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ABSTRACT
X.509 certificate revocation defends against man-in-the-middle at-
tacks involving a compromised certificate. Certificate revocation
strategies face scalability, effectiveness, and deployment challenges
as HTTPS adoption rates have soared. We propose Certificate Re-
vocation Table (CRT), a new revocation strategy that is competitive
with or exceeds alternative state-of-the-art solutions in effective-
ness, efficiency, certificate growth scalability, mass revocation event
scalability, revocation timeliness, privacy, and deployment require-
ments. The CRT design assumes that locality of reference applies
to the certificates accessed by an organization. The CRT period-
ically checks the revocation status of X.509 certificates recently
used by the organization. Pre-checking the revocation status of
certificates the clients are likely to use avoids the security problems
of on-demand certificate revocation checking.

To validate both the effectiveness and efficiency of our approach,
we simulated a CRT using 60 days of TLS traffic logs from Brigham
Young University to measure the effects of actively refreshing revo-
cation status information for various certificate working set window
lengths. A working set window size of 45 days resulted in an aver-
age of 99.86% of the TLS handshakes having revocation information
cached in advance. The CRT storage requirements are small. The
initial revocation status information requires downloading a 6.7 MB
file, and subsequent updates require only 205.1 KB of bandwidth
daily. Updates that include only revoked certificates require just
215 bytes of bandwidth per day.
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1 INTRODUCTION
Browsers rely on X.509 certificates for host authentication when
establishing HTTPS connections. A trusted Certificate Authority
(CA) usually signs each certificate. Whenever a certificate’s private
key is compromised, the website administrator should notify the CA
to revoke the certificate. All clients that may receive the certificate
require notification of the revocation. Otherwise, connections to
compromised websites are vulnerable to a man-in-the-middle attack
until the certificate expires.

Problems with current revocation strategies have limited the use
of certificate revocation checking, even though checking the revo-
cation status of a certificate is required to mitigate attacks using a
compromised, but otherwise valid certificate. Most TLS certificate
revocation strategies consume a relatively large amount of client
bandwidth [12], expose client traffic patterns [27], protect a small
percentage of certificates [1, 2], or are vulnerable to downgrade
attacks when access to revocation information is critical [12, 16, 27].
The remaining strategies have other debilitating weaknesses slow-
ing and halting adoption such as requiring significant infrastructure
changes [32, 34], requiring participation and additional costs by
CAs and third parties [24, 34], or exposing new attack surfaces [3].
Because every revocation strategy has a significant cost or flaw,
certificate revocation is mostly being ignored by clients, leaving
many computers and smartphones vulnerable to man-the-middle
attacks [25].

In this paper, we propose Certificate Revocation Table (CRT), a
new revocation status dissemination strategy to regularly check
the revocation status of the certificates recently used by an organi-
zation, such as clients on a university’s private network. Network
administrators deploy this strategy at scale to protect their clients.
By leveraging locality of reference of web requests, a CRT provides
the revocation status of a high percentage of TLS handshakes while
minimizing bandwidth and reducing the attack surface.

Evidence shows [9] that a vast majority of TLS handshakes made
by an organization’s clients reuse recently seen certificates within
the space of an hour. We find that this idea continues to hold even
when a client’s cache includes multiple weeks of data. Because
effectiveness is maintained even in the presence of this delay, we
can design a flexible revocation strategy that allows administrators
to adjust the rate clients receive updates from a supporting server
based on their organization’s needs, while still protecting clients.
The bandwidth consumption of our design is competitive with
alternative solutions with higher data density because even large
private networks, such as a university network [7, 18], use only a
small fraction of the globally available X.509 certificate space.

In this work, we make two significant contributions: (1) We pro-
vide a novel certificate revocation strategy that is competitive with
alternative state-of-the-art strategies. It enables network admin-
istrators to protect their clients without relying on third parties
and preserves the privacy of clients’ browsing patterns. (2) We are
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the first study to examine how an organization’s X.509 certificate
working sets change over time. We examine passively collected
TLS traffic logs from the Brigham Young University (BYU) campus
network over a two-month period and measure the effectiveness of
our revocation strategy. Our results shed light on the effectiveness
of our certificate revocation strategy as well as other certificate
revocation and validation strategies [9, 20].

In the rest of the paper, we present the system design of a cer-
tificate revocation table, including the operations and data items
it contains (Section 3). Using 60 days of traffic logs from BYU, we
measure and report the effectiveness and efficiency of a reference
implementation of a CRT (Section 4). We discuss the implications of
the results (Section 5) and compare CRT to alternative revocation
strategies (Section 6).

2 RELATEDWORK
Prior studies have passively measured certificate use [6, 7, 9, 18,
20]. Two studies provide evidence that the principle of locality of
reference applies to certificate requests. Bates et al. [9] found that
99.3% of the HTTPS requests from a college campus during one
hour were duplicates. While examining the effects of caching OCSP
responses, Hu et al. [20] report that 95% of the certificate requests
at their university during 30 minutes were duplicates.

Certificate revocation strategies fall into three groups: pull, push,
and network-assisted. Clients using Pull-Based Certificate Revo-
cation request revocation status information whenever it is needed.
Certificate Revocation Lists (CRLs) [12] and Online Certificate Sta-
tus Protocol (OCSP) [27] are the most common examples.

A CRL is a signed list of all the revoked certificates for a CA.
Scalability is the main criticism against CRLs because they can grow
quite large. For example, Apple published a 76 MB CRL [25]. Mozilla
Firefox and Google Chrome have disabled revocation checking
using CRLs because of bandwidth and latency concerns.

OCSP [27] responders provide a signed certificate revocation
status for individual certificates. Clients issue blocking requests
to obtain the revocation status for each HTTPS certificate and
wait for the response before loading the page. OCSP requests are
unencrypted, divulging detailed client traffic patterns to the CA and
all nodes along the path. For a delayed response, clients typically
soft-fail and continue the TLS handshake, assuming the certificate is
likely not revoked. Despite these drawbacks, most modern desktop
browsers provide support for OCSP.

Stark et al. [33] use content-based prefetching to eliminate the
page loading delays created by OCSP and TLS as they gather param-
eters required for TLS Snap Start [22]. This strategy also soft-fails
because revocation status checking occurs only seconds before it is
needed.

Clients use Push-Based Certificate Revocation to regularly
receive revocation information, which increases the probability
that the status information is available in the cache when they need
it. Even though clients gather the status of more certificates than
they need, this approach does not reveal client traffic patterns.

Some approaches, such as Google’s CRLSets andMozilla’s OneCRL,
minimize bandwidth by including only a small, hand-picked set of
revocations for popular websites. Google pushes periodic updates
to Chrome with a small list of revoked certificates called a CRLSet.

CRLSets have a maximum size of 250 KB [2], which equates to a
capacity of about 40,000 revoked certificates. A CRLSet is intended
to include only revocations where the risk of a compromised cer-
tificate is suspected. Instead of filtering through leaf certificates,
OneCRL includes only revoked intermediate certificates, which
would have a much more significant impact if abused.

Another method to minimize bandwidth consumption is to use
a more efficient data structure, such as a Bloom filter. Rabieh et al.
[31] showed how using two Bloom filters in tandem, one identi-
fying revoked certificates and the other identifying non-revoked
certificates, drastically reduced false-positive rates. Larisch et al.
[24] presented CRLite, a revocation strategy that uses a Bloom filter
cascade that allows a server to push the status of all live certificates
across the Internet in a compressed deterministic data structure to
clients. The algorithm repeats this process until finding a Bloom
filter with no false-positive entries. The server requires substan-
tial network resources to build the filter as the entire set of both
non-revoked and revoked certificates are used to create the data
structure. In January 2017, the Bloom filter cascade was only 10 MB,
with daily updates averaging 580 KB. Using the data we collected
(see Appendix A) in March of 2018, we found the data structure
had grown to 18 MB.1

NetworkAssistedCertificateRevocation eliminates the need
for a client to request a revocation status. Instead, it modifies the
TLS ecosystem to address revocation. Several approaches support
revocation via middleboxes. Revocation in the Middle (RITM) [34]
is a solution that distributes revocation information to middleboxes
throughout the Internet via a CDN. These middleboxes intercept
traffic and perform revocation checks. Hu et al. [20] proposed Cer-
tificate Revocation Guard (CRG), which uses a middlebox to inter-
cept all TLS traffic for an entity and check revocation. The paper
suggests 95% of TLS handshakes use a cached revocation status, but
it only reports the results of a short 30-minute experiment involving
approximately 2,000 connections.

