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Abstract—The task of finding a sparse signal decomposition in
an overcomplete dictionary is made more complicated when the
signal undergoes an unknown modulation (or convolution in the
complementary Fourier domain). Such simultaneous sparse recov-
ery and blind demodulation problems appear in many applications
including medical imaging, super resolution, self-calibration, etc.
In this paper, we consider a more general sparse recovery and blind
demodulation problem in which each atom comprising the signal
undergoes a distinct modulation process. Under the assumption
that the modulating waveforms live in a known common subspace,
we employ the lifting technique and recast this problem as the
recovery of a column-wise sparse matrix from structured linear
measurements. In this framework, we accomplish sparse recovery
and blind demodulation simultaneously by minimizing the induced
atomic norm, which in this problem corresponds to the block �1
norm minimization. For perfect recovery in the noiseless case,
we derive near optimal sample complexity bounds for Gaussian
and random Fourier overcomplete dictionaries. We also provide
bounds on recovering the column-wise sparse matrix in the noisy
case. Numerical simulations illustrate and support our theoretical
results.

Index Terms—Sparse recovery, blind demodulation, atomic
norm minimization, sparse matrix recovery.

I. INTRODUCTION

A. Overview

IN CLASSICAL sparse recovery and compressive sensing
problems, a system observes y = DAc ∈ CN where D, A,

and c are the sensing matrix, dictionary matrix, and sparse signal
coefficient vector, respectively. The goal is to recover the sparse
vector c from the measurements y. UsuallyD andA are known,
but the whole system is under-determined. This model arises
naturally in a wide range of applications such as medical imaging
[2], seismic imaging [3], video coding [4], and network traffic
monitoring [5].

In the special case where D is diagonal and contains a carrier
signal or the Fourier coefficients of a known source signal along
in its diagonal entries, y can be viewed as a modulated version
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of the signal Ac [6] or the Fourier transform of the convolution
between two source signals [7]. Recovering c can thus be viewed
as a demodulation (or deconvolution) problem. Unfortunately,
in problems like super resolution [8] and self-calibration [9],
the modulation matrix D is unknown a priori, as it incorporates
the unknown point spread functions or calibration parameters.
Recovering D and c jointly is a simultaneous sparse recovery
and blind demodulation problem.

In this paper, we consider a more general sparse recovery and
blind demodulation problem in which each atom comprising
the signal undergoes a distinct modulation process. Under the
assumption that the modulating waveforms live in a known
common subspace, we employ the lifting technique and recast
this problem as the recovery of a column-wise sparse matrix
from structured linear measurements. In this framework, we
recover the sparse coefficient vector c and all of the modulating
waveforms simultaneously by minimizing the induced atomic
norm [10], [11], which in this problem corresponds to the block
�1 norm minimization and we also refer to it as the �2,1 norm
minimization.

B. Setup and Notation

To better illustrate our main contributions and compare to
related work, we first define our signal model and the corre-
sponding atomic norm minimization problem.

Throughout this paper, we use bold uppercase, X, bold low-
ercase, x, and non-bold letters, x, to represent matrices, vectors,
and scalars. We use ·̄, ·H and ·T to denote respectively complex
conjugate, matrix Hermitian, and matrix transpose. The symbol
C denotes a constant. XT (xT , resp.) is a matrix (vector, resp.)
that zeros out the columns (entries, resp.) not in T . We call T
the support of the matrix X (and vector x), and we use X̃ to
denote the sub-matrix after removing the zero rows or columns
in X. sign(x) = x/||x||2 when ||x||2 �= 0 and 0 otherwise.
sign(X) = [sign(x1), . . . , sign(xM )]. We use || · || to indicate
the spectral norm, which returns the maximum singular value
of a matrix. The �2,1 norm of a matrix X = [x1 · · · xM ],
denoted by ||X||2,1, is defined to be

∑M
j=1 ||xj ||2. The inner

product between vectors and matrices are defined as 〈x,y〉 =
yHx and 〈X,Y〉 = Tr

(
YHX

)
respectively.

C. Problem Formulation

In this paper, we study a generalized sparse recovery and
blind demodulation problem in which the coefficient vector is
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unknown and each atom (column) of the dictionary undergoes
an unknown modulation process. Specifically, we assume the
system receives a composite signal

y =
M∑

j=1

cjDjaj ∈ CN (1)

where cj ∈ C is an unknown scalar,Dj ∈ CN×N is an unknown
diagonal modulation matrix, and aj ∈ CN is the j-th atom
from a known dictionary A = [a1 a2 · · · aM ] ∈ CN×M with
N < M . Our goal is to recover both cj and Dj for all j from
the measurement y.

To make this problem well-posed, among the M over-
complete atoms, we assume only J < M of them contribute to
the observed signal; that is, at most J coefficients cj are nonzero.
We furthermore assume that each modulation matrix obeys a
subspace constraint:

Dj = diag(Bhj), (2)

where B ∈ CN×K (N > K) is a known basis for the K-
dimensional subspace of possible modulating waveforms, and
hj ∈ CK is an unknown coefficient vector. Similar subspace
assumptions have been made in deconvolution and demix-
ing papers [12], [13]. With this assumption, recovering cj
and Dj equals to recovering cj and hj . Since cjDjaj =
cjdiag(Bhj)aj = (kcj)diag(B( 1khj))aj for any k �= 0, with-
out loss of generality, we assume hj has unit norm and cj ≥ 0
with its complex phase and sign absorbed by hj .

Define BH = [b′1 b′2 · · · b′N ] ∈ CK×N and note that the
n-th entry of the observed signal can be expressed as

y(n) =

M∑

j=1

cjā
H
j enb

′H
n hj = Tr

⎛

⎝enb
′H
n

M∑

j=1

cjhjā
H
j

⎞

⎠

=

〈
M∑

j=1

cjhjā
H
j , b′ne

H
n

〉

= 〈G, b′ne
H
n 〉,

(3)

where G =
∑M
j=1 cjhjā

H
j , and en is the n-th column of the

N ×N identity matrix. From (3), we see that the measurement
vector y depends linearly on the matrix G which encodes all
of the unknown parameters of interest. We denote this linear
sensing process as y = L′(G) and recast the recovery problem
as that of recovering G (and its components) from the linear
measurements.

The unknown matrixG can be viewed as a linear combination
of J rank-1 matrices from the atomic set A := {hāH : ā ∈
{ā1, . . . , āM}, ||h||2 = 1} and thus we propose to recover G
using the corresponding atomic norm minimization:

minimize
G∈CK×N

||G||A subject to y = L′(G). (4)

The atomic norm appearing in (4) is defined as ||G||A :=
inf{∑k |c̃k| : G =

∑
k c̃kJk,Jk ∈ A}. Moreover, the follow-

ing result establishes its equivalence with the �2,1 norm.

Proposition 1: The atomic norm optimization problem (4)
can be equivalently expressed as the following �2,1 norm opti-
mization problem

minimize
X∈CK×M

||X||2,1 subject to y = L(X) (5)

where X = [c1h1 c2h2 · · · cMhM ] ∈ CK×M and L rep-
resents the following linear sensing process

y(n) = 〈X, b′ne
H
n Ā〉 = b′Hn Xa′

n. (6)

in which b′n and a′
n are the n-th column of BH and AT .

Proof: We first note that the atomic norm can be
equivalently expressed as ||G||A = inf{∑M

j=1 |cj | : G =
∑M
j=1 cjhjā

H
j , ||hj ||2 = 1}. To see this, consider any

decomposition of G of the form G =
∑
k c̃kJk with

Jk ∈ A. Define Nj = {k : Jk = h̃kā
H
j } and write G =

∑M
j=1(

∑
k∈Nj

c̃kh̃k)ā
H
j . This is equivalent to writing G =

∑M
j=1 cjhjā

H
j where hj =

∑
k∈Nj

c̃kh̃k

||∑k∈Nj
c̃kh̃k ||2 and cj = ||∑k∈Nj

c̃kh̃k||2. Finally, note that |cj | ≤
∑
k∈Nj

|c̃k|.
Next, to establish the equivalence with the �2,1 norm, for

any cj and hj with ||hj ||2 = 1, define xj = cjhj and X =
[x1 x2 · · · xM ]. Then

||G||A = inf

⎧
⎨

⎩

M∑

j=1

|cj | : G =
M∑

j=1

cjhjā
H
j , ||hj ||2 = 1

⎫
⎬

⎭

= inf

⎧
⎨

⎩

M∑

j=1

||xj ||2 : G =
M∑

j=1

xjā
H
j

⎫
⎬

⎭

= inf
{||X||2,1 : G = XĀH

}
.

Finally, to establish the equivalence of the linear sensing process,
(3) indicates that for G = XĀH ,

y(n) = 〈G, b′ne
H
n 〉 = 〈X, b′ne

H
n Ā〉 = b′Hn Xa′

n.

