1884

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Support Recovery for Sparse Signals With Unknown
Non-Stationary Modulation
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Abstract—The problem of estimating a sparse signal from low
dimensional noisy observations arises in many applications, includ-
ing super resolution, signal deconvolution, and radar imaging. In
this paper, we consider a sparse signal model with non-stationary
modulations, in which each dictionary atom contributing to the
observations undergoes an unknown, distinct modulation. By ap-
plying the lifting technique, under the assumption that the mod-
ulating signals live in a common subspace, we recast this sparse
recovery and non-stationary blind demodulation problem as the
recovery of a column-wise sparse matrix from structured linear
observations, and propose to solve it via block £; -norm regularized
quadratic minimization. Due to observation noise, the sparse signal
and modulation process cannot be recovered exactly. Instead, we
aim to recover the sparse support of the ground truth signal and
bound the recovery errors of the signal’s non-zero components
and the modulation process. In particular, we derive sufficient
conditions on the sample complexity and regularization parameter
for exact support recovery and bound the recovery error on the
support. Numerical simulations verify and support our theoretical
findings, and we demonstrate the effectiveness of our model in the
application of single molecule imaging.

Index Terms—Support recovery, blind demodulation, sparse
matrix recovery, group lasso, compressive sensing.

I. INTRODUCTION
A. Overview

HE problem of recovering a high dimensional sparse signal

from its low dimension observations using a fixed sensing
mechanism arises naturally in a wide range of applications,
including radar autofocus [2], magnetic resonance imaging [3],
and video acquisition [4]. Typically, the system receives a low
dimensional signaly = DAc € CV,wherec € CM (M > N)
is an unknown high dimensional signal, and D and A are
known sensing matrices. Although the sensing process is under-
determined, one can solve for ¢ by leveraging its sparsity; this
sparse recovery problem has been studied extensively by the
compressive sensing community [S]-[7].
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When D € CV*V is a diagonal matrix containing a sam-
pled carrier signal along its diagonal, it describes a modula-
tion process, and thus recovery with unknown diagonal D is
sometimes referred to as simultaneous sparse recovery and blind
demodulation [8]. Scenarios where D is unknown arise in certain
self-calibration [9] and blind deconvolution problems [10].

In this paper, we further generalize this model, allowing each
atom in the dictionary matrix A to undergo a distinct modulation
process, rather than multiplication by the same matrix D. We
refer to this generalized scenario as non-stationary modulation.
Moreover, we suppose that the observation is contaminated with
random noise. Although we no longer expect to recover the
sparse vector ¢ and modulating signals (which we denote as D ;)
exactly due to the existence of noise, we focus on recovering
the sparse support of ¢ and on bounding the recovery error
of ¢ and D;. By employing the lifting technique and under
the assumption that the modulating signals live in a known,
common subspace, we recast our problem as the recovery of a
column-wise sparse matrix from structured linear observations.
Under this formulation, there are no unknown parameters in the
lifted linear operator. We solve the support recovery problem
by solving a block £;-norm (/5 ;-norm) regularized quadratic
minimization problem, which is also known as the group lasso
in the statistics literature [11], [12]. The generalized model
encompasses a wide range of applications, including direction of
arrival (DOA) estimation for an antenna array with DOA sensi-
tive channel responses [13], frequency estimation with damping
in nuclear magnetic resonance spectroscopy [14], and CDMA
communication with a spreading sequence sensitive channel [9].
To give a concrete example, we apply the proposed model to
single molecule imaging [15] in Section IV-D.

B. Setup and Notation

Throughout the paper, we represent matrices, vectors, and
scalars as bold uppercase, X, bold lower case, , and non-bold
letters, z, respectively. We use the symbol C' to denote numerical
constants that might vary from line to line. Given a support set 7',
the notation X7 represents the restriction of X to the columns
indexed by 7', and the notation a represents the restriction of
« to the entries indexed by T". Moreover, we use || - || to denote
the spectral norm, which returns the maximum singular value
of a matrix, and || - || to denote the Frobenius norm. For a
matrix X = [z, X2, ..., xy]| € CE*M we define ||X]|2,1 =
2?4:1 ||z ;]2 and ||X]|2,00 = max; ||2;||2. In addition, later in
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the paper we will have the vectorized subgradient, s € CKMx1,
of a function with respect to its matrix input X € CK*M and
we define |[s||2,~c = max; ||s;||2 where s; is the subgradient
with respect to x;.

C. Problem Formulation

In this paper, we consider the following generalized signal
model with an unknown coefficient vector and non-stationary
modulation process. Specifically, the observations consist of a
contaminated composite signal

M
y=Y ¢;Dja;+neCV. (L1)

J=1

Here ¢; € C is an unknown scalar, D; € C*¥ is an unknown
modulation matrix which is non-stationary as it depends on j,
a; is a dictionary atom coming from a dictionary matrix A =
[a1,as, ..., ay] € CV*M andn € CNV*! is additive random
Gaussian noise whose real and imaginary entries follow the i.i.d
Gaussian distribution with mean 0 and variance 2.

Since there are more unknown parameters than the number of
observations in the model (I.1), to make the recovery problem
well-posed, we assume that at most J (< M) of the coefficients
c; are non-zero and that the diagonal modulation matrices, D,
live in a common K -dimension subspace

Dj = diag(th) (12)

where B € CV*K (N > K) is a known basis for the subspace
with orthonormal columns, and h; € CE>1 gre unknown coef-
ficient vectors. Similar subspace assumptions can be found in the
deconvolution and demixing literature [16], [17]. Recovering c;
and h; from y is a bilinear inverse problem [18], [19].

To combat the difficulties resulting from the bilinearity, we
apply the lifting trick [8], [16], [20], which collects the unknown
parameters into a matrix X = [c1hy coho emhy] €
CHK>M By using Proposition 1 in [21] we can show that,
when n = 0, the observation model (I.1) takes the following
equivalent form:

y(n) =b"Xal ,n=1,...,N. (L3)

where b/, and a!, are the n-th column of B and A7 respec-
tively. We write (I.3) succinctly as y = £(X) with £ being a
properly defined linear operator. And the adjoint of the linear
operator £ is £*(y) = S, yibja;. The matrix X incorpo-
rates the unknown sparse signal and modulation process with at
most .J (< M) non-zero columns. The support recovery problem
we study in this paper aims to determine the indices, 7, of the
non-zero columns in X from the observation vector y. We also
aim to bound the recovery error of X in terms of the /5 o-norm.
If we assume there is no trivial null modulation, namely all
D; # 0, finding the indices of the non-zero columns of X is
equivalent torecovering the support of ¢. Moreover, note that due
to the scaling ambiguity between c; and h;, the recovery error
bound is expressed with respect to their multiplication c;h ;.

