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1. Introduction

Microfluidics is the study of fluids at the microscopic scale. It is a field of study with a range of applications [42], such
as: drug delivery, diagnostic chips and microreactors. Droplets in real-world microfluidic systems have a large surface-area
to volume ratio, which makes interfacial forces important; a good review is provided by Rallison [35]. In two dimensions,
this translates to a large interface-length to area ratio. Surfactants locally influence the surface tension of a droplet interface.
This may create non-uniformity in the surface tension which in turn generates a stress opposed to the flow, known as the
Marangoni stress. Thus, the addition of surfactants can strongly influence the behaviour of the system [1,7].

Stone and Leal [40] studied how surfactants change the drop deformation and breakup using a numerical boundary
integral method. They found that for the same strain rate, surfactant-covered drops would reach a more deformed steady
state than their clean counterparts. The effect of viscosity-ratio on deformation was investigated for surfactant-covered
droplets in an extension of this work [26]. It was shown that for cases with near-zero diffusion of surfactants along the
interface of the droplet, the steady state deformation was independent of viscosity-ratio.

A microfluidic system is typically one in which viscous forces are dominant. Microfluidic multiphase flows can therefore
be accurately modelled using Stokes equations. With the addition of surfactants, it is also necessary to couple the Stokes
equations with a convection-diffusion equation on the droplet interfaces. A discontinuity in the normal stress across the
droplet interface is created by the surface tension forces. This represents a major challenge for the simulation of these flow
types. One way to avoid this difficulty is to ensure that the computational grid is always coincident with the interfaces.
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However, this becomes very expensive when droplets deform or advect as it requires the domain to be remeshed at every
time-step. The most common approach for multiphase flow simulation is instead to utilise some form of interface tracking.
This involves solving the Stokes equations on a fixed computational grid in the entire domain. The locations of the droplet
interfaces are computed separately using either an explicit boundary discretisation or an implicit representation; such as a
level-set function or volume-of-fluid method. Some examples of methods with surfactants are those by Khatri and Tornberg
[15,16] and Muradoglu and Tryggvason [27], who considered the Navier-Stokes equations and surfactants using a front-
tracking scheme and finite differences in 2D and 3D respectively. Another approach is to use a diffuse interface method as
Teigen et al. [43]. Furthermore, recent work has been done to extend these kinds of methods also to soluble surfactants, as
is done in both 2D and 3D in [6,36,45].

Accurate treatment of the discontinuity in normal stress remains a significant challenge for all interface tracking methods
when the interfaces do not align with the computational grid. The most common approach to handle this has been to
regularise the surface tension forces, such as introduced in e.g. Brackbill et al. [4] or in the immersed boundary method by
Peskin [30]. However, regularisation limits the accuracy of the method to first order near the interfaces. Another approach
is to impose the jump conditions in the normal stress directly. LeVeque and Li [24] obtained second order accuracy using
an immersed interface method based on finite differences for clean drops, however they required both the drops and the
bulk to have the same viscosity. This constraint still remained as Xu et al. [44] extended the method in [24] to simulate
surfactant-covered droplets in Stokes flow. Care has to be taken when imposing the jump condition to avoid a time step
constraint that is dependent on how the interfaces cut the underlying grid. This is thoroughly discussed for finite element
methods in Hansbo et al. [12], where they manage to design a second order method and avoid such a constraint by adding
suitable stabilising terms.

Reformulating the Stokes equations in integral form on the droplet interfaces avoids the aforementioned issues. This
reduces the dimension of the problem as only the interfaces have to be discretised and gives an explicit representation of
the interface which does not have to be coupled to an underlying grid. Furthermore, it naturally handles the discontinuity in
normal stress. A review of boundary integral methods for Stokes flow is given in [31]. For drops, papers containing boundary
integral methods including surfactants in 3D are among others [3,32,38]. In two dimensions, boundary integral methods have
been used for e.g. vesicles as by Marple et al. [25] who simulated vesicle suspensions in confined flows and Quaife and Biros
[34] who focused on developing an adaptive time-stepping scheme using an implicit spectral deferred correction method.
This was extended by Bystricky et al. [5] for rigid body suspensions. Kropinski and Lushi [22] simulated surfactant-covered
bubbles with a boundary integral method and used a spectral method to compute the surfactant concentration. Xu et al. [46]
extended this work to include a model for soluble surfactants in the no-diffusion limit in the bulk. However, the numerical
solution of the boundary integral equations has its own challenges. Primarily, the near-singular behaviour of the discretised
integrals when evaluating interfaces in close proximity. In 2D, Ojala and Tornberg [28] used a special quadrature scheme to
ensure high accuracy also for close to touching clean drops. Other options for closely interacting drops includes quadrature
by expansion (QBX) by Kléckner et al. [20], which can be extended to 3D, and was done so efficiently for the special case
of solid spheroids in [17].

This paper proposes an efficient and accurate boundary integral method for the simulation of deforming bubbles and
droplets in two dimensional Stokes flow; for both clean and surfactant-covered droplets. The method is an extension of that
proposed by Kropinski and Lushi [22] and uses the special quadrature method in [28] to enable accurate simulations of
close drop-drop interactions. To match the spectral accuracy in space, an adaptive time-integration scheme is employed and
also described herein.

This paper also aims to validate the proposed numerical method using conformal mapping theory following the ap-
proaches in [8,41]. For single surfactant-covered bubbles in an extensional flow at steady state, exact solutions are computed
by Siegel [37]. Furthermore, Crowdy et al. [8] used conformal mapping theory to semi-analytically compute the deformation
of a pair of clean bubbles in an extensional flow. With this approach, a conformal mapping of the interface is considered
and the time-dependent problem of deforming bubbles is rewritten into a system of ODEs for the conformal mapping
parameters, whilst the flow field can be described analytically. In this paper, this approach has been extended to surfactant-
covered bubbles. Together, these solutions enable a precise and quantitative validation of the numerical method proposed
by this paper. A comprehensive evaluation of the method is undertaken, examining temporal development, droplets in close
proximity and the distribution of surfactants.

Additionally, the errors introduced when evaluating the near-singular integrals numerically using a standard Gauss-
Legendre quadrature are estimated. This work extends that of af Klinteberg and Tornberg [18,19] where estimates based
on contour integrals were derived for Laplace’s and Helmholtz equations. The estimates are in excellent agreement with the
observed numerical errors. Details of the estimates and their derivation can be found in Appendix A.

The paper is organised as follows: in §2 the model, governing equations and boundary integral formulation are intro-
duced. §3 explains the numerical solution of the boundary integral equation, the special quadrature method and provides
results for the error estimates. The complete numerical method for the coupled problem is explained in §4 and §5 details
the methods used for validation. In §6 numerical results for drop simulation and validation are presented.
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Fig. 1. Example of a domain consisting of three droplets.
2. Problem formulation
2.1. Governing equations

On the micro scale, the fluid velocity u and the pressure p of a flow can be computed by solving the Stokes equations.
Here, an infinite expanse of fluid, g, with viscosity po is considered. The fluid contains n droplets, denoted by €, for
k=1,...,n, each with viscosity . The interface between the droplet Q; and the bulk fluid Qg is denoted by Iy, see Fig. 1
for an example domain. The Stokes equations take the form

HoAug = Vpo, for x € Qo, )
1
UeAu =Vpy, forxe Q, k=1,...,n.
For droplets, i # 0 and the velocity is continuous over the interfaces. Also, the solution fulfils the normal stress balance
over the interfaces,

—(po— pr)M+2 (o€ — (r€y) -N=—0kn+ Vso onT, (2)

where I' = U,L] I'x. Here, n is the inward facing normal, o the surface tension coefficient, kK = Vs -n the curvature and e the
rate of strain tensor. Note that this curvature is negative for a circular drop. The term Vo, where V; is the surface gradient
operator, gives the tangential stress (Marangoni force) which is the result of a non-uniform surface tension. The interfaces
are discretised clockwise by s € [0, L, (t)], where Li(t) is the length of the interface I'y at time t. This condition states that
the jump in normal stress over an interface is proportional to the curvature and the Marangoni force. Furthermore, the
kinematic interface condition states that the normal velocity of the interface, CL% -n, is equal to the normal fluid velocity,

dx n=u-n (3)
a
The limit when wy = 0 corresponds to the study of inviscid bubbles. The continuity condition of velocity across the
interface can then be disregarded, as there is no velocity inside the bubbles. The kinematic condition (3) is still necessary,
as is the normal stress balance (2) modified to contain only pressure and strain tensor of the bulk fluid.

As the fluid domain ¢ is unbounded, an additional condition at infinity is needed,

u— Uy, as |X| — oo.

Here it is typical to impose a linear far-field flow, where

Go
uoo=< Q BO*T).X. (@)

Bo—-% —Qo

The two imposed linear flows considered in this paper are: extensional flow, where By = Go = 0 and shear flow, where Qo =0
and Go = 230.
The surfactants considered here are insoluble, i.e. they exist only on the interfaces of the droplets. Their concentration,

p(s,t), is described by the convection-diffusion equation [39]

D

D—f+p(vs~u):DpV52p, forxeT. (5)
Here, Dr is the diffusion coefficient along the interface and % the material derivative. As the surfactants are insoluble, their
mass on each interface is conserved,
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d
R p)dsS=0, k=1,...,n. (6)

Ty ()
The surfactant concentration and the surface tension at an interface are coupled through an equation of state. Two
common equations of states are the Langmuir equation of state,

o (p) =00 + RT log (P — p) (7

and the linearised equation of state

o(p)=00—RTp, (8)

as described in [29]. Here, R is the universal gas constant, T the temperature and op the surface tension coefficient of a
clean interface. Furthermore, po is the maximum monolayer packing concentration of surfactants on I'(t). Generally, the
Langmuir equation of state is considered more accurate. The linear equation of state is mostly used for problems with low
saturation levels, but is also commonly used in many validation cases, which is the reason it is included here. To switch
between the two is trivial.