OCSP Stapling [16] requires each website administrator, instead
of end clients, to make an OCSP request for their certificates. The
server transmits the revocation status to each client during TLS
handshakes. While this eliminates the page load delay and the pri-
vacy concerns of traditional OCSP, OCSP Stapling is still vulnerable
to a man-in-the-middle downgrade attack. OCSP Must-Staple [17]
was proposed to solve the downgrade attack, but introduces the
risk of the website becoming inaccessible to clients during a DoS
attack targeted at OCSP responders. However, others [25] have
argued that the potential for a DoS attack is not a fundamental
problem as a CDN could distribute static revocation information.
Even so, OCSP Must-Staple has suffered other problems, including
CA inconsistencies and bugs in server implementations, that have
slowed adoption to 0.02% [10, 11]. Due to these concerns, Google
Chrome currently does not support the certificate extension for
OCSP Must-Staple [3, 36].

Lastly, using short-lived certificates is a strategy that eschews
revocation checking. Instead of checking a revocation status, certifi-
cates are set to expire shortly after issuance, generally ranging from
a matter of hours [19] to just a few days [35]. This strategy requires
the server to renew its certificate regularly. While it was previously

1We used source code provided by the authors.
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Figure 1: The design of a certificate revocation table. Periodically, the CRT runs the Revocation Status Refresh, Certificate
Eviction, and Create Certificate Revocation Sets functions. Clients access revocation information through the Download Cer-
tificate Revocation Sets and Check Revocation Status APIs.

not practical to change public keys on renewal [35], the emergence
of new technology such as the ACME protocol [8] and the EFF’s
CertBot2 enables automatic public key rotation on renewal. If a
private key compromise occurs, the server administrator does not
renew the certificate.

3 CERTIFICATE REVOCATION TABLE
Our approach to certificate revocation is inspired by memory man-
agement in operating systems. A working set W(t, τ ) of a process is
the collection of all data referenced by the process over the period
of time t - τ to t [13]. The principle of locality states that data in
a working set W(t, τ ) of a process is frequently reused by a future
working set W(t + α , α ), as long as α is small. As α grows, the
frequency of reused entries decreases. Operating systems leverage
this reuse to reduce Translation Lookaside Buffer (TLB) misses and
page faults, for improved CPU throughput.

We hypothesize that the X.509 certificate working set of an
organization follows this same principle of locality. A certificate
working set W(t, τ ) contains a majority of the certificates in the
working set W(t + α , α ).

A certificate revocation table (CRT) (see Figure 1) collects and
manages an organization’s certificate working set. It periodically
rechecks the revocation status of each certificate in this working
set by querying a revocation endpoint, such as an OCSP responder
or a CRL endpoint. The CRT uses the parameters β , τ , and α to set
the rate at which the CRT’s periodic functions are invoked (see 4.1
for more details). Clients access the revocation information of the
organization’s certificate working set through either a download-
able file or an on-demand API. By periodically downloading this
information, clients reduce the possibility of failing their revocation
check due to an occasionally inaccessible revocation endpoint or
due to malicious activity.

3.1 Certificate Revocation Table Design
A certificate revocation table (CRT) enables clients to create and
share a certificate working set. A CRT updates or removes table

2https://certbot.eff.org/about/

entries at regular intervals. A CRT also inserts incoming certificates
from clients, and later each revocation status is packaged for end
clients.

Each row in a CRT contains an X.509 certificate, its revocation
status, and two timestamps: last-access and last-revocation-refresh.
The certificate field does not need to be the entire X.509 certificate,
only enough to uniquely identify it and any information required
to check the revocation status.3 The revocation status reports the
last received status, which can be Good, Revoked, Unknown, or New.
A New status indicates the CRT has not yet attempted a revocation
status request and an Unknown status indicates the CRT has never
successfully retrieved a revocation status. Each time a CRT inserts a
certificate, it updates the last-access timestamp to the current time.
Last-revocation-refresh is updated to the current time anytime the
revocation status is accessible. When sending information to the
client, this timestamp accompanies an out-of-date status (inacces-
sible for longer than β ; see 4.3.1) to inform clients how long the
status has been inaccessible.

The CRT’s design addresses seven concerns facing certificate
revocation strategies today:

(1) Effectiveness: Vulnerable to Downgrade Attacks. — If
a revocation status cannot be determined because the authoritative
server is not accessible, modern browsers will soft-fail by assuming
the certificate is not revoked. Soft-failing values website accessi-
bility over the risk of accepting a revoked certificate. The soft-fail
approach is dangerous because an attacker who is in a man-in-
the-middle position to serve a revoked certificate to end clients
can trivially block these clients from downloading the revocation
status needed to detect the malicious certificate. Langley [23] stated,
“soft-fail revocation checks are like a seat-belt that snaps when you
crash.”

CRT allows clients to avoid soft-failing their revocation checks
without affecting accessibility by maintaining a cache containing
the revocation status of certificates likely to be used again. Predown-
loading revocation information in advance [1, 2, 24] reduces the
number of vulnerable on-demand checks required. To successfully

3The use of OCSP for revocation includes information from an issuer certificate.
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use a revoked certificate whose status is provided by this kind of
strategy, malicious actors need to block clients from access to these
endpoints for an extended period in contrast to blocking access
to a revocation endpoint only at the time of the malicious connec-
tion. We expect this makes it more difficult for attackers to remain
undetected.

(2) Efficiency: Bandwidth Consumption. — The bandwidth
consumption to check the revocation status for a certificate or group
of certificates can be from one kilobyte to many megabytes depend-
ing on the revocation strategy. Strategies repeat these downloads or
requests from once a week to many times per day to maintain a suf-
ficiently up-to-date certificate revocation status. This cost can limit
the participation of clients, especially those with a monthly band-
width limit. Liu et al. [25] found that no mobile browser evaluates
any certificate revocation status and suggests bandwidth concerns
are to blame.

A CRT provides the revocation status for certificates the clients
are likely to use soon (i.e., an organization’s certificate working set).
The network bandwidth consumption of a CRT’s and its clients
scales to the organization a CRT is protecting and parameters set
by the network administrators. A CRT that reports only revoked
certificates consumes a small fraction of client bandwidth.

(3) Certificate Growth Scalability. — Over the last few years,
HTTPS usage has grown tremendously. One reason for this growth
is the emergence of a new CA, Let’s Encrypt, which allows issuing
certificates for free through an automated system. In just over a
year, from August 2017 to September 2018, the number of active
trusted certificates signed by Let’s Encrypt has increased by sixfold,
rising from 34 million [5] to 213 million [4]. Because of the growth
of Let’s Encrypt and other certificate authorities, the live CA-trusted
certificates on the Internet more than doubled in one year from
January 2017 (30 million [24]) to December 2017 (78.5 million [4]),
and then quadrupled again in just over half of a year fromDecember
2017 to September 2018 (317 million [4]).

The growth of TLS activity places more demands on the scalabil-
ity of revocation strategies than ever before. The daily bandwidth
requirement of some certificate revocation strategies, such as CR-
Lite, increases with the number of global CA-trusted TLS certificates
[24]. Other strategies avoid the growth in size by opting to limit
the number of certificates they protect as with CRLSets [2].

