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Performing highly accurate simulations of droplet systems is a challenging problem. This 
is primarily due to the interface dynamics which is complicated further by the addition of 
surfactants. This paper presents a boundary integral method for computing the evolution of 
surfactant-covered droplets in 2D Stokes flow. The method has spectral accuracy in space 
and the adaptive time-stepping scheme allows for control of the temporal errors. Previously 
available semi-analytical solutions (based on conformal-mapping techniques) are extended 
to include surfactants, and a set of algorithms is introduced to detail their evaluation. These 
semi-analytical solutions are used to validate and assess the accuracy of the boundary 
integral method, and it is demonstrated that the presented method maintains its high 
accuracy even when droplets are in close proximity.

 2019 Elsevier Inc. All rights reserved.

1. Introduction

Microfluidics is the study of fluids at the microscopic scale. It is a field of study with a range of applications [42], such 
as: drug delivery, diagnostic chips and microreactors. Droplets in real-world microfluidic systems have a large surface-area 
to volume ratio, which makes interfacial forces important; a good review is provided by Rallison [35]. In two dimensions, 
this translates to a large interface-length to area ratio. Surfactants locally influence the surface tension of a droplet interface. 
This may create non-uniformity in the surface tension which in turn generates a stress opposed to the flow, known as the 
Marangoni stress. Thus, the addition of surfactants can strongly influence the behaviour of the system [1,7].

Stone and Leal [40] studied how surfactants change the drop deformation and breakup using a numerical boundary 
integral method. They found that for the same strain rate, surfactant-covered drops would reach a more deformed steady 
state than their clean counterparts. The effect of viscosity-ratio on deformation was investigated for surfactant-covered 
droplets in an extension of this work [26]. It was shown that for cases with near-zero diffusion of surfactants along the 
interface of the droplet, the steady state deformation was independent of viscosity-ratio.

A microfluidic system is typically one in which viscous forces are dominant. Microfluidic multiphase flows can therefore 
be accurately modelled using Stokes equations. With the addition of surfactants, it is also necessary to couple the Stokes 
equations with a convection-diffusion equation on the droplet interfaces. A discontinuity in the normal stress across the 
droplet interface is created by the surface tension forces. This represents a major challenge for the simulation of these flow 
types. One way to avoid this difficulty is to ensure that the computational grid is always coincident with the interfaces. 
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However, this becomes very expensive when droplets deform or advect as it requires the domain to be remeshed at every 
time-step. The most common approach for multiphase flow simulation is instead to utilise some form of interface tracking. 
This involves solving the Stokes equations on a fixed computational grid in the entire domain. The locations of the droplet 
interfaces are computed separately using either an explicit boundary discretisation or an implicit representation; such as a 
level-set function or volume-of-fluid method. Some examples of methods with surfactants are those by Khatri and Tornberg 
[15,16] and Muradoglu and Tryggvason [27], who considered the Navier-Stokes equations and surfactants using a front-
tracking scheme and finite differences in 2D and 3D respectively. Another approach is to use a diffuse interface method as 
Teigen et al. [43]. Furthermore, recent work has been done to extend these kinds of methods also to soluble surfactants, as 
is done in both 2D and 3D in [6,36,45].

Accurate treatment of the discontinuity in normal stress remains a significant challenge for all interface tracking methods 
when the interfaces do not align with the computational grid. The most common approach to handle this has been to 
regularise the surface tension forces, such as introduced in e.g. Brackbill et al. [4] or in the immersed boundary method by 
Peskin [30]. However, regularisation limits the accuracy of the method to first order near the interfaces. Another approach 
is to impose the jump conditions in the normal stress directly. LeVeque and Li [24] obtained second order accuracy using 
an immersed interface method based on finite differences for clean drops, however they required both the drops and the 
bulk to have the same viscosity. This constraint still remained as Xu et al. [44] extended the method in [24] to simulate 
surfactant-covered droplets in Stokes flow. Care has to be taken when imposing the jump condition to avoid a time step 
constraint that is dependent on how the interfaces cut the underlying grid. This is thoroughly discussed for finite element 
methods in Hansbo et al. [12], where they manage to design a second order method and avoid such a constraint by adding 
suitable stabilising terms.