A natural way to recover the ground truth X from y is to
exploit its sparse property and solve the following /5 ;-norm
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regularized quadratic minimization problem

o1
minimize ~ ||y — £(X)|[3 + M||X]2.1-

1.4
XcCKxM 2 (14)
Alternatively, we can write (I.4) equivalently as
1 M
o 2
minimize -y — @ - vec(X)|3 + Ag @il (15)
Here £(X) = ® - vec(X) with
Q= [¢, Pra D1 bl
c CNXK]\/[ (16)

and ¢, ; = diag(b;)a; € CN*1 where b; is the i-th column
of B. Moreover, we denote the set containing the indices of the
non-zero columns of the ground-truth matrix Xg as 7' := T'(X)
with |T'| = J and its complement as 7 . Due to the special block
structure of ®, when using the subscript notation ®, we refer
to the N x KJ sub-matrix of ® containing the K(j — 1) + 1
to K(j — 1) + K-th columns for all j € T

D. Main Contributions

Our contributions are twofold. First, we propose to apply
l9 1-norm regularized quadratic minimization to recover the
support of the generalized signal model in (I.1). Second, we
derive sufficient conditions under which, with overwhelming
probability, the support of the recovered signal is a subset
of the support of the ground truth. More precisely, we show
that the required number of observations, IV, is proportional to
the number of degrees of freedom, O(JK), up to logarithmic
factors. Moreover, the regularization parameter, A\, should be
chosen to be proportional to the o of the noise. We also bound
the error in recovering the non-zero columns of the ground truth
as measured in the /5 ,-norm. With an additional assumption
on the ground truth signal, all conditions lead to exact support
recovery.

E. Related Work

The /5 ;-norm constrained quadratic minimization problem,
also known as the group lasso in statistics literature [11], [12],
[22], has been widely studied. However, under our particular
signal model (I.1), the linear operator ® contains randomness
and has a special block structure as presented in (I.6), which
distinguishes our work from other group lasso research. For
example, [12] assumes each block of ®, [¢1 j,..., 0K j], to
be orthonormal. [23] considers the adaptive group lasso and
derives sufficient support recovery conditions using the block
coherence of a deterministic ®. [24] allows varying block sizes
but still assumes a deterministic ®. [25] assumes that ® has
independent sub-exponential rows which is not consistent with
our formulation, and they bound the recovery error in terms of
ly-norm instead of £ -norm as in our theorem. Moreover, [26],
[27] provide a general recovery analysis for regression problems
regularized with partly smooth functions relative to a manifold
defined in [26], which encompasses the /5 ;-norm. However,
the precise bounds on the regularization parameter and sample
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complexity for exact support recovery with ® defined in (1.6) are
not derived, and that work bounds the error in terms of /5-norm
instead of the {5 ,,-norm.

As for the signal model itself, the model we study is closely
related to certain works in self-calibration and blind deconvolu-
tion [9], [10]. The work in [17] considers a similar model except
that the dictionary therein consists of all sampled sinusoids over
a continuous frequency range, and its modulating waveforms,
D, are all the same. As an extension, [14] allows non-stationary
modulating waveforms but still concerns the sinusoid dictio-
nary. The fact that [14] considers a more general signal model
than [17] actually facilitates the derivation of a near optimal
result on the sufficient sample complexity. Our work in this
paper similarly benefits from expanding the signal model of [9].
Specifically, our model fits into the self-calibration problem [9]
when all D; are the same. However, in the noisy case, [9] does
not aim to recover the support and only bounds the error in
terms of the /5-norm. [16] generalizes the model in [9] and can
be interpreted as the self-calibration with multiple sensors, while
allowing varying calibration parameters. However, [16] studies
a constrained nuclear norm minimization problem with bounded
noise and requires knowing the number of sensors. Additional
related models for different applications, all requiring the same
modulation matrix, are available in [10], [28]-[30].

‘We have also previously studied the sparse recovery and blind
demodulation problem [8], [21] and numerically compared the
support recovery performance of the SparseLift method [9] and
the /3 ;-norm minimization method for direction of arrival esti-
mation in [8]. In those works, however, we assume either zero or
bounded additive noise, whereas we consider random Gaussian
noise in this paper. Moreover, in [8], [21] we solve a constrained
£,1-norm minimization problem due to the consideration of
bounded noise. The regularized formulation used in this paper
is a natural choice when considering unbounded noise [31] and
is more convenient for support recovery analysis. Finally, in
those papers, we derive the recovery error bound in terms of the
{5-norm and do not study the question of exact support recovery
when noise is involved.

The rest of the paper is organized as follows. In Section II,
we present our main theorem regarding the support recovery
problem. The detailed proof of the main theorem is shown in
Section III. Several simulations and an experiment are conducted
in Section IV to demonstrate the important scaling relationships
and the effectiveness of our model in practical application.
Finally, we conclude this paper in Section V.

II. MAIN RESULT

In this section, we present our main theorem, which presents
the support recovery conditions and recovery error bound for
solving (I.4) (or equivalently (I.5)). In this result, we assume
that the dictionary matrix A is a random Gaussian matrix, by
which we mean a matrix whose entries follow the i.i.d standard
normal distribution.