The daily bandwidth required by a CRT and its clients grow
based only on the number of certificates used by the clients. Global
certificate adoption only indirectly affects a CRT’s bandwidth usage
because websites previously visited by clients may begin using TLS.

(4) Mass Revocation Event Scalability. — While revocation
strategies should maintain acceptable bandwidth requirements dur-
ing normal conditions, it is also imperative that the revocation
strategy can gracefully handle mass revocation events such as the
period following the announcement of the Heartbleed vulnerabil-
ity.4 In 2014, Liu et al. [25] found that before the announcement
of Heartbleed, approximately 1% of fresh certificates (non-expired
certificates signed by a trusted CA) were revoked. After the an-
nouncement, the revocation percentage rose to over 8%. During this
time, Cloudflare estimated they would incur an additional $400,000
4http://heartbleed.com

per month to publish their enlarged CRL due to the increased req-
uisite bandwidth [30]. After measuring the effects of Heartbleed,
Durumeric et al. stated, “The community needs to develop meth-
ods for scalable revocation that can gracefully accommodate mass
revocation events, as seen in the aftermath of Heartbleed” [15].

During a mass revocation event, the CRT’s bandwidth consump-
tion remains steady because the CRT already provides the revoca-
tion status of each certificate in the working set regardless of its
revocation status. Delta updates downloaded by clients are more
expensive while revoking a large number of certificates but return
to their normal size soon after. Bandwidth consumption increases
for other revocation strategies such as CRLs [12] or CRLite’s full
Bloom filter cascade [24] whose bandwidth requirements depend
on the number of globally valid, but revoked certificates. These
strategies maintain this significant increase in bandwidth until the
revoked certificates begin to expire.

(5) Revocation Timeliness. — Revocation timeliness is the
elapsed time from when a CA revokes a certificate to when end
clients learn of the revocation. Some strategies allow several days
before updating clients. The median CRL has a lifetime, and there-
fore suggested update rate, of 7 days [24], and the median OCSP
response for the Alexa top 1 Million has a lifetime, and therefore
suggested update rate, of 4 days [24]. A push-based revocation strat-
egy that updates clients once a day [2, 24] has worst-case revocation
timeliness of almost 48 hours (see 4.1).

CRT allows administrators to balance between revocation time-
liness and server bandwidth consumption as needed by the organi-
zation through design parameters.

(6) Privacy: Exposing Client Traffic Patterns. — Some revo-
cation strategies, such as OCSP [27], share detailed client traffic
patterns to revocation endpoints.

A CRT does not require clients to expose their browsing history
to third parties to receive revocation information.

(7) Deployment Requirements and Incentives. — Challeng-
ing deployment requirements and weak incentives can slow or halt
the adoption of a revocation strategy. For example, CRLite had ac-
ceptable deployment requirements in January of 2017; however, the
global certificate growth has increased the difficulty to deploy this
solution. As of September 2018, we estimate CRLite would require at
least 2,465 OCSP requests per second to be made to Let’s Encrypt’s
OCSP endpoints alone (see Section 6). OCSP Must-Staple faces even
stronger deployment hurdles as it requires certificate owners to
commit to obtain OCSP status regularly from historically unreliable
OCSP responders [11]. Any mistakes cause websites to become
unavailable to clients, which disincentivizes website administrators
to adopt OCSP Must-Staple.

CRT has strong deployment incentives as network administra-
tors who would deploy a CRT already have an invested interest in
protecting the clients in their organization. A CRT’s bandwidth con-
sumption is scaled based on the size of the organization’s certificate
working set as oppose to the number of globally live certificates.

3.2 Periodic System Tasks
Each of the following tasks is periodically run to update a CRT and
to prepare the revocation information served by the APIs.
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3.2.1 Revocation Status Refresh. The CRT rechecks the revocation
status of each certificate it contains every β hours.5 Decreasing
β increases revocation status freshness and a CRT’s bandwidth
consumption.

The last-revocation-refresh field is used to manage revocation
status rechecking. The certificate revocation status check occurs
when adding a certificate to the CRT, or when the row in the CRT
has a last-revocation-refresh timestamp that is greater than or equal
to β hours from the current time. Sometimes a revocation endpoint,
such as an OCSP responder, is inaccessible [11]. In this case, the CRT
continues to repeat the request while introducing increasing delays
between requests (i.e., exponential backoff) to avoid an accidental
DoS attack on a revocation endpoint.

3.2.2 Certificate Eviction. Evicting unused certificates from a CRT
increases the efficiency of the revocation model. First, revocation
status requests occur regularly for every certificate in the CRT. Re-
ducing the number of requests reduces the bandwidth consumption
of a CRT. Second, eviction reduces the amount of storage used by a
CRT and its clients. Both of these values can grow without bound
without certificate eviction.

Periodically, a CRT evicts certificates that are no longer in the
organization’s certificate working set. The working set at time t
is W(t, τ ), which includes all active certificates from time t - τ to
t. We evict all certificates with a last-access timestamp older than
t - τ . Future work describes the advantages of an approach that
avoids evicting known revoked certificates even if they have left
the working set (see 7.2).

The window length of the working set, τ , affects both the ef-
fectiveness to maintain each up-to-date revocation status and cost
to store them. As τ increases, we expect that CRT effectiveness
increases while the efficiency decreases.

Additional certificates can be evicted from the CRT if they are
unlikely to be used again. The simplest example is removing cer-
tificates that have expired from the certificate working set. Clients
do not trust expired certificates; therefore, they do not need to
know the revocation status to avoid a man-in-the-middle threat.
We believe analyzing when certificates in the certificate working
set become inactive may reveal other early eviction strategies to
increase efficiency. We leave the exploration of these eviction strate-
gies to future work (see 7.1).

3.2.3 Create Certificate Revocation Sets. Once every α hours, the
CRT projects its revocation information into multiple certificate
revocation sets (CRSs), one for each revocation status option (i.e.,
Good, Revoked, andUnknown). End-clients regularly download these
CRSs. As stated by the principle of locality, we expect a working
set W(t, τ ), a group of CRSs, will frequently be reused by a future
working set W(t + α , α ), the certificates that will be seen by clients
before the next group of CRSs, as long as α is small. While a smaller
α will likely increase the overlap between working sets, the α value
also defines how often clients should download updated CRSs.

Each CRS includes certificates with a revocation status of Good,
Revoked, or Unknown. To include an out-of-date Good revocation
status (inaccessible for longer than β ; see 4.3.1), the CRS includes the
5In practice, most revocations last for the lifetime of the certificate. However, there
are times a revocation can be reverted [12]. For this reason, rechecking the revocation
status of a revoked certificate should be done occasionally.

last-revocation-refresh timestamp to give clients necessary data to
decide whether to avoid a suspicious connection. By including each
of these CRSs, clients can determine the trusted certificates, revoked
certificates, certificates with inaccessible status, certificates that
have never been accessible, and entirely new certificates. Finally,
this data structure contains a small header including a timestamp,
a version number, and a digital signature.

Lastly, as with other strategies such as CRLite [24] and delta CRLs
[12], a delta update can be calculated to reduce the amount clients
need to download per α hours. The delta includes any additions
or subtractions from the previous data structure. The deltas also
include header fields with a timestamp, a version number, and a
digital signature. A client downloads all deltas they have missed or
the entire data structure, whichever is smaller.

3.3 System APIs
A CRT provides two APIs to allow clients to insert certificates into
a CRT and/or to provide clients with access to relevant revocation
information.

3.3.1 Download Certificate Revocation Sets. End clients can down-
load differing versions of CRSs depending on their needs.6 In this
API, there are two optional parameters, the client’s current version
number, and an only-revoked boolean value. If neither parameter
is set, CRSs are sent to the client for Revoked, Good, and Unknown
certificates. A valid version number results in downloading either
the group of CRSs or all deltas from the client’s version to the
most up-to-date version, whichever is smaller. If the only-revoked
boolean parameter is true, the download includes only the CRS
or group of deltas including revoked certificates. For the majority
of clients today who soft-fail on an unknown revocation status
[25], downloading only the CRS containing revoked certificates
is as effective as downloading all three CRSs (Revoked, Good, and
Unknown).