2.2. Nondimensionalisation

The above equations are nondimensionalised using a characteristic length rg, defined as the radius of an initial droplet.

The characteristic velocity is defined as the ratio % where o is the viscosity of the bulk and op the surface tension

‘7—[‘]’. For the remainder of this paper, all

coefficient of a clean interface. Furthermore the characteristic pressure is defined as -

physical quantities are considered in their non-dimensional form.
Rewriting the equations, (1) becomes

Aug = Vpo, forx € Qp, ©)
AAu, =Vpy, forxe Q, k=1, ..., n,
and (2)
—(po—pr)n+2(eg —Arey) -n=—0kn+ Vso, onT. (10)

Here, Ay = % is the viscosity ratio between the droplet k and the bulk fluid. Also the imposed far-field flow is nondimen-
sionalised, such that

ToMo
(Q, G, B) = — (Qo. Go, Bo).
o]
The nondimensionalisation of the surfactant concentration depends on which equation of state is used:

Case 1. In the case of the Langmuir equation of state, it is natural to nondimensionalise p with the maximum monolayer
packing concentration 0, and (7) reads

o =1+ Elog(1— p), (11)

where E =

% is the so-called elasticity number.

Case 2. When considering the linearised equation of state, it is instead common to nondimensionalise with the initial
surfactant concentration, pg. Then, (8) becomes

with E = K20,
In both cases, (5) becomes

Dp 1 _,

— Vs-u)=—V:p, forxeTl, 13

o TPVs W pep 5 P (13)
where Pep = (’,‘00[;‘; is the Peclet number.

In summary, to evolve the deforming interfaces of the surfactant-covered droplets in time, the following coupled system
needs to be solved for x € I'(t):
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dx—u(x t)
ar - , 0, 1),

Dp
Dt
The solution to this system will be explained in steps. First, the boundary integral equation (BIE) formulation for u is given

in §2.3. In §3 the numerical method that is used to accurately solve the BIE is explained. In §4 the numerical procedure for
the solution of the surfactant concentration, the coupling of the system and its evolution in time is described.

- (14)
=—p(Vs-u)+ P_EFVS p.

2.3. Boundary integral formulation

In two dimensions, it is convenient to regard this problem in the complex plane. The spatial variable x then corresponds
to the complex variable z=x +iy. On the interface, z is regarded as a function of the parameter « and time, z(«, t), where
o € [0,2m]. The two parametrisations s and « are linked through o = 2ms/Li(t) for each interface T'y(t), where s was
introduced below (2).

The integral equation used to compute the velocity on each interface is obtained through the Sherman-Lauricella formu-
lation as described in [21]. This approach stems from the fact that the solution to the Stokes equations in two dimensions,
u(z) =uq(x, y) +iua(x, y), can be written as the solution to the biharmonic equation. This is done by introducing a stream
function W (x, y) where u; = Wy and uz; = Wy. One can then replace the Stokes equations by the biharmonic equation
A’W = 0. By Goursat’s formula, W (x, y) has the representation

W, y)=%{zf(@) + N (2},
where f(z) and h(z) are analytic functions on ¢. The functions f and h are known as Goursat functions, and all physical
quantities of the problem, such as velocity, pressure and vorticity, can be expressed as combinations of them [23]. Using the
Sherman-Lauricella formulation as in [21], the Goursat functions are written as Cauchy integrals of a complex-valued density

(2). By substituting velocity and pressure in the interface condition (10) by their representations of Goursat functions, a
Fredholm equation of the second kind is obtained to solve for @ (z) on the interfaces I'(t),

w@ + B@T(z, w) + B(2) / pu(o)lde|
r) (15)

Y (2) 9z B(z)(B—iQ)z, zeTl(t),

2 da
where 7 (z, i) is the complex variable formulation of the stresslet
1 dt 1 [—3(dt(T-2)
T(z,u)=— I —— — T)——,
(2, ) ﬂ/u()s(t_z>+ /M()

— 2
() nr(r) (T-2)

=—-o0(a,t)

see [21] for details. The third term in (15) evaluates to zero as a result of the area conservation of the droplets, and is
used to remove rank deficiency in the case of inviscid bubbles. Here, notation as in [28] is used, where B(z) := 1= and

Tk
y(2) = 1+1_M< for z € Tk (t). In the last term on the right hand side, B and Q are part of the imposed far-field flow in (4).
Furthermore, o (x,t) := o (p(,t)) is the surface tension coefficient obtained from the surfactant concentration through
either equation of state, (11) or (12). Note that the expression in (10) has been integrated once, thus no differentiation of
o (a,t) is needed.

Once w(z) is obtained for all z € I'(t), the velocity can be evaluated for z € Q¢ UT" U €y, as

. 1 dt
U(Z)=u1(z)+luz(2)=—;[/L(r)ﬂf(:)

()
L bl i) SN0
i (7_2)2 27
()

(16)

where the last two terms on the right hand side represent the far-field velocity uy, in complex form. Note that the first
integral in (16) is singular and interpreted in a principal value sense.

3. Solving the BIE numerically

Here, a summary of the numerical method to solve the BIE is given. More details are available in [28]. The solution
procedure described is valid for any instance of time t.
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To compute the integrals (15) and (16) accurately, a high order discretisation of I'(t) is needed. Here, an explicit repre-
sentation of the interfaces is used; zx(c), for droplets k=1, ...,n, where « € [0, 27). On the interface k, each interface is
split into panels and N discretisation points are placed on a composite 16-point Gauss-Legendre grid. The total number of
discretisation points becomes N = >"j_; N.

3.1. Solve for 11(z)

To compute i ~ w(z;), where z; are the Gauss-Legendre points on the interfaces at time £, a Nystrém method is used.
The discretised version of (15) is

N
LB Bi
Mi+ ;1 wiM (])+ IZ M(2)+,8izlujwj|z,j|
j=1 / j=1 (17)
Vi 2
2

L Bi(B-iQ)z, i=1,...,N,

;]

where zl( = g—; },.. Here, w; are the Gauss-Legendre weights associated with z;. Also, 0; = o (), Bi = B(z;) and y; =y (7).
Moreover,

slzE-m)
M].(.l)=wj?s 1 , M](?):Wjii_z,
j Zj—z ] (zj—zi)

for all j #i. The limits when j =i are finite and given by

F4 {Z:/Z}
27, 2@

The derivatives of z; are computed with Fourier differentiation on a uniform grid and evaluated on the Gauss-Legendre grid.

Solving (17) to obtain w;, i=1,..., N, boils down to solving a system Ag =b, where gt = (141...1n)", b represents
the right hand side in (17) and Au the expression on the left hand side. The matrix A is dense, but as (15) is a Fredholm
equation of the second kind, the condition number of A is typically small and does not increase with grid refinement. Due
to the spectral properties of the discretised system, there is no need for a preconditioner when solving (17) with an iterative
algorithm such as GMRES. Furthermore, the matrix-vector multiplications are sped up using the fast multipole method, FMM
[10].

3.2. Compute u(z)

Once u; is obtained for all discretisation points z;, the velocity u; ~ u(z;) can be computed through (16). To handle the
singular integral, singularity subtraction is used; when evaluating u; the integral

= [

is added and subtracted from the expression in (16). Using calculus of residues this removes the singularity and leads to
the discretised expression

wi - Z;
R Y S )W R J
uj = = i p Z (Wj— pi)w;R { zi—z }

j=1 i]

iG
ZM;M(Z) +(Q +iB)z; — - %

2) .
where Mij is defined as previously.
3.3. Error estimates

Regarding the equations (15) and (16), they both contain terms (z; —z;)~!. For M’ and M® the limits when i = j are

well-defined, and for the term R { } singularity subtraction is used, see (18). However, when droplets get close to each
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(a) Domain §2, source points and solution u(z). (b) Error in first quadrant of domain.

-14

Fig. 2. Example of an analytical solution u(z) and the error to (A.2) given sources (X1, f1), (X2, f2) and (x3, f3) (black markers) in a domain . The solution
is computed with a composite 16-point Gauss-Legendre quadrature with 25 panels. The black box shows the region displayed in Fig. 3.

logy, error

(a) 25 panels (b) 50 panels
Fig. 3. Close up of domain marked in Fig. 2(b). Computed error estimates with different number of Gauss-Legendre panels in black for error levels 1077,
where p =14,12,...,2,0. Measured errors in colour. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this
article.)

other, i.e. when ||z; — z;|| « 1 for points z; and z; on different interfaces, the integrals are said to become near-singular.
Analytically this is not an issue, but numerically large errors are introduced as the integrand gets harder to resolve.

To demonstrate how these errors grow, the Stokes equations are solved in a fixed domain with Dirichlet boundary
conditions. This problem contains the same near-singular behaviour as (16). Given any analytical solution to the Stokes
equations (for example, that generated by a point source forcing as shown in Fig. 2(a)), the Dirichlet velocity data can be
evaluated at the boundary and used as boundary conditions for the numerical method. The boundary integral formulation
and exact problem setting is described in Appendix A, the domain and the solution u(z) are shown in Fig. 2(a).

