−2, dn−3, . . . , d0)⊙ (b0, b1, . . . , bn−1),

(9)

where (·) ⊙ (·) denotes the point-to-point mul-
tiplication. For simplicity of discussion, we can
define again D′

0 = (d0,−dn−1,−dn−2, . . . ,−d1),
D′

1 = (d1, d0,−dn−1, . . . ,−d2), . . ., D′
n−1 =

(dn−1, dn−2, dn−3, . . . , d0), and B′ = (b0, b1, . . . , bn−1).
One can note that B′

0 can be circularly shifted (with every
shifted value, i.e., the very right value, added with a negative
sign) to obtain other B′

l (1 ≤ l ≤ n− 1).
For serial-processing, i.e., ti (0 ≤ i ≤ n − 1) is produced

sequentially, one can rotate the coefficients of operand D′
0 to

be processed with another fixed operand B′ for point-wise
multiplication. The whole computation process, including the
final addition with G, is thus proposed in Algorithm 1.

Algorithm 1 Proposed serial-processing based algorithm for
the BRLWE scheme (decryption step)

Inputs: B, D, and G are elements over hybrid fields.
Outputs: m = decode(H = BD mod f(x) +G).
1. Initialization step
1.1. rearrange the order of the coefficients of D to get D′

0.
2. Main computation step
2.1. for i = 0 to n− 1.
2.2. get ti = D′

i⊙B (for the following cycles, one can obtain

b0
1

log2qb1 ... bn-1

adder ...
...

...

ti
gi

decoder

mem final

adder tree

adder

adder

adder

adder

log2q log2q log2q

log2q

1

d0 dn-1 d1...

shift-register
(a)

(b)

1
log2q

1
log2q

D0’
D1’

Dn-1’

...

Figure 5: Proposed serial processing structure for the de-
cryption phase of the BRLWE scheme, where the black box
denotes the registers. (a) The proposed structure (mem denotes
the memory). (b) The possible structure of the input module
(a shift-register).

D′
i+1 from D′

i).
2.3. obtain hi = ti + gi.
2.4. perform the final decoding operation on hi according to
the decryption step of Fig. 4.
2.5. end for.
3. Final step
3.1. deliver final n-bit of output m.

where one output bit is delivered at every cycle and the whole
outputs are available after n cycles.

D. The Proposed Structure

The proposed Algorithm 1 can be mapped into the desired
serial processing structure as shown in Fig. 5, where the
structure consists of three main modules, namely the input
module, the main computation module (AND gates and an
adder tree), and the final adder and decode module. The input
module, possibly can be realized by a shift-register, consists
of n pairs of registers and MUXes (both log2q-bit), where the
MUXes function to initiate the values stored in the registers
according to D′

0. Then, in the following cycles, each of the
bit-register (log2q-bit) circularly shifts (with the help from an
inverter such that the far right one is inverted to be the first

8



Table II: Comparison of Main Complexities for Various BRLWE Schemes

design AND XOR adder (log2q-bit) register (1-bit) MUX (log2q-bit) MUX (1-bit) critical-path latency

[21]1 nlog2q n n ≃ 3log2qn ≃ 2n - ≥ TMem + TMUX ≃ n+ 3
[33]2 nlog2q n n nlog2q n+ 1 − ≥ TA + TADD + TMUX n+ 1
Fig. 5 nlog2q 1 n log2q(2n− 1) n − TX + TADD n+ log2n+ 1

The complexities of all the structures are estimated at the decryption step. 2: TA is the delay time of an AND gate.
1: TMem, denotes the memory access time according to the structure of [21].
The actual implementation critical-path (of all the structures) is also affected by the specific hardware platform deployed, which differs from each other.

left one) the corresponding values to the neighboring one to
form the following D′

i (1 ≤ i ≤ n − 1), as shown in Fig.
5(b). Meanwhile, the output of each register is connected with
the AND gate cells to be ANDed with the related value of
B′, where each AND cell has log2q AND gates in parallel
connected with each bit of corresponding bi (0 ≤ i ≤ n− 1).
The outputs of n AND cells are then added together through
an adder tree to deliver the ti (0 ≤ i ≤ n− 1), which is then
added with the corresponding gi delivered from the memory.
Note that the registers are inserted into the adder tree to realize
the pipelining function. The produced output hi is then sent to
the final decoder function (an XOR gate connected the most
two significant two bits of hi according to the decryption
function described in Section IV-B and Fig. 4) to produce
the final output serially. The black box in the structure of
Fig. 5(a) denotes the registers, which sets the critical-path as
TX + TADD (TX and TADD are the delay time of an XOR
gate and an adder of log2q-bit, respectively).

E. Complexity and Comparison

Complexity. To list the theoretical complexity of the BRLWE
scheme, we have used: (i) security-level (or size) of n; (ii) bit-
width of the integer coefficients (polynomials) as q = log2q.
The area-time complexities of Fig. 5 are listed in Table II
along with those of the existing designs of [21], [33].