Locally checking a certificate’s revocation status with a CRS
provides revocation information even if an active attacker is ma-
nipulating a client’s Internet connections. Notably, the group of
CRSs will not always contain the revocation status of future traffic
because of the creation of new certificates in between updates and
clients visiting new websites. For certificates not included in these
CRSs, clients must fall back to alternative validation methods7, such
as the Check Revocation Status API.

3.3.2 Check Revocation Status. Check Revocation Status is a two-
purpose API that clients use to query a CRT for the revocation
status of one or more certificates. The first purpose is to collect
traffic information. The API receives a new certificate and inserts
it as a new row in the table. If the certificate is already present
in the table, the last-access timestamp is updated. This API is the
only way a CRT receives a client’s certificate usage information.8
The second purpose is to provide clients an on-demand revocation
6In practice, we could replace this API with a push-based model.
7Clients using only the CRS containing revoked certificates assume amissing certificate
is not revoked and therefore do not fall back to alternative validation methods.
8In practice, this API could be implicitly called by a middlebox for each intercepted TLS
handshake. A middlebox adaptation of this API could append revocation information
to each TLS connection [34], automatically block revoked connections for the user
[20, 28], or passively observe traffic. Without a middlebox, it may be preferable for
clients to periodically share the set of recently seen certificates to this API.
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check. When clients call this API, the CRT immediately returns the
revocation status of each certificate requested as recorded in the
CRT. The last-revocation-refresh timestamp accompanies an out-of-
date revocation status. These timestamps inform clients how long
a revocation status has been inaccessible. As the revocation status
of newly added certificates is immediately checked and recorded
(see 3.2.1), a strict client unwilling to trust an Unknown status on
first use can delay finishing the TLS handshake and repeat their
request to this API after a short delay.9 Assuming the revocation
endpoint is accessible to a CRT, a Good or emphRevoked response
is returned to the client following the second request.

There are several issues to address when using an API that ac-
cepts client certificate usage. First, clients using this API are subject
to the privacy concern of directly sharing their certificate usage
with a CRT. This privacy concern can be addressed in various ways,
depending on how it is deployed (see 5.3). Second, care should be
taken to enforce who can access this endpoint because the orga-
nization’s working set includes all certificates sent to this API. If
a client from outside the targeted organization uses the endpoint,
the working set may become polluted with certificates not used by
the targeted organization.

3.4 Threat Analysis
The threat model includes active network attackers that can (1)
modify or replay revocation information transmitted over the net-
work, and (2) block access to revocation status information. We
assume the CRT and local clients using the CRT are trusted.

A CRT collects only signed and trusted revocation information.
Assuming the CRT is trusted, CRSs and on-demand responses cre-
ated by a CRT contain valid revocation information. Since infor-
mation generated by a CRT includes a cryptographic signature
and a timestamp, clients can detect replay attacks and attempts by
malicious actors to generate or modify revocation information.

An active network attacker may block access to a revocation end-
point from a CRT. Similarly, an active attacker could block a client
from accessing the CRT. In either case, it is difficult to distinguish
whether an active attacker is present or the system is temporarily
unavailable due to a technical problem. The last-revocation-refresh
data in the CRT and CRS can be used to detect an excessive refresh
delay and prompt a warning for system administrators.

4 ANALYSIS
In this section, we analyze the impact of various settings for the
CRT design parameters. The results illustrate the benefits of a
CRT compared to alternative revocation approaches. They also
inform implementers and system administrators about the effects
of different values for the system parameters.

4.1 Design Parameters
Three design parameters influence the behavior of the CRT. These
values affect properties of the system, including the effectiveness
to reduce soft-fail prone TLS handshakes, bandwidth consumption,
storage requirements, and revocation timeliness.

9A client should wait long enough for the CRT to reach the revocation endpoint (i.e., an
OCSP responder) and update its database. The length of this delay is dependent on net-
work infrastructure; a suitable wait time can be determined through experimentation.

(1) The certificate working set window length, τ , determines
when to remove certificates from a CRT. Lengthening the window
increases the number of certificates in a CRT that have their revo-
cation status periodically rechecked, reducing the percentage of
soft-fail prone TLS handshakes at the expense of more resources
devoted to revocation status checking. However, these revocation
checks are done asynchronously without requiring end clients to
block while waiting for a response. We report the effects of several
τ values in our experiments.

(2) The rate of CRS creation, every α hours, defines the frequency
clients can retrieve updates from a remote CRT. Increasing this rate
improves both the revocation timeliness and effectiveness of the
model, reducing the delay between the time a CRT learns of a
new revocation and when a CRT delivers it to a client. However,
increasing this rate requires clients to interact with a CRT more
often. In our experiments, α is 24 hours.

(3) The rate of certificate revocation status checking, every β
hours, in a CRT affects both the revocation timeliness and band-
width consumption. The worst-case revocation timeliness10 is α +β .
To achieve a revocation timeliness equivalent to competing systems
[2, 24] (48 hours), we set β to 24 hours.

To illustrate this worst-case scenario in revocation timeliness
for a CRT with an α and a β value equal to 24 hours, assume that
immediately after a CRT compiles revocation information into the
first day’s CRS, the CRT begins rechecking revocation information
in preparation for the second day’s CRS. Suppose the CRT checks
the status of the first certificate in its queue and finds that the
certificate status is stillGood. The CRTmarks this certificate asGood
for the second day’s CRS. Moments later, suppose the certificate
owner revokes this certificate. Clients downloading the second
day’s CRS almost 24 hours later do not learn that the owner already
revoked the certificate. On the third day, the CRT again checks the
revocation status of each certificate, finds that this certificate has
been revoked, and creates the third day’s CRS. Clients continue to
trust this revoked certificate until they download the third day’s
CRS, which is almost 48 hours after the owner revokes the certificate.
This worst-case scenario applies to similar revocation strategies
[2, 24] that periodically provide revocation updates to clients.

4.2 Experiment Methodology
To measure the effectiveness and efficiency of the CRT design pa-
rameters, we obtained traffic logs by working with our university’s
network administrators. In our experiments, we used the certifi-
cates from these logs to simulate inputs in a partial reference CRT
implementation.

4.2.1 Passive Dataset Collection. Coordinating with the network
administrators at BYU, we obtained logs generated by the Bro Net-
work Security Monitor [29] for SSL/TLS traffic and X.509 certificate
information from 2018-04-17 to 2018-06-17. The logs included out-
bound TLS traffic for the university campus network.

Several precautions were taken to protect the privacy of col-
lected data. First, all researchers with access to the data signed non-
disclosure agreements. Second, network administrators provided

10Any measurement of revocation timeliness assumes there are no active attackers
preventing access to revocation information.
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and secured a computer for performing all of the raw data process-
ing. Third, all experimental results were reported in aggregate form,
never revealing any hostnames, IP addresses, or identifying certifi-
cate information. Finally, BYU network administrators reviewed
and verified that the results disclosed no private information.

4.2.2 Data Analysis. Using an implementation of a CRT (see 4.3)
and TLS traffic logs from BYU, we measured the following six
metrics to evaluate the effectiveness and efficiency of our revocation
strategy.

(1) Total TLS handshakes with known status. — The pri-
mary metric by which we evaluated the effectiveness of our revo-
cation strategy is the percentage of TLS handshakes in which the
requested revocation status was available in a periodically-created
CRS. We reported the total across all certificates regardless of status
and also across only the revoked certificates.

(2) Total certificates with known status. — Another way to
evaluate effectiveness is to measure the percentage of unique certifi-
cates used in TLS handshakes for which the requested revocation
status was available. The inverse of this metric is equivalent to
the percentage of certificates clients used that may be exploitable.
Similar to Total TLS handshakes with known status, we reported the
total across all certificates regardless of status and also across only
the revoked certificates.