Reformulating the Stokes equations in integral form on the droplet interfaces avoids the aforementioned issues. This 
reduces the dimension of the problem as only the interfaces have to be discretised and gives an explicit representation of 
the interface which does not have to be coupled to an underlying grid. Furthermore, it naturally handles the discontinuity in 
normal stress. A review of boundary integral methods for Stokes flow is given in [31]. For drops, papers containing boundary 
integral methods including surfactants in 3D are among others [3,32,38]. In two dimensions, boundary integral methods have 
been used for e.g. vesicles as by Marple et al. [25] who simulated vesicle suspensions in confined flows and Quaife and Biros 
[34] who focused on developing an adaptive time-stepping scheme using an implicit spectral deferred correction method. 
This was extended by Bystricky et al. [5] for rigid body suspensions. Kropinski and Lushi [22] simulated surfactant-covered 
bubbles with a boundary integral method and used a spectral method to compute the surfactant concentration. Xu et al. [46]
extended this work to include a model for soluble surfactants in the no-diffusion limit in the bulk. However, the numerical 
solution of the boundary integral equations has its own challenges. Primarily, the near-singular behaviour of the discretised 
integrals when evaluating interfaces in close proximity. In 2D, Ojala and Tornberg [28] used a special quadrature scheme to 
ensure high accuracy also for close to touching clean drops. Other options for closely interacting drops includes quadrature 
by expansion (QBX) by Klöckner et al. [20], which can be extended to 3D, and was done so efficiently for the special case 
of solid spheroids in [17].

This paper proposes an efficient and accurate boundary integral method for the simulation of deforming bubbles and 
droplets in two dimensional Stokes flow; for both clean and surfactant-covered droplets. The method is an extension of that 
proposed by Kropinski and Lushi [22] and uses the special quadrature method in [28] to enable accurate simulations of 
close drop-drop interactions. To match the spectral accuracy in space, an adaptive time-integration scheme is employed and 
also described herein.

This paper also aims to validate the proposed numerical method using conformal mapping theory following the ap-
proaches in [8,41]. For single surfactant-covered bubbles in an extensional flow at steady state, exact solutions are computed 
by Siegel [37]. Furthermore, Crowdy et al. [8] used conformal mapping theory to semi-analytically compute the deformation 
of a pair of clean bubbles in an extensional flow. With this approach, a conformal mapping of the interface is considered 
and the time-dependent problem of deforming bubbles is rewritten into a system of ODEs for the conformal mapping 
parameters, whilst the flow field can be described analytically. In this paper, this approach has been extended to surfactant-
covered bubbles. Together, these solutions enable a precise and quantitative validation of the numerical method proposed 
by this paper. A comprehensive evaluation of the method is undertaken, examining temporal development, droplets in close 
proximity and the distribution of surfactants.

Additionally, the errors introduced when evaluating the near-singular integrals numerically using a standard Gauss-
Legendre quadrature are estimated. This work extends that of af Klinteberg and Tornberg [18,19] where estimates based 
on contour integrals were derived for Laplace’s and Helmholtz equations. The estimates are in excellent agreement with the 
observed numerical errors. Details of the estimates and their derivation can be found in Appendix A.

The paper is organised as follows: in §2 the model, governing equations and boundary integral formulation are intro-
duced. §3 explains the numerical solution of the boundary integral equation, the special quadrature method and provides 
results for the error estimates. The complete numerical method for the coupled problem is explained in §4 and §5 details 
the methods used for validation. In §6 numerical results for drop simulation and validation are presented.
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Fig. 1. Example of a domain consisting of three droplets.

2. Problem formulation

2.1. Governing equations

On the micro scale, the fluid velocity u and the pressure p of a flow can be computed by solving the Stokes equations. 
Here, an infinite expanse of fluid, !0 , with viscosity µ0 is considered. The fluid contains n droplets, denoted by !k , for 
k = 1, . . . , n, each with viscosity µk . The interface between the droplet !k and the bulk fluid !0 is denoted by "k , see Fig. 1
for an example domain. The Stokes equations take the form

µ0#u0 = ∇p0, for x ∈ !0,

µk#uk = ∇pk, for x ∈ !k, k = 1, . . . ,n.
(1)

For droplets, µk $= 0 and the velocity is continuous over the interfaces. Also, the solution fulfils the normal stress balance 
over the interfaces,