�
The above optimization focuses on recovering the structured

matrix X from linear measurements. Once the optimization is
solved, the unknown parameters can be easily extracted from
the solution X̂ as follows:

cj = ||x̂j ||2, hj =
x̂j

||x̂j ||2 , and Dj = diag(Bhj) (7)

for x̂j �= 0 and 1 ≤ j ≤ M .
The adjoint of the linear operator L is L∗(y) =

∑N
l=1 ylb

′
la

′H
l . The linear operator L also has a matrix-vector

multiplication form. Note that L(X) = Φ · vec(X), where Φ ∈
CN×KM is

Φ = [φ1,1 · · · φK,1 · · · φ1,M · · · φK,M ] (8)

in which φi,j = diag(bi)aj ∈ CN×1 and bi is the i-th column
of B. Furthermore,

ΦH = [φ′
1 φ′

2 · · · φ′
N ] ∈ CKM×N (9)

where φ′
i = ā′

i ⊗ b′i ∈ CKM×1.
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Finally, we note that the observed signal could be contami-
nated with noise. In this case, our measurement model becomes

y =
M∑

j=1

cjDjaj + n (10)

for some unknown noise vector n ∈ CN×1 which we suppose
satisfies ||n||2 ≤ η. In this case, we can write y = L(X0) + n,
where X0 is the ground truth solution. As an alternative to
equality-constrained �2,1 norm minimization (5), we then con-
sider the following relaxation:

minimize
X∈CK×M

||X||2,1 subject to ||y − L(X)||2 ≤ η. (11)

D. Applications of the Proposed Signal Model

The proposed signal model encompasses a wide range of
applications. We briefly introduce some of them as follows.

1) Direction of Arrival Estimation for Antenna Array: We
first consider the direction of arrival (DOA) estimation prob-
lem in antenna array. Assume we have a linear array antenna
consisting of N elements, and we want to estimate the DOAs
of several sources from a snapshot of the received signal. In
addition, we consider the narrowband scenario and confine
the the array and the far-field sources to a common plane as
described in [14]. In this case, the DOA is determined by the
azimuth angle, θ, of the source, which ranges from 0 to 180
degrees. Mathematically, after discretizing the azimuth angle
into M grids, the observervation of the array can be represented
as [15]

y = DA(θ)c+ n ∈ CN×1

where D ∈ CN×N is the diagonal matrix capturing the un-
known calibration of the array elements [9]. Particularly, the
calibration issue may arise from gain discrepancies caused by
the change of temperatures and humidity of the environment
[9]. Namely, the channel is not ideal. One can simulate different
scenarios and collect many possible calibration vectors. By
applying the singular value decomposition (SVD) on the matrix
formed by those calibration vectors, we can then extract the
subspace matrix, B, with desired dimensions to approximate
the calibration using D = diag(Bh) where h is the unknown
coefficient vector. A(θ) ∈ CN×M is the known array manifold
matrix whose columns a(θj) for j ∈ {1, 2, . . . ,M} are the
steering vectors. For uniformly spaced linear array antenna
(ULA), a(θj) = [1, ei

2πd
λ cos(θj), . . . , ei(N−1) 2πd

λ cos(θj)] where
d is the distance between array elements and λ is the radar
operating wavelength [16]. Moreover, the entries of c indicate
the strength of the impinging signals and if there exists J(< M)
sources, only J entries of c are nonzero. n consists of the
discretization error, approximation error, and additive noise.

Furthermore, let us consider a more severe while realistic
situation, where the calibration is sensitive to the direction of
arrival which implies that the channel responses from different
angles are slightly different. So that the calibration matrix, D,

are different for different θj . In this case, we can write

y =

M∑

j=1

cjDja(θj) + n ∈ CN×1.

2) Super-Resolution for Single Molecule Imaging: Another
application is the single molecule imaging [17] via stochastic
optical reconstruction microscopy (STORM) [18]. In this ap-
plication, the cellular structure of the object of interest is dyed
with fluorophores, and STORM divides the imaging process into
thousands of cycles. Within each cycle or observation, only a
portion of the fluorophores are activated and imaged. Therefore,
a typical observation is a low-resolution frame with its activated
fluorophores convolved with the non-stationary point spread
functions of the microscope, which can be represented as

y = Sample

⎡

⎣
M∑

j=1

cj(B
′hj)� ej + n′

⎤

⎦ ∈ RN×1

where y ∈ RN×1 is a vectorized, imaged frame downsampled
from its super-resolution image with M(>N) pixels, cj rep-
resents the intensity of the activated fluorophores, and B′ is
the subspace that the point spread functions live in. ej ∈ RM ,
which indicates the location of the activated flurophores, is the
j-th column of the identity matrix and n′ denotes the noise.
Moreover, y can also be represented equivalently as

y = Sample

⎧
⎨

⎩
IDFT

⎡

⎣
M∑

j=1

cjDjaj + n

⎤

⎦

⎫
⎬

⎭
∈ RN×1,

where IDFT [·] is the inverse discrete Fourier transform (DFT)
operator, Dj = diag(Bhj) with B = DFT [B′], and aj s are
the DFT of spikes containing the location information. n =
DFT [n′]. The goal of this application is to recover the super-
resolution image from its low-resolution frame y, or mathemat-
ically, locating the nonzero cj .

Other applications that fit into the model investigated in this
work include frequency estimation with damping that appears
in nuclear magnetic resonance spectroscopy [19] with damping
signals approximately living in a common subspace [8] and the
CDMA system with spreading sequence sensitive channel as
described in Section 6.4 of [9].

E. Main Contributions

Our contributions are twofold. First, we employ �2,1 norm
minimization to achieve sparse recovery and blind demodula-
tion simultaneously given the generalized signal model from
equation (1). Second, for perfect recovery of all parameters in
the noiseless case, we derive near optimal sample complexity
bounds for the cases where A is a random Gaussian and a
random subsampled Fourier dictionary. Both of bounds require
the number of measurementsN to be proportional to the number
of degrees of freedom,O(JK), up to log factors. We also provide
bounds on recovering the column-wise sparse matrix in the noisy
case; these bounds show that the recovery error scales linearly
with respect to the strength of the noise.
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F. Related Work

The �2,1 norm has been widely used to promote sparse re-
covery in multiple measurement vector (MMV) problems [20],
[21]. The MMV problem involves a collection of sparse signal
vectors that are stacked as the rows of a matrix X. These
signals have a common sparsity pattern, which results in a
column-wise sparse structure for X. As in our setup, the �2,1
norm is used to recoverX from linear measurements of the form
y = ΦMMV · vec(XT ). However,ΦMMV has a block diagonal
structure where all diagonal sub-matrices are the same which is
the dictionary matrix. This is different from the structure of the
linear measurements in our problem; see for example (8).

Our work is also closely related to certain recent works
in model-based deconvolution, self-calibration, and demixing.
When allDj in (1) are the same, our signal model coincides with
the self-calibration problem in [9], although that work employs
�1 norm minimization rather than �2,1 norm minimization to
recover X. A more recent paper [22] does apply the �2,1 norm
for the self-calibration problem but again assumes a common
modulation matrix D. The paper [12] generalizes the work of
[9] and considers a blind deconvolution and demixing prob-
lem which can be interpreted as the self-calibration scenario
with multiple sensors whose calibration parameters might be
different. However, the signal model in that paper is not directly
comparable to our model, and the recovery approach studied
in that paper involves nuclear norm minimization and requires
knowledge of the number of sensors. A blind sparse spike de-
convolution is studied in [13], wherein the dictionary consists of
sampled complex sinusoids over a continuous frequency range
and all atoms undergo the same modulation. Inspired by [13],
[8] generalizes the model to the case of different modulating
waveforms. Like [13], however, [8] also considers a sampled
sinusoid dictionary over a continuous frequency range, and it
employs a random sign assumption on the coefficient vectors hj
which makes it difficult to derive recovery guarantees with noisy
measurements. More works considering a common modulation
process can be found in [7], [23], [24].

Our work can be viewed as a generalization of the self-
calibration [9] and blind deconvolution problems [7]. Moreover,
our analysis is quite different from the works considering the
continuous sinusoid dictionary [8], [13], since the tools in those
papers are specialized to the continuous sinusoids dictionary and
we consider discrete Gaussian and random Fourier dictionaries
in both noiseless and noisy settings.

The rest of the paper is organized as follows. In Section II,
we present our main theorems regarding perfect parameter re-
covery in the noiseless setting and matrix denoising in the noisy
setting. Sections III and IV contain the detailed proofs of the
main theorems. Several numerical simulations are provided in
Section V to illustrate the critical scaling relationships, and we
conclude in Section VI.

II. MAIN RESULTS

We present our main theorems in this section. In each of
the noisless and noisy cases, we consider two models for
the dictionary matrix A. In the first model, A ∈ RN×M is a

real-valued random Gaussian matrix, with each entry sampled
independently from the standard normal distribution. In the
second model,A ∈ CN×M is a complex-valued random Fourier
matrix, with each of its N(<M) rows chosen uniformly with
replacement from theM ×M discrete Fourier transform matrix
F where FHF = MIM . Our first theorem concerns perfect
parameter recovery in the noiseless setting.

Theorem II.1: (Noiseless case) Consider the measurement
model in equation (1), assume that at most J(< M) coefficients
cj are nonzero, and furthermore assume that the nonzero co-
efficients cj are real-valued and positive. Suppose that each
modulation matrix Dj satisfies the subspace constraint (2),
where BHB = IK and each hj has unit norm 1.

Then the solution X̂ to problem (5) is the ground truth solution
X0—which means that cj , hj , and Dj can all be successfully
recovered for each j using (7)—with probability at least 1−
O(N−α+1)

• if A ∈ RN×M is a random Gaussian matrix and

N

log2(N)
≥ Cαμ

2
maxKJ(log(M − J) + log(N)). (12)

• if A ∈ CN×M is a random Fourier matrix and

N ≥ Cαμ
2
maxKJ log(4

√
2Jγ)

· (log(M − J) + log(K + 1) + log(N))
(13)

where γ =
√
2M log(2KM) + 2M + 1.