Theorem II.1: Consider the observation model in equation
(L.1), assume that A € RV*M (N < M) is a random Gaussian
matrix, at most J (< M) coefficients c¢;j are nonzero, and the
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real and imaginary parts of each entry of the noise vector n €
CN>*1 follow the i.i.d Gaussian distribution with 0 mean and o
variance. Suppose also that each modulation matrix D satisfies
the subspace constraint (I.2), where BB = I.If the number
of observations

N > Coifignax T K [log(M — J) +1log*(N)] (LD
and the regularization parameter
A2 \[Ca 20?0 K log(M — J) +1og(N)]  (112)

where C,, 1 and C,, 2 are constants that grow linearly with ov > 1
and the coherence parameter

Hmax = HZH’;X Vv N‘Bij|a

then the following properties hold with probability at least 1 —
o) ( N—a+1 ):
1) Problem (I.5) has a unique solution X € CK*M with its
support, the set of indices of the non-zero columns in
X, contained within the support 1" of the ground truth
solution, Xg.
2) The recovery error between the solution, X, and the
ground truth, X, satisfies

IX = Xoll2,00 < V/Ca02i2, 1 JK [log(J) + log(N)]
+ 4V I\

where C', is a constant that grows linearly with «. If in
addition the non-zero columns of X are bounded below

min|[zo,;||2 > /Cao?piF0J K log(J) + log(N)]
J

(IL3)

+ 4V, (11.4)

then X and X, have exactly the same support which
implies exact support recovery.

According to (I1.3), we can derive that for any &; = ¢; h j and
To,; = Co,;h0,; which are the j-th columns of the solution X
and the ground truth X respectively, ||&;D; — co ;Do j||r =
||éjﬁj — CQJhoJHQ < \/Caa2;/,,2,,axJK[log(J) + log(N)] + 4TI
Moreover, since the columns of B are orthonormal, piax €
[1,vN]. Given the system parameters and a large enough NN,
(II.1) is satisfied when 1 < fiax §\/c .In

addition, since we solve the column-wise sparse matrix support
recovery problem via the group lasso and bound the recovery
error in terms of {5 -norm, Theorem II.1 may be of interest
outside the support recovery problem and shed light on the
performance of the group lasso with random block structured
linear operators.

N
o,1 K J[log(M—J)+logZ (N)]

III. PROOF OF THEOREM II.1

We present proof of the main theorem in this section. We first
derive the optimality and uniqueness conditions of the solution
to (I.5) and then apply the primal-dual witness method [32]
to construct a solution and find the conditions regarding the
regularization parameter A and number of observations N such
that the optimality and uniqueness conditions are satisfied.
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A. Optimality and Uniqueness Conditions

Lemma III.1:
1) A matrix X € CK*M {5 an optimal solution to (L.5) if
S1
and only if there exists a subgradient vectors = | © | €
SMm

vec(d]|X]]2.1), such that

S1

7P . vec(X) — ®Ty + -
Sm

which is equivalent to

1P . (vec(X) - vec(Xo)) ~®ntAs=0

(I1L1)
where s; € CX is the subgradient of || - ||2 at &; defined
as

e if |[2; 0;
s, =  Teill iffjl; # (II1.2)
=il < 1) if|fdillo = 0.

2) Ifthe subgradient vectors of the optimal solution X satisfy
||si|]2 < 1foralli ¢ T'(X), then any optimal solution, X,
to (I.5) satisfies &; = 0 for all ¢ ¢ T(X)

3) When conditions in (2) are satisfied, if in addition

@;I(X)éT(X) € CKJ*KJ is invertible, then X is the
unique solution to (L.5).

Proof:

1) Since problem (I.5) is convex, any optimal solution, X,
must satisfy the first-order condition (IIL.1).

2) We first argue that when A is fixed, for two arbitrary
different optimal solutions X; and X, to (I.5), we have
® - vec(X;) = ® - vec(Xy). This can be proved by con-
tradiction as follows.

Assume P - vec(Xl) #®- vec(X) for two arbitrary op-
tlmal solutions X1 =+ X2 to (I.5). By constructing X3 =
5 (X1 + Xg), a little linear algebra yields

1 N - 1 N
5”1/ — L(X3)[13 + Al Xsll2,1 < §||y — L(X)13
+ N[ X210

for k € {1,2}, due to the strict convexity of the func-
tion f(x) = 1|y — 113”2 and the optimality of X, and
X2 Thus, X1 and X2 are not optimal. By contradic-
tion, ® - vec(X;) = ® - vec(Xy). Then from (IIL1), we
can derive that s for different optimal solutions are the
same. Therefore, assume we have an optimal solution X
such that ||s;||2 < 1 for all i ¢ T(X), any other optimal
solution, X, would have subgradient vectors ||3;||o =
||sil]2 < 1foralli ¢ T(X) whichimplies &; = 0 accord-
ing to (I11.2).
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3) If conditions in (2) are satisfied and ®
CK JxKJ

T(X)(I)T(X) <
is invertible, the solution of the support re-
stricted problem 5[y — @, g - vee(X)[[3 + A[|X] 2,1 is
unique by solving the restricted first order condition.

|

B. Primal-Dual Witness Construction

The method we apply to find the conditions regarding the
regularization parameter A and number of observations /N for
satisfying optimality and uniqueness conditions is the primal-
dual witness method [32] which constructs the solution matrix,
X, and subgradient vector, s, through the following steps.

1) Conditioned on ¢¥ &, € CEI*EJ iginvertible, we first

obtain X7 € CK*/ by solving the support restricted
problem

X7 =arg min
T g KR«

1
{3y ®rvee 012

+/\||X|271}. (II1.3)
The solution X is unique under the invertibility condition
on 'I>¥'I>T. And we set XTc € CEx(M=J) — 0, Thus, X
has support contained within the support 7" of the ground
truth solution Xj.

2) We calculate the subgradient vector s € C’X based on
XT, where s7 is a sub-vector of s consisting of s; for all
jeT.

3) We solve for a vector spc € C satisfying (III.1)
and check whether ||s;||o < 1foralli ¢ T.

If 2@ is invertible and ||s;||2 < 1 for all i € T, X
constructed via the primal-dual witness method is the unique
optimal solution to (I.5) with its support contained within the
support of the ground truth solution Xy. And note that the
primal-dual witness construction succeeds only if the problem
(1.5) has a unique solution whose support is contained within the
support of the ground truth. The challenges of the construction
lie in characterizing the regularization parameter A and the
number of observations N such that ||s;||o < 1 foralli € TC.