The relative error of u(z) compared to the exact solution, using 25 Gauss-Legendre panels, is shown in Fig. 2(b). Here
only the first quadrant is shown, as the error behaves identical in the other three. It is clear that at an evaluation point
zp close to the boundary, the errors are large and other treatments of the integrals are needed for these cases. In this
paper a special quadrature is used, which is explained in §3.4. At what distance from a panel the errors become large
depends on the refinement of the discretisation. In order to know when special treatment is needed, the quadrature errors
of such near-singular integrals can be estimated. This was originally done by af Klinteberg and Tornberg, where estimates
for the quadrature errors for Laplace’s and Helmholtz equations were derived in [18,19]. Using the same approach based on
contour integration and calculus of residues for integrals of the type appearing in (16), the errors when computing u(z) can
be estimated also for the Stokes equations. Details of this can be found in Appendix A. The estimates follow the error levels
remarkably well, as is shown in Fig. 3. Both the errors and the estimates for 25 and 50 panels are shown, and it is clear
that refining the interface discretisation makes the region of large errors narrower, but will not eliminate it.

3.4. Special quadrature

To improve the accuracy of the computation of w(z, ) and u(z,t) for a z near any drop interface the special quadrature
method of [28] will be employed. It was originally introduced by Helsing and Ojala [13] for Laplace’s equation and extended
to Stokes equations in [28]. This is a local method which regards point-panel pairs. For each evaluation point the error
when using a standard Gauss-Legendre quadrature is estimated on each panel. If it is too large over a specific panel, T,
the integral over that panel will instead be treated semi-analytically. An overview of the special quadrature can be found in
Appendix B.

Solving the same problem for the Stokes equations in a domain with non-deforming boundaries as in §3.3, the u(z)
obtained by standard quadrature is corrected in the regions where the error is large. The reduction of error when using
the special quadrature can be seen in Fig. 4. This error should be compared to that in Fig. 2(b), where standard 16-point
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log,, error

-14

(a) Error in whole domain. (b) Error in first quadrant.

Fig. 4. Logarithm of the pointwise error when solving the Stokes equations with the special quadrature. The special quadrature is used for points close to
the boundary, cf. Fig. 2(b) for a comparison of errors. The solution is computed with 50 Gauss-Legendre panels.

composite Gauss-Legendre quadrature is used. It is clear that errors can be kept at a very low level of order 10710 or less
also for evaluation points close to the interface.

4. Numerical method in time

Several steps are needed to simulate the deformation of surfactant-covered droplets through the system in (14). Here, a
method of lines approach is used, where the discretisation in space generates a system of ODEs to solve in time. This system
can then be solved using a numerical method for initial value problems using a time-integration scheme as described in
§4.5.

To evolve the interfaces in time, as well as to compute the surfactant concentration, an equidistant spatial discretisa-
tion is used. However, to compute the integrals in the BIE formulation described in §3, it is beneficial to use a composite
Gauss-Legendre discretisation. Thus, a hybrid method using both discretisations is employed. The interface of each droplet
is discretised with Ny points. For the uniform discretisation, these points are placed equispaced in arc length. The quadra-
ture weights associated with this discretisation are the standard trapezoidal weights. For the composite Gauss-Legendre
discretisation, the interface is divided into Ni/16 panels of equal length, each discretised with a 16-point Gauss-Legendre
quadrature rule. To go between the two discretisations, the points on each panel are interpolated.

Here follows a short overview of the steps needed at each instance in time, all of which will be explained in more detail
further on in §4.1-4.4. In order to evolve the droplets in time, the interface velocities are obtained through the following
steps:

1. Upsample the uniform discretisation and interpolate to the composite 16-point Gauss-Legendre grid.

2. Compute the fluid velocity at the boundaries accurately by solving the BIE and applying the special quadrature where
needed, see §3.

3. Interpolate the velocity back to the uniform grid and downsample.

4. Compute the appropriate tangential velocity to keep the discretisation points equidistant in arc length.

The velocity is then fed into a time-integration scheme for propagation of the droplet interfaces in time. Each time the
fluid velocity is computed, the surface tension coefficient is needed. Since this is dependent on the surfactant concentration
through (11) or (12), also the surfactant concentration needs to be propagated in time through (13), see §4.4.

4.1. Interpolation to and from the composite Gauss-Legendre grid

First, upsampling is needed for stability and is achieved by zero-padding the Fourier coefficients of the equidistant
discretisation with a factor two. Then, the interpolation to the composite Gauss-Legendre grid is done via a non-uniform
FFT (nuFFT), see Greengard and Lee [9] for details. Once the velocity and the special quadrature corrections have been
computed, a 16-point Gauss-Legendre interpolation on each panel is used to go back to the uniform discretisation. Finally,
the velocity vector is downsampled and a Krasny filter is applied to the velocity vector, where all Fourier modes below the
absolute value of 1012 are set to zero. See [28] for more details.

4.2. Modifying the tangential velocity

With the velocity at the interfaces represented on the equidistant discretisation, denoted by u, a new modified velocity
for the discretisation points is computed, g—’t‘. The reason for this is to avoid clustering of the discretisation points as the
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interface evolves in time, an idea which was originally introduced by Hou et al. [14] and then used to simulate bubbles by
Kropinski [21]. The idea is to decompose the velocity u (z(s)) into its normal and tangential components,

u(z(s)) = [un(s) +iuc(s)]n(s),

where n (s) is the complex representation of the normal, s € [0, L, (t)] and u, and us are real valued. The modified velocity
is then defined as

d -
26) = [un(s) + i1 (5)] (5. (19)

The new tangential velocity ii; can be chosen to dynamically preserve s equidistant in arc length. It can be derived as (see
[21])

2 s
s Z"(q) Z"(q)
ue(s) = o 0/ {Z,( )}un(q)dq 0/ {Z(q) }un(q)dq,

which simplifies to an antlderlvative taken with an FFT. The notation of this tangential velocity is adapted from [28]. Note
that the modified ve10c1ty ¢ still fulfils the kinematic condition (3).

4.3. Spatial adaptivity

Using the modified tangential velocity as explained above keeps the interface discretisation points equidistant in arc
length over time, i.e. with equal spacing As. As the droplets deform, the spacing As might increase or decrease. To keep the
spatial resolution constant, a spatial adaptivity is implemented where more discretisation points are added to the interfaces
if As grows more than a set threshold. Likewise, in the case when As becomes too small, discretisation points are removed.
These operations are both performed on the equidistant discretisation.

4.4. Solving the surfactant equation

The material derivative in (13) can be expanded utilising the interface velocity u (z(s)) and the velocity of the discretisa-
tion points ‘é—’t‘(s), s € [0, Li(t)]). The convection-diffusion equation for the surfactant concentration becomes

ap

o —V2p, xeTl. (20)

n dx Vep+ oV 1
U=
BT sP 1+ PVs- Per
Using that the normal components of & d[ and u are the same and that the surface gradient operator can be written as

V() = s%(-), (20) can for each droplet k be rewritten as

2

ap ﬂap d (pur) Y
L

ot as s Per 9s2’
Here, the first two terms in the right hand side correspond to advection, the third to stretching and the last term represents
diffusion along the interface. To reformulate (21) in terms of « € [0, 277), the equal-arc length parameter s’(; (t) is defined as

— PUpk + se[0, L(t)]. (21)

sk (e, t) = 1, (t) (22)
o@D = o LD,
see [22]. The convection-diffusion equation becomes
d i 9 1 3(pu 1 a2
e ) punse +———5 28w e [0,27), (23)
ot sk (t) 9 sg ) o Persk ()2 da

for all droplets k=1,...,n

Using the method of lines approach, the right hand side in (23) is computed whilst keeping the time t continuous.
Define ,0l (t) ~ p(aj, t), where «; € [0,27) are the parameter discretisation points for the equidistant discretisation on the
interface, z = z(wj, t), for the droplet k. For each droplet, the PDE can easily be reduced to a system of ODEs for the
Fourier coefﬁ(:lents of pf‘(t), i=1,..., Ny, obtained by FFTs. In the following only the case of one droplet will be regarded,
k=n =1, but the method extends trivially to multiple droplets.

It is advantageous to treat the convection and stretching terms explicitly, whilst the diffusion term should be treated
implicitly to avoid stiffness. Thus, (23) becomes

ap
g—fs(z,,p,,t)+f1(zl,pz,t) ... N,
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Table 1

Butcher tableau, adaptive
method using explicit mid-
point and explicit Euler for
interface position z.

0
1/2 1/2
0 1
1 0

where the terms have been collected for explicit and implicit treatment respectively,
i dp 1 d(pu)
sk@)da  sk(t) da
1 8%p
Per sk (t)2 a2’

fE@zi, pist) =

— PUnk,

f1(zi, pi,t) =

The corresponding system of ODEs in Fourier space is

0p; -~ ~ .M M
2~ (Fp); = —— =1,
T (fe)j+(fD)j, J > 3

where (A~)j denotes the Fourier coefficient of mode j. For a droplet in two dimensions, the interface discretisation is one
dimensional. In one dimension, the implicit term, (f;);, is trivial to compute as the second derivative corresponds to a
multiplication of —j2 for each Fourier mode. The parts in (’f;) ;j are computed pseudo-spectrally. To avoid aliasing the
discretisations on all interfaces are upsampled by factor % ie. M= 2N and a Krasny filter is applied, setting all Fourier
modes below the absolute value of 10712 to zero.

4.5. Adaptive time-stepping

Including the modified tangential velocity and the pseudo-spectral method for the surfactant concentration, the system
(14) that needs to be evolved in time can be rewritten as

dz .

p = (un +iile),my = g(z,0), [=1,....N

BAI M M (24)
I (Fp)i LjEme— = — 1,

9t (fe)j+fDj, J 2 2

for each droplet. The system is coupled, as the surface tension coefficient o; depends on p; through some equation of state,
e.g. (11) or (12).

As mentioned in §4.4, the diffusion term in (23) needs to be treated implicitly for stability whilst the other terms in
the right hand side preferably are treated explicitly. The evolution equation for the interface should be treated explicitly.
Furthermore, adaptivity in time is required in order to handle multiple droplets getting very close to each other.