− (p0 − pk)n+ 2 (µ0e0 − µkek) · n = −σκn+ ∇sσ on ", (2)

where " =
⋃n

k=1 "k . Here, n is the inward facing normal, σ the surface tension coefficient, κ = ∇s ·n the curvature and e the 
rate of strain tensor. Note that this curvature is negative for a circular drop. The term ∇s σ , where ∇s is the surface gradient 
operator, gives the tangential stress (Marangoni force) which is the result of a non-uniform surface tension. The interfaces 
are discretised clockwise by s ∈ [0, Lk(t)], where Lk(t) is the length of the interface "k at time t . This condition states that 
the jump in normal stress over an interface is proportional to the curvature and the Marangoni force. Furthermore, the 
kinematic interface condition states that the normal velocity of the interface, dx

dt
· n, is equal to the normal fluid velocity,

dx

dt
· n = u · n. (3)

The limit when µk = 0 corresponds to the study of inviscid bubbles. The continuity condition of velocity across the 
interface can then be disregarded, as there is no velocity inside the bubbles. The kinematic condition (3) is still necessary, 
as is the normal stress balance (2) modified to contain only pressure and strain tensor of the bulk fluid.

As the fluid domain !0 is unbounded, an additional condition at infinity is needed,

u → u∞, as |x| → ∞.

Here it is typical to impose a linear far-field flow, where

u∞ =

(
Q 0 B0 + G0

2

B0 − G0

2
−Q 0

)
· x. (4)

The two imposed linear flows considered in this paper are: extensional flow, where B0 = G0 = 0 and shear flow, where Q 0 = 0

and G0 = 2B0 .

The surfactants considered here are insoluble, i.e. they exist only on the interfaces of the droplets. Their concentration, 
ρ(s, t), is described by the convection-diffusion equation [39]

Dρ

Dt
+ ρ (∇s · u) = D"∇2

s ρ, for x ∈ ". (5)

Here, D" is the diffusion coefficient along the interface and D
Dt

the material derivative. As the surfactants are insoluble, their 
mass on each interface is conserved,
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d

dt

∫

"k(t)

ρ(t)dS = 0, k = 1, . . . ,n. (6)

The surfactant concentration and the surface tension at an interface are coupled through an equation of state. Two 
common equations of states are the Langmuir equation of state,

σ (ρ) = σ0 + RT log (ρ∞ − ρ) (7)

and the linearised equation of state

σ (ρ) = σ0 − RTρ, (8)

as described in [29]. Here, R is the universal gas constant, T the temperature and σ0 the surface tension coefficient of a 
clean interface. Furthermore, ρ∞ is the maximum monolayer packing concentration of surfactants on "(t). Generally, the 
Langmuir equation of state is considered more accurate. The linear equation of state is mostly used for problems with low 
saturation levels, but is also commonly used in many validation cases, which is the reason it is included here. To switch 
between the two is trivial.

2.2. Nondimensionalisation

The above equations are nondimensionalised using a characteristic length r0 , defined as the radius of an initial droplet. 
The characteristic velocity is defined as the ratio σ0

µ0
, where µ0 is the viscosity of the bulk and σ0 the surface tension 

coefficient of a clean interface. Furthermore the characteristic pressure is defined as σ0

r0
. For the remainder of this paper, all 

physical quantities are considered in their non-dimensional form.

Rewriting the equations, (1) becomes

#u0 = ∇p0, for x ∈ !0,

λk#uk = ∇pk, for x ∈ !k, k = 1, . . . , n,
(9)

and (2)

− (p0 − pk)n+ 2 (e0 − λkek) · n = −σκn + ∇sσ , on ". (10)

Here, λk =
µk
µ0

is the viscosity ratio between the droplet k and the bulk fluid. Also the imposed far-field flow is nondimen-

sionalised, such that

(Q , G, B) =
r0µ0

σ0
(Q 0, G0, B0) .

The nondimensionalisation of the surfactant concentration depends on which equation of state is used:

Case 1. In the case of the Langmuir equation of state, it is natural to nondimensionalise ρ with the maximum monolayer 
packing concentration ρ∞ , and (7) reads

σ = 1+ E log(1 − ρ), (11)

where E =
RTρ∞

σ0
is the so-called elasticity number.

Case 2. When considering the linearised equation of state, it is instead common to nondimensionalise with the initial 
surfactant concentration, ρ0 . Then, (8) becomes

σ = 1− Eρ, (12)

with E =
RTρ0

σ0
.