In both cases, Cα is a constant defined for α > 1 and the
coherence parameter

μmax = max
i,j

√
N |Bij |.

We note that both of the sample complexity bounds in
Theorem II.1 require the number of measurements N to be
proportional to the number of degrees of freedom, O(KJ),
up to log factors. We also note that the sample complex-
ity bounds scale with the square of the coherence parame-
ter μmax = maxi,j

√
N |Bij |. Under the assumption BHB =

IK which requires the columns of B to be orthonormal,
μmax ∈ [1,

√
N ]. Specifically, given the system parameters

with large enough N , (12) is satisfied when 1 ≤ μmax ≤√
N

Cα log2(N)KJ(log(M−J)+log(N))
. The valid range of μmax for

(13) and the noisy case can be easily derived in the same manner.
And μmax is minimized when the energy of each column of B
is not concentrated on a few entries but spread across the whole
column.

Our second theorem provides bounds on recovering the
column-wise sparse matrix in the noisy case; these bounds show
that the recovery error scales linearly with respect to the strength
of the noise.

Theorem II.2: (Noisy case) Consider the measurement
model in equation (10), assume that at mostJ(<M) coefficients
cj are nonzero, and furthermore assume that the norm of the

1Theorem II.1 actually works for hj with arbitrary norms as long as the
relative scale between cj and hj is known.
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noise is bounded, ||n||2 ≤ η. Suppose also that each modu-
lation matrix Dj satisfies the subspace constraint (2), where
BHB = IK .

Then with probability at least 1−O(N−α+1), the solution X̂
to problem (11) satisfies

• if A ∈ RN×M is a random Gaussian matrix,

||X̂−X0||F ≤
(
C1 + C2

√
J
)
η (14)

when

N

log2(N)
≥ Cαμ

2
maxKJ

(
log(Cμmax

√
KJ)C + 1

)

· (log(M − J) + log(MK) + log(N))
(15)

where C is a constant.
• if A ∈ CN×M is a random Fourier matrix,

||X̂−X0||F ≤
(
C1 + C2

√
PJ

)
η (16)

when

N ≥ Cαμ
2
maxKJ log(4

√
2Jγ)

· (log(M − J) + log(MK) + log(N))
(17)

where γ =
√

2M log(2KM) + 2M + 1 and P ≥
log(4

√
2Jγ)/ log 2.

In both cases,Cα is defined forα > 1.C1 andC2 are constant.
Although Theorem II.2 focuses exclusively on bounding the

recovery error of the matrixX0, one can also attempt to estimate
the parameters cj , hj , and Dj from X̂ using (7). And according
to Theorem II.2, for any x̂j = ĉjĥj and x0,j = c0,jh0,j where
x̂j andx0,j are the j-th columns of the solution X̂ and the ground
truth X0 respectively, we would have ||ĉjD̂j − c0,jD0,j ||F =

||ĉjĥj − c0,jh0,j ||2 ≤ (C1 + C2

√
J)η with random Gaussian

dictionary and ||ĉjD̂j − c0,jD0,j ||F = ||ĉjĥj − c0,jh0,j ||2 ≤
(C1 + C2

√
PJ)η for random Fourier dictionary. In addition, as

results on structured matrix recovery from (possibly noisy) linear
measurements, we believe that Theorems II.1 and II.2 may be
of independent interest outside of the sparse recovery and blind
demodulation problem.

III. PROOF OF THEOREM II.1

To begin our proof of the main theorem in the noiseless case,
we first derive sufficient conditions for exact recovery.

A. Sufficient Conditions for Exact Recovery

Sufficient conditions for exact recovery are the null space
property and an alternative sufficient condition derived from the
null space property. Similar sufficient conditions with complete
proofs are available for minimization problems using other types
of norms [9], [25]–[27]. However, since we cannot find sufficient
conditions that suit our purpose and in order to be self-contained,
we provide a short proof for the ones specific to the �2,1 norm
minimization problem in this section.

Proposition 2: (The null space property) The matrix X0 =
[c1h1 c2h2 .... cMhM ] ∈ CK×M with support T is the

unique solution to the inverse problem (5) if

−|〈HT , sign(X0)〉|+ ||HTC ||2,1 > 0

for any H �= 0 in the nullspace of L.
Proof: Let X̂ = X0 +H be a solution to problem (5), with

L(H) = 0. To prove X0 is the unique solution, it is sufficient to
show that ||X̂||2,1 > ||X0||2,1 if H �= 0. We start by observing
that

||X0 +H||2,1 = ||X0,T +HT ||2,1 + ||HTC ||2,1
≥ |〈X0,T +HT , sign(X0,T )〉|+ ||HTC ||2,1
= |〈X0,T , sign(X0,T )〉+ 〈HT , sign(X0,T )〉|+ ||HTC ||2,1
≥ ||X0,T ||2,1 − |〈HT , sign(X0,T )〉|+ ||HTC ||2,1

where sign(X0,T ) = sign(X0) and the first inequality comes
from the fact that

||X0,T +HT ||2,1 =
∑

i∈T
||x0,i + hi||2||sign(x0,i)||2

≥
∑

i∈T
|〈x0,i + hi, sign(x0,i)〉| ≥ |〈X0,T +HT , sign(X0,T 〉|.

(18)
Therefore, as long as −|〈HT , sign(X0)〉|+ ||HTC ||2,1 > 0 for
any H �= 0 in the nullspace of L, X0 is the unique solution. �

Proposition 3: The matrix X0 ∈ CK×M with support T is
the unique solution to the inverse problem (5) if there exists
γ > 0 and a matrix Y in the range space of L∗ such that

||YT − sign(X0,T )||F ≤ 1

4
√
2γ

and ||YTC ||2,∞ ≤ 1

2

and the operator L satisfies (LT (X) = {b′Hn Xa′
n,T }Nn=1)

||L∗
TLT − IT || ≤ 1

2
and ||L|| ≤ γ. (19)

Proof: Proposition 2 shows that to establish uniqueness, it
is sufficient to prove that −|〈HT , sign(X0)〉|+ ||HTC ||2,1 > 0
for any H �= 0 in the nullspace of L. Note that

− |〈HT , sign(X0)〉|+ ||HTC ||2,1
= −|〈HT , sign(X0)−YT 〉+ 〈HT ,YT 〉|+ ||HTC ||2,1
≥ −|〈HT , sign(X0)−YT 〉| − |〈HTC ,YTC 〉|+ ||HTC ||2,1

since 〈HT ,YT 〉 = −〈HTC ,YTC 〉. By applying the Hölder
inequality, we get a stronger condition

−||sign(X0)−YT ||F ||HT ||F + (1− ||YTC ||2,∞)||HTC ||2,1
> 0.

Since ||L∗
TLT − IT || ≤ 1

2 and ||L|| ≤ γ, we have
||L(HT )||F ≥ 1√

2
||HT ||F , ||L(HTC )||F ≤ γ||HTC ||F and

1√
2
||HT ||F ≤ ||L(HT )||F = ||L(HTC )||F

≤ γ||HTC ||F ≤ γ||HTC ||2,1.
(20)
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Plugging (20) into the stronger condition above yields
(
1−||YTC ||2,∞−

√
2γ||sign(X0)−YT ||F

)
||HTC ||2,1 > 0.

Therefore, if ||YT − sign(X0,T )||F ≤ 1
4
√
2γ

, ||YTC ||2,∞ ≤ 1
2 ,

and HTC �= 0, the left hand side is positive. On the other hand,
if HTC = 0, from (20), HT = 0 and H = 0. �

B. Bounding the Isometry Constant and Operator Norm

In this section, we bound the isometry constant and operator
norm γ appearing in (19) based on the randomness in the
matrix A. The isometry bound for the linear operator L can
be found in Lemma 4.3 in [9].

Lemma III.1: [9, Lemma 4.3] (Isometry) For the linear op-
erator L defined in (5) with BHB = IK and δ > 0,

||ΦH
T ΦT − IT || = ||L∗

TLT − IT || ≤ δ

with probability at least 1−N−α+1 where IT is the identity
operator on the support T such that IT (X) = XT ,

• if A is a random Gaussian matrix and N ≥ Cαμ
2
max

KJ max{log(N)/δ2, log2(N)/δ}.
• if A is a random Fourier matrix and N ≥ Cαμ

2
max

KJ log(N)/δ2.
Here Cα is a constant that grows linearly with α > 1.
LT (X) = ΦT · vec(X) and ΦT can be viewed as Φ con-

structed using AT , whose i-th column is zero if i ∈ TC , fol-
lowing (8). Therefore, ΦT ∈ CN×KM has many zero columns
and removing those zero columns results in Φ̃T ∈ CN×KJ .
If ||ΦH

T ΦT − IT || = ||Φ̃H
T Φ̃T − ĨT || ≤ δ < 1, Φ̃H

T Φ̃T is in-
vertible and ||(Φ̃H

T Φ̃T )
−1|| ≤ (1− δ)−1 according to Lemma

A.12 in [26]. This property will be applied in (22) and
Theorem III.1. To bound the operator norm of L, we use results
from [7] and [9].