As shown in Table II, Fig. 5 has smaller critical-path
than the existing ones of [21], [33] yet with slightly larger
number of registers. Overall, to better estimate the efficiency
of proposed design along with the existing ones of [21], [33],
we have implemented them on the platform (as follows).
Comparison. We have then coded the proposed designs with
VHDL and synthesized them using Intel Quartus Prime 17.0
on the Stratix-V 5SGXMA9N1F45C2 device. Following [21],
[33], we have chosen n = 256, n = 512, q = 256, and
log2q = 8 (according the recent analysis of [32], [35], n = 512
and n = 256 can provide equivalent 190/140 and 84/73 bits
of class and quantum securities, respectively).

For a fair comparison, we have also re-code the existing
one of [33] and synthesized it on the same FPGA platform
(the design of [33] has shown its efficiency over [21], here we
just compare with [33]). We have used the same type of adder
as that in the proposed designs, i.e., 8-bit ripple carry adder,
as well as other required resources. All the input values are
delivered to the BRLWE cryptoprocessor (both the existing
and proposed designs) through the input modules while the
output follows the specific design style of the structure. The

Table III: Comparison of the Complexities for Both the
Proposed and Existing BRLWE Structures (Decryption Step)

design ALMs Fmax∗ latency delay! ADP1

n = 256

[33] 6,691 148.28 257 1,733 11,596
Fig. 5 6,159 253.68 265 1,045 6,436

n = 512

[33] 13,343 154.18 513 3,327 44,392
Fig. 5 12,418 194.56 522 2,683 33,317

∗: MHz (unit). !: ns (unit).
1: ADP=#ALM×delay (×103).

area-time complexities, namely the number of adaptive logic
module (ALM), maximum frequency (MHz), latency cycles,
delay (critical-path×latency cycles), and area-delay product
(ADP), are listed in Table III.

The proposed design outperforms the existing one, e.g., the
proposed Fig. 5 has at least 44.5% and 24.9% less ADP than
the one of [33] for n = 256 and n = 512, respectively.
Benefited from the proper arrangement of registers in the
adder tree for regular pipelining (very efficient for mapping
in the FPGA platform), the proposed design also achieves
less area occupation (while the existing designs do not enjoy
this advantage). Besides that, the proposed design also has
smaller critical-path than the existing one (faster maximum
frequency). These two unique features eventually lead to the
higher efficiency of the proposed design.

Though the primary focus of this section is to obtain
efficient implementation of the BRLWE scheme, the reports
of resisting attacks and equipping other countermeasures [36]
are still applicable to our work, which can also be our future
research direction.

V. CONCLUSIONS

This paper gives a high-level introduction to the recent
advances in hardware implementation of PQC, including
challenges, new implementation approaches, and optimization
techniques aimed at constrained environments. Specifically,
we have: (i) discussed the challenges and rewards of the
PQC revolution, with the special focus on hardware and
software/hardware implementations; (ii) presented highlights
of the comprehensive HLS-based methodology for the design-
space exploration, capable of matching the requirements of
a given application with the features of a specific hardware
architecture for PQC; (iii) introduced a new underexplored
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PQC scheme (binary Ring-Learning-with-Errors), as well as
its novel hardware implementation, targeting lightweight ap-
plications, such as IoT. The authors hope that the provided
introduction would encourage readers to further explore this
exciting area, and contribute to its growth through research,
education, standardization, and entrepreneurship.
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[15] W. Wang, B. Jungk, J. Wälde, S. Deng, N. Gupta, J. Szefer, and
R. Niederhagen, “XMSS and Embedded Systems - XMSS Hardware
Accelerators for RISC-V,” in Selected Areas in Cryptography – SAC
2019, ser. LNCS, vol. 11959. Waterloo, Ontario, Canada: Springer,
2019, pp. 523–550.

[16] V. B. Dang, F. Farahmand, M. Andrzejczak, and K. Gaj, “Implementing
and Benchmarking Three Lattice-based Post-Quantum Cryptography
Algorithms Using Software/Hardware Codesign,” in 2019 International
Conference on Field Programmable Technology, FPT 2019. Tianjin,
China: IEEE, Dec. 9-13, 2019, pp. 206–214.

[17] F. Farahmand, A. Ferozpuri, W. Diehl, and K. Gaj, “Minerva: Automated
Hardware Optimization Tool,” in 2017 International Conference on
Reconfigurable Computing and FPGAs - ReConFig 2017, Cancun,
Mexico, Dec. 4-6, 2017, Dec 2017, pp. 414–421.

[18] A. Ferozpuri, F. Farahmand, V. Dang, M. U. Sharif, J.-P. Kaps, ,
and K. Gaj. (2018, Mar.) Hardware API for Post-Quantum Public
Key Cryptosystems. [Online]. Available: https://cryptography.gmu.edu/
athena/index.php?id=PQC

[19] O. Reparaz, S. Sinha Roy, F. Vercauteren, I. Verbauwhede, F. Ver-
cauteren, and I. Verbauwhede, “A Masked Ring-LWE Implementation,”
in Cryptographic Hardware and Embedded Systems – CHES 2015, vol.
9293. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 683–
702.

[20] O. Reparaz, R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede,
“Additively Homomorphic Ring-LWE Masking,” in Post-Quantum Cryp-
tography, T. Takagi, Ed. Cham: Springer International Publishing, 2016,
pp. 233–244.

[21] A. Aysu, M. Orshansky, and M. Tiwari, “Binary Ring-LWE hardware
with power side-channel countermeasures,” in 2018 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.
1253–1258.
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