FAST APPROXIMATION OF NON-NEGATIVE SPARSE RECOVERY VIA DEEP LEARNING
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ABSTRACT

Non-negative sparse recovery refers to recovering non-
negative sparse source signals from linear observations. This
model arises naturally in many image processing applications
such as super-resolution and image inpainting. In this paper,
we propose two efficient neural networks for fast approxima-
tion of non-negative sparse recovery. We also derive upper
bounds on network sizes measured by the numbers of lay-
ers and neurons to achieve a specified approximation error.
Numerical experiments demonstrate the effectiveness and ro-
bustness of the proposed networks and show their potential
in solving more complicated signal recovery problems with
non-stationary transformation process and noisy observation.

Index Terms— Deep learning, algorithm approximation,
non-negative sparse recovery, compressive sensing

1. INTRODUCTION

1.1. Algorithm Approximation

Deep learning has found numerous applications [1, 2], a-
mong which one important field is algorithm approximation
[3]. The basic idea is to unfold an iterative algorithm and
transform the iteration process into a series of network lay-
ers. The network parameters are then trained with back-
propagation. For example, [3] and [4] solve a sparse recovery
problem without the non-negative constraint by approximat-
ing the Iterative Soft-Thresholding Algorithm (ISTA) [5] and
Alternating Direction Method of Multipliers (ADMM) algo-
rithm with neural networks, respectively. [6, 7] address the
non-negative matrix factorization problem through algorithm
approximation and [8] approximates the optimization algo-
rithm for the network training. [9] considers the non-negative
sparse recovery problem but their network contains a special
integrator component and the networks in this paper have a
unique skip connection design which can be seen as a varia-
tion of the skip connection in ResNet [10]. More importantly,
few of the algorithm approximation literatures quantify the
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relation between the system performance and the network
size as we do in this work.

1.2. Non-Negative Sparse Recovery

Throughout this paper, we consider the non-negative least
square problem for sparse recovery which occurs naturally in
many machine learning and image processing tasks [11, 12].

1
minimize =||Az — y||?
i 2|| yll3 (1.1)
subject to © € R%

where y = Ax* € R™ for some ground truth signal =* €
2, is the measurement vector, and A € R™*"(m < n) is
the sensing matrix. Since m < n, this problem is underdeter-
mined and ill-posed. There are an infinite number of solutions
2 such that f(£) = 1/2||A& — y||3 = f(z*). Fortunately,
in many scenarios, the ground truth signal is both sparse and
non-negative. More precisely, we assume * only contains at
most s positive entries and we call £* a s-sparse vector.

Proposition 1. [13, 14] If the matrix A € R™*" satisfies the
self-regularizing condition and (3 /72, s)-restricted eigenval-
ue condition, the convex optimization (1.1) has a unique s-
sparse solution with overwhelming probability.

A. Self-regularizing condition: there exists a constant T >
0 such that
T

Alh

max{a: Jh € R™,||h||2 < 1, such that tal} >
vm

(1.2)

B. (3/72, s)-restricted eigenvalue condition: given T from
(1.2) and sparsity s, the following inequality holds

AS
min _llAdfl> >0 (1.3)
JC{l,...;n},  SER"ZD, vml|ds]l2
[TI<s  [[85e |l <3/72(184]]1

where |J| measures the cardinality of J and 0 is the vector
0 with all but entries whose indices ¢ J set to zero.

When A satisfies the conditions in Proposition 1, solving
(1.1) equals to solving a non-negative sparse recovery prob-
lem and we assume A satisfies Proposition 1 throughout the
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paper. [13] shows that if the entries of A are sampled from
i.i.d sub-Gaussian distribution on R, >, Proposition 1 is sat-
isfied with overwhelming probability.

A classical approach to solve convex optimizations like
(1.1) with a simple constrained set is the projected gradient
descent (PGD) algorithm. Due to the convexity of the objec-
tive function and the uniqueness of the solution, starting from
an arbitrary initial point, e.g. o = 0, PGD is guaranteed
to converge to the ground truth solution. Given the sensing
matrix A and the observation y, PGD alternates between a
gradient descent step and a projection step

Zpy1 = ReLU(z), — (AT Az, — ATy))
= ReLU((I - AT A)z), + aATy)
:= ReLU(Wz;, + Sy)

(1.4)

where « is the step size and ReLU represents the projec-
tion onto the non-negative orthant defined as ReLU(x) =
argmingerz ||z — yll2 = max{0, z}.

PGD can be accelerated with improved convergence rate
to obtain the following accelerated projective gradient descent
(APGD) [15, 16]:

Ti1 = ReLU [y — aV f(yx)]

(1.5)
Yht1 = Tht1 + V(Thy1 — Tk)-

Substituting yx = x + Y(xr — ®p—1) and Vf(yy) =
ATAy* — ATy into x4 yields

Zp+1 = ReLU { [+ NI—a(l+7v)ATA]z;,
+ (ayATA — A1) @y + aATy} (1.6)
:= ReLLU (Wlmk, + Woxp_1 + Sy) .