Lemma III.2: [7], [9] For the linear operator L defined in (5)
with BHB = IK and α ≥ 1,

• if A is a random Gaussian matrix,

||L|| ≤
√
M log(MN/2) + α log(N)

with probability at least 1−N−α.
• if A is a random Fourier matrix,

||L|| ≤
√

2M log(2KM) + 2M + 1

with probability at least 1−N−α when N ≥
αμ2

maxK log(N).

C. Constructing the Dual Certificate for the Gaussian Case

In the case where A is a random Gaussian matrix, we con-
struct a certificate matrix Y that satisfies the conditions in
Proposition 3. When ||ΦH

T ΦT − IT || ≤ 1
2 , we can set

vec(Y) = ΦHp = vec(L∗(p)) ∈ CKM×1, (21)

where

p = Φ̃T (Φ̃
H
T Φ̃T )

−1vec(sign(X̃0,T )) ∈ CN×1. (22)

By construction, YT = sign(X0,T ), and we need only to verify
that ||YTC ||2,∞ ≤ 1/2.

Theorem III.1: If ||ΦH
T ΦT − IT || ≤ 1

2 , there exists Y in the
range space of L∗ such that

YT = sign(X0,T ) and ||YTC ||2,∞ ≤ 1

2

with probability at least 1− (M − J)e−α when N ≥
40αμ2

maxKJ for α ≥ log(M − J).
Proof: To simplify the notation, without loss of generality,

we assume the support of X0 is the first J columns. Let Y
be the dual certificate matrix defined in (21). After remov-
ing the columns of Y on support T , we obtain vec(ỸTC ) ∈
CK(M−J)×1 which takes the form

vec(ỸTC ) = Φ̃H
TCp

=
[
φH1,J+1p, . . . , φ

H
K,J+1p, φ

H
1,J+2p, . . . , φ

H
K,Mp

]T

=
[
aHJ+1diag(b̄1)p, . . . ,a

H
J+1diag(b̄K)p,

aHJ+2diag(b̄1)p, . . . ,a
H
Mdiag(b̄K)p

]T
.

The columns of Φ̃TC are independent ofp sincep is constructed
with ai (i ∈ T ). Equivalently,

ỸTC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

aHJ+1diag(b̄1)p · · · aHMdiag(b̄1)p

aHJ+1diag(b̄2)p · · · aHMdiag(b̄2)p

...
. . .

...

aHJ+1diag(b̄K)p · · · aHMdiag(b̄K)p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thus ||YTC ,j ||2 = ||Paj ||2 (j > J) where aj is real and

P =

⎡

⎢
⎢
⎢
⎢
⎣

pT diag(b̄1)

pT diag(b̄2)
...

pT diag(b̄K)

⎤

⎥
⎥
⎥
⎥
⎦
∈ CK×N .

We set Σ = PHP ∈ CN×N and have

Tr (Σ) = ||P||2F ≤ 2μ2
maxKJ

N

since each row of P can be bounded by

||pT diag(b̄k)||22 ≤ μ2
max

N
||p||22

=
μ2
max

N
vec(sign(X̃0,T ))

H(Φ̃H
T Φ̃T )

−1vec(sign(X̃0,T ))

≤ 2μ2
max

N
||sign(X̃0,T )||2F =

2μ2
maxJ

N

since we assume ||ΦH
T ΦT − IT || ≤ 1

2 which implies
||(Φ̃H

T Φ̃T )
−1|| ≤ 2. By generalizing Proposition 1 in [28]

to our case, we have

Pr
(
||Paj ||22 > Tr (Σ) + 2

√
Tr (Σ2)α+ 2||Σ||α

)
≤ e−α.

In addition, because Σ is positive semi-definite and all its eigen-
values are non-negative, Tr (Σ2) =

∑N
i=1 λ

2
i ≤ (

∑N
i=1 λi)

2 =
Tr (Σ)2 where λi is the i-th eigenvalue of Σ. ||Σ|| = σmax ≤
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∑N
i=1 λi = Tr (Σ) where σmax is the maximum singular value

of Σ. Therefore, for α > 1, we obtain

Tr (Σ) + 2
√

Tr (Σ2)α+ 2||Σ||α

≤ Tr (Σ) + 2Tr (Σ)α+ 2Tr (Σ)α ≤ 2μ2
maxKJ

N
(1 + 4α).

If we pick N ≥ 40αμ2
maxKJ , ||Paj ||2 > 1/2 with probability

at most e−α. Taking the union over all (M − J) non-zero
columns of YTC gives

Pr(||YTC ||2,∞ > 1/2) ≤ (M − J)e−α.

Therefore, ||YTC ||2,∞ ≤ 1/2 with probability at least 1−
(M − J)e−α whenN ≥ 40αμ2

maxKJ . To make the probability
meaningful, α should be greater than log(M − J). �

D. Proof of Theorem II.1 for Random Gaussian Dictionary

In this section, we assemble the pieces to complete the proof
of Theorem II.1 in the Gaussian case. To do so, we ensure that
all sufficient conditions in Proposition 3 are met. First, if we take
δ = 1/2 and set α1 > 1 in Lemma III.1, we have

||L∗
TLT − IT || ≤ 1

2

when N ≥ Cα1
μ2
maxKJ log2(N) with probability at least

1−N−α1+1. Then, applying the same α1 in Lemma III.2
and setting γ =

√
M log(MN/2) + α1 log(N), we have that

||L|| ≤ γ with probability at least 1−N−α1 ≥ 1−N−α1+1.
In Theorem III.1, we have proved that YT = sign(X0,T ) and
||YTC ||2,∞ ≤ 1

2 when N ≥ 40α2μ
2
maxKJ with probability at

least 1− (M − J)e−α2 and α2 ≥ log(M − J).
Note that if α2 ≥ (α1 − 1) log(N) + log(M − J), we have

(M − J)e−α2 ≤ N−α1+1. Combining the above requirements
on N , all conditions in Proposition 3 are satisfied with proba-
bility at least 1− 3N−α1+1 when N ≥ max{Cα1

, 40}((α1 −
1) log(N) + log(M − J))μ2

maxKJ log2(N). Furthermore,

max{Cα1
, 40}((α1 − 1) log(N) + log(M − J))

· μ2
maxKJ log2(N)

≤ Cα(log(N) + log(M − J))μ2
maxKJ log2(N)

if we set Cα = max{Cα1
, 40} · α1 and α = α1 > 1, which

yields the Theorem II.1 when A is a random Gaussian matrix.

E. Constructing the Dual Certificate for the Fourier Case

In this section, we construct a certificate Y that satisfies the
inexact duality condition in Proposition 3 when A is a random
Fourier matrix. Specifically, we construct the dual certificate
using the golfing scheme [29] which has been widely applied
in compressive sensing [7], [25]. In the golfing scheme, a series
of matrices in the range of L∗ are constructed iteratively. In
each iteration step, only some of the measurements are utilized
to ensure independence between iterations. And the constructed
matrices will converge to sign(X0,T ) on support T while entries
on TC are small. The goal is to find the conditions under which
the final constructed matrix can serve as the certificate matrix.

According to Section (4.2.1) in [9], there exists a partition
of the N measurements into P disjoint subsets such that each
subset, Γp, contains Q elements and

max
1≤p≤P

∥
∥
∥
∥Bp − Q

N
IK

∥
∥
∥
∥ <

Q

4N
,

where Bp =
∑
l∈Γp b

′
lb

′H
l and Q > Cμ2

maxK log(N). So

max
1≤p≤P

||Bp|| ≤ 5Q

4N
. (23)

Define Lp(X) = {b′Hl Xa′
l}l∈Γp

and 0 on entries l /∈ Γp.
L∗
p(x) =

∑
l∈Γp

xlb
′
la

′H
l . The golfing scheme iterates through

Yp = Yp−1 − N

Q
L∗
pLp(Yp−1,T − sign(X0,T )), Y0 = 0.

(24)

Theorem III.2: If X0 is the ground truth solution to problem
(5), there exists a matrix Y ∈ L∗ such that

||YT − sign(X0,T )||F ≤ 1

4
√
2γ

and ||YTC ||2,∞ ≤ 1

2

with probability at least 1− 2N−α+1 for α > 1 when

N = PQ, P ≥ log(4
√
2Jγ)

log 2

and

Q ≥ Cαμ
2
maxKJ(log(M − J) + log(K + 1) + log(N))

where Cα a constant determined by α.
Proof: If we define Wp = Yp,T − sign(X0,T ), (24) gives

Wp =
N

Q

(
Q

N
− L∗

p,TLp,T
)

(Wp−1), (25)

where Lp,T (X) = {b′Hl Xa′
l,T }l∈Γp

with 0 on entries l /∈ Γp
and L∗

p,T (x) =
∑
l∈Γp

xlb
′
la

′H
l,T which are used to generate the

sequence Yp,T . And we can obtain

||Wp||F ≤
∥
∥
∥
∥
N

Q

(
Q

N
−L∗

p,TLp,T
)∥
∥
∥
∥ · ||Wp−1||F ≤ 1

2
||Wp−1||F

(26)
with probability at least 1−N−α+1 when Q ≥
Cα,1μ

2
maxKJ log(N) with α > 1 applying Lemma 4.6 in

[9]. Therefore,

||WP ||F ≤ 2−P ||W0||F = 2−P ||sign(X0,T )||F = 2−P
√
J.