To simplify the notation, without loss of generality, we assume
the support of Xy is the first J columns and 7' = {1,2,...,J}
throughout the proof. Therefore, rewriting (III.1) into matrix
multiplication form results in

(M-J)K

e, M@,
ol @y ®H B0

ST} —0.
Src

When ‘I>¥ ® 1 is invertible, from (II1.4) we can derive that

AX) = Vec(XT)fvec(X()’T) = (®HPp)! (<I>¥n7/\sT)

0

vec(Xp) — VeC(X(),T)]

o7

n—+ A\
oL

(I1L.4)

and

(®cn — @l ®rA(X)). (I1L5)

Spc =

> =
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Substituting the full expression of A(X) into (IIL.5) results in

n

sre = Bl (Iy — Br(@f 0p) "0l

+ ®H r(®E ) sy (11L.6)

C. Important Lemmas

In this section, we introduce some important lemmas
and propositions that will be applied during the proof of
Theorem II.1. First is the isometry bound for the linear operator
L defined in (I.3) (and ® defined in (I1.6)) which can be found
in Lemma 4.3 in [9].

Lemma I11.2: [9, Lemma 4.3] (Isometry) For the linear op-
erator £ defined in (1.3) with BEB = I;x and § > 0,

|@F @1 — Ir|| = |LhLr —Ip|| < 6

with probability at least 1 — N~**! where Iz is the identity
operator on the support 7" such that I (X) = X, if A is a
random Gaussian matrix and N > Cyp?, KJmax
{log(N)/6%,1og®(N)/5}. Here C,, is a constant that grows
linearly with o > 1.

According to Lemma A.12 in [33], if || @&, — 17| <
§ <1, ®X & isinvertible and ||(@F &) || < (1 - 6) L. In
addition, we have the following quadratic Gaussian tail bound
proposition, developed from Theorem 1 in [34].

Proposition 1: Let H € CK*N and ¥ = HYH. Let a €
C" whose real and imaginary entries follow the i.i.d normal
distribution with 0 mean and o2 variance. For all o > 0,

Pr <|Ha|§ > o? {2 Tr () 4 24/2Tr (ZH)a + 2||2||aD

<e “

Ifa e RY only contains the real part, for all a > 0,

Pr <|Ha||§ > o? {Tr (2) +2¢/Tr () + 2|2||a])

<e .

Proof: When H and a are a complex matrix and vector, we
can write H = Hir +iH; and a = ag + ia; where Hg, Hy,
apr and a; are all real and the entries of ar and a; are i.i.d
Gaussian random variables with 0 mean and o2 variance. We
then have

[Hal = ||(Hg + iH/)(ar +ia;)|3
= H(HRG'R — H]a[) + i(HRa] + HIO/R)Hg
= [[Hrar — Hya;|3 + |[Hra; + Hrag|3

2
- HR —HI ar
N H[ HR ay

2

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

H -H
DefineH, = | M andx, = HI'H,. X, has the form
H, Hy
. _[HE HI|[H: -H
° |-Hf H}| |H; Hg

| HLHR;+HTH, -HLH,+HTHg
-HJH +HLH, HJH;+HLHp

-

H,

—H,

1.7
H, (IIL.7)

where we define Hy = HEHp + HYH; and Hy = —HT
Hp + HLH;. Applying Theorem 1 in [34], we get

Pr(IHal} > o |1Tr (£) + 2/T0 (%)a + 20| o]

<e ™
If we further define
Y =H"H = (Hp +iH;)" (Hg +iH;)
= (Hy — iH])(Hp + iH;)
= (HpHg + H/H;) +i(-H]Hg + HLH;)
=H,; +iHo, (111.8)

by comparing (III.7) and (II.8), one can check that Tr
(3,) =2Tr (H;) = 2Tr (X) since Tr (Hy) = 0, Tr (22) =
1217 = 2(/Hul3 + |[Hz|[7) = 2//Z[|3 = 2Tr (£?), and

H, —-H,
T
2 1
- H1 —H2 1
= max
z]|| Hy H, | |z2]|],
_:E2 2
= max \/\|H1$1*H2m2||§+||H2371+H11172||§
1 .
_w2- 2

= max \/||(H1x1 — H2.’B2) + i(ngl + H1m2)||%
[la1[|5+[|z2]3=1

VI + Hy) () + i)

= max
[[@1]]3+]z2][3=1

= max (|2

[[@1]]3+(e2][3=1

(@1 +iza)||2 = [[3]]

where ; and 2 € R" since X, is a real matrix, so that the
vector corresponding to its largest singular value is also real.
Therefore, we have

Pr <||Ha|§ > o? {2 Tr () 4 24/2Tr (ZHa + 2||2||aD

<e .
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Similarly, when a only contains the real part

Hg
Hal|?2 = a
|Half} |HH] "

32 still follows (II1.8) and
3, = HLHz + H H/] = H;.

2

)

2

In this case, Tr (X,)
>, is real, we have

1Bo]| = max /|[Hiz[3
lll[2=1,2€RN

< max \/||H1$||§+HH2$H%
[lz||l2=1,2eRN

= Tr (), Tr (X2) < Tr (X?) and since

=  max ||[Hiz + iHox||3

llzl[2=1,2cRN

< max A JII(H +iHy)z)3

[lz|l2=1 mGCN

= max

|[2lla=1,z6CN %l = I
2—1,

So we have, for a > 0,

Tr () + 24/ Tr (Z%)a + 2[|Z]|a > Tr ()
+ 24/ Tr (22)a + 2|| 20|

which results in

Pr <|Ha||§ > o? [Tr (2) +24/Tr () + 2|2||aD

<e “

|

Proposition 2: Let H € CEX*N and ¥ = HYH. Let a €

C" whose real and imaginary entries follow the i.i.d normal
distribution with 0 mean and o2 variance. For all o > 1,

Pr (||Hall3 > o* [2+ (2V2 + 2)a| Tr (%)) < e
Ifa e RY only contains the real part, for all o > 1,
Pr(|[Hal3 > 0® (1 4+ 4a) Tr (%)) < e *.