(3) CRT total certificates. — The total number of certificates
in the CRT.

(4) CRT idle certificates. — The total number of certificates in
the CRT not used again before eviction. We calculated the number
of idle certificates by looking forward through traffic logs, checking
which certificates would not be used again in the next τ days. If
we could identify and evict these certificates early, efficiency could
increase while effectiveness would remain the same.

(5) Daily network bandwidth. — The primary metric to eval-
uate the efficiency of our revocation strategy is the daily network
bandwidth consumption to operate a CRT and to download CRSs
regularly. In our experiments, we estimated the CRT’s bandwidth
cost by assuming OCSP was used to check each stored certificate’s
revocation status regularly. A client’s bandwidth requirement is
only the cost to download CRS delta updates regularly.

(6) Total storage. — The total storage used to operate a CRT
and to store CRSs on end clients. A CRT stores the certificate infor-
mation required for revocation checking. In our experiments, we
assumed OCSP was used to check each certificate, which required
the leaf and issuer certificates to be stored.

Our experiments collected data points for several values of τ .
We recorded a value every 24 hours for each of the six metrics at
each specified value of τ over the course the 60 days. We measured
the effects of regularly using the periodically created CRSs, created
every α (24) hours, to check each revocation status. Revocation
information was updated only every β (24) hours. We chose α and
β to match the CRT’s timeliness with the revocation strategies we
selected for comparison. If a revocation status was unknown to the
CRT, we assumed the revocation information was collected and
available for future connections 1 minute after the initial request.

To better represent the long-term effectiveness of a deployed
implementation, we removed data points collected during a CRT’s
initial learning period from our results. The initial learning period
of a CRT is the first τ days during which it collects traffic. After
this period, the number of certificates in a CRT stabilizes because
the CRT may begin to evict certificates.

4.2.3 Limitations. Data from passively collected traffic logs is a
reflection of the corresponding population. We collected data from
only a single university, and our results may not generalize across
all organizations.

4.3 Reference Implementation
We created a partial reference implementation of a CRT to simulate
a production system and generate measurements that we can use
for evaluating the system performance.

4.3.1 Revocation Status Refresh. An important goal of our exper-
iments was to collect the revocation status of each certificate in
a CRT so that we could create and measure the file size of the
CRSs. As making OCSP requests for each of the numerous runs
of the experiment would be infeasible for us and OCSP endpoints,
we checked the revocation status of each certificate in our dataset
one time after the logs were collected (see Appendix A). From this
information, we created a revocation database that included each
certificate and its revocation status. For each revoked certificate,
we included the time at which it was revoked. While checking the
revocation status for a certificate, we returned a Revoked status
only when the query occurred after the time of revocation.

4.3.2 Certificate Eviction. In our experiments, certificate eviction
occurred under two conditions: the certificate had left the working
set W(t, τ ), or the certificate had expired. A certificate left the
working set W(t, τ ) if no client had used it from time t - τ to t.

4.3.3 Creating Certificate Revocation Sets and Delta Updates. The
implementation created CRSs and delta updates to these CRSs for
every 24 hours of logged data. To create these CRSs, we chose
to use a simple but efficient list-based approach. This list used
certificate serial numbers as identifiers stored as 28 to 34 characters
in hexadecimal format, a significant saving compared to using SHA-
256 hashes (64 characters). Because certificate serial numbers are
unique only for a given issuer, we categorized entries by the SHA-
256 hash of the issuer certificate. We created a separate list for two
certificate status options: Good and Revoked.11 Each group of CRSs
included the header with a SHA-256 signature, a 4-digit version
number, and a Unix epoch timestamp. With proper organization,
searching these lists on disk requires O(log(n)) time with two binary
searches. Searching the lists in an in-memory set implementation
requires O(1) time.

We utilized the LZMA compression algorithm on the group of
CRSs.While compression does not reduce the file size while in use, it
does reduce the amount of network bandwidth required to transmit
the file. In our experiments, the compression ratewas approximately
50%. While these savings would be similar to using the binary form
of the serial numbers, we decided to use the hexadecimal form
because it is human readable.
11We did not include any certificates with an unknown status in our experiments.
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τ : working set
window length

TLS handshakes
with known status

Certificates
with known status

CRT total
certificates

CRT idle
certificates

Daily network
bandwidth

Total
storage

Any
Certificate

Revoked
Certificates

Any
Certificate

Revoked
Certificates CRT End client CRT End client

1 day 99.52% 96.55% 60.63% 77.42% 56,957.83 40.73% 72.31 MB 747.31 KB 220.27 MB 1.71 MB
5 days 99.71% 98.82% 80.01% 92.45% 127,702.09 42.87% 162.12 MB 401.45 KB 493.85 MB 3.83 MB
10 days 99.73% 99.59% 85.28% 94.84% 180,355.30 45.82% 228.97 MB 302.39 KB 697.47 MB 5.41 MB
15 days 99.73% 99.59% 87.34% 95.22% 223,133.91 48.95% 283.28 MB 265.04 KB 862.90 MB 6.70 MB
20 days 99.73% 99.55% 88.38% 95.20% 261,310.38 51.72% 331.74 MB 245.00 KB 1,010.54 MB 7.86 MB
25 days 99.76% 99.49% 89.34% 94.86% 297,767.51 54.15% 378.03 MB 229.07 KB 1,151.52 MB 8.96 MB
30 days 99.83% 99.65% 90.05% 95.90% 332,136.97 N/A 421.66 MB 216.17 KB 1,284.44 MB 10.00 MB
35 days 99.84% 99.67% 90.48% 96.16% 363,148.84 N/A 461.03 MB 209.08 KB 1,404.36 MB 10.94 MB
40 days 99.82% 99.67% 90.35% 95.96% 392,611.35 N/A 498.43 MB 208.71 KB 1,518.30 MB 11.83 MB
45 days 99.86% 99.61% 90.91% 95.28% 423,032.13 N/A 537.05 MB 205.09 KB 1,635.94 MB 12.75 MB

Table 1: The average values for each of the six evaluation metrics for several values of τ . We excluded values from a CRT’s
initial learning period from the aggregation.

We created delta updates every 24 hours. A delta update con-
sists of only the certificates that were added or removed since the
creation of the last group of CRSs. These delta updates utilize the
same file structure as a CRS.

4.4 Results
This section contains the results for the six evaluation metrics de-
scribed in our methodology using the passive traffic logs and our
reference implementation (see Table 1 and Figure 2). In the dataset,
there were 524,597 Internet-usable unique certificates.12 After re-
moving entries for resumed or failed connections, we measured
4,144,404,123 outgoing TLS connections. We identified a total of 112
revoked certificates transmitted within the 228,427 TLS connections
in our dataset, including a minimum of 14 revoked certificates each
day.

4.4.1 TLS handshakes with known status. We found over 99% of the
TLS handshakes had local access to the needed revocation status
even using a working set window size, τ , of only 1 day. When we
only measured the TLS handshakes using a revoked certificate, we
found a similar percentage of TLS handshakes had local access to
the needed revocation status information when τ was at least 10
days13. This locally cached revocation information is accessible
even in the presence of Internet traffic manipulation at the time of
the connection.

4.4.2 Total certificates with known status. On average, given a τ
value of 1 day, the revocation status of 60.63% of unique certificates
used by our organization was available to clients via daily CRSs.
This average increased to 90.91% when we extended the working
set window length to 45 days. When examining only the revoked
certificates, the percentages increased for each specified value of τ
(77.42% for τ equal to 1 day; 95.28% for τ equal to 45 days).

12We removed 79,663 certificates from our dataset. Each of these certificate’s subject
field was unusable for Internet use such as ‘LocalHost’ or a large string of numbers.
13Unlike our experiments, in practice we advise to take extra care before evicting
revoked certificates from the CRT before they have expired.