(27)

To ensure that ||WP ||F = ||YP,T − sign(X0,T )||F ≤ 1
4
√
2γ

where YP = Y is the final constructed dual certificate after
P iterations, we need

P ≥ log(4
√
2Jγ)

log 2
. (28)

We now turn to find the conditions such that ||YTC ||2,∞ ≤ 1
2 .

Note that substituting Wp into equation (24) yields

Y = −N

Q

P∑

p=1

L∗
pLp(Wp−1).
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It is sufficient to show ||ΠTC (L∗
pLpWp−1)||2,∞ ≤ 2−p−1 Q

N ,
where ΠTC is the projection operator which projects a matrix
on the support TC , to make ||YTC ||2,∞ ≤ 1

2 because

||YTC ||2,∞ =

∥
∥
∥
∥
∥
−N
Q

P∑

p=1

ΠTC (L∗
pLp(Wp−1))

∥
∥
∥
∥
∥
2,∞

≤ N

Q

P∑

p=1

||ΠTC (L∗
pLp(Wp−1))||2,∞ ≤ N

Q

P∑

p=1

(

2−p−1 Q

N

)

=

P∑

p=1

2−p−1 =
1

2
(1− 2−P ) <

1

2
.

Defining Φp to be Φ with non-zero rows indexed by Γp and
zero otherwise, we have Lp(X) = Φp · vec(X) and for a vector
w = vec(W) ∈ CKM×1 where W ∈ CK×M has support T ,

||ΠTC (L∗
pLp(W))||2,∞=max

i∈TC

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎢
⎢
⎢
⎣

〈ΦH
p Φpw, eK(i−1)+1〉

〈ΦH
p Φpw, eK(i−1)+2〉

...

〈ΦH
p Φpw, eK(i−1)+K〉

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
2

(29)

where i is the column index and ej is the j-th column of the
identity matrix IKM . In addition,
⎡

⎢
⎢
⎢
⎢
⎢
⎣

〈ΦH
p Φpw, eK(i−1)+1〉

〈ΦH
p Φpw, eK(i−1)+2〉

...

〈ΦH
p Φpw, eK(i−1)+K〉

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
∑

l∈Γp

⎡

⎢
⎢
⎢
⎢
⎢
⎣

〈φ′
lφ

′H
l w, eK(i−1)+1〉

〈φ′
lφ

′H
l w, eK(i−1)+2〉

...

〈φ′
lφ

′H
l w, eK(i−1)+K〉

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
∑

l∈Γp

zl,i.

Furthermore, we have E(zl,i) = 0 because

E(zl,i) = E

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎣

〈ā′
l ⊗ b′l · ā′H

l ⊗ b′Hl ·w, eK(i−1)+1〉
〈ā′
l ⊗ b′l · ā′H

l ⊗ b′Hl ·w, eK(i−1)+2〉
...

〈ā′
l ⊗ b′l · ā′H

l ⊗ b′Hl ·w, eK(i−1)+K〉

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

〈(IM ⊗ b′lb
′H
l )w, eK(i−1)+1〉

〈(IM ⊗ b′lb
′H
l )w, eK(i−1)+2〉

...

〈(IM ⊗ b′lb
′H
l )w, eK(i−1)+K〉

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

〈vec(b′lb
′H
l W), eK(i−1)+1〉

〈vec(b′lb
′H
l W), eK(i−1)+2〉

...

〈vec(b′lb
′H
l W), eK(i−1)+K〉

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= 0

following E(ā′
lā

′H
l ) = IM since a′

l ∈ CM×1 is the transpose
of a random row of the M ×M DFT matrix and b′lb

′H
l W has

support T and 0 on TC . Therefore, for i ∈ TC , E(zl,i) = 0.
Moreover,

||zl,i||2 ≤

√
√
√
√K ·

(
μ2
max

√
KJ ||w||2
N

)2

=
μ2
maxK

√
J ||w||2

N
.

Because each entry of zl,i can be bounded by

|〈φ′
lφ

′H
l w, eK(i−1)+j〉| = |eHK(i−1)+jφ

′
lφ

′H
l w|

= ||eHK(i−1)+jφ
′
l||2||(ā′

l ⊗ b′l)
Hw||2

= ||eHK(i−1)+jφ
′
l||2||(ā′

l,T ⊗ b′l)
Hw||2

≤ μmax√
N

||ā′H
l,T ⊗ b′Hl ||2||w||2 ≤ μ2

max

√
KJ ||w||2
N

where the third equality holds becausew = vec(W) andW has
support T. The variance of zl,i is also bounded:

max

⎧
⎨

⎩

∥
∥
∥
∥
∥
∥

∑

l∈Γp
E(zl,iz

H
l,i)

∥
∥
∥
∥
∥
∥
,

∥
∥
∥
∥
∥
∥

∑

l∈Γp
E(zHl,izl,i)

∥
∥
∥
∥
∥
∥

⎫
⎬

⎭

≤
∑

l∈Γp

E(||zl,i||22) ≤
5μ2

maxKQ||w||22
4N2

because for each element of ||zl,i||22, we have

E
(|〈φ′

lφ
′H
l w, eK(i−1)+j〉|2

)
= E

(
||eHK(i−1)+iφ

′
lφ

′H
l w||22

)

≤ μ2
max

N
E
(||φ′H

l w||22
)
=

μ2
max

N
wH(IM ⊗ b′lb

′H
l )w

and therefore

E(||zl,i||22) ≤
μ2
maxK

N
wH(IM ⊗ b′lb

′H
l )w.

As a result,

∑

l∈Γp

E(||zl,i||22) ≤
∑

l∈Γp

μ2
maxK

N
wH(IM ⊗ b′lb

′H
l )w

=
μ2
maxK

N
wH(IM ⊗Bp)w ≤ 5μ2

maxKQ||w||22
4N2

. (30)

The second inequality in (30) applies the inequality (23)
and ||IM ⊗Bp|| = ||IM || · ||Bp||. We then apply the matrix
Bernstein inequality from Theorem 1.6 in [30]. If we set w =
vec(Wp−1) and we know from (27) that ||w||2 = ||Wp−1||F ≤
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2−p+1
√
J , we obtain

Pr

⎛

⎝

∥
∥
∥
∥
∥
∥
||
∑

l∈Γp

zl,i

∥
∥
∥
∥
∥
∥
||2 ≥ t

⎞

⎠

≤ (K + 1) exp

(
−3t2

30μ2
maxKQ||w||22

4N2 + 2μ2
maxK

√
J ||w||2t

N

)

≤ (K + 1) exp

( −3Q

128μ2
maxKJ

)

where t = 2−p−1 Q
N , for a particular i ∈ TC and p. We then take

the union over all i ∈ TC and get

Pr

(

||ΠTC (L∗
pLp(Wp−1))||2,∞ ≥ 2−p−1 Q

N

)

≤ (M − J)(K + 1) exp

( −3Q

128μ2
maxKJ

)

.

To ensure ||ΠTC (L∗
pLp(Wp−1))||2,∞ ≤ 2−p−1 Q

N for all p, we
obtain

Pr

(

||ΠTC (L∗
pLp(Wp−1))||2,∞ ≤ 2−p−1 Q

N
, ∀1 ≤ p ≤ P

)

> 1− P (M − J)(K + 1) exp

( −3Q

128μ2
maxKJ

)

≥ 1− PN−α ≥ 1−N−α+1

when Q ≥ 128μ2
maxKJα
3 (log(M − J)+ log(K+ 1)+ log(N))

using the same α as in deriving equation (26). Setting Cα =
max{C,Cα,1, 128

3 α}, where C is a constant comes from
equation (23), gives us Theorem III.2. �

F. Proof of Theorem II.1 for Random Fourier Dictionary

We now complete the proof of Theorem II.1 in the case
when A is a random Fourier matrix. First, combining the con-
ditions and probabilities from Lemma III.1 and III.2, we know
that the operator L satisfies the inequalities ||L∗

TLT − IT || ≤
1
2 and ||L|| ≤ γ =

√
2M log(2KM) + 2M + 1 with proba-

bility at least 1− (N + 1)N−α ≥ 1− 2N−α+1 when N ≥
Cα,1μ

2
maxKJ log(N) for some constant, Cα,1, that grows lin-

early with α > 1.
Applying the same α in Theorem III.2, the desired dual

matrix exists with probability at least 1− 2N−α+1 when
N≥Cα,2μ

2
maxKJ log(4

√
2Jγ)(log(M − J) + log(K + 1) +

log(N)). Merging the requirement on N by setting
Cα = max{Cα,1, Cα,2} and combining the probabilities,
we complete the proof by applying Proposition 3.

IV. PROOF OF THEOREM II.2

To derive our recovery guarantee in the presence of measure-
ment noise, the main ingredient of the proof is Theorem IV.1
which is a variation of the Theorem 4.33 in [26] from the infinity
norm optimization to �2,1 norm optimization problem.

Theorem IV.1: Define Φ ∈ CN×KM and Φ · vec(X) =
L(X). Suppose the ground truth X0 to (11) has J non-zero
columns with support T and the measurement vector y =
L(X0) + n with ||n||2 ≤ η. For δ, β, θ, γ, τ > 0 and δ < 1,
assume that

max
i∈TC

||ΦH
T [ΦK(i−1)+1 · · ·ΦK(i−1)+K ]|| ≤ β,

||ΦH
T ΦT − IT || ≤ δ

and that there exists a matrix Y = L∗(p) ∈ CK×M such that

||YT − sign(X0,T )||F ≤ 1

4
√
2γ

, ||YTC ||2,∞ ≤ θ,

and ||p||2 ≤ τ
√
J.