A range of potential time-stepping schemes for this problem were studied in [33]. Unlike the case for vesicles [34],
for deforming droplets the time step has a restriction of order one, which enables larger freedom when selecting a suit-
able time-integration scheme. The design criteria was an accurate but efficient scheme, which would keep the number of
solutions of the Stokes equations at a minimum as it is the most costly part of the method. The conclusion was that a com-
bination of an explicit midpoint method for z together with an implicit-explicit Runge-Kutta of order two for p together
with adaptivity was advantageous to use. The authors observed that the adaptive time step should be adjusted considering
the errors both in interface position z and surfactant concentration p. An explanation of each part of the scheme follows:

Interface position. The explicit method used to solve

dz .0)
—=g(z,0),
ac ~ ¢
is the standard Runge-Kutta explicit midpoint rule. At each time step, the local error in z"+1, rg“, is computed by comparing
Z"1 with that of a lower order method, z™t1. The scheme in full is shown in the Butcher tableau in Table 1. The local error
for the time step t, to t;+1 is computed as

n+1 _ ||Zn+1 — 1 ll oo
z 127 oo
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Table 2

Butcher tableau, IMEX2 scheme for p.
0 0
1/2 1/2 1/2 1/2

[0 1 | o 1

Surfactant concentration. The implicit-explicit Runge-Kutta of order two used here (IMEX2) is described by its Butcher
tableau in Table 2 and explained in detail in [2]. Adaptivity in p can be achieved in two possible ways, either by com-
paring to a lower order IMEX scheme or by using the concept of mass conservation from (6). Here, adaptivity based on
mass conservation is considered. The time-discretised version of the mass conservation reads

p"lds — / p"dS =0,
-+l m

where the integrals can be computed with spectral accuracy using the trapezoidal rule. To measure the local error in o of
the time step from ¢, to t;4+1, regard

a1 N o P7TAS — [rn p"dS oo

,
P I frn £™dS I

Coupled method. The Runge-Kutta stages of the methods for z and p are the same. This means that at every stage, i.e.
at t, and ty41,2, information between the equations can be exchanged. This coupling, together with the two second order
methods, give a scheme which is second order in total. However, the most important feature is the combined adaptivity.
The total local error of a time step is computed as the maximum of the local errors in z and p,

n+1 _ n+l o+l
r _max(rz Ty )

As is typical in adaptive time-stepping methods, if the local error r*+! > tol for some tolerance tol for a time step of size
dt} ;. the time step is retaken with updated size. To meet the tolerance, the new time step to go from t, to ty; 1, denoted
dt needs to fulfil

2
<dtgew> - tol
n -
dty, m

n
new»

This gives a new time step of

1
tol \?
n n
Atyey =dt], <0.9m> )
where 0.9 is a safety factor, [11]. The expected second order convergence rate is confirmed in [33].
5. Validations

To validate the coupled method described in §4, the conformal-mapping techniques of Crowdy et al. [8] and Siegel [37]
are used to compute the evolution of surfactant-covered bubbles in an extensional flow for specific cases. The aim of the
validation is to test the coupling of the solution for interface position and surfactant concentration as well as the dynamics
over time to high accuracy. With this aim, three cases for validation have been selected:

1. the exact solutions of surfactant-covered bubbles and droplets in extensional flow at steady state
2. semi-analytic solutions for a pair of clean, deforming bubbles in extensional flow
3. semi-analytic solutions for a pair of surfactant-covered bubbles deforming in extensional flow.

The first case uses an analytical solution by Siegel and tests the dynamics of surfactant-covered bubbles and droplets over
a long time. The second method was introduced by Crowdy et al. and regards a pair of clean bubbles in extensional flow.
This case tests especially the special quadrature of §3.4 when the two bubbles are pushed close to each other. The third
case builds on the second, with the addition of insoluble surfactants. This tests the time-dependent dynamics of the whole
method put together.

In this section, an overview of how to compute the validation results for all three cases is described. Note that case two
and three are both described in §5.2, where the former simplifies to no surfactants p and a constant surface tension o.
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5.1. Surfactant-covered bubble or drop in steady state

For single surfactant-covered bubbles, analytical solutions to the interface position z and the surfactant concentration p
exist in certain cases. The case regarded here is that of a bubble in an extensional flow, us,, = Q (x, —y), at steady state, for
which exact solutions were originally obtained by Siegel [37]. A steady state is defined as the time T when u-n= 0. These
solutions exist for bubbles deforming from an initially circular shape with a uniform surfactant concentration and where
there is no diffusion of surfactants along the interface, i.e. Per = oo. To couple the surfactant concentration to the surface
tension, the linear equation of state (12) is used. For details and derivations on how to obtain these solutions, the reader
is referred to the original reference. Here, it will be explained how to compute these solutions to use as a validation case.
Given a deformation at steady state, i.e. z at time T, these solutions are used to analytically compute o at time T as well
as the Capillary number Q that is needed to obtain the set deformation at the specified steady state. Using a numerical
method to simulate the deformation and the surfactant evolution under this Capillary number, the solution at the steady
state can then be compared to the analytical solution to determine the accuracy.

To describe the bubble interface, a conformal mapping is used,

z(5,t) = ? +b(®)s, (25)

where a(t) < 0 and b(t) is real. Furthermore, the condition of constant area gives a®> — b®> = 1. At the bubble interface,
|c| =1, ie. ¢ =e" for v € [0, 21]. At steady state, it is required that

- A+bpH
where
27 1/2
B(b,v)'/“dv — 2w E
A= do BV (27)
o B(b,v)dv
with E the elasticity number in (12), and
B(b,v) =1+ 2b%>—2(1 +b>?bcos2v). (28)
The deformation of a bubble is measured as
_ Rmax — Rmin (29)

h Rimax + Rmin '

where Rpgx, Rmin are the maximum and minimum radial distance of a point on the interface to the centre respectively.
To compute the surfactant concentration at steady state, (13) is used. At the steady state, this can be simplified to

PR [M] - L (&) =0, (30)
[Zy] Per \ |zy|

where the second equality comes from having no diffusion, Per = co. This means, that on any part of the interface at the
steady state, either p =0 or u(z) =0 (no slip condition). Assuming the extensional flow is sufficiently low such that the
concentration of surfactants is non-zero everywhere, it fulfils

1—A|zy|
£ .

An algorithm to compute the steady state surfactant concentration p(v) and Capillary number Q given the steady state
deformation can be found in Algorithm 1. The deformation at steady state is determined through the conformal mapping
parameters a and b in (25) which are given as input to the algorithm. How the deformation D depends on the Capillary
number Q for different elasticity numbers is shown in Fig. 9.

To validate the results of a numerical method against these exact solutions, the results at steady state are compared when
simulating an initially circular bubble with uniform surfactant concentration pp =1 in an extensional flow with Capillary
number Q and Per = oo, i.e. no diffusion of surfactants.

As was discussed by Milliken et al. in [26], in the case of no diffusion along the interface the viscosity ratio does not
affect the steady state deformation. When Per = oo, the interfacial velocity is dominated by the high Marangoni stresses
and the effect of viscosity ratio is therefore negligible. Thus, the results above can be used to validate the steady state
deformation and surfactant concentration also for drops, where A # 0.

p) = (31)
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Algorithm 1: Steady state computation.

Input : Conformal mapping parameters a and b at steady state.
Output: Deformation D. Capillary number Q for which this deformation is obtained at steady state. Interface position z(v;) and surfactant

concentration p(v;) at steady state, for v; = 2Mﬂ jelo,M—1].

-

. . 2rj .
Discretise vj = TR jel0,M—1].

Compute z(vj) through (25).

Find Rmax, Rmin and compute deformation D in (29).
Compute B(b, v;) in (28).

Compute A in (27) using trapezoidal rule.

Compute p(v;) with (31).

Compute Q from (26).

NounbhwnN

5.2. A pair of bubbles in extensional flow

This method of using complex-variable formulations to semi-analytically compute the deformation of a pair of bubbles
in an extensional flow was introduced by Crowdy et al. [8]. There, the specific problem setting was a pair of bubbles, A, =0
for k =1, 2, without surfactants. Here, the method is extended to also include surfactant-covered bubbles, using a linear
equation of state (12). The imposed far-field flow is the extensional flow u,, = Q (x, —y), where Q is the Capillary number
as previously defined. This method considers the special case when two bubbles are reflectionally symmetric about both x-
and y-axes, see Fig. 11 (left).

The method is based on the reformulation of the Stokes equations using complex-variable methods. The bubble bound-
aries can then be parametrised in terms of a conformal mapping. The numerical algorithm boils down to solving a system
of ODEs for the time evolution of the conformal mapping parameters. At each instance of time, the flow field is computed
on the unit disc in the conformal-mapping space, using Laurent series.

For a detailed explanation of each of these steps, the reader is referred to [8]. Here, only the numerical approach will
be explained in detail. The equations follow those of [8], with two modifications: firstly, the nondimensionalisation has
been adjusted to allow for a non-uniform surface tension, o, along the interface. This is in order to make the extension
to surfactant-covered bubbles. Secondly, the convection-diffusion equation for surfactants (13) is coupled to the problem.
When considering the original case of clean bubbles, the surface tension is set to be constant and (13) does not need to be
solved.

The fluid domain and bubble interfaces are described by the conformal mapping,

b(t)

b= ——=+2(,0), 32
Z(C)Z—\/WZ@) (32)
where

2@ =) an(t)e". (33)

From the symmetry of the problem, it holds that

z(p/¢,t) = —z(¢, 1),

which gives the relations (using (32))

b
280

where 0 < ¢(t) < 1 and b(t) is real. On the bubble interfaces, ¢ =e'", for v € [0, 27r]. In order to also consider the surface
tension in the ¢-plane, the composite functions o (¢,t) = o (z(¢,t), t) for the surface tension and p(¢,t) = p(z(¢,t),t) for
the surfactant concentration are defined.