In both cases, (5) becomes

Dρ

Dt
+ ρ (∇s · u) =

1

Pe"

∇2
s ρ, for x ∈ ", (13)

where Pe" =
µ0r0
σ0D"

is the Peclet number.

In summary, to evolve the deforming interfaces of the surfactant-covered droplets in time, the following coupled system 
needs to be solved for x ∈ "(t):
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dx

dt
= u(x,ρ, t),

Dρ

Dt
= −ρ (∇s · u) +

1

Pe"

∇2
s ρ.

(14)

The solution to this system will be explained in steps. First, the boundary integral equation (BIE) formulation for u is given 
in §2.3. In §3 the numerical method that is used to accurately solve the BIE is explained. In §4 the numerical procedure for 
the solution of the surfactant concentration, the coupling of the system and its evolution in time is described.

2.3. Boundary integral formulation

In two dimensions, it is convenient to regard this problem in the complex plane. The spatial variable x then corresponds 
to the complex variable z = x + iy. On the interface, z is regarded as a function of the parameter α and time, z(α, t), where 
α ∈ [0, 2π ]. The two parametrisations s and α are linked through α = 2π s/Lk(t) for each interface "k(t), where s was 
introduced below (2).

The integral equation used to compute the velocity on each interface is obtained through the Sherman-Lauricella formu-

lation as described in [21]. This approach stems from the fact that the solution to the Stokes equations in two dimensions, 
u(z) = u1(x, y) + iu2(x, y), can be written as the solution to the biharmonic equation. This is done by introducing a stream 
function W (x, y) where u1 = W y and u2 = W x . One can then replace the Stokes equations by the biharmonic equation 
#2W = 0. By Goursat’s formula, W (x, y) has the representation

W (x, y) = (
{
z f (z) + h′(z)

}
,

where f (z) and h(z) are analytic functions on !0 . The functions f and h are known as Goursat functions, and all physical 
quantities of the problem, such as velocity, pressure and vorticity, can be expressed as combinations of them [23]. Using the 
Sherman-Lauricella formulation as in [21], the Goursat functions are written as Cauchy integrals of a complex-valued density 
µ(z). By substituting velocity and pressure in the interface condition (10) by their representations of Goursat functions, a 
Fredholm equation of the second kind is obtained to solve for µ(z) on the interfaces "(t),

µ(z) + β(z)T (z,µ) + β(z)

∫

"(t)

µ(τ )|dτ |

= − σ (α, t)
γ (z)

2

∂z

∂α
− β(z) (B − iQ ) z, z ∈ "(t),

(15)

where T (z, µ) is the complex variable formulation of the stresslet

T (z,µ) =
1

π

∫

"(t)

µ(τ )*
(

dτ

τ − z

)
+

1

π

∫

"(t)

µ(τ )
*

(
dτ (τ − z)

)
(
τ − z

)2 ,

see [21] for details. The third term in (15) evaluates to zero as a result of the area conservation of the droplets, and is 
used to remove rank deficiency in the case of inviscid bubbles. Here, notation as in [28] is used, where β(z) := 1−λk

1+λk
and 

γ (z) := 1
1+λk

for z ∈ "k(t). In the last term on the right hand side, B and Q are part of the imposed far-field flow in (4). 
Furthermore, σ (α, t) := σ (ρ(α, t)) is the surface tension coefficient obtained from the surfactant concentration through 
either equation of state, (11) or (12). Note that the expression in (10) has been integrated once, thus no differentiation of 
σ (α, t) is needed.

Once µ(z) is obtained for all z ∈ "(t), the velocity can be evaluated for z ∈ !0 ∪ " ∪ !k , as

u(z) =u1(z) + iu2(z) = −
1

π

∫

"(t)

µ(τ )(
(

dτ

τ − z

)

−
1

π i

∫

"(t)

µ(τ )
*

(
dτ (τ − z)

)
(
τ − z

)2 + (Q + iB)z −
iG

2
z,

(16)

where the last two terms on the right hand side represent the far-field velocity u∞ in complex form. Note that the first 
integral in (16) is singular and interpreted in a principal value sense.