Proof: Since ¥ is a positive semi-definite and hermi-
tian matrix, all its eigenvalues, \;, are non-negative. Thus,
Tr (2%) = YL A < (DL A)? =Tr (£)2 and [[B) =
Amax < vazl Ai = Tr (X). As aresult, for o > 1,

2 [2 +(2V2+ 2)a] Tr ()

2 [2Tr (2) +24/2Tr (2 + 2|E|a}

and
o (1+4a) Tr ()
2 {Tr (2) +2y/Tr (ZHa + 2|§:||a} .
Then applying Proposition 1 yields Proposition 2. |
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D. Bounding ||src||2,00

Recalling (I11.6), to prove that ||s;||s < 1foralli € T which
is equivalent to ||stc||2,00 < 1, where the {2 o -norm of the
subgradient vector is defined in Section I-B, we only need to
show that for a constant vy € (0, 1),

|@%c (Iy — @7 (BF®7)" 1¢H)

o2

A
and
Y
57|2,00 < 5
Then by the triangle inequality, ||s7c ||2,00 < v < 1.

Lemma I11.3: Conditioned on @7@ @ being invertible, we
have

|| @7 e (PF ®r) !

_ n v
|®@Fc (Iy — ®7(®7 D7) ' BF) Tl <5

for oy € (0, 1) with probability at least 1 — N~**! when

\ > \/Oag2ﬂﬁlaxK[log(M -

J) +log(N)]

2
and
N > 10log(M — J) + 10alog(N)

where C, is a constant that grows linearly with o > 1.
Proof: ||®Ec (In — ®7(®F ®7) 1) 2|50 <7 for
v € (0,1) is equivalent to

)\2,}/2

max 1@ (In — @ (@7 ®7) ' ®F) n|f3 <
1€

where ®; (i € T) is the sub-matrix containing the [K (i —
1) +1] to [K(i — 1)+ K]-th columns of ®. If we define
H; = 7 (Iy — &7(®7 ®7) '®%), the projection matrix
P=(Iy — &7 (@2 ®7)"'®1), and = = HH;, we get

Tr (%) = [|Hil[7 = |2} - P} = ||B” diag(a;)" - P||%
= ||P diag(a;)B|%

= ||P [diag(b;)a;, diag(bs2)a;, . . ., diag(bx)a;] ||2F

K K M2
= Y IIP diag(bi)aill3 < Y 1P| 222 a1

k=1 k=1

2

< el
Since n is the additive Gaussian noise vector, applying Propo-
sition 2 gives us, for a; > 1

ill2-

)\272
Pr (||Hin|§ >~ >0 [2 (2V2+ 2)041} Tr (2))

<e (I11.9)
in which we need
> 2N
8 (8 8 Tr (X
> \/ + ( ‘ft Jau] Tr () (IIL.10)
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To control the term [|a;||3, we define an event E =
{max;crc ||a;]|3 < 2N}. Because each entry of a; € R fol-
lows the standard normal distribution, ||a;||3 is a x4 random
variable. According to Lemma 1 in [35], for a.y > 0

Pr(||a;i||3 > 2v/aaN + 20 + N) < e792,
By solving 2N > 2y/asN + 2as + N, we require g <

(2/3-2)2 N ~ 0.1340N. So for 0 < ap < X,

we have
Pr(lla,3 > 2V) < e,

Taking the union over all i € T gives us
Pr(EY) < (M — J)e 2

which is meaningful when log(M — J) < ag < %.
In addition, if we define another event
2.2 .. .
{max;cre ||H;n||3 > AT‘*}, conditioned on E and with

F =

216 + (16v2 + 16)as ] 2. K
/\>\/J[ + (16V2 + 16)on ] pfha (IL11)

7 ’
by taking the union of (II1.9) over all i € T, we obtain
Pr(F | E) < (M — J)e “.
Therefore,
Pr(F | E) +Pr(EC) < (M — J)e ™ + (M — J)e
=2N > < Nt

for a > 1 by setting 1 = g = log(M — J) + alog(N). Sub-
stituting «v; into (II.11) and some simplification yields

. \/ Ca0* s K[log(M — J) +log(N)]
> =

where C, = (161/2 + 16)a+ 16 is a constant that grows
linearly with « > 1. Moreover, log(M —J)<as=
log(M — J) + alog(N) < & requires N > 10log(M —
J) + 10alog(N). Finally, the law of probability implies

)\272)
4

Pr(max || @ (Iy — &7 (®H &7) '@ ) n|| <

i€TC
=Pr(FY) >Pr(FCNE)=1— [Pr(EY) + Pr(F N E)]
>1—[Pr(EC) +Pr(F|E)] >1— N ot

[ |
Lemma 111.4: Conditioned on @1’1’ @& being invertible and
||[(@H®7)~1|| < 2, we have

|| @7 (HBr) 87|20 <

o2

for v € (0, 1) with probability at least 1 — N~* when
2
:u’maxKJ
N > CQT[log(M — J) +log(N)],

where C,, is a constant that grows linearly with o > 1.
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Proof: ||®%c @7 (@Y ®7) sr|l200 <2 for 7€ (0,1)
can be reformulated as

max || @ @1 (®7 Br) 57l

€T
2
al diag(by)?
af! diag(bs)"
= max v
i€T?
H 3 H
a; dlag(bK) 2
= max |[vf [diag(b)a;, diag(bs)a;, . . ., diag(br )a]||3
v diag(b;) ?
v diag(b) 2
— max ) a; :maX||Hai||g < T
i€TC : €T 4
v diag(bx)

2
where we define v = ®7(®2 @) 'sp € CN and

v diag(b,)
o | v el |

vl diag(br) |
Therefore, for ¥ = H¥ H, we have

v diag(b;)
v diag(bs)

2
S .umaXK

T (%) e[

v diag(bx)

2080 KT
N

IN

(1IL.12)

since
vlf5 = [v™v| = |s7 (RF ®1) " RF B (DT ®r) 57|
= s (@7 ®7) 'sr| < [|(®F @) '] - [[s7]l5 < 2.