4.4.3 CRT total and idle certificates. Both the CRT total and idle
certificates increased with larger τ values.14 We noticed that the
percentage of idle certificates was high (> 40%) regardless of the
value of τ used, leaving room for a significant efficiency gain if
these idle certificates could be detected and evicted early.

4.4.4 Daily network bandwidth. To estimate the daily bandwidth
consumption of a CRT in our experiments, we assumed OCSP was
used to check the revocation status of each stored certificate every β
hours15 and that each OCSP response used 1.3 KB [24] of bandwidth.
Our experiments found that this cost ranged between 72 MB to
537 MB for τ values of 1 day and 45 days, respectively. This cost is
significantly less than the bandwidth required for every individual
client in an organization to perform OCSP requests (averaging 85.64
GB per day for the organization).

Initially, a client would download a compressed group of CRSs,
which was only 6.7 MB on average even at a τ value of 45 days
(0.89 MB at a τ value of 1 day) (see Figure 3). Then the client would
download a delta update once per day, averaging only 205 KB each
at a τ value of 45 days. Notably, at a τ value of 1 day, each delta
update is similar in size to the full group of CRSs (0.73 MB versus
0.89 MB). On average, delta updates to the CRS containing revoked
certificates were only 215 to 471 bytes depending on the value of τ
used.

While the CRS file sizes grew as the value of τ increased, the file
size of delta updates to these data structures decreases as the value
of τ increased. We hypothesize that certificates may be evicted
too early when τ is too small. As delta changes include additions
and subtractions from the previous data structure, early eviction
explains why the delta updates are larger at small τ values.

4.4.5 OCSP request rate. For the CRT created in our experiments
using a τ value of 45 days with a β value of 24 hours, an average of
421,032 OCSP requests were made per day. Making 421,032 OCSP

14Notably, the percentage of idle certificates for τ of 30 days and above are not mea-
sured or reported because determining whether a certificate is not used again requires
examining τ days of future traffic, which were unavailable in our dataset for larger
values of τ .
15We set β to 24 hours our experiments.
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Figure 2: The distribution of our daily results for several values of τ for the following metrics: TLS handshakes with known
status, TLS handshakes with known revoked status, Certificates with known status, Certificates with known revoked status,
CRT total certificates, and CRT idle certificates. We excluded values from a CRT’s initial learning period.

requests per day requires 4.87 OCSP requests per second and ap-
proximately 6.3 KB per second of bandwidth. At a τ value of 1
day (56,958 OCSP requests), a CRT only would require 0.66 OCSP
requests per second.

4.4.6 Total storage. CRTs require both the certificate and the issuer
certificate to perform an OCSP request. The average certificate
size in our experiments is only 1.98 KB in PEM format. Using this
average value for a certificate, we estimated the upper bound for
the total storage used by a CRT is only 0.2 GB for a τ value of 1 day

and 1.6 GB for a τ value of 45 days. This upper bound assumes that
every certificate in the CRT has a different issuer. We expect the
actual cost to be just over half of this upper bound because a small
number of CA’s [4] issue most of the certificates.

End clients only need to store an uncompressed group of CRSs
on their device (see Figure 3). Our experiments found this file size
to be between 1.71 MB and 12.75 MB depending on the value of τ
chosen.
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Figure 3: The distribution of file sizes for the CRSs and deltas created in our experiments for several values of τ . CRSs created
during a CRT’s initial learning period are excluded.

5 DISCUSSION
Our results have implications for system admins, mobile devices,
and user privacy.

5.1 Empower System Admins
We believe the dependency on third-party adoption has hampered
the deployment of many otherwise promising revocation strategies.
Scalable revocation strategies with no reliance on third parties
empower system admins to defend themselves. The incentives to
deploy CRT and other similar solutions [20, 28, 31] are with the
system admins responsible for securing their organizations.

System admins choose the CRT parameters (τ . β , α ) to balance
effectiveness, efficiency, and revocation timeliness depending on
their needs. For example, assuming ample bandwidth and storage,
setting τ to infinity may increase the effectiveness of the system
because certificates are not evicted from the CRT until they expire.
Decreasing the values of β and α improves revocation timeliness.

Many organizations could improve revocation timeliness with low
cost because a CRT regularly rechecks only a small subset of glob-
ally trusted certificates. Based on our results, cutting alpha and beta
in half (12 hours) increases the daily bandwidth cost to 9.74 OCSP
requests per second and consumes 1.05 GB of network traffic.

5.2 Mobile Platforms
Bandwidth consumption discourages browsers on mobile platforms
to check revocation [25] since clients often have bandwidth limits.
A CRT can be mobile-friendly by dynamically changing the behav-
ior of the system based on the network conditions. For example, the
system should attempt to update CRSs or use the Check Revocation
Status API while connected to a Wi-Fi network. If significant time
has passed without connecting to a Wi-Fi network, clients should
only collect the most critical revocation information such as the
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TLS Handshakes
Protected

Client Bandwidth
Consumption

Global Certificate
Growth Scalability

Mass Revocation
Event Scalability

Revocation
Timeliness

Privacy
Preserving

Deployment
Requirements

OCSP Must-Staple 100%† 1.3 KB per TLS handshake [24] Minimal BG No Changes 4 Days Yes Very High
CRLSets Unknown‡ 250 KB per day Reduced Protection Minimal Protection 1–2 Days Yes Deployed
CRLite (Jan. 2017)∗ 100% Initially 10 MB; 580 KB per day Significant BG Significant BG 1–2 Days Yes High
CRLite (Mar. 2018)∗ 100% Initially 18 MB; Unknown per day Significant BG Significant BG 1–2 Days Yes High
CRT 99.86% Initially 6.71 MB; 205 KB per day Minimal BG Minimal BG 1–2 Days Yes Medium
CRT (only revoked) 99.86% Initially 1.92 KB; 0.21 KB per day Minimal BG Significant BG 1–2 Days Yes Medium

Table 2: Comparison of our CRT implementation to other revocation strategies. (BG = Bandwidth Growth)

∗: The number of globally live X.509 certificates was 30 million in January 2017 and 84 million in March 2018.
†: While protecting 100% of TLS handshakes is possible, current adoption rates (0.03% of certificates) practically protect few TLS handshakes.
‡: We have no way of measuring the effectiveness of CRLSets for this property. Because CRLSets contain only a small number of revoked

certificates (roughly 40,000), the number of certificates prechecked for the client is low.

CRS containing revoked certificates. In our dataset, regularly down-
loading this CRS and its updates for an entire month uses fewer
than 0.0003% (6.30 KB) of a 2 GB monthly bandwidth allotment.

5.3 Privacy
Clients should not have to reveal traffic patterns to untrusted third
parties to check revocation status. We describe three different ways
a CRT can be deployed in an organization while preserving privacy.

A private network administrator could use an organization-
based middlebox to inspect network traffic. A CRT could be inte-
grated into the middlebox to support certificate revocation, which
would not sacrifice client privacy because network administrators
already have access to the information.

If clients in an organization do not share a physical or virtual
network, not all traffic may go through a middlebox. We could de-
ploy a CRT as a private cloud service. We assume that all clients
in the organization trust the administrator deploying the CRT to
properly process their traffic information, removing the need to
anonymize clients from the CRT. The service generates the CRT
working set from the certificates obtained through the Check Revo-
cation Status API. Communication between clients and CRTs should
be encrypted to prevent eavesdropping and maintain privacy.

An honest-but-curious third party, such as a group of secu-
rity enthusiasts, could deploy a distributed group of CRTs. Anonymiza-
tion techniques such as the notary bounce defined by the Conver-
gence Notary [26] or Tor may protect client privacy.

6 COMPARISON
This section compares CRT with OCSP Must-Staple, CRLSets, and
CRLite based on the seven concerns facing revocation strategies
discussed in Section 3.1. Table 2 summarizes the results. The CRT
details in our comparison are from TLS traffic generated at BYU
between 2018-04-17 to 2018-06-17 and assume a τ value of 45 days,
a β value of 24 hours, and an α value of 24 hours.