In the numerical implementation, all Laurent series expansions are truncated to only include terms {¢", n= —Ny, ...,
Ny }. When zero-padding is needed to avoid aliasing, a factor two is used: giving a new truncation limit My = 2Ny. The
upper bubble interface is discretised by ¢; = elVi for j=1,...,2My + 1, where v; is equidistant in [0, 27r) with 2My + 1
discretisation points.

ao(t) a—n(t) =—¢®)"an(), n>1, (34)

5.2.1. Computing the flow field
At a given time ¢, the interface position of bubbles, z(¢,t), its conformal mapping parameters b(t) =: b, ¢(t) =: ¢,
{an(®), n=—Ny,...,Ny} and o (¢, ) are known.
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In [8], it is shown that the flow field at ¢ at time f can be described by functions F(¢,t), G(¢,t) and C(f). On the upper
bubble interface, |¢| =1, these functions are determined by solving the equation

A Fo+iF (5, D)+ P() —iGE ™" b —iC{H) = E©), (35)
where
i iz(¢,t)
A) =2«/$< - - )
N A i (N
- §z:(8,0) iQb (36)
E = Jt — + s
=0 o s ]
P(0) = BQO)F, (¢, B, where B(5) =~
e z (D)
Both F(¢,t) and G(¢,t) can be expanded into Laurent series,
FG.D= ) F". GE.D= ) Gat"

for real coefficients {F,} and {G,}.
Expanding (35) into a Laurent series on both sides of the equality sign, and using the orthogonality of ¢ = e'V, gives
2Ny + 1 equations:

AnFo+iFq+ Py —iG_p — iénc(f) =En, ne[-Ny,Ny], (37)
where 8, :=1 for n =0 and 0 otherwise. To compute the flow field at a given time f, the Laurent coefficients {F,, Vn e
[-Nv,Ny]} and {Gy, ¥Yn € [Ny, Ny]} need to be determined together with C(t). The coefficients {F,}, {G,} obey

F_,=—¢"F,, n>1, and (38)
_ Qb

2V’

thus the unknowns are reduced to {F,, Vn € [0, Ny1}, {Gn, Yn €[1, Ny]} and C(f). Note that since Q is known, Gg is known
for time t. Therefore, in (37), Go should be moved to the right hand side for n = 0.
The number of unknowns in the problem is thus 2Ny + 2, and the vector of unknowns is

G_n=—¢"Gp, n>1, Go (39)

x=(Fo Fi ... Fx Gi ... Gy CD)". (40)

From (37), 2Ny + 1 equations are obtained. The system is completed with the equation

Ge (\/E,f)z%znqs?cn:(zfz; (\/5 E), (41)
n=1

which originates from the presence of an irrotational extensional flow at infinity. As typically ¢ < 1, the expressions above
need to be computed using the relations between a, and a_, (34) as well as between G, and G_, (39) for stability.

Put together, to compute x in (40) it is necessary to solve a system Mx =b of size 2Ny + 2, where Mx corresponds to
the left hand side in (37) together with (41), and

b=(E-n, ... E.1 Eo+iGo E1 En, QZ(/$.D)". (42)

The algorithm to compute X is described in Algorithm 2 with My = 2Ny. Despite the fact that the system matrix M has a
reasonable condition number at around 10° the system Mx = b is sensitive, especially to the value of ¢. The authors note
that not all conventional approaches to solve the linear system will give a satisfying solution. It has been found numerically,
however, that treating the matrix as sparse helps with stability.

5.2.2. Evolving the conformal mapping parameters in time

In order to evolve the deforming bubble interfaces, z(¢,t), || = 1, the conformal mapping parameters b(t), ¢(t) and
{an(t)}rl:lz"va are integrated in time.

Discretising in time, at time t; define b* ~ b(ty), ¢ ~ ¢ (ty), {a’,‘l} ~ {ay(ty)} etc. The differential equations to evolve the
bubble interfaces are
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Algorithm 2: Compute flow field functions: F, G and C(f).

Input : Conformal mapping parameters: b, ¢ and {a,(t),n € [-Ny, Ny1}. Surface tension o (¢j,t), j=1,...2My + 1.
Output: Coefficients {F,,n € [0, Ny]} and {Gy,n €[1,Ny1}, C(f).

N M
Zero-pad {an}, Yy, to {am}pt _p, -

Compute z(¢j,t) through (32). Similarly, compute z({j’l, D), z; (¢, 0) and z; (gj’l,f).

Compute A(¢j), B(¢j) and E(¢)), Vj €[1,2My + 1], in (36).

Compute Laurent series coefficients for A(¢), B(¢) and E(¢) using FFTSs.

Truncate Laurent series {Am}ﬂ_/',“’,,v, {Em}’\_/',‘"ﬂv to include only 2Ny + 1 terms.

Create right hand side b to solve Mx =b, constructed according to (42).

Create system matrix M:

The first 2Ny + 1 rows correspond to (37). To find the terms in P, the following expression is used

NSO G bW N =

Ny
Pn=_ Busk1kFi. Yne[=Ny.Ny]. 3)
k=—Ny
For all terms, the relations (38) and (39) are used.

The last row of the matrix corresponds to (41).
Solve Mx =bh.

Define function coefficients: {F,,}S’" = (X1, ..oy XNy+1), {G,.}?"’ = (XNy+2, ---» X2any+1) and C() = xany +2-

© o

dz . bO)ZI(E. 1) = bOVFOI(/FD). )
—(,t) = , ) — —2F(,t
(6.0 =02 @.1) T () ”
L bOIVEO.0 +bOVFOLFO.0 _ ¢
: NG R
d
X 26 016/50.0 = g0, (45)

where (¢, ty) is known and Z is defined in (33). Regarding (44) and taking the Laurent series expansion of both sides, this
can be written as a system of ODEs, as

d
g% = fn@®. ne[=Ny.Nv], (46)

where {f,(t)} are the Laurent series coefficients of f(¢,t) above. The function I(¢,t) is obtained through the kinematic
condition (3) by first computing

D( )_L_i_s}{ |:£:| (47)
f _2|Z§| ) {'ZZ ’

and taking a Laurent series expansion D(¢) =Y o2 Dp¢™. The coefficients of I are obtained through

1 n
1n=2< +¢ )Dn,nzl

1— ¢2n
Iop =Dy (48)
2 n
n=— (22 ) Dy n=1.
1—¢"
The last conformal mapping parameter, b(t), can be decided through the constant area constraint, i.e.
1 —
A0 =-5 § 2 0z 0de =7 (49)
lg1=1

Each bubble will have an area of w due to the non-dimensionalisation. Expanding (49) the following expression for a is
obtained:

) & b 0 meo
G = VP& — V) C=Ve?: -V
I£1= lel=1
(50)
- ?§ 2@ 02 (5, 0)dg = 2im.
1€1=1

How to compute the f(¢,t) and g(t) in (44) and (45) is described in Algorithm 3.
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Algorithm 3: Computation of RHS in (44), (45).

. . . . . Ny
Input : Conformal mapping parameters at time t¥: b¥, ¢¥, {ak,n € [~Ny, Ny ]}. Flow functions and surface tension at time t*: C(ty), {FEh o

{Gﬁ}NV and ok, j=1,..., 2Ny +1.

n=1
Output: {fy(t)h"_y, . 8t
Zero-pad {aﬁ},’:’iva to {a’,;}miva.
Compute z¢ (¢, ty), 2¢ (), ty) and 2(¢ 71, ) through (32), ¥j € [1,2My +1].
Compute D(¢;) in (47), Vje[1,2My +1].
Compute {dm}r’:lfmv through FFT of D(¢;).
Compute {Im}n'\fl_Mv from {dm}’\_/',\‘j,v as in (48).
Using {I;p}, compute I(¢j, ty), [(/@, ty) and I (/. t).
Compute f according to (44), compute Laurent series coefficients [fm}xiva by FFT and truncate to 2Ny + 1 terms, {fn}ﬁ'lva-
Compute g through (45).

0 N U A WN =

5.2.3. Computing the surfactant concentration
On the bubble boundaries, ¢ =e'”, the convection-diffusion equation for the surfactant concentration (13) can be written
in terms of v € [0, 27) as

d 1 0 1
e _ N <&Zt> + ——NRN(P(v,t) — —S <Zﬂ> I (P(v,t))
at |, Zy |zy| oV |zy] Zy
(51)
1 1 0 ( Py > _0
|zy| Per ov \|zv| )
where
u(c, )z, p(t
Pv,t) = M (52)
[Zy]
The flow velocity u(¢,t) =u(z(¢,t),t) is obtained from the normal stress balance (10),
,0) ¢z . 4i/pF .
u.ty= TED I ey AV oip . (53)
2z {—V9o
where F(¢,t) and Fg as defined previously. Furthermore, z; is obtained from the kinematic condition (3)
4i\/pFo .
2zt =8z 108, t) — ———= — 2iF({, ¢), (54)
¢ —Vé

for I1(¢,t) as defined in (48).
As in §4.4, the convection and diffusion parts of (51) need to be treated explicitly and implicitly respectively. The equa-
tion becomes

d
8_/; = fep(V, 0, 0) + fimp (v, p, 1), (59)
vV
where
1 0
fap.p.0 =00 (222 ) — — o (pv.1)
Zy |zy| oV
1 z °
+_s<ﬂ)5(1’(v,t)>,
|Zy | Zy
and
1 1 90 [/ pv
o) —— L (L), 57
fimp(v, p, ) |z,,|Per8v<|zv|) 57

How to compute fey, is shown in Algorithm 4. The function fi,p is computed in a similar way. In the time-integration
scheme, the solution is found through solving a system using gmres.