Because a; € RY fori e TC is independent of ®; and a;’s
entries follow the i.i.d standard normal distribution, Proposition
2 implies, for a;; > 1

Pr([[Ha;|3 > (1+40q) Tr (2)) < e .
To ensure that % > (14 4ay) Tr (), we need

(8 + 3201 )2, K J

N > 2

(I11.13)
By taking the union over all i € T, we get
2

Pr <max ||<I>iH<I>T(q>¥q>T)—1sT||§V> < (M — J)e
i€TC 4

:Nﬁa
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ifweseta; = log(M — J) + alog(NV) for « > 1. Substituting
the full expression of v into (II.13) and some simplification
yields

KJ

N >C, “ma; log(M — J) + log(N)]

where C,, = 32« + 8 is a constant that grows linearly with o >
1. |

E. Bounding ||XT — Xo.7|2,00

When the support of the unique optimal solution X is con-
tained within the support of the ground truth solution X, the
recovery error ||X — Xolla.. = ||X7 — Xo THQ ~- And be-
cause the optimal solution on the support, X7 € CE*/ (we
assume X # Xo,r, otherwise ||Xo 1 — XT||27Oo =0) is at-
tained by solving the support-restricted regularized least square
problem (II1.3) whose objective function f(vec(X)) = ||y —
&1 - vec(X)||3 + A||X]|2,1 is strongly convex, since %||y -
& - vec(X)||3 is strongly convex conditioned on ®4 @& being
positive definite and A||X]||2 1 is convex, by the property of the
strongly convex function, we have

f(vee(X1)) > f(vec(Xor)) + Re {g(vec(Xo,r))"”
vee(Xp) — VeC(XO,T)] } + %HXT — Xo7|l%

where g(vec(Xo 1)) is the subgradient of f (vec(XO r)). In ad-
dition, if wesetd = 3 inLemmallL.2, we have ||(®4 &1) 1| <

2 according to Lemma A.12 in [33], which implies <I>T b >

%I. As aresult, m = % Then by the Holder inequality,

fvee(X1)) > f(vee(Xo,r)) + Re {g(vee(Xo,r))"”
vee(Xr) —vee(Xo )] }%HXT ~ Xorl2

> f(vee(Xo,r)) — Hg(VeC(Xo 7))|l2,00°
X7 — Xorll21 + —

> f(vee(Xo,7)) — [[g(vec(Xo,1))||2,00°

||XT — Xo,7|l%

o~ 1 ”
Xr—-X +—=[|X
[ X7 0.7/[2,1 4\/jH T

= Xo.7/l2.00 [ X7 = Xo 7|21

where the {5 ..-norm of the subgradient vector is defined in
Section I-B, and the third inequality comes from the fact that

X% | . :
T 2 . Because if |[|X — L. one can check
XXl = V7 X% = L.

that ||X||2,. < V'L and ||X||2.1 < V/LJ where the equality is
achieved when the 2-norm of all .J columns are the same.

Therefore, since XT # X, and XT is the optimal solution,
fvee(Xr)) < f(vec(Xo. 1)), (IL14) yields

(I 14)

1K1 — Xo.7|l2,00 < 4V J||g(vee(Xo,))l]2.
= 4V J||®4 [®rvec(Xo 1) —
= 4\/j|| — ‘I>¥n + )\SO}T”Q’;X;

Y] + Aso.7|[2,00

<4V (125 12,00 + [|AS0,7]]2,50)

= 4V T (||®4n||2.00 + N (IIL.15)

where we have used y=®vec(Xo r)+n and ||so.7||2,00 =1.
Now we turn to bound the term ||®% n||, ., applying the fol-
lowing lemma.

Lemma 111.5: Conditioned on <I>¥ @1 being invertible, we
have

187 72,00 < V/Ca0?hi,0x K [l0g () +log(N)]

with probability at least 1 — N~%*! when

(111.16)

N > 10log(J) + 10clog(N)

where C, is a constant that grows linearly with o > 1.

Proof: If we define ®; (j € T) to be the [K(j — 1)+ 1]
o [K(j — 1) + K]-th columns of ®, we have ||®Xn||, . =
maxjer ||<I’an||2 For an arbitrary j € 7', let ¥ = <I>j<I’jH,

Tr (X) = Tr (®,;&)) = Tr (2] ®))

=12;I% = || [diag(b1)ay, ..., diag(bx)a] [

Mmax

—Zudlag b)aj|l3 <

lla;lf3-
If we define an event E = {maxcr ||a;||3 < 2N}, in the proof
of Lemma II1.3 we have shown that for 0 < oy < %
Pr(lla;|3 > 2N) <e .
Taking the union over all 7 € T results in
Pr(EC) < Je ™

which is meaningful whenlog(.J) < oy < 45 Therefore, condi-
tioned on E, Tr (X) < 22 K. Applymg Proposmon 2 gives
us, for ag > 1

Pr(|[ @I nlf} > [44 (4V2 + 4)az| ol K | E) < e,
Taking the union over all j € T yields
Pr(max |/ n} > [4+ (4V2+ 4)a2] 022, K | E)
< Jeo, (IIL.17)

Therefore,
Pr(may || n|[} > |4+ (4V2 + 4)az| 022 K | E)
jE

+Pr(EY) < Je @ 4 Je ®t = 2N @ < N+l

if we set a1 = ap =log(J) + alog(N) for « > 1. More-
over, log(J) < ay =log(J) + alog(N) < 4 requires that
N > 10log(J) + 10alog(N). Substituting ay = log(J) +
alog(N) into (III.17) and some simplification yields that, for
an event

F = o )1 nll > /O, K o) + Tog (V]
J
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where C,, = (4v/2 + 4)a + 4, wehave Pr(F | E) + Pr(E¢) <
N~*+1 Therefore,

Pr ([ @4 mllz < \/Cao?piZ,0 K og(]) + log(N)])

=Pr(FO) > Pr(FCNE)=1— [Pr(EC) +Pr(FNE)]

>1—[Pr(EY) 4+ Pr(F|E)] >1— N °FL,

FE. Proof of Theorem II.1

‘We now sum up the related lemmas to derive the final results in
Theorem IL.1. By setting § = %, Lemma II1.2 shows that & &
is invertible and ||(®X ®7)~1|| < 2 with probability at least
1 — N~*Flwhen N > C4 o2, K Jlog?(N) for a > 1.

By applying the same « to Lemma I11.3 and I11.4 and setting
vy = %, we can get that, conditioned on <I>¥ & being invertible
and [|(@4 @7)7|| < 2.
support of the unique optimal solution X to (1.5) is contained
within the support of the ground truth solution Xy, with proba-
bility at least 1 — 2N ~°*! when

s7c||2.00 < % which implies that the

A> \/OOC’QO-QIU/?Ha'XK[lOg(M —J) +log(N)]  (II.18)

and
N > Co 3ptiaxJ K[log(M — J) + log(N)].