Effectiveness. If clients use CRLite or all web servers adopt
OCSP Must-Staple, they can check revocation on 100% of connec-
tions. On average, clients using either type of CRSs achieve 99.86%
coverage. CRLSets protect only a small set of critical certificates.
CRT could approach 100% by modifying the design parameters. For
example, reducing the time between delta updates, α , may increase
effectiveness while only slightly increasing bandwidth.

Efficiency. The daily client bandwidth and storage usage for
CRT are slightly less than CRLite and CRLSets for the full group of
CRSs and three orders of magnitude lower than any other strategy
for the revoked-only CRS. The bandwidth requirement for OCSP
must-staple depends on client activity and is roughly equal to the
others assuming 200 – 500 connections per day.

CertificateGrowth Scalability. TheCRT bandwidth consump-
tion increases according to the number of unique certificates an
organization uses (i.e., working set size), a significant improvement
compared to CRLite whose bandwidth is a factor of the number of
live certificates globally. OCSPMust-Staple bandwidth consumption
increases with the number of TLS connections, which is indirectly
affected by certificate growth. CRLSets is fixed size, so there is no
bandwidth scalability concern. However, it protects a decreasing
percentage of overall certificates.

Mass Revocation Event Scalability. The bandwidth for CRT
and OCSP Must-Staple do not change because they already collect
the status of each certificate. The size of delta updates for a full
group of CRSs increases due to the re-issuing of certificates during
mass revocation events. The CRS containing revoked certificates
significantly increases in size during a mass revocation event but
would still be only a fraction of the size of the other CRSs. CRLite
bandwidth increases during mass revocation events because it is
partially a factor of the percentage of globally revoked certificates.
CRLSets miss many revoked certificates during a mass revocation
event since they protect only a small number of certificates.

Revocation Timeliness. Clients using CRT (with α and β both
set to 24 hours), CRLite, and CRLSets download revocation infor-
mation once every day. Worst case, a revoked certificate could be
trusted by a client almost 48 hours after the initial revocation (see
4.1). The worst-case revocation timeliness for OCSP Must-Staple is
equal to the OCSP response’s lifetime (median expiration is 4 days
[24]) and occurs when an active attacker obtains an OCSP response
immediately before revocation.

Privacy. OCSP Must-Staple, CRLSets, and CRLite do not collect
nor expose client traffic patterns. CRT may reveal client traffic
patterns at collection points, but there are deployment options to
maintain privacy (See 5.1). CRT reveals the aggregated collection
of certificates to all clients in an organization, which could alert
members of the organization when some client visits a controversial
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website (e.g., addiction, politics, religion, suicide help). It does not
identify a specific client or any client’s browsing history, assuming
a sufficiently large population, but inferences could cause harm and
result in a loss of privacy or reputation.

Deployment Requirements. CRT requires a dedicated server
and client software, similar to both CRLite and CRLSets. OCSPMust-
Staple requires buy-in from each website and high availability from
CAs to avoid service interruption to website customers. The risk of
downtime is currently a huge disincentive.

CRLite places a significant load on supporting servers. As of Sep-
tember 2018, CRLite collects the revocation status for over 317M
certificates [4]. This total includes at least 213M issued by Let’s
Encrypt that require at least 2,465 OCSP requests per second to
be made to Let’s Encrypt’s OCSP Endpoints. While this is not a
fundamental problem, in practice this would require coordination
between the Let’s Encrypt and the CRLite system to avoid over-
whelming Let’s Encrypt. In contrast, our experiments show that a
CRT running in our organization required 3 orders of magnitude
fewer OCSP requests per second compared to CRLite.

7 FUTURE WORK
There are ways to improve the cost and effectiveness of a CRT.

7.1 Removal of Irrelevant Certificates
Our results report a large percentage (> 40%) of idle certificates
independent of the certificate working set window size (τ ). Future
work could determine ways to identify and evict these certificates
earlier to increase efficiency. This effort requires caution as certifi-
cates evicted prematurely could result in loss of effectiveness. We
suspect many idle certificates could be identified early by searching
for high-order correlations in client traffic patterns with machine
learning models like a Multilayer Perceptron. In addition, memory
management eviction strategies such as Least Recently Used (LRU)
and Least Frequently Used (LFU) may be effective for implementa-
tions that adopt a fixed-size cache.

7.2 Idle but Revoked Certificates
In our experiments, we chose to evict idle certificates after they
had left the certificate working set regardless of whether they were
a Revoked or Good certificate. In practice, a system administrator
may choose to use two certificate working sets, one for revoked
certificates (defined by τ ′), and one for all other certificates (defined
by τ ). Increasing the window size of the revoked certificate working
set would increase the total storage usage of both the CRT and the
CRS containing revoked certificates. The delta update for the CRS
containing revoked certificates would not increase in size, and in
cases where a revoked certificate was removed and reinserted, the
delta update would instead be slightly smaller. We suspect that
increasing the window size of the revoked certificate working set
would increase the number of TLS handshakes with known revoked
status without significantly affecting efficiency.

7.3 Anticipating Certificate Renewal
We suspect that some of the TLS handshakes with an unknown
status are using newly issued certificates for websites a client or

organization already visit semi-regularly. Let’s Encrypt issues cer-
tificates with a 90-day validity period. We estimate that on an
average day, approximately 1.11% of the certificates issued by Let’s
Encrypt expire and need replacing.

A CRT could increase its effectiveness by detecting that a host
has obtained a new certificate before any client in the organization
receives the new certificate. A CRT could periodically check the host
certificate for all the cached certificates that are nearing expiration.
A measurement study could be conducted to determine when hosts
typically acquire a new certificate when the current certificate is
about to expire.

7.4 Alternative Deployment Scenarios
In our research, we described and experimented using a CRT to
create a shared certificate working set for all traffic from a large
organization (i.e., a university). Future work could explore the effec-
tiveness, efficiency, and deployment requirements of shifting to a
different type of targeted population. We describe a few deployment
options we have considered as possible use cases:

A single client could monitor its traffic patterns and manage
a CRT. Deployment would be simplified, but we expect reduced
effectiveness because the certificate working set is much smaller.

A home network could leverage a localized CRT that targets a
personalized certificate working set to protect a small number of
desktop computers, smartphones, and often-vulnerable IoT devices.
CRT support built into a home router would simplify deployment
requirements.

A certificateworking set created by the Internet traffic of ageneral
region (i.e., a city) could be collected and used by an Internet ser-
vice provider to manage a CRT. Two critical issues to address are
privacy concerns and how to manage the size of the CRT so that it
doesn’t grow too large.

As explained by Rabieh et al. [31], a revocation strategy is needed
to support a smart grid AMI network using a multi-hop wireless
mesh topology. In this topology, power meters can route messages
through other power meters, in which validating the message’s
authenticity is essential. These meters could store CRSs to reduce
the number of required online revocation status checks compared
to traditional strategies.

8 CONCLUSION
This paper presents Certificate Revocation Table (CRT), a new re-
vocation strategy that leverages locality of reference between the
web requests for an organization. The CRT caches recently used
certificates along with their revocation status, and periodically re-
freshes the revocation status so that it is available to end clients
when needed. To determine the effectiveness and efficiency of this
approach, we simulated a CRT using 60 days of TLS traffic logs
from BYU to measure the effects of actively refreshing certificates
for various certificate working set window lengths. Our results
demonstrate that an organization-shared CRT is competitive with
or exceeds alternative state-of-the-art solutions in effectiveness,
efficiency, certificate growth scalability, mass revocation event scala-
bility, revocation timeliness, privacy, and deployment requirements.
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A EXAMINING GLOBAL CERTIFICATE
STATISTICS

To better understand the global usage of certificate revocation,
we measured the percentage of revoked certificates globally. No
publication since 2015 [25], much before the recent growth in the
certificate space, has published similar statistics. We collected the
revocation status of each certificate tagged by Censys.io [14] as
Currently Trusted (non-expired, trusted by Apple’s, Microsoft’s, or
Mozilla NSS’s root store) on March 21, 2018 and June 17, 2018.