5.2.4. Time-integration of the system

To evolve the system with the conformal mapping parameters and the surfactant concentration a suitable time-
integration method is needed. In this paper, the second order adaptive method in §4.5 is used. For simplicity, in Algorithm 5
a first order method with fixed time step is employed to demonstrate the method. In the case of clean drops, o (¢,t) is set
to be constant and the algorithm skips steps 9 to 12. At each time step, a Krasny filter is applied where all Fourier modes
smaller than 10712 are set to zero.
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Algorithm 4: Computation of fex, in (56).

Input : At time t;: conformal mapping parameters; b¥, ¢, {ak,n € [-Ny, Ny}, flow field; {F’,f}g’", {GK)™ and C(ty), and surfactant concentration,
pj.‘, j€[0,2Ny +1].
Output: fexp j(ty)

N M
Zero-pad {at},Y _y, to {af}n

Using {ak,}, compute z¥(¢;), 25 (¢;) and ZX,(¢;) through (32).
k

K to {ﬁ,’élﬁflfmv and compute pf(¢;) from coefficients.

Zero-pad Fourier coefficients of pj

Compute F(¢j, ty) from {F,’f}g".

Compute u(¢j, ty) from (53).

Compute z(gj, ti) from (54).

Compute P(vj, ty) through (52). Derivative %Eh‘(P(v, t)) computed via FFT.
Compute foxp (v}, pf, ty) from (56).

0 NSO A WN =

Algorithm 5: First order method for time-integration of surfactant-covered bubbles using fixed time step.

Input : Conformal mapping parameters: b°, ¢°, {a%,n € [Ny, Ny 1}. Initial surfactant concentration p? and surface tension UJQ, j=1,...,2Ny +1.

Time interval [to, t], time step dt.
Output: Conformal mapping parameters at time ts: b(ts), ¢ (ts), {an(ts).n € [-Ny, Ny ]}. Surfactant concentration at time ts: p(¢j, ts),
j=1,...,2Ny +1.

ts —to
1 N =
T dr
2 for ke [0, Ny — 1] do
3 Compute flow field functions at time t:

[{F,’g},’fgo, (GEyNv,, ck] = algorithm2 (bk, a0k, oj’f).
4 Compute RHS in (44) and (45):

[N _y, . 81 = algorithm3 (b",cp", (@ ok FE), {Ch, ck)
5 Update {a,} in discretised version of (46):

aktl =dk +-dt- fo, ne(1,N].

6 Update ¢ in discretised version of (45):

¢k+1 — ¢k +dt-g.

7 Compute b*t! through (50).

8 Compute ak*1 for n < 0 through (34).

Steps 9 — 12 are skipped in case of clean bubbles:

9 Compute fexp(t) in (56), Vj e [1,2My +1]:

Fly.j = atgorithma (b5, ¢, (ah), (F). (GE). C@w, o¥)-

10 Compute p}‘“ from pﬁf“ = p;‘ +dfffxpyj +cltfi’,‘1:;1‘j with gmres, fimp as in (57).
11 Truncate zero-padding from p}‘“.

12 Update surface tension coefficient 0}'.‘“ through equation of state.

13 Update time fyq =ty +dt.

14 end

6. Results

In this section the numerical method suggested in this paper is tested against the validation methods described in §5.
Each test case is described in detail below. The numerical method described in §4 will be denoted the BIE method for the
remainder of the paper.

6.1. The influence of surfactants

First, the influence of the surfactant concentration on the deformation of a pair of droplets is presented. A pair of ini-
tially circular droplets, with viscosity ratio A = 0.2, are placed on the imaginary axis with a minimum distance of 0.2. Under
the influence of an extensional flow with Capillary number Q = 0.2 these drops will be pushed towards each other. Their
configuration at time t = 25 can be seen in Fig. 5 (left). The presence of surfactants affects the deformation such that the
minimum distance between the drops is larger, as can be seen to the right in Fig. 5. Also, the drops will become more elon-
gated and narrower. For both simulations, each drop was initially discretised with 320 points. At the final time t = 25 this
has been increased to 416 and 448 points by the spatial adaptivity, for the clean and surfactant-covered cases respectively.
This corresponds to As = 0.003. The linear equation of state was used, and E = 0.2, Per = 10. A higher elasticity number
E in (12) means that the surface tension coefficient will be more affected by the non-uniform surfactant concentration and
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Fig. 5. Left: drop configuration at time t = 25 under the influence of an extensional flow with Q = 0.2. The coloured contours represent drops with
surfactants present and elasticity number E = 0.2, the black contours represent those without, i.e. E = 0. Right: the minimum distance between the drops

versus time, for both the clean and the surfactant-covered drops.
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Fig. 6. How minimum distance between drops at time t = 25 changes with elasticity number E. The case E =0 corresponds to the clean case.
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Fig. 7. Interface (left) and surfactant concentration (right) at steady state for Capillary number Q = 0.14. The simulation was run with elasticity number
E =0.5, initial surfactant concentration pg =1, Per = oo and viscosity ratio A = 0. The steady state according to the definition in (58) was reached at time

T =46.35.

thus deform more. Also, the distance between the drops will be larger for larger values of E, as can be seen in Fig. 6. Note

that the case of E =0 corresponds to the surfactant-free (clean) case.

6.2. Surfactant-covered bubble in steady state

Using the exact solutions of §5.1, the bubble deformation and surfactant concentration at steady state is tested. Given a
Capillary number Q, the steady state interface position z(¢, T) and the surfactant concentration p(¢, T) are known, where T
is the time of steady state and ¢ = eV for v € [0, 27). An example of the interface position and the surfactant concentration
at a steady state is shown in Fig. 7, for the steady state corresponding to Q = 0.14. In a simulation, a bubble is said to have
reached steady state when the normal velocity, u - n = 0. Practically, here the definition of steady state is that
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Fig. 8. Measured point-wise error in z (marker o) and p (marker A) vs. o at steady state, for the same parameters as in Fig. 7, with grid spacing
As =0.0016. Red line corresponds to the time-stepping tolerance.
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Fig. 9. Steady state deformation, D, vs. Capillary number Q at different elasticity numbers E for inviscid bubbles, A = 0. Black lines show validation solutions
computed through the method in §5.1, diamonds show numerical results from the BIE method and the circles indicate the selected simulations for which
the bubble shape and surfactant concentration are shown.

lu-n| <1078 (58)

It should be noted that for large Capillary numbers, Q, or high viscosity ratios, A, this threshold is slightly too large and
should be decreased since the deformation is very slow.

The analytical solutions from Algorithm 1 are denoted by z” (¢, T) and pY (¢, T) for the interface position and the
surfactant concentration respectively. Defining the obtained solutions from the numerical method as z(«, T) and p(c, T),
a comparison between the numerical results and the validation is obtained by studying the point-wise differences in o €
[0,27). Two errors will be studied: in position, e, = |z — z¥| and surfactant concentration p, ep=|p— 0" |. In order to

compare point-wise in « € [0, 277), a mapping from v to the equal-arc length measure " is needed. This is defined as
Sv2m
¥ (v) ==, (59)

where S, = [ |z |dv. The solutions z¥ and p" are computed at non-equidistant discrete points o/ =&V (1), for vj €
[0,27),i=1,..., Ny for some Ny. Finally, to compare the results, z(x, T) and p(c, T) need to be interpolated to Otiv. This
is done using their Fourier expansions.

In Fig. 8, the point-wise absolute error between the analytical solution and the BIE simulation can be seen for the case
shown in Fig. 7. The spatial discretisation is adaptive, keeping the spatial distance in arc length similar at all times; here
approximately As = 0.008. The simulation was run with time-step tolerance 10~° and the errors are all below the set
tolerance.

Using the method in §5.1, one can obtain a graph for how the deformation D depends on the Capillary number Q. Such
a graph for two different elasticity numbers, E = 0.5 and E = 0.9, is shown in Fig. 9. The black lines represent the validation
solutions computed through the method in §5.1 and the blue diamonds show the results from simulations using the BIE
method of this paper. All simulations have been run from the same initial setting as the previous case, with time-step
tolerance 1078, The simulations differ only in the choice of Capillary number Q. Examples of bubble deformation and
surfactant concentration are also shown, corresponding to Q = 0.07 and Q = 0.13, marked with circles in the figure.
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Fig. 10. ¢, error in z and p vs. (left) deformation D for cases in Fig. 9 and (right) vs. viscosity ratio A for deformation D = 0.29. Solid and dashed lines
represent E=0.5 and E = 0.9 respectively. Dots and triangles represent e, and e, respectively. Red solid line shows time-step tolerance 106,
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Fig. 11. Clean bubbles deforming in an extensional flow. Left: interface position from time t =0 to t = 1.5, at dt = 0.3 intervals, computed with BIE method.
Right: final interface configuration at time t = 1.5. Red box: cut-off region for method comparisons.

To quantify the results in Fig. 9, the ¢,-error for each deformation D is plotted in Fig. 10 (left). For each diamond in
Fig. 9, the simulation and the validation data is compared and plotted vs. deformation D. Note that both cases E = 0.5 and
E = 0.9 are shown (solid and dashed lines respectively), and that they for the same D were obtained by different Q. It is
shown that both errors (e; and e,) stay below the time-step tolerance.

As mentioned in §5.1, the viscosity ratio does not affect the steady state deformation in the case of Per = co. The results
of this paper agree with this observation, as is shown in Fig. 10 (right). There, droplets of different viscosity ratios ranging
from A = 0 (corresponding to an inviscid bubble) to 1 =2 were deformed under Capillary number Q = 0.14. As can be seen
in the figure, both the interface position and the surfactant concentration coincide with that for bubbles up to time-step
tolerance.