As for the recovery error, we apply the same « to Lemma I11.5
and substitute (II1.16) into (III.15). As a result, conditioned on
<I>¥ @ being invertible and the support of the unique optimal
solution X being contained within the support of X,

X = Xoll2,00 < 4V J (127 nl2,00 + A)
< \/Coo?p2,, JK [log(J) +log(N)] + 4V I\

(I11.19)

where C', is a constant that grows linearly with «, with proba-
bility at least 1 — N~>*1 when N > 10log(J) + 10alog(N).
Therefore, after combining the probability and the require-
ment on N and A, we can conclude that, with probability at
least 1 — 4N+ (1.5) has a unique optimal solution X withits
support contained within the support of the ground truth solution
X and the recovery error in terms of £5 ..-norm satisfies (I11.19)
when A satisfies (IIL.18) and N > C., 12, JK[log(M — J) +
log?(N)] where Cy.1 = max{Cy 0, Cq3} for a > 1.

IV. NUMERICAL SIMULATIONS

In this section, we present several numerical simulations to
demonstrate and support the theoretical results in Theorem II.1.
In these simulations, each entry of the dictionary A €¢ RV*M
is sampled independently from the standard normal distribution
and B € CN*K contains the first K columns of the normal-
ized N x N DFT matrix. The real and imaginary components
of ¢; € C and h; € CE*! follow the i.i.d standard normal
distribution and the support, 7" with |T'| = J, of the ground
truth solution Xg = [c1hy,...,carhy] € CE*M s selected
uniformly at random. Problem (I.5) is solved via CVX [36].
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~ from 0.02 to 1
o
(9]
Exact support recovery rate

k from0.2to 6

Fig. 1. The relation between k and + in terms of the exact support recovery
rate where A = kvg and v =

)
minjer [z, (|2

A. Range of \ for Exact Support Recovery

In the first simulation, we determine the effective range
of A for exact support recovery. Theoretically, (I.2) pro-
vides a lower bound for A such that Theorem II.1 holds
and (I.4) gives an upper bound to achieve exact sup-
port recovery. To verify the bounds of A\, we define vy =
VO i K [log(M — J) +log(N)] and v = m
(I1.2) implies that we could set A = kv, for some &k > 0. In
addition, according to (I.2) and (I1.4) in Theorem II.1, when all
system parameters except A are fixed, to achieve exact support
recovery, A should satisfy

minjer [|Zo ;]2 — C2
C3

Civo S A=ky < (IV.1)

which is equivalent to

01§k<%—C5

where Cy = C% and C5 = szo. To examine this relation, we
fixc =0.1,J = K =3, N =100, and M = 150, and we vary
k and ~. 50 trials are run for each (k, ) pair and we record the
exact support recovery rate in Fig. 1, from which we do observe
that k should be larger than a constant which is approximately

1.2 under this setting and that & has a reciprocal relation with ~.

B. Number of Observations N for Exact Support Recovery

Equation (II.1) in Theorem II.1 indicates that the sufficient
number of observations, IV, scales nearly linearly with respect
to the subspace dimension K and the sparsity J. To verify that,
in the second simulation, we set M = 150, k = 3,and v = 0.02
to make sure that A is in an appropriate range for exact support
recovery. We vary N and K (with fixed J = 3) and record the
exact support recovery rate in Fig. 2. The result of a similar
simulation but varying N and J (with fixed K = 3) is shown
in Fig. 3. 50 simulations are run for each setting. We observe
that linear scaling of the number of observations N with the
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N from 30 to 100
Exact support recovery rate

2 4 6 8 10 12 14 16 18 20
K from 1 to 20

Fig.2.  The nearly linear relation between the number of observations, IV, and
the subspace dimension K, to achieve exact support recovery.

N from 30 to 100
Exact support recovery rate

2 4 6 8 10 12 14 16 18 20
J from 1 to 20

Fig.3. The nearly linear relation between the number of observations, IV, and
the sparsity .J, to achieve exact support recovery.

subspace dimension K and the sparsity J is sufficient for exact
support recovery.

C. Recovery Error Bound

Next we turn to verify the recovery error bound in (I1.3), which
scales linearly with respect to A and nearly linearly with respect
to v/J. We set K =3, N =100, M = 150, and v = 0.02. In
Fig. 4, we use A = kv (with fixed J = 3) and vary k within
the proper range for exact support recovery based on Fig. 1. 100
trials are run for each k£ and we calculate the mean and standard
deviation of the recovery error ||X — Xg||2.o. Note that the
recovery error is counted only when the exact support recovery
is achieved. In this figure, we do observe linear scaling of the
error with .

Similarly, we vary J (with fixed A\ = 3~,) within the proper
range for exact support recovery based on Fig. 3 and record
the squared recovery error ||X — X |3~ in Fig. 5. Again, the
squared recovery error is counted only when the exact support
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Recovery error
w
T

N
T

1.5

k from 2 to 6

Fig.4. The linear relation between the recovery error, ||X — Xo||2,00, and the
regularization parameter A = k~o. The red plus signs and the blue horizontal
sticks indicates the mean and standard deviation of the recovery error.

Squared recovery error
[}
T
|

0 L L L L L L
0 1 2 3 4 5 6 7

J from 1 to 6

Fig. 5. The nearly linear relation between the squared recovery error, HX —
Xo| \% ~» and the sparsity J. The red plus signs and the blue horizontal sticks
indicates the mean and standard deviation of the squared recovery error.

recovery is achieved. In this figure, we can observe nearly linear
scaling of the squared error with J.

D. Single Molecule Imaging

In this experiment, we apply our signal model (I.1) to the
single molecule imaging problem and achieve super-resolution
by solving (I.5). In molecule imaging via stochastic optical re-
construction microscopy (STORM) [37], the sub-cellular struc-
tures are dyed using fluorophores, and during each observation
only a small portion of the fluorophores are activated. Moreover,
fluorophores at different depths will undergo different degrees
of blurring.