A.1 Currently Trusted Certificate Dataset
Our first task to collect the revocation status of each certificate
was to gather a large collection of certificates that closely repre-
sented all X.509 certificates globally. Similar to previous revocation
measurements studies [25], we started with any certificate seen in

526

https://wiki.mozilla.org/CA:RevocationPlan#OneCRL
https://dev.chromium.org/Home/chromium-security/crlsets
https://censys.io/certificates?q=tags.raw%3A+%22trusted%22
https://letsencrypt.org/stats/
https://blog.hboeck.de/archives/886-The-Problem-with-OCSP-Stapling-and-Must-Staple-and-why-Certificate-Revocation-is-still-broken.html
https://blog.hboeck.de/archives/886-The-Problem-with-OCSP-Stapling-and-Must-Staple-and-why-Certificate-Revocation-is-still-broken.html
https://blog.hboeck.de/archives/886-The-Problem-with-OCSP-Stapling-and-Must-Staple-and-why-Certificate-Revocation-is-still-broken.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
https://blog.cloudflare.com/the-hard-costs-of-heartbleed/
https://blog.cloudflare.com/the-hard-costs-of-heartbleed/


Raw
Certificates

Expired
Certificates

Private
Certificates

Has
Z-Lint Error

Duplicate
Certificates

Unrevokable
Certificates

Cleaned
Certificates

Has CRL Endpoint 29,919,424 166,394 2,763 550,107 2,427,171 0 26,772,989 (89.48%)
Let’s Encrypt 53,775,159 578,771 0 0 0 0 53,196,388 (98.92%)
Other 5,241,259 26,799 993,207 36,893 0 475 4,183,885 (79.83%)
Total 88,935,842 771,964 995,970 587,000 2,427,171 475 84,153,262 (94.62%)

Table 3: The ordering and reasons we removed certificates from the March 21, 2018 dataset

Included a
Reason Code Unspecified

Key
Compromise

CA
Compromise

Affiliaction
Changed Superseded

Cessation Of
Operation

Certificate
Hold

Privilege
Withdrawn

AA
Compromise

Has CRL Endpoint 483,816 1,485 3,358 10 5,159 11,624 457,875 676 3,629 0
Let’s Encrypt 0 0 0 0 0 0 0 0 0 0
Other 37,152 37,056 45 1 9 41 0 0 0 0
Total 520,968 38,541 3,403 11 5,168 11,665 457,875 676 3,629 0
Total Percentage 100% 7.40% 0.65% 0.002% 0.99% 2.24% 87.89% 0.13% 0.67% 0.00%

Table 4: The reported revocation reason of revoked certificates from the March 21, 2018 dataset

many previous Internet scans or Certificate Transparency Logs16
and then filtered out certificates that have expired or are not trusted
by any standard root store. We did not exclude certificates that were
not currently being advertised as most of the revoked certificates
we aim to protect against will typically not be advertised [25]. We
used Censys.io [14], a search engine created to allow researchers
to access data from daily Internet scans, as our initial dataset. We
obtained permission to access and read from their database through
Google BigQuery.17

We created our datasets by collecting all certificates tagged by
Censys.io as Currently Trusted (non-expired, trusted by Apple’s,
Microsoft’s, or Mozilla NSS’s root store). Additionally, we cleaned
our dataset by removing duplicate, expired18, private19, and invalid
certificates20 (see Table 3 for March 2018 dataset cleaning). After
cleaning the dataset, 84.2 Million certificates on March 21, 2018 and
183.9 Million on June 17, 2018 remained.

A.2 Performing Revocation Checking
As done in previous revocation collection efforts [24, 25], we sepa-
rated certificates with CRL endpoints (March 21, 2018: 29.9M, 33.6%;
June 17, 2018: 55.7M, 30.3%) from those with only OCSP endpoints
(March 21, 2018: 59.0M, 66.3%; June 17, 2018: 128.2M; 69.7%). The
remaining certificates (March 21, 2018: 475; June 17, 2018: unavail-
able) did not have any revocation endpoint and were unrevokable.21
Notably, of the OCSP-only certificate grouping, 53.7 Million (91.1%)
and 121.0 Million (94.4%) respectively, were issued by Let’s Encrypt.
Because of the volume of our planned requests, we obtained per-
mission from each CA who had issued over 1 Million OCSP-only

16https://www.certificate-transparency.org/
17https://cloud.google.com/bigquery/
18These expired by March 21m 2018 or June 17, 2018 repectively.
19Private certificates are those using an LDAP endpoint or are otherwise inaccessible.
Most of these certificates returned an unauthorized status code on request.
20Each invalid certificate had at least one Zlint error [21].
21Of the 475 unrevokable certificates, all but 2 certificates were a root certificate, an
intermediate certificate, or an OCSP Signing certificate.

Cleaned
Certificates

Good
Revocation Status

Revoked
Revocation Status

Has CRL Endpoint 26,772,989 25,983,705 789,284 (2.9%)
Let’s Encrypt 53,196,388 52,946,338 250,050 (0.47%)
Other 4,183,885 4,136,155 45,703 (0.11%)
Total 84,153,262 83.068,198 1,085,037 (1.29%)

Table 5: The reported revocation status of certificates from
the March 21, 2018 dataset

Cleaned
Certificates

Good
Revocation Status

Revoked
Revocation Status

Has CRL Endpoint 55,719,070 54,576,857 1,142,213 (3.15%)
Let’s Encrypt 121,054,298 120,774,022 280,276 (0.23%)
Other 7,109,349 6,777,262 332,080 (4.67%)
Total 183,882,717 182,128,141 1,754,569 (0.95%)

Table 6: The reported revocation status of certificates from
the June 17, 2018 dataset

certificates in our dataset for specific scan rates.22 We limited our
request rate to 10 requests a second for all other OCSP endpoints.

A.3 Data Collection Results
The results of our scans are summarized in Table 5 and 6. Overall,
we found a total of 1.29% (1.08 Million) and 0.95% (1.75 Million)
revoked certificates in our datasets. This percentage is very similar
to the percentage of revoked certificates seen in 2014 [25] before the
discovery of the Heartbleed vulnerability. Following the discovery
of Heartbleed, the percentage of revoked certificates quickly rose
to around 8% [25].

In our March 2018 scan, we measured the reason codes included
in CRLs or OCSP responses. We found that 520,968 revocations
(48.04%) included the reason code field (see Table 4). The vast ma-
jority (457,875; 87.89%) of revocations were reported as Cessation
22Let’s Encrypt, Symantec, DigiCert
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Of Operation. Only 3,403 (0.65%) revocations were due to key com-
promise, and 11 (0.002%) revocations were due to CA compromise.

A.3.1 Privately Used Certificates. While there were 19.1 Million
revocations included in the CRLs (703 MB) we collected in March,
there were only 788,630 (6.6%) of these certificates in our March
dataset. In June, we found 14.1 Million revocations included in
the CRLs (601 MB) with only 8.0% that were certificates in our
June dataset. We noticed a similar imbalance in 2017 [24] where
we found 12.7 Million certificate revocations with only a small
percentage that were previously seen in Internet scans and were

not expired.23 While we cannot be sure who uses these certificates,
we suspect they are either privately used certificates or certificates
that should have been previously removed from a CRL, i.e., expired.
If we included only revoked but otherwise valid certificates with
publicly accessible CRL endpoints seen in our dataset (non-expired,
CA-trusted, seen in previous Internet scan) in CRLs, we estimate
the cost of downloading all accessible CRLs would be reduced to
only 38 MB and 48 MB receptively. However, because CAs have
signed these unseen certificates and browsers trust them, it would
be irresponsible for CAs to naively remove these from their CRLs.
23The authors communicated this information through email.
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