3. Solving the BIE numerically

Here, a summary of the numerical method to solve the BIE is given. More details are available in [28]. The solution 
procedure described is valid for any instance of time t̄ .
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To compute the integrals (15) and (16) accurately, a high order discretisation of "(t̄) is needed. Here, an explicit repre-
sentation of the interfaces is used; zk(α), for droplets k = 1, . . . , n, where α ∈ [0, 2π). On the interface k, each interface is 
split into panels and Nk discretisation points are placed on a composite 16-point Gauss-Legendre grid. The total number of 
discretisation points becomes N =

∑n
k=1 Nk .

3.1. Solve for µ(z)

To compute µi ≈ µ(zi), where zi are the Gauss-Legendre points on the interfaces at time t̄ , a Nyström method is used. 
The discretised version of (15) is

µi+
βi

π

N∑

j=1

µ jM
(1)
i j +

βi

π

N∑

j=1

µ jM
(2)
i j + βi

N∑

j=1

µ jw j|z
′
j|

= −σi
γi

2

z′i
|z′i|

− βi(B − iQ )zi, i = 1, . . . ,N,

(17)

where z′i =
∂z
∂α

∣∣
i
. Here, w j are the Gauss-Legendre weights associated with z j . Also, σi = σ (αi), βi = β(zi) and γi = γ (zi). 

Moreover,

M
(1)
i j = w j*

{
z′j

z j − zi

}
, M

(2)
i j = w j

*
{
z′j(z j − zi)

}

(z j − zi)2
,

for all j $= i. The limits when j = i are finite and given by

M
(1)
ii = w i*

{
z′′i
2z′i

}
, M

(2)
ii = w i

*
{
z′′i z

′
i

}

2(z′i)
2

.

The derivatives of zi are computed with Fourier differentiation on a uniform grid and evaluated on the Gauss-Legendre grid.
Solving (17) to obtain µi , i = 1, . . . , N , boils down to solving a system Aµ = b, where µ = (µ1 . . .µN )T , b represents 

the right hand side in (17) and Aµ the expression on the left hand side. The matrix A is dense, but as (15) is a Fredholm 
equation of the second kind, the condition number of A is typically small and does not increase with grid refinement. Due 
to the spectral properties of the discretised system, there is no need for a preconditioner when solving (17) with an iterative 
algorithm such as GMRES. Furthermore, the matrix-vector multiplications are sped up using the fast multipole method, FMM

[10].

3.2. Compute u(z)

Once µi is obtained for all discretisation points zi , the velocity ui ≈ u(zi) can be computed through (16). To handle the 
singular integral, singularity subtraction is used; when evaluating ui the integral

1

π

∫

"

µi (
{

dτ

τ − zi

}

is added and subtracted from the expression in (16). Using calculus of residues this removes the singularity and leads to 
the discretised expression

ui = −
w i

π
µ′

i −
1

π

N∑

j=1,i $= j

(µ j − µi)w j(

{
z′j

z j − zi

}

−
1

iπ

N∑

j=1

µ jM
(2)
i j + (Q + iB)zi −

iG

2
zi,

(18)

where M(2)
i j is defined as previously.

3.3. Error estimates

Regarding the equations (15) and (16), they both contain terms (z j − zi)
−1 . For M(1) and M(2) the limits when i = j are 

well-defined, and for the term ( 
{

z′j
z j−zi

}
singularity subtraction is used, see (18). However, when droplets get close to each 
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Fig. 2. Example of an analytical solution u(z) and the error to (A.2) given sources (x1 , f1), (x2, f2) and (x3 , f3) (black markers) in a domain !. The solution 
is computed with a composite 16-point Gauss-Legendre quadrature with 25 panels. The black box shows the region displayed in Fig. 3.

Fig. 3. Close up of domain marked in Fig. 2(b). Computed error estimates with different number of Gauss-Legendre panels in black for error levels 10−p , 
where p = 14, 12, . . . , 2, 0. Measured errors in colour. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this 
article.)

other, i.e. when ‖zi − z j‖ . 1 for points zi and z j on different interfaces, the integrals are said to become near-singular. 
Analytically this is not an issue, but numerically large errors are introduced as the integrand gets harder to resolve.

To demonstrate how these errors grow, the Stokes equations are solved in a fixed domain with Dirichlet boundary 
conditions. This problem contains the same near-singular behaviour as (16). Given any analytical solution to the Stokes 
equations (for example, that generated by a point source forcing as shown in Fig. 2(a)), the Dirichlet velocity data can be 
evaluated at the boundary and used as boundary conditions for the numerical method. The boundary integral formulation 
and exact problem setting is described in Appendix A, the domain and the solution u(z) are shown in Fig. 2(a).