When initialized at xg = 0, the PGD and APGD have block
diagrams shown in Fig. 1 (a) and 2 (a).

The rest of the paper is organized as follows. In Section
2, we propose two neural networks for non-negative sparse
recovery and derive bounds on the network sizes to achieve a
specified reconstruction error. Section 3 is devoted to numer-
ical experiments and the paper is concluded in Section 4.

2. DEEP LEARNING APPROXIMATION

In this section we propose two efficient neural networks for
non-negative sparse recovery inspired by the algorithmic
pipelines of PGD and APGD. In our design, only the ReLU
activation function is used. We refer to the networks inspired
by PGD and APGD algorithms as the learned projective gra-
dient descent (LPGD) network and the learned accelerated
projective gradient descent (LAPGD) network respectively.
Specifically, we unfold the PGD and APGD algorithms and
make their parameters, W, W1, Wy and S, trainable. The
block diagrams and network structures of LPGD and LAPGD

(a) The block diagram of the LPGD network.

(b) The network structure of the LPGD net-
work.

Fig. 1: The learned projective gradient descent (LPGD) net-
work.

networks are shown in Fig. 1 and 2. x, is the output of the
k-th ReLU layer and we call the network whose output is xj,
the k-depth network.

In sparse recovery, samples (y;, x;) from a specific dis-
tribution are fed to networks to learn the mapping from y; to
@; which is denoted as g(y;, W), where W designates all the
trainable parameters. Given N samples, the training process
tries to minimize the Euclidean distance between the predict-
ed and ground truth signals, Loss(W) = + Zi\il [lxr —
g(yi, W)||3. In addition, to better illustrate how the network
size affects its performance, we derive the relation between
the reconstruction error, 1||A-g(y, W)—y||3, and the LPGD
and LAPGD network sizes in terms of the the number of neu-
rons and layers in Theorem 2.1.

Theorem 2.1. Let F* be the optimal value of the problem
(1.1), then for any € > 0, there exits an LPGD (or LAPGD)
network, g(y, W), which outputs non-negative vectors and
has O(log¥ (%)) layers (including input, hidden and out-

put layers) and O(n - logg (%) + m) neurons, such that

1
SIA gy, W) —yll3 < F* +e @1

where 3 is the square of the largest singular value of A, 0 is
a quantity depending only on A and C' = ||y||3/2.

Proof. The problem (1.1) can be reformulated as an uncon-
strained optimization,

minimize F(x) = f(x) + g(x) (2.2)
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(a) The block diagram of the LAPGD network.

(b) The network structure of the LAPGD net-
work.

Fig. 2: The learned accelerated projective gradient descent
(LAPGD) network.

where f(x) = 1||Az — y||3 and g(x) is the indicator func-

tion of the nonnegative orthant. Apparently f has 3-Lipschitz

continuous gradient with 3 = ||A[|3 = omax(A)2
Furthermore, we argue that F'(x) satisfies the proximal-

Polyak-Lojasiewicz (PL) inequality [17]:
1 .
5Dy, 8) 2 0(F(x) — F)

for some 6 > 0, where

Dg(waﬁ)

— 29 (Vf(@).2 @) + 512~ al} + 9(2) - g(2)

Then [17, Theorem 5] ensures that the proximal gradient al-
gorithm with step size % applied to (2.2), which reduces to
the PGD applied to (1.1), has a linear convergence rate

k
Flay) - F* < <1 - Z) (Flwo)— F*). 23
Following the line of arguments in [17, Appendix F], one
obtains that § > 0 can be taken as the Hoffman con-
stant for a system of inequalities with a system matrix
(AT —AT I ]T, which can be further upper bounded
using the minimal singular values of certain submatrices of

[AT —AT ]
implies 6 < f3.
Therefore, for an arbitrary £ > 0, if we initialize g = 0

]T [18, Theorem 4.2]. The choice of  also

and set C' = ||y||3/2, we have
1 S 0\"
§||A$k*yH2*F < 1*5 C<e 24
which results in
€ 0 €
;> = (1—= ) =logss (=) . .
k_log(c)/log <1 5) log¥ <C) (2.5)

Therefore, according to the structure of the LPGD network in
Fig. 1, when W = I — ;ATA and S = A", the LPGD
network requires [k]+ 1 layers including the input and output
layers and n[k] + m neurons to minimize the reconstruction
error below ¢ if F* = 0. In addition, since the LAPGD net-
work degenerates to the LPGD network when Wy = 0, the
result applies to both LPGD and LAPGD networks. O

Note that the proposed networks and theorem are also ap-
plicable to (1.1) when A does not satisfy Proposition 1. But
in that case, (1.1) could have more than one solution and we
can no longer guarantee that & converges to the x*.