If ρ := θ + β

4
√
2γ(1−δ) < 1, then the minimizer, X̂, to (11)

satisfies

||X̂−X0||F ≤
(
C1 + C2

√
J
)
η

where C1 and C2 are two constants depending on δ, β, θ, γ, τ .
Proof: Due to our assumption on the noise, X0 is a feasible

solution. Assume the final minimizer to (11) is X̂ = X0 +H,
which implies

||X0||2,1 ≥ ||X0 +H||2,1 = ||X0,T +HT ||2,1 + ||HTC ||2,1
≥ |〈X0,T +HT , sign(X0,T )〉|+ ||HTC ||2,1
≥ ||X0||2,1 − |〈HT , sign(X0,T )〉|+ ||HTC ||2,1

where the second inequality comes from equation (18). Thus

||HTC ||2,1 ≤ |〈HT , sign(X0,T )〉|
≤ |〈HT , sign(X0,T )−YT 〉|+ |〈HT ,YT 〉|

≤ 1

4
√
2γ

||HT ||F + |〈H,Y〉|+ |〈HTC ,YTC 〉|

≤ 1

4
√
2γ

||HT ||F + 2τη
√
J + θ||HTC ||2,1.

(31)
The last inequality comes from the Hölder inequality and our
assumption ||n|| ≤ η, which tells us

||L(H)||2 = ||L(X̂−X0)||2 = ||L(X̂)− L(X0)||2
≤ ||L(X̂)− y||2 + ||y − L(X0)||2 ≤ 2η

and

|〈H,Y〉| = |〈H,L∗(p)〉| = |〈L(H),p〉| ≤ τ
√
J ||L(H)||2

≤ 2τη
√
J.
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Moreover, ||HT ||F can also be bounded as follows.

||HT ||F = ||(Φ̃H
T Φ̃T )

−1Φ̃H
T Φ̃T · vec(H̃T )||2

≤ 1

1−δ
||Φ̃H

T Φ̃T · vec(H̃T )||2= 1

1− δ
||ΦH

T ΦT · vec(HT )||2

=
1

1− δ
||ΦH

T (Φ · vec(H)−ΦTC · vec(HTC ))||2

≤ 1

1− δ
||ΦH

T Φ · vec(H)||2+ 1

1− δ
||ΦH

T ΦTC · vec(HTC )||2

=
1

1− δ
||ΦH

T L(H)||2 + 1

1− δ
||ΦH

T ΦTC · vec(HTC )||2

≤ 2η
√
1 + δ

1− δ
+

β

1− δ
||HTC ||2,1

(32)
because ||ΦH

T ΦT − IT || ≤ δ ensures that ||(Φ̃H
T Φ̃T )

−1|| ≤
1

1−δ and ||ΦH
T || ≤ √

1 + δ according to Lemma A.12 and Propo-
sition A.15 in [26] respectively. Furthermore,

||ΦH
T ΦTC · vec(HTC )||2

=

∥
∥
∥
∥
∥

∑

i∈TC

ΦH
T [ΦK(i−1)+1 · · ·ΦK(i−1)+K ]hi

∥
∥
∥
∥
∥
2

≤
∑

i∈TC

∥
∥ΦH

T [ΦK(i−1)+1 · · ·ΦK(i−1)+K ]
∥
∥ · ||hi||2

≤
∑

i∈TC

β||hi||2 = β||HTC ||2,1

in which hi is the i-th column of H. By setting ρ = θ +
β

4
√
2γ(1−δ) , μ =

√
1+δ
1−δ and substituting the inequality (32) into

(31), we obtain

||HTC ||2,1 ≤ ημ

2
√
2γ(1− ρ)

+
2τη

√
J

1− ρ
. (33)

Substituting inequality (33) into (32) yields

||HT ||F ≤ 2ημ+
β

1− δ

(
ημ

2
√
2γ(1− ρ)

+
2τη

√
J

1− ρ

)

.

Combining the above two inequalities, we obtain

||H||F ≤ ||HT ||F + ||HTC ||F ≤ ||HT ||F + ||HTC ||2,1

≤
(

2μ+
μ

2
√
2γ(1− ρ)

+
βμ

2
√
2γ(1− δ)(1− ρ)

+

(
2τ

1− ρ
+

2βτ

(1− δ)(1− ρ)

)√
J

)

η

=
(
C1 + C2

√
J
)
η. (34)

�
Next, we specify the values of the variables θ, τ , δ and β when

A is a random Gaussian and Fourier matrix. The Orlicz-1 norm
[7] and associated matrix Bernstein inequality are needed for
determining the value of β when A is Gaussian. Specifically,

the Orlicz-1 norm is defined as [7]

||Z||ψ1
= inf
u≥0

{E[exp(||Z||/u)] ≤ 2}. (35)

Its associated matrix Bernstein inequality is provided in
Proposition 3 in [7] which can be rewritten as

Proposition 4: LetZ1, . . . ,ZN be independentM ×M ran-
dom matrices with E(Zj) = 0. Suppose

max
1≤j≤N

||Zj ||ψ1
≤ R

and define

σ2 = max

⎧
⎨

⎩

∥
∥
∥
∥
∥
∥

N∑

j=1

E(ZjZ
H
j )

∥
∥
∥
∥
∥
∥
,

∥
∥
∥
∥
∥
∥

N∑

j=1

E(ZHj Zj)

∥
∥
∥
∥
∥
∥

⎫
⎬

⎭
.

Then there exists a constant C such that for t > 0

Pr

⎛

⎝

∥
∥
∥
∥
∥
∥

N∑

j=1

Zj

∥
∥
∥
∥
∥
∥
>t

⎞

⎠ ≤ 2M exp

⎛

⎝− 1

C

t2

σ2+log
(√

NR
σ

)
Rt

⎞

⎠ .

The following theorem utilizes the Proposition 4 and depicts
the conditions under which β = 1.

Theorem IV.2: For Φ defined in (8) and L(X) = Φvec(X),

max
i∈TC

||ΦH
T [ΦK(i−1)+1 · · ·ΦK(i−1)+K ]|| ≤ 1

with probability at least 1−N−α+1

• if A is a random Gaussian matrix and

N ≥ Cαμ
2
maxKJ

(
log(Cμmax

√
KJ)C + 1

)

· (log(KM) + log(M − J) + log(N)) ,

• if A is a random Fourier matrix and

N ≥ Cαμ
2
maxKJ (log(KM) + log(M − J) + log(N)) ,

where Cα is a constant that grows linearly with α > 1 and C
is a constant.

Proof: We first prove the Gaussian case; the Fourier case is
very similar. Note that for an arbitrary i ∈ TC

||ΦH
T [ΦK(i−1)+1 · · ·ΦK(i−1)+K ]||

= ||ΦH
T Φi|| =

∥
∥
∥
∥
∥
∥

N∑

j=1

(
ā′
j,T ⊗ b′j

) · (ā′H
j,i ⊗ b′Hj

)
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥

N∑

j=1

(
ā′
j,T ā

′H
j,i)⊗ (b′jb

′H
j

)
∥
∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥
∥

N∑

j=1

Zj

∥
∥
∥
∥
∥
∥

where Φi ∈ CN×KM is Φ but only contains values in
the (K(i− 1) + 1)-th to (K(i− 1) +K)-th columns and is
zero otherwise. Φi can also be viewed as an extension of
[ΦTC ,K(i−1)+1 · · ·ΦTC ,K(i−1)+K ] by padding zero columns.
Moreover, ā′

j,i is the conjugate of the j-th column ofAT who has
only one non-zero value in the i-th entry. In addition, E(Zj) =
E(ā′

j,T ā
′H
j,i ⊗ b′jb

′H
j ) = E(ā′

j,T ā
′H
j,i)⊗ b′jb

′H
j = 0 for i ∈ TC .

By applying the property of the Kronecker product, we estimate
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the spectral norm of Zj which can be used to determine its
Orlicz-1 norm:

||Zj || = ||ā′
j,T ā

′H
j,i ⊗ b′jb

′H
j || = ||b′jb′Hj || · ||ā′

j,T ā
′H
j,i ||

= |b′Hj b′j | · ||ā′
j,T ā

′H
j,i || ≤

μ2
maxK

N
||ā′

j,T ā
′H
j,i ||

=
μ2
maxK

N
||ā′

j,T ||2||ā′
j,i||2

≤ μ2
maxK

N
· ||ā

′
j,T ||22 + ||ā′

j,i||22
2

=
μ2
maxK

2N
||ā′

j,{T,i}||22
in which ā′

j,{T,i} contains non-zero values in the entries in-

dexed by {T, i}. Therefore, ||ā′
j,{T,i}||22 follows the Chi-squared

distribution with J + 1 degrees of freedom which implies
that ||Zj ||ψ1

≤ Cμ2
maxK(J+1)

2N ≤ Cμ2
maxK·2J
2N = Cμ2

maxKJ
N = R

for some constant C according to the proof of Lemma 4.7 in
[9] and the definition of Orlicz-1 norm in (35). Moreover,
∥
∥
∥
∥
∥
∥

N∑

j=1

E(ZHj Zj)

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥

N∑

j=1

E
[
(ā′
j,iā

′H
j,T )⊗ (b′jb

′H
j ) · (ā′

j,T ā
′H
j,i)⊗ (b′jb

′H
j )