The relative error of u(z) compared to the exact solution, using 25 Gauss-Legendre panels, is shown in Fig. 2(b). Here 
only the first quadrant is shown, as the error behaves identical in the other three. It is clear that at an evaluation point 
z0 close to the boundary, the errors are large and other treatments of the integrals are needed for these cases. In this 
paper a special quadrature is used, which is explained in §3.4. At what distance from a panel the errors become large 
depends on the refinement of the discretisation. In order to know when special treatment is needed, the quadrature errors 
of such near-singular integrals can be estimated. This was originally done by af Klinteberg and Tornberg, where estimates 
for the quadrature errors for Laplace’s and Helmholtz equations were derived in [18,19]. Using the same approach based on 
contour integration and calculus of residues for integrals of the type appearing in (16), the errors when computing u(z) can 
be estimated also for the Stokes equations. Details of this can be found in Appendix A. The estimates follow the error levels 
remarkably well, as is shown in Fig. 3. Both the errors and the estimates for 25 and 50 panels are shown, and it is clear 
that refining the interface discretisation makes the region of large errors narrower, but will not eliminate it.

3.4. Special quadrature

To improve the accuracy of the computation of µ(z, ̄t) and u(z, ̄t) for a z near any drop interface the special quadrature 
method of [28] will be employed. It was originally introduced by Helsing and Ojala [13] for Laplace’s equation and extended 
to Stokes equations in [28]. This is a local method which regards point-panel pairs. For each evaluation point the error 
when using a standard Gauss-Legendre quadrature is estimated on each panel. If it is too large over a specific panel, "i , 
the integral over that panel will instead be treated semi-analytically. An overview of the special quadrature can be found in 
Appendix B.

Solving the same problem for the Stokes equations in a domain with non-deforming boundaries as in §3.3, the u(z)

obtained by standard quadrature is corrected in the regions where the error is large. The reduction of error when using 
the special quadrature can be seen in Fig. 4. This error should be compared to that in Fig. 2(b), where standard 16-point 
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Fig. 4. Logarithm of the pointwise error when solving the Stokes equations with the special quadrature. The special quadrature is used for points close to 
the boundary, cf. Fig. 2(b) for a comparison of errors. The solution is computed with 50 Gauss-Legendre panels.

composite Gauss-Legendre quadrature is used. It is clear that errors can be kept at a very low level of order 10−10 or less 
also for evaluation points close to the interface.

4. Numerical method in time

Several steps are needed to simulate the deformation of surfactant-covered droplets through the system in (14). Here, a 
method of lines approach is used, where the discretisation in space generates a system of ODEs to solve in time. This system 
can then be solved using a numerical method for initial value problems using a time-integration scheme as described in 
§4.5.

To evolve the interfaces in time, as well as to compute the surfactant concentration, an equidistant spatial discretisa-
tion is used. However, to compute the integrals in the BIE formulation described in §3, it is beneficial to use a composite 
Gauss-Legendre discretisation. Thus, a hybrid method using both discretisations is employed. The interface of each droplet 
is discretised with Nk points. For the uniform discretisation, these points are placed equispaced in arc length. The quadra-
ture weights associated with this discretisation are the standard trapezoidal weights. For the composite Gauss-Legendre 
discretisation, the interface is divided into Nk/16 panels of equal length, each discretised with a 16-point Gauss-Legendre 
quadrature rule. To go between the two discretisations, the points on each panel are interpolated.

Here follows a short overview of the steps needed at each instance in time, all of which will be explained in more detail 
further on in §4.1-4.4. In order to evolve the droplets in time, the interface velocities are obtained through the following 
steps:

1. Upsample the uniform discretisation and interpolate to the composite 16-point Gauss-Legendre grid.
2. Compute the fluid velocity at the boundaries accurately by solving the BIE and applying the special quadrature where 

needed, see §3.
3. Interpolate the velocity back to the uniform grid and downsample.

4. Compute the appropriate tangential velocity to keep the discretisation points equidistant in arc length.

The velocity is then fed into a time-integration scheme for propagation of the droplet interfaces in time. Each time the 
fluid velocity is computed, the surface tension coefficient is needed. Since this is dependent on the surfactant concentration 
through (11) or (12), also the surfactant concentration needs to be propagated in time through (13), see §4.4.