Consequently, each observed image frame consists of a few
activated fluorophores convolved with the non-stationary Gaus-
sian point spread functions of the microscope as shown in
Fig. 6(a). Specifically, the observed low resolution frame is of
size 64 x 64 pixels and each pixel corresponds to a region of

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on July 23,2020 at 20:25:09 UTC from IEEE Xplore. Restrictions apply.



1894

(a) An observed frame. (b) Point spread functions.

Magnitude of the singular value

1 2 3 4 5 6 7 8 9
Index of the singular value

(c) The singular values. (d) The singular vectors.

Fig. 6. The analysis of point spread functions. (a) A typical observed frame
is of size 64 x 64 pixels with each pixel corresponding to a region of size
100 x 100 nm. (b) Four examples of the non-stationary point spread functions.
(c) The singular values of the point spread functions. (d) The singular vectors
corresponding to the three largest singular values.

size 100 x 100 nm. The goal is to construct a target image with
320 x 320 pixels with each pixel corresponding to a region of
size 20 x 20 nm.

If we vectorize the frames, each observed low resolution frame
can be represented as

M
y = Sample ch(B’hj) ®e;+n'| e RV (1V2)

j=1

where Sample[-] indicates the sub-sampling operator, N =
64 x 64 = 4096, and M = 320 x 320 = 102400. Moreover, c;
is the unknown fluorophore intensity at the j-th position, B’
models the subspace containing the non-stationary Gaussian
point spread functions (with unknown coefficient vector h; for
the j-th position), e; € R is the j-th column of the identity
matrix, and n’ is the unknown additive noise. All observed
frames, y, come from the Single-Molecule Localization Mi-
croscopy grand challenge organized by ISBI [38]. The dataset
contains 12000 low resolution frames, and the maximum number
of activated fluorophores in each frame is 18 which implies that
at most .JJ = 18 coefficients c¢; are non-zero for each y.

To apply our model, we must construct the subspace, B, to
capture the non-stationary point spread functions. By changing
the variances (widths), we generate nine different Gaussian
point spread functions; four examples are shown in Fig. 6(b).
We then apply the singular value decomposition (SVD) to a
matrix of the vectorized point spread functions and record their
singular values in Fig. 6(c). From this we see that the point
spread functions approximately live in a 3 dimensional subspace.
Therefore, we set K = 3 and let B’ contain the singular vectors
corresponding to the 3 largest singular values. We display the
corresponding singular vectors in Fig. 6(d).

To better illustrate the connection between the single molecule
imaging problem and the signal model we study, (IV.2) can be
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(a) Low resolution input.

(b) Super-resolution result.

Fig. 7. The single molecule imaging experiment. The image in (a) is of size
64 x 64 pixels with each pixel corresponding to a region of size 100 x 100
nm. (b) shows the super-resolution result, which has size 320 x 320 pixels with
each pixel corresponding to a region of size 20 x 20 nm.

equivalently represented as

M
y = Sample< IDFT chDjaj +n
j=1

c RN><1

where IDFT]-] denotes the inverse discrete Fourier trans-
form operator, D; = diag(Bh;) where B = DFT[B’], a;s
are the DFTs of spikes at all possible spatial locations, and
n = DFT[n’]. In this case, if we represent y = £(X) with
X = [c1hq,. .., carhay], the linear operator £ incorporates ad-
ditional inverse Fourier transform and sub-sample operators, and
A is a Fourier dictionary instead of random Gaussian. The noise
n, h;, and ¢; for all j are unknown, and the indices of the
non-zero columns in X indicate the locations of the activated
fluorophores in the high resolution image.

We pre-process each low resolution frame by subtracting the
average intensity of the data set, and superimposing all the
frame results in the low resolution image in Fig. 7(a). More-
over, we solve (I.5) for each observed low resolution frame via
SpaRSA [39]. By superimposing all the high resolution images
that we get, we obtain the super-resolution result in Fig. 7(b).
Although the dictionary is not Gaussian in this application, the
superior super-resolution result verifies the effectiveness of the
proposed signal model and minimization problem.

Finally, when K =1, (I.5) degenerates to the classical ¢;-
norm constrained lasso problem which has been comprehen-
sively studied. However, by choosing K = 1, the model sac-
rifices its ability to capture non-stationary modulation, which
is significant in this problem when the point spread functions
have several comparable singular values. Although in our case,
we happen to have one dominant singular value as shown
in Fig. 6(c), which implies that super-resolution can be at-
tempted with K = 1, we see that a larger K still benefits the
super-resolution process. To demonstrate this, we run the single
molecule imaging experiments again using X' = 3 and K = 1.
Three super-resolution examples are shown in Fig. 8, from which
we can find that although K’ = 3 and K = 1 achieve similar per-
formance, some activated fluorophores can be more accurately
represented using the 3-dimensional subspace (K = 3), and that
leads to a more clear and accurate super-resolution result.
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(a) Input frame.

(b) Result for K = 3. (c) Result for K = 1.

(d) Input frame. (e) Result for K = 3. (f) Result for K = 1.

(g) Input frame.

(h) Result for K = 3. (i) Result for K = 1.

Fig. 8. Comparison between the super-resolution results for K = 3 and
K =1. (a), (d), and (g) are three low-resolution input frames. (b), (e), and
(h) show the super-resolution results for K = 3. (c), (f), and (i) show the
super-resolution results for K = 1. The area of interest is highlighted using
the red rectangle. The input frames are of size 64 x 64 pixels and the outputs
are 320 x 320 pixels.

V. CONCLUSION

In this paper, we consider the problem of recovering a sparse
signal with unbounded noise and non-stationary blind modula-
tion. Using the lifting technique and with a subspace assumption
on the modulating signals, we recast this problem as the recovery
of a column-wise sparse matrix from structured linear observa-
tions. We apply /> 1-norm regularized quadratic minimization,
also known as the group lasso, to solve this problem and derive
sufficient conditions on the sample complexity and regulariza-
tion parameter for exact support recovery. We also bound the
recovery error in terms of the /3 ,-norm. Numerical simulations
are consistent with our predictions and support the theoretical
results. Moreover, we apply our model to single molecule imag-
ing and achieve promising super-resolution results. One useful
generalization of the results in this paper would be to consider
the random Fourier dictionary. Allowing D to be non-diagonal
but live in a low-dimensional matrix subspace is another im-
portant generalization, which could open up other potential
applications.
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