]
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥

N∑

j=1

E
(
ā′
j,iā

′H
j,T ā

′
j,T ā

′H
j,i

)⊗ (b′jb
′H
j b′jb

′H
j )

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
JIM,i ⊗

⎛

⎝
N∑

j=1

||b′j ||22 · b′jb′Hj

⎞

⎠

∥
∥
∥
∥
∥
∥

≤ μ2
maxKJ

N
||IM,i|| ·

∥
∥
∥
∥
∥
∥

N∑

j=1

b′jb
′H
j

∥
∥
∥
∥
∥
∥
=

μ2
maxKJ

N

following from the fact that E
(
ā′
j,iā

′H
j,T ā

′
j,T ā

′H
j,i

)
= JIM,i for

all j and
∑N
j=1 b

′
jb

′H
j = IK from the assumption. On the other

hand,
∥
∥
∥
∥
∥
∥

N∑

j=1

E(ZjZ
H
j )

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥

N∑

j=1

E
(
ā′
j,T ā

′H
j,i ā

′
j,iā

′H
j,T

)⊗ b′jb
′H
j b′jb

′H
j

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
IM,T ⊗

⎛

⎝
N∑

j=1

||b′j ||22 · b′jb′Hj

⎞

⎠

∥
∥
∥
∥
∥
∥

≤ μ2
maxK

N
||IM,T || ·

∥
∥
∥
∥
∥
∥

N∑

j=1

b′jb
′H
j

∥
∥
∥
∥
∥
∥
=

μ2
maxK

N
.

Therefore, max{||∑N
j=1 E(ZjZ

H
j )||, ||∑N

j=1 E(ZHj Zj)||} =
μ2
maxKJ
N = σ2. Substituting the variables R and σ2 into

Proposition 4 and taking the union bound over all i ∈ TC

results in

Pr

(

max
i∈TC

||ΦH
T [ΦTC ,K(i−1)+1 · · ·ΦTC ,K(i−1)+K ]|| > 1

)

≤ 2(M − J)KM

× exp

⎛

⎝− 1

C0
· N

μ2
maxKJ+log

(
Cμmax

√
KJ

)
Cμ2

maxKJ

⎞

⎠.

Define a variable α > 1 and set

N ≥ Cαμ
2
maxKJ

(
log(Cμmax

√
KJ)C + 1

)

· (log(KM) + log(M − J) + log(N))

≥ C0μ
2
maxKJ

(
log(Cμmax

√
KJ)C + 1

)

· (log(KM) + log(M − J) + α log(N)) ,

where Cα = C0α. Simplifying the probability term gives

Pr

(

max
i∈TC

||ΦH
T [ΦTC ,K(i−1)+1 · · ·ΦTC ,K(i−1)+K ]|| ≤ 1

)

> 1− 2N−α ≥ 1−N ·N−α = 1−N−α+1.

Following the same procedures, when A is a random Fourier
matrix and for any i ∈ TC , we have E(Zj) = E(ā′

j,T ā
′H
j,i)⊗

b′jb
′H
j = 0, ||Zj || = μ2

maxK
N ||ā′

j,T ||2||ā′
j,i||2 = μ2

maxK
√
J

N = R

and σ2 = μ2
maxKJ
N . The matrix Bernstein inequality implies

Pr

(

max
i∈TC

||ΦH
T [ΦTC ,K(i−1)+1 · · ·ΦTC ,K(i−1)+K ]|| > 1

)

≤ 2(M − J)KM exp

(

− N

2μ2
maxKJ + 2/3μ2

maxK
√
J

)

.

Similarly, if we define a variable α > 1 and let

N ≥ Cαμ
2
maxKJ (log(KM) + log(M − J) + log(N))

≥
(

2μ2
maxKJ +

2

3
μ2
maxK

√
J

)

(log(KM)

+ log(M − J) + α log(N)),

by setting Cα = 8
3α, simplifying the probability gives us

Pr

(

max
i∈TC

||ΦH
T [ΦTC ,K(i−1)+1 · · ·ΦTC ,K(i−1)+K ]|| ≤ 1

)

> 1− 2N−α ≥ 1−N ·N−α = 1−N−α+1.

�

A. Proof of Theorem II.2 for Random Gaussian Dictionary

According to Section III-D, ||ΦH
T ΦT − IT || ≤ 1

2 = δ,
||YTC ||2,∞ ≤ 1

2 = θ and γ =
√
M log(MN/2) + α log(N)

with probability at least 1− 3N−α+1 when N
log2N

≥ Cα,1

μ2
maxKJ(log(N) + log(M − J)). Moreover, in Theorem III.1,

where we construct the dual certificate matrix when
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A is a random Gaussian matrix, we define p =
Φ̃T (Φ̃

H
T Φ̃T )

−1vec(sign(X̃0,T )) ∈ CN×1 and ||ΦH
T ΦT −

IT || ≤ 1
2 leads to ||(Φ̃H

T Φ̃T )
−1|| ≤ 2. So

||p||2 =

√

vec(sign(X̃0,T ))H(Φ̃H
T Φ̃T )−1vec(sign(X̃0,T ))

≤
√

2||vec(sign(X̃0,T ))||22 =
√
2J

which implies τ =
√
2. If we use the same α in Theorem IV.2,

we have β = 1 with probability at least 1−N−α+1 when

N ≥ Cα,2μ
2
maxKJ

(
log(Cμmax

√
KJ)C + 1

)

· (log(MK) + log(M − J) + log(N)) .

Combining the requirement on N and setting Cα =
max{Cα,1, Cα,2} yield

N

log2 N
≥ Cαμ

2
maxKJ

(
log(Cμmax

√
KJ)C + 1

)

· (log(M − J) + log(MK) + log(N)).

(36)

Therefore, the conditions in Theorem IV.1 are satisfied with
probability at least 1− 4Nα+1 when N is as defined in
equation (36). In addition, after substituting the parame-
ters ρ = θ + β

4
√
2γ(1−δ) =

1
2 + 1

2
√
2γ

< 1 and μ =
√
1+δ
1−δ =

√
6

into (34), 2μ+ μ

2
√
2γ(1−ρ) +

βμ

2
√
2γ(1−δ)(1−ρ) = 2

√
6 + 3

√
6√

2γ−1

≤ 5
√
6 = C1 and 2τ

1−ρ +
2βτ

(1−δ)(1−ρ) =
24γ√
2γ−1

≤ 24 = C2.

B. Proof of Theorem II.2 for Random Fourier Dictionary

In the proof of Theorem III.2, we have derived Y =
−N
Q

∑P
p=1 L∗

pLp(Wp−1). Since the sets Γp are disjoint, the
indices of non-zero entries of Lp(Wp−1) for different p are dis-
joint andY = L∗(−N

Q

∑P
p=1 Lp(Wp−1)) = L∗(p). Moreover,

Wp−1 has support T from its definition in (25) which gives us

||p||22 ≤ N2

Q2

P∑

p=1

||Lp(Wp−1)||22 =
N2

Q2

P∑

p=1

||Lp,T (Wp−1)||22

=
N2

Q2

P∑

p=1

vec(Wp−1)
HΦH

p,TΦp,T vec(Wp−1)

≤ N2

Q2

P∑

p=1

||ΦH
p,TΦp,T || · ||Wp−1||2F ≤ N2

Q2

P∑

p=1

3Q

2N
4−p+1J

≤ 2NJ

Q
= 2PJ

because ||ΦH
p,TΦp,T || ≤ 3Q

2N and ||Wp−1||2F ≤ 4−p+1J follow-
ing from Lemma 4.6 in [9] and equation (27) respectively.
Φp,T is Φ constructed with AT and only rows indexed by
Γp are non-zero. Therefore, ||p||2 ≤ √

2PJ and τ =
√
2P with

P ≥ log(4
√
2Jγ)/ log 2 defined in equation (28). In addition,

from Section III-F and Theorem II.1, we have δ = 1
2 , θ = 1

2

and γ =
√

2M log(2KM) + 2M + 1 with probability at least

1− 4N−α+1 when

N ≥ Cα,1μ
2
maxKJ log(4

√
2Jγ)

· (log(M − J) + log(K + 1) + log(N)).

Applying the same α to Theorem IV.2, β = 1 with
probability at least 1−N−α+1 when N ≥ Cα,2
μ2
maxKJ (log(KM) + log(M − J) + log(N)). One can

easily examine that ρ = θ + β

4
√
2γ(1−δ) =

1
2 + 1

2
√
2γ

< 1.

If we setCα = max{Cα,1, Cα,2} and merge the requirements
on N , we obtain

N ≥ Cαμ
2
maxKJ log(4

√
2Jγ)

· (log(M − J) + log(MK) + log(N)). (37)

Thus, the conditions in Theorem IV.1 are satisfied with prob-
ability at least 1− 5N−α+1 when N satisfies (37). More-
over, since μ =

√
1+δ
1−δ , 2μ+ μ

2
√
2γ(1−ρ) +

βμ

2
√
2γ(1−δ)(1−ρ) =

2
√
6 + 3

√
6√

2γ−1
≤ 5

√
6 = C1 and 2τ

1−ρ +
2βτ

(1−δ)(1−ρ) =
24γ

√
P√

2γ−1
≤

24
√
P = C2

√
P with P ≥ log(4

√
2Jγ)/ log 2.

V. NUMERICAL SIMULATIONS

Here we present numerical simulations that illustrate and
support our theoretical results. We set B ∈ CN×K to be the
first K columns of the normalized DFT matrix 1√

N
F ∈ CN×N .