4.1. Interpolation to and from the composite Gauss-Legendre grid

First, upsampling is needed for stability and is achieved by zero-padding the Fourier coefficients of the equidistant 
discretisation with a factor two. Then, the interpolation to the composite Gauss-Legendre grid is done via a non-uniform
FFT (nuFFT), see Greengard and Lee [9] for details. Once the velocity and the special quadrature corrections have been 
computed, a 16-point Gauss-Legendre interpolation on each panel is used to go back to the uniform discretisation. Finally, 
the velocity vector is downsampled and a Krasny filter is applied to the velocity vector, where all Fourier modes below the 
absolute value of 10−12 are set to zero. See [28] for more details.

4.2. Modifying the tangential velocity

With the velocity at the interfaces represented on the equidistant discretisation, denoted by u, a new modified velocity 
for the discretisation points is computed, dx

dt
. The reason for this is to avoid clustering of the discretisation points as the 
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interface evolves in time, an idea which was originally introduced by Hou et al. [14] and then used to simulate bubbles by 
Kropinski [21]. The idea is to decompose the velocity u (z(s)) into its normal and tangential components,

u (z(s)) = [un(s) + iut(s)]n(s),

where n (s) is the complex representation of the normal, s ∈ [0, Lk(t)] and un and us are real valued. The modified velocity 
is then defined as

dx

dt
(s) =

[
un(s) + iũt(s)

]
n(s). (19)

The new tangential velocity ũt can be chosen to dynamically preserve s equidistant in arc length. It can be derived as (see 
[21])

ũt(s) =
s

2π

2π∫

0

*
{
z′′(q)

z′(q)

}
un(q)dq −

s∫

0

*
{
z′′(q)

z′(q)

}
un(q)dq,

which simplifies to an antiderivative taken with an FFT. The notation of this tangential velocity is adapted from [28]. Note 
that the modified velocity dx

dt
still fulfils the kinematic condition (3).

4.3. Spatial adaptivity

Using the modified tangential velocity as explained above keeps the interface discretisation points equidistant in arc 
length over time, i.e. with equal spacing #s. As the droplets deform, the spacing #s might increase or decrease. To keep the 
spatial resolution constant, a spatial adaptivity is implemented where more discretisation points are added to the interfaces 
if #s grows more than a set threshold. Likewise, in the case when #s becomes too small, discretisation points are removed. 
These operations are both performed on the equidistant discretisation.

4.4. Solving the surfactant equation

The material derivative in (13) can be expanded utilising the interface velocity u (z(s)) and the velocity of the discretisa-
tion points dx

dt
(s), s ∈ [0, Lk(t)]). The convection-diffusion equation for the surfactant concentration becomes

∂ρ

∂t
+

(
u−

dx

dt

)
· ∇sρ + ρ∇s · u =

1

Pe"

∇2
s ρ, x ∈ ". (20)

Using that the normal components of dx
dt

and u are the same and that the surface gradient operator can be written as 
∇s(·) = s ∂

∂s
(·), (20) can for each droplet k be rewritten as

∂ρ

∂t
= ũt

∂ρ

∂s
−

∂ (ρut)

∂s
− ρunκ +

1

Pe"

∂2ρ

∂s2
, s ∈ [0, Lk(t)]. (21)

Here, the first two terms in the right hand side correspond to advection, the third to stretching and the last term represents 
diffusion along the interface. To reformulate (21) in terms of α ∈ [0, 2π), the equal-arc length parameter skα(t) is defined as

skα(α, t) =
1

2π
Lk(t), (22)

see [22]. The convection-diffusion equation becomes

∂ρ

∂t
=

ũt

skα(t)

∂ρ

∂α
−

1

skα(t)

∂ (ρut)

∂α
− ρunκ +

1

Pe" skα(t)2
∂2ρ

∂α2
, α ∈ [0,2π), (23)

for all droplets k = 1, . . . , n.
Using the method of lines approach, the right hand side in (23) is computed whilst keeping the time t continuous. 

Define ρk
i (t) ≈ ρ(αi, t), where αi ∈ [0, 2π) are the parameter discretisation points for the equidistant discretisation on the 

interface, zki = z(αi, t), for the droplet k. For each droplet, the PDE can easily be reduced to a system of ODEs for the 
Fourier coefficients of ρk

i (t), i = 1, . . . , Nk , obtained by FFTs. In the following only the case of one droplet will be regarded, 
k = n = 1, but the method extends trivially to multiple droplets.