6.3. A pair of clean bubbles in extensional flow

Using the approach described in §5.2, the semi-analytical solutions for a pair of bubbles deforming in an extensional
flow are computed and compared against the boundary integral method of this paper.

The following case has been selected as it pushes the bubbles close to each other, thus providing an excellent test case
for the special quadrature. The bubbles are initially circular with radius one, centred around +1.419i which corresponds to
an initial ¢(0) =0.35. The bubbles are clean, i.e. there are no surfactants present in this problem, and they deform under
an extensional flow with Capillary number Q = 0.5 until time t = 1.5. At the final time, the minimum distance between
the bubbles is 0.04. In Fig. 11 the movement of the bubbles over time and the final deformation are shown (left and right
respectively).

The interface position obtained from the BIE method is denoted z(«,t), where « € [0, 2m). In Fig. 12 (right) the dis-
cretisation along the interface is shown. Note that it is uniform around the interface. In contrast, the discretisation along
the interface for the validation method is not uniform, see Fig. 12 (left). There, the points are clustered where the dis-
tance between the bubbles is the smallest. When comparing the results of the two methods, only the part of the interfaces
between o = ZT” and o = %’T will be considered. This corresponds to the red box in Fig. 11 (right). This cut-off is made
because the discretisation of the validation method is very coarse outside of it, with large spatial errors. Also, since it is the



238 S. Pdlsson et al. / Journal of Computational Physics 386 (2019) 218-247

2| T .
i 1) |
B | | | |
5 U 7
-1 -1 ]
_2, i _2, o
-2 —1 0 1 2 -2 —1 0 1 2

Fig. 12. Interface at time t = 1.5 for clean bubbles. The red markers to the left show every 16th point of the validation discretisation for Ny = 1025. To the
right, the red markers show every 16th point of the uniform discretisation for the BIE method, with Ny =960, k=1, 2.
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Fig. 13. Pointwise relative difference in x- and y-coordinates for validation method (left) and BIE method (right) against reference solution. Solid lines/mark-
ers shows time-stepping tolerance 10~6, dashed for tolerance 10~8. BIE method computed with 576 and 800 points per bubble for tol; and tol, respectively.
Validation method computed with 2049 and 9001 points respectively. Error in x denoted by o and in y by A.

area of near-interaction between the bubbles which is of greatest interest, as it is there the boundary integral method will
potentially struggle the most, it is sufficient to consider only this part.

To investigate how the two methods behave, they are compared against a reference solution, zyef = Xef + iyref. This
solution is computed with the boundary integral method using 600 Gauss-Legendre panels, i.e. N, = 9600, k =1, 2, and a
time-step tolerance of tol = 10~19. To compare the non-uniform discretisation of the validation method with the uniform
discretisation of the BIE method, the map as in (59) is employed and the points are interpolated using a non-uniform FFT
[9]. Errors in both x- and y-coordinates will be considered and denoted ex = |x — Xef| and ey = |y — Yrr| respectively, the
combined error in z is denoted e, = |eyx 4 iey|.

In Fig. 13 the point-wise absolute errors are shown in the region of interest for the validation method and the BIE
method. The results have been computed using two time-step tolerances: tol; = 107% (solid lines) and tol; = 10~ (dashed
lines). For the validation method, Ny = 2049 and Ny = 9001 points were used for tol; and tol, respectively, and for the
BIE method N, =576, k =1, 2, was used for tol; and N, =800 for tol,. It is shown that both methods have errors below
the set tolerance toly, but that the validation method does not quite achieve the tolerance 1073. This is due to the increase
in Aa towards the end of the cut-off, which causes some of the points to have a larger error than the set tolerance.

To quantify the behaviour of the two methods, the absolute errors in max-norm for different discretisations of the
bubbles are plotted. Note that the number of discretisation points is constant for both methods, i.e. it does not increase
over time as the bubbles get more stretched out. This especially means that the spatial adaptivity of the BIE method was
turned off throughout the simulation. In Fig. 14 the errors vs number of discretisation points N are shown. It is clear that
the BIE method (Fig. 14 (right)) agrees with the reference solution to within time-step tolerance for both tol; and tol, when
the spatial resolution is high enough. For tol;, 36 panels, i.e. Ny =576 is sufficient to reach the set tolerance. For tol,, 46
panels, i.e. Ny = 736, are needed. For the validation method the spatial errors dominate the solution and it is first at around
Ny = 2000 points that the method converges to the tolerance 10~5. To achieve also tol, the spatial discretisation needs to
be increased further.
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Fig. 14. Error as a function of number of discretisation points for validation method (left) and BIE method (right). Solid lines/markers show results for
time-stepping tolerance 10~¢ and dashed lines tolerance 10~8. The spatial adaptivity of the BIE method was turned off to keep N constant throughout the
simulation.
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Fig. 15. Pair of surfactant-covered bubbles deforming over time. Left: interface position from time t =0 to t =1, at dt = 0.2 intervals, computed with BIE
method. Right: surfactant concentration at corresponding times.

6.4. A pair of surfactant-covered bubbles in extensional flow

Similarly to a pair of clean bubbles, the semi-analytical solutions in §5.2 for a pair of surfactant-covered bubbles is
computed and compared against the BIE method of this paper.

This case provides a test case for the coupling of the interface and the surfactant concentration, as well as for both
the diffusion and the convection of the surfactants along the interface. The bubbles are initially circular, covered with a
uniform surfactant concentration pg =1 and centred around +1.201i which corresponds to ®(0) = 0.2875. In this problem,
the elasticity number E = 0.5, Peclet number Per = 10 and the bubbles are placed in an extensional flow with Capillary
number Q = 0.5. The bubbles will deform until time t = 1, and their change over time can be seen in Fig. 15 (left) together
with the change of surfactant concentration over time (right). The interface position and surfactant concentration at the
final time t =1 can be seen in Fig. 16. At time ¢t =1 the minimum distance between the bubbles is 0.16. Similarly to the
clean case, only the region where the bubbles are close to each other will be studied, corresponding to the region between
o= ZT” and o = 47”, shown in black in Fig. 16 (left).

To compare the two methods, a reference solution computed with the BIE method is used. It is computed with a time-
step tolerance of 1071% and As~6.5-107%. In Fig. 17 the point-wise absolute error between the two methods and the
reference solution is shown, for two time-step tolerances: tol; = 1078 (solid lines) and tol, = 10~8 (dashed lines). The
errors considered are those in x- and y-coordinates, ex and ey, as well as those in surfactant concentration e,. The BIE
method was computed with 576 discretisation points per bubble for tol; and 800 for tol, and all errors stay within time-
step tolerance. Note that the spatial adaptivity of the BIE method was turned off for these simulations. In contrast, for the
validation method Ny = 2049 points was used for tolerance 10~% and Ny = 9001 points for 10~8. Again, for this discreti-
sation the method does not meet the stricter tolerance, due to the spatial accuracy towards the end of the cut-off box. It is
clear, however, that given enough spatial resolution the errors would come down also to tol,. In Fig. 18 the convergence of
the two methods is studied. To reach the set tolerances with the BIE method, 36 and 50 panels per bubble are needed for
tol; and tol, respectively. In comparison, the validation method needs approximately 2049 points for tol; and more than
8192 to reach tol; due to spatial resolution.
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Fig. 16. Surfactant-covered bubbles at time t = 1. Left: interface position at final time. Cut-off region shown in black box. Right: surfactant concentration at
final time.
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Fig. 17. Point-wise absolute difference in x- and y-coordinates and surfactant concentration for validation method (left) and BIE method (right) against
reference solution. Solid lines/markers show time-step tolerance 10~°, dashed for tolerance 10~%. BIE method computed with 576 and 800 points per
bubble respectively. Validation method computed with 2049 and 8193 points respectively. Markers: o, A and ¢ corresponds to ex, ey and e, respectively.
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Fig. 18. Error as a function of number of discretisation points for validation method (left) and BIE method (right). Solid lines/markers show results for

time-step tolerance 10~% and dashed lines tolerance 10~8. The spatial adaptivity of the BIE method was turned off to keep N constant throughout the
simulation. Markers: o and ¢ corresponds to e, and e, respectively.

6.5. The Swiss roll

To further assess the BIE method, a more complicated simulation is set up to test the robustness of the method. The
setup is inspired by that in [28]. The initial drop configuration is shown in Fig. 19. No far-field flow is imposed, instead the
drops will be allowed to deform until circular under surface tension. A drop is deemed circular when

max (|z — c|) _4
mean(|z — c|)

)

where c is the centre of each drop and z its interface discretisation.
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Fig. 19. Initial drop configuration for the swiss roll simulation.

The largest drop (i.e. the roll) will be covered with surfactants with an initial uniform concentration pp = 1. Other
parameters are Pe =10 and E = 0.1. The authors note that the standard nondimensionalisation of length by initial radius
is not appropriate in this case; instead the characteristic length of half of the length of a square box containing the initial
drop configuration is used. Initially, the roll is covered with 375 panels and the ellipses 37 panels each. For this simulation
M =1 for all drops k is considered, in order to make the simulation run in a reasonable time on a standard workstation.
The simulation has also been run with 50% more points without any visible difference. Comparing the final circle radius
and centre point between the two discretisations, they differ on the level of the circular tolerance imposed above. The
simulation takes approximately 10° time steps.

How the drops deform in time is shown in Fig. 20. The drops reach their circular form at time t = 70. The minimal
distance between drops measured during the simulation is 9 - 107>, This can be compared to a corresponding simulation
without surfactants, where the drops are circular at time t = 32, with minimal distance 3 - 1074,

7. Conclusions

This paper presents a highly accurate boundary integral method to simulate deforming droplets in Stokes flow. The
method can be used for both droplets and inviscid bubbles, both which may be covered by insoluble surfactants. The
boundary integral method is coupled with a pseudo-spectral method for the surfactant concentration, and together they are
spectrally accurate in space.