The parameters cj and hj are generated by sampling indepen-
dently from the standard normal distribution, and the J non-zero
columns of the ground truth solutionX0 = [cjhj · · · cMhM ] are
selected uniformly. 40 simulations are run for each setting, based
on which we compute the percentage of successful recovery.
Both the dictionary, A, and the ground truth solution, X0,
including the support and its content, are sampled independently
for each simulation. We solve problems (5) and (11) via CVX
[31], and in the noiseless case if the relative error between
the solution X̂ and the ground truth X0 is smaller than 10−5,
||X̂−X0||F
||X0||F ≤ 10−5, we count it as a successful recovery.

A. The Sufficient Number of Measurement

In the first noiseless simulation, we examine the recovery
rate with respect to the parameters K and J . We fix M = 200
and N = 100 and let K and J range from 1 to 20. The results
are summarized in the phase transition plots of Fig. 1 for the
random Gaussian dictionary and Fig. 2 for the random Fourier
dictionary. The results for the two dictionaries are similar. The
reciprocal nature of the phase transition boundary supports the
linear scaling withKJ in equations (12) and (13). Roughly when
KJ ≤ 60, the recovery success rate is satisfactory.

To further illustrate the linear scaling of the required number
of measurements N with respect to K and J , we fix M = 200
and K = 5, and let N and J range from 30 to 100 and 1 to
20, respectively. The results are recorded in Figs. 3 and 4 for
the random Gaussian and Fourier dictionaries, respectively. The
same simulation but switching the roles of K and J is also
implemented, and the results are shown in Figs. 5 and 6. These
results support the linear scaling of Theorem II.1.
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Fig. 1. The relation between the subspace dimension of the sensing matrix,
K, and the number of committed atoms, J , in terms of the success recovery rate
when A is a random Gaussian matrix.

Fig. 2. The relation between the subspace dimension of the sensing matrix,
K, and the number of committed atoms, J , in terms of the success recovery rate
when A is a random Fourier matrix.

B. The Recovery Error Bound With Noisy Measurement

To test the noisy case, we set M = 200, K = J = 5,
and N = 100, and we let y = L(X0) + n with ||n||2 ≤ η.
Theorem II.2 gives a recovery guarantee of the form ||X̂−
X0||F ≤ C · η for a constant C . Therefore, after dividing both
sides by ||X0||F , setting ||n||2 = η and changing the units to
decibels (dB), we obtain

20 log10

(
||X̂−X0||F

||X0||F

)

≤ 20 log10

( ||n||2
||X0||F

)

+ 20 log10(C). (38)

We call 20 log10(
||X̂−X0||F
||X0||F ) the relative error in dB and

20 log10(
||n||2
||X0||F ) the noise-to-signal ratio in dB. To examine the

Fig. 3. The nearly linear relation between the dimension of the observed signal,
N , and the number of committed atoms, J , in terms of the success recovery rate
when A is a random Gaussian matrix.

Fig. 4. The nearly linear relation between the dimension of the observed signal,
N , and the number of committed atoms, J , in terms of the success recovery rate
when A is a random Fourier matrix.

linear relation between the relative error and the noise-to-signal
ratio in equation (38), we sample the real and complex com-
ponents of the noise vector n independently from a standard
Gaussian distribution and scale ||n||2 to attain different noise-
to-signal ratios. Similar to the previous plots, 40 independent
simulations are run for each noise-to-signal ratio and the range of
the standard deviation and mean (computed before transforming
to dB) of the relative error in dB are recorded in Figs. 7 and
8. The dashed lines show the theoretical error bound from
Theorem II.2 which are drawn by substituting the constants
derived in Section IV-A and IV-B and the system parameters
into equations (14) and (16). The slope of each dashed line
are 1. We observe that when noise-to-signal ratio is smaller
than 0 dB, the relative error scales linearly with respect to the
noise-to-signal ratio with slope 1 for both random Gaussian
and Fourier dictionaries. This confirms that ||X̂−X0||F grows
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Fig. 5. The nearly linear relation between the dimension of the observed signal,
N , and the subspace dimension, K, in terms of the success recovery rate when
A is a random Gaussian matrix.

Fig. 6. The nearly linear relation between the dimension of the observed signal,
N , and the subspace dimension, K, in terms of the success recovery rate when
A is a random Fourier matrix.

linearly with respect to η in Theorem II.2. Moreover, if the noise
dominates the observed signal, solving the problem (11) results
in X̂ = 0 and the relative error becomes 0 dB.

C. Direction of Arrival Estimation

In this section, we apply the proposed signal model to the di-
rection of arrival estimation problem introduced in Section I-D1.
Note that there exits thousands of different subspaces that the
complex calibration could live in. To give a concrete example
and compare to the related work, we adopt the setting from [9]
where the calibration subspace B ∈ CN×K is modeled by the
first K columns of the normalized DFT matrix 1√

N
F ∈ CN×N .

The entries of hj are sampled independently from the standard
normal distribution and hj is normalized to have unit norm.
Moreover, we setM = 181 and discretize the direction of arrival

Fig. 7. The relation between the relative error (dB) and noise-to-signal ratio
(dB) when A is a random Gaussian matrix. The blue horizontal sticks and red
plus sign indicate the range of the standard deviation and the mean of the relative
error (dB) respectively given a specific noise-to-signal ratio (dB). The dashed
line is the theoretical error bound from Theorem II.2.

Fig. 8. The relation between the relative error (dB) and noise-to-signal ratio
(dB) when A is a random Fourier matrix. The blue horizontal sticks and red plus
sign indicate the range of the standard deviation and the mean of the relative
error (dB) respectively given a specific noise-to-signal ratio (dB). The dashed
line is the theoretical error bound from Theorem II.2.

into θj = {0, 1, . . . , 180} degrees. When the distance between
array elements is half of the operating wavelength, we can
obtain A by substituting d = λ

2 and θj into a(θj) defined in
Section I-D1. Furthermore, we set N = 50 and K = J =
5 where the directions of arrival of the 5 sources are
{67, 75, 92, 127, 133} degrees and the signal magnitudes are
sampled independently from the uniform distribution on [0, 1].
The real and imaginary parts of the noise vector are independent
random Gaussian vectors with 0 mean and identity covariance
matrix. SNR = 30 dB. By solving the �2,1 norm minimization
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Fig. 9. The direction of arrival (DOA) estimation. (a) The estimated directions
of arrival by solving the �2,1 norm minimization in (11). (b) The result by
applying the Sparselift method using �1 minimization proposed in [9].

problem in (11), the index of the nonzero column in the solution
X̂ indicates the direction of arrival and the norm of the nonzero
column indicates the signal strength. The result is recorded in
Fig. 9(a). As a comparison, we also apply the Sparselift method
proposed in [9] to this problem, which assumes Dj for all j
are the same and solves an �1 norm minimization problem. The
result is recorded in Fig. 9(b).

D. Single Molecule Imaging

Furthermore, we apply the proposed signal model to the single
molecule imaging described in Section I-D2. All data comes
from the Single-Molecule Localization Microscopy grand chal-
lenge organized by ISBI [32] which contains 12,000 low-
resolution frames. Each low-resolution frame is 64 pixel ×
64 pixel with pixel size 100 nm × 100 nm, so that N = 64×
64 = 4096. A typical, observed frame is shown in Fig. 10(a). Su-
perimposing all the observed frames leads to the low-resolution
structure in Fig. 10(b). The target of this experiment is to recover
the high resolution image of size 320 pixel × 320 pixel, which
implies that M = 320× 320 = 102400, whose pixel is of size
20 nm × 20 nm. In addition, according to the statistic of the
dataset, the number of activated fluorophores in each frame is
less or equal to J = 17 and we use the Gaussian point spread

Fig. 10. The single molecule imaging. (a) The size of observed frame is 64
pixel × 64 pixel and each pixel is of size 100 nm × 100 nm. (b) Superposition of
all observed frames. (d) Superposition of all recovered super-resolution images.
The recovered image is of size 320 pixel × 320 pixel with pixel size 20 nm ×
20 nm.

functions to approximate the point spread functions of the micro-
scope. By implementing the SVD on the Gaussian point spread
functions with different variances, we obtain aK = 3 dimension
subspace that point spread functions live in. Then by solving
an �2,1 norm regularized least square minimization problem on
each low-resolution frame, we get totally 12,000 high resolution
images and superimposing all the high resolution images results
in the super-resolution output recorded in Fig. 10(c).

VI. CONCLUSION

In this paper, we introduce the generalized sparse recovery
and blind demodulation model and achieve sparse recovery and
blind demodulation simultaneously. Under the assumption that
the modulating waveforms live in a known common subspace,
we employ the lifting technique and recast this problem as
the recovery of a column-wise sparse matrix from structured
linear measurements. In this framework, we accomplish sparse
recovery and blind demodulation simultaneously by minimizing
the induced atomic norm, which in this problem corresponds to
�2,1 norm minimization. In the noiseless case, we derive near
optimal sampling complexity that is proportional to the number
of degrees of freedom, and in the noisy case we bound the
recovery error of the structured matrix. Numerical simulations
support our theoretical results. In addition to extending the class
of dictionaries we have considered, an interesting future direc-
tion would be to relax the constraint that each Dj is diagonal
while preserving the low-dimensional subspace assumption.
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