It is advantageous to treat the convection and stretching terms explicitly, whilst the diffusion term should be treated 
implicitly to avoid stiffness. Thus, (23) becomes

∂ρi

∂t
= f E (zi,ρi, t) + f I (zi,ρi, t) , i = 1, . . . ,N,
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Table 1

Butcher tableau, adaptive 
method using explicit mid-

point and explicit Euler for 
interface position z.

0

1/2 1/2

0 1

1 0

where the terms have been collected for explicit and implicit treatment respectively,

f E(zi,ρi, t) =
ũt

skα(t)

∂ρ

∂α
−

1

skα(t)

∂ (ρut)

∂α
− ρunκ,

f I (zi,ρi, t) =
1

Pe" skα(t)2
∂2ρ

∂α2
.

The corresponding system of ODEs in Fourier space is

∂ρ̂ j

∂t
= ( f̂ E) j + ( f̂ I ) j, j = −

M

2
, . . . ,

M

2
− 1,

where (̂·) j denotes the Fourier coefficient of mode j. For a droplet in two dimensions, the interface discretisation is one 
dimensional. In one dimension, the implicit term, (̂ f I ) j , is trivial to compute as the second derivative corresponds to a 
multiplication of − j2 for each Fourier mode. The parts in (̂ f E) j are computed pseudo-spectrally. To avoid aliasing the 
discretisations on all interfaces are upsampled by factor 3

2
, i.e. M = 3

2
N and a Krasny filter is applied, setting all Fourier 

modes below the absolute value of 10−12 to zero.

4.5. Adaptive time-stepping

Including the modified tangential velocity and the pseudo-spectral method for the surfactant concentration, the system 
(14) that needs to be evolved in time can be rewritten as

dz

dt

∣∣∣∣
l

=
(
un + iũt

)
l
nl = g(zl,σl), l = 1, . . . ,N

∂ρ̂ j

∂t
= ( f̂ E) j + ( f̂ I ) j, j = −

M

2
, . . . ,

M

2
− 1,

(24)

for each droplet. The system is coupled, as the surface tension coefficient σi depends on ρi through some equation of state, 
e.g. (11) or (12).

As mentioned in §4.4, the diffusion term in (23) needs to be treated implicitly for stability whilst the other terms in 
the right hand side preferably are treated explicitly. The evolution equation for the interface should be treated explicitly. 
Furthermore, adaptivity in time is required in order to handle multiple droplets getting very close to each other.

A range of potential time-stepping schemes for this problem were studied in [33]. Unlike the case for vesicles [34], 
for deforming droplets the time step has a restriction of order one, which enables larger freedom when selecting a suit-
able time-integration scheme. The design criteria was an accurate but efficient scheme, which would keep the number of 
solutions of the Stokes equations at a minimum as it is the most costly part of the method. The conclusion was that a com-

bination of an explicit midpoint method for z together with an implicit-explicit Runge-Kutta of order two for ρ together 
with adaptivity was advantageous to use. The authors observed that the adaptive time step should be adjusted considering 
the errors both in interface position z and surfactant concentration ρ . An explanation of each part of the scheme follows:

Interface position. The explicit method used to solve

dz

dt
= g(z,σ ),

is the standard Runge-Kutta explicit midpoint rule. At each time step, the local error in zn+1 , rn+1
z , is computed by comparing 

zn+1 with that of a lower order method, z̃n+1 . The scheme in full is shown in the Butcher tableau in Table 1. The local error 
for the time step tn to tn+1 is computed as

rn+1
z =

‖zn+1 − z̃n+1‖∞
‖zn+1‖∞

.
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Table 2

Butcher tableau, IMEX2 scheme for ρ .

0

1/2 1/2

0 1

0

1/2 1/2

0 1

Surfactant concentration. The implicit-explicit Runge-Kutta of order two used here (IMEX2) is described by its Butcher 
tableau in Table 2 and explained in detail in [2]. Adaptivity in ρ can be achieved in two possible ways, either by com-

paring to a lower order IMEX scheme or by using the concept of mass conservation from (6). Here, adaptivity based on 
mass conservation is considered. The time-