3. NUMERICAL EXPERIMENTS

3.1. Fast Approximation for Sparse Recovery

In the first experiment, we compare the non-negative sparse
recovery performance of the proposed networks with the PGD
and APGD algorithms. Specifically, we synthesize 20000 da-
ta pairs (z; € R?°,y; = Az; € R!Y) for training and an-
other 2000 data pairs for testing. The goal is to recover the
high-dimensional signal «; from observation y; with known
A € R'9%20_ For each ground truth vector, x;, we randomly
select its sparsity from the set {1, 2,3} and choose the loca-
tions of the non-zero entries uniformly at random. Then the
non-zero entries of a; are sampled from the i.i.d uniform dis-
tribution on [0, 100]. Similarly, each entry of A is sampled
from the i.i.d uniform distribution on [0, 1].

The neural networks are trained using the Adam algorith-

" m [19] with 10~ initial learning rate. All weights of the net-

work are initialized with i.i.d entries uniformly on [0, 0.001].
In addition, W, W; and Wy, are initialized as symmetric
matrices since they are symmetric in PGD and APGD algo-
rithms. The batch size is 200 and the whole training process
takes 10000 epoches. The LPGD and LAPGD networks with
different depths are trained separately and we record their av-
erage recovery error, ||z* — g(y, W)||2, on the testing set in
Fig. 3. The PGD and APGD algorithms start with g = 0
and their step sizes are & where 3 = ||A||3 and v = 0.9. We
can observe that the LPGD and LAPGD networks manage to
learn the sparse recovery process and outperforms PGD and
APGD by a large margin with the same computational cost in
the test set.
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Fig. 3: The average recovery error on the testing set. For
LPGD and LAPGD networks, & indicates their depths.

3.2. The Effectiveness of the Skip Connection

We refer to the connection that does not come from the last
layer or comes from the last layer with an identity transfor-
mation as the skip connection. The second experiment illus-
trates the effectiveness of the skip connection in the LPGD
and LAPGD networks by comparing the average recovery er-
ror of the 3-depth LAPGD, 3-depth LPGD, 3-depth LPGD
without skip connections and a vanilla neural network with
same number of layers and initializations. We adopt the same
setup in the last experiment and the results are recorded in
Table 1. Recall that, unlike the vanilla network, the weight-
s between hidden layers in the LPGD network are the same
and skip connection improves the network performance sig-
nificantly. The LAPGD network with additional skip connec-
tions achieves better performance than LPGD network.

Table 1: The average recovery error on the testing set.

LAPGD
8.89

LPGD
12.59

Vanilla Network
12.71

LPGD w/o skip
14.52

3.3. Non-stationary Super Resolution

In this experiment, we examine the robustness of the LPGD
and LAPGD networks when applied to the sparse recovery
problem with non-stationary sensing matrix and noisy obser-
vation. This problem can no longer be solved by the PGD
and APGD algorithms. Particularly, we apply the networks to
the single molecule imaging, in which all sub-cellular struc-
tures are dyed with fluorophores before imaging by the mi-
croscope and in each observation, only a small portion of the
fluorophores are activated for imaging. Thus each frame is
composed of the activated fluorophores convolved with non-
stationary point spread functions of the microscope with ad-
ditive noise as shown in Fig. 4 (a). If we superpose all the

frames, we obtain the low resolution image in Fig. 4 (b).

(a) A typical frame.

(c) Super-resolution result of
the LPGD network.

(d) Super-resolution result of
the LAPGD network.

Fig. 4: The single molecule imaging. The size of the images
in (a) and (b) are 32 x 32 pixels with pixel size 200 nm x200
nm. (c) and (d) show the super-resolution results from LPGD
and LAPGD networks whose sizes are 64 x 64 pixels.

The data comes from Single-Molecule Localization Mi-
croscopy grand challenge organized by ISBI [20] which
contains 12000 imaging frames. With the same initialization
from last experiment, we train the 7-depth LPGD and 7-depth
LAPGD networks using 8000 imaging frames and implement
the super-resolution on the rest 4000 frames. Thus, the train-
ing and testing datasets follow the same distribution but have
different sparsity pattern and intensity for each frame. All
data are pre-processed by subtracting the average intensity of
the training set and the super-resolution results of the LPGD
and LAPGD networks are presented in Fig. 4 (¢) and (d).

4. CONCLUSION

In this paper, we propose two efficient neural networks for fast
approximation of the non-negative sparse recovery. Specif-
ically, we design the LPGD and LAPGD networks by un-
folding the projected gradient descent and accelerated projec-
tive gradient descent algorithms and making their parameters
trainable. Moreover, we derive an upper bound on the net-
work sizes for a given approximation error. The experiments
illustrate that the proposed networks are extremely efficient
compared to the classical optimization algorithms and are ca-
pable of handling problems with non-stationary sensing ma-
trix and noisy observation.
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