The errors introduced by the numerical evaluation of the integrals in the boundary integral equation when the droplets
get close to each other are accurately estimated using contour integrals. These errors are removed using a special quadrature,
which enables the method to simulate close drop-drop interactions very accurately.

Given a sufficient spatial resolution, the accuracy of the method is limited only by the set tolerance of the adaptive
time-stepping scheme. To the knowledge of the authors, this method is more accurate than other methods to simulate
Stokes flow in 2D currently available.

By presenting a set of easily accessible algorithms based on exact and semi-analytical solutions, the hope of the authors
is that this will set a standard of validation for any proposed new method for surfactant-laden drops in 2D.
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Appendix A. Error estimates

As discussed in §3.3, the integrals in equations (15) and (16) both contain terms (z; — zj)~!, which is problematic
when ||z; — zj|| « 1, i # j. The integrals are then said to become near-singular, which is a numerical problem where large
errors are introduced through under-resolving the integrand. To see how the errors grow as an evaluation point zg € 2 is
approaching an interface I', the quadrature errors of such near-singular integrals can be approximated [18,19].
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Fig. 20. Deformation over time for the swiss roll domain. Surfactant concentration in colour of the same scale as in Fig. 19.

In the following, the error of the near-singular integrals when solving Stokes equations in a domain with non-deforming
boundaries, €2, is considered. Similarly to the BIE formulation in §2.3, a complex-valued density is introduced and solved for

on the boundary I" through
}—l/M(r)M=ﬂzm zeT, (A1)
d (T-2)

T—Z

/L(Z)Jr%/u(r)fs{
r Y

where f(z) is the prescribed boundary condition of I'. Setting the right hand side f(z), z€ I', as a sum of Stokeslets for
point sources surrounding €2, the analytical solution u(z) = f(z) for all z € Q. For a given set of point sources: f1 =4m +4im
located at xy = 1.1+ 1.3i, f, =7 —2im at x, = —1.4—1.3i and f3 = —0.57 + 3.5ir at x3 = 1.3 — 0.75i, the solution is
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given in Fig. 2(a) (right). The domain and the location of the point sources can be seen in Fig. 2(a) (left). The solution u(zg)
for zg € Q is computed through

i L dt i 3{dt(T —Z0)}
r r

Comparing (A.2) to (16), it is clear that the only difference in the integrals between the two is the imaginary part in the
first integral in (A.2). This should not affect the near-singular behaviour of the integral. In the following (A.1) is solved to
high accuracy, and the errors of the solution will come from solely the evaluation of (A.2).

Discretising the integrals in (A.2) with a composite 16-point Gauss-Legendre quadrature and computing u(z) for z € €,
the error compared to the analytical solution is shown in Fig. 2(b). Far away from the boundary T, the error is very small
but as zp approaches I' the error increases. In the region where the errors are large, special treatment is needed for an
accurate solution; the method for this is explained in §3.4. In order to decide where such special treatment is needed, it
is important to know how the errors behave. For Laplace’s and Helmholtz equations, estimates of the quadrature error has
been derived by af Klinteberg and Tornberg [18,19], based on contour integration and calculus of residues. This approach
will be followed here.

Regarding the integral expression in (A.2), the error at a point zp € Q can be seen as the sum of the errors when
integrating over each panel I';:

Npanels
e(zo)= ) _ ei(z0).
i=1
The errors will be estimated on a point-panel basis, where the error e;j(zg) is estimated by R;(zp). For convenience only one

panel I'; will be regarded in the following derivation.
In [18,19] estimates are shown for integrals of the type

1
I= f f &)z, (A3)

where the meromorphic function f (&) is analytic on [—1, 1] and has a pole & € C of order m + 1. To consider the integrals
n (A.2), the panel I'; is mapped to the real line [—1, 1] by a numerically constructed mapping 7n(£). Also, the point &y € C
that corresponds to each evaluation point zg € 2 needs to be found. This procedure is explained in [19].

To compute the estimates, first the integrals are rewritten on the form of (A.3). For the first integral in (A.2), this is
straightforward:

_ n'é)
J1(20) .—/M(T)é( ) f (S)n(é) n(o) a

Iy
) (A.4)
=3 | [ neee
1
The second integral is reformulated as follows
MAT-zodt} i [p@izdt i [ ()T —Zo)
/“(” T —20)? _Ef T —2 +5/ T—20? (A3)
r
where n; is the (outward) normal at point t. Then,
portds [ ope (e
= = "(&)d
neo= [ B = [ 5 (In’(é)l) e
" - (A6)

Zijz(S)dS,

and
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1

() (T — Z0) / wEmE) —nko))
= = d
Jatz0) / (T — 20)2 &) -Gy &
- (A7)
1
— f fa()de.
-1
The whole integral over I'; can be written as
i 1 1
1i(20) = —— J1(20) + =— J2(20) + — J3(0). (A8)
b4 2 2

For each integral, error can be estimated as R[£], R%[£€] and R3[£y] respectively. In total, the error of the sum of the
integrals over the panel I'; can then be estimated as the absolute value of

i 1 —— 1 ——
Ri(zo) = —%R[f1]+ER[fz]+ER[f3] . (A9)

In the following, how to obtain each estimate R[f1], R[f2] and R[f3] will be explained.
af Klinteberg and Tornberg showed that for the integral (A.3) the quadrature error R,[f] can be approximated by

m

1 d
Ralf1~ —— — (& — &)™ f(E)kn (8)). (A10)

I
m! Sgrgo dgm

Here, k(&) is the characteristic remainder function, approximated as

kn(§) ~ (A11)

27
& +VE2 -2t

where n is the order of the Gauss-Legendre quadrature rule used to approximate I, in this paper n = 16. They also showed
that the derivatives of k,(¢) can be approximated as

ké”(s)%kn(s)(—z"z—“) , (A12)
£ -1

for small m, and that

(& — o)™t 1

% (NE) — nEo)™ (' (Eo)ym 1

For J1, f1 is a meromorphic function with a pole at & of order one, and the estimate is defined by (A.10) as

R(f11=73 ( lim (¢ — &) f1 (-‘E)kn(é))
§—&o

~ 3 (kn(50) 1 (%0)) ,

where (A.12) is used and kj (&) can be approximated as in (A.11). Instead of finding the value of (&) at the parameter &,
it is sufficient to consider the max-norm of w on the panel T';: ||!||s. Thus the error estimate for J;(zg) becomes

RUAT~ S (ka6 s ) - (A13)

Similarly, for the second integral J, the function f, is meromorphic with a pole of order one at &j. The estimate reads
R[f2]1= lim (§ — &o) f2(§)kn(§)
§—&o

~ kn(E0) 14 (E0) (Eo)

~ kn(E0) | 4 oo Bo). - (A14)

Again, (A.12) is used. Note that also the value of the normal n needs to be found at & through the mapping n(§).
Finally, regard the integral J3. Here, f3 is a meromorphic function with a pole of order two at &y. Following (A.10), the
estimate becomes

d )
Rifs = Jim 2o (€~ 80 5@ @)
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Assuming a good approximation can be obtained by considering only the term with the derivative of k;,, see [19], this can
be simplified into

RLf31~ Ky (o) —— (n ) — &) ) 1(6o)

’(S )
~ K (60) ,(g S (nG0) ~ 7)) . (A15)
Together, the complete error estimate for the integrals in (A.2) over a panel I'; can be written as (A.9). This error estimate
is shown in Fig. 3, where the estimate of errors of order 10~? is marked with black level curves for p = —14,...,0 with

increment 2.
Appendix B. Special quadrature

An overview of the special quadrature follows here, for more details see [28].
The special quadrature is employed on integrals of two types:

he= [ 124
T—2Z
T
. f(odr
12(2) == m
i

The function f(t) is interpolated on the panel T'j, as f(t) = Z}io cjrj, where the coefficients c; are computed through
solving a Vandermonde system. For stability, the panel is transformed to have endpoints at —1 and 1. Using the above
interpolation, the integrals I; and I, can be rewritten as

15

1
id
11(z)~2c,f e —chp], (B.1)

]d 15
Iz(z)Noch]/ (Tf zto)Z achqj. (B.2)
j=0

Here zj is the target point z under the same transformation as the one applied to the panel and o = Pl where g, T, are
the start and end points of the untransformed panel respectively. The numbers p; and q; can computed through recursion,
where

dt
= f11 —— =log(1 — z9) —log(—1 — zp),
T—2 ) 63)
1-(=1)) . .
Dj =20pj71+f,]=1,...,15,
and
1 1
f1 2= T
(t - 20) 1420 1-20 (B.4)
qj =2o4j-1+pj, j=1,...,15.

Note that if zg is within the contour created by the real axis from —1 to 1 and the transformed panel I';, a residue of 2mi
must be added or subtracted from po depending on if zg has a positive or negative imaginary part respectively.

To apply the special quadrature on the integrals in (15) and (16), they need to be rewritten into the forms of I; and I5.
The second integral can be reformulated as in (A.5), i.e

M@ -z} i [ p@nddr i [ ()T —20)
/“(” @ —20? _5/ - +§/ T2
r r r

All integrals are then on the required form, with f1(t) = u(t)t/, fo(r) = ,u(r)ﬁ%r’ and f3(t) = u(t)(T —z)t’ respectively.
The improved error computed with 50 Gauss-Legendre panels can be seen in Fig. 4. Using the special quadrature it is
possible to evaluate u(z) for points close to the boundary, with errors below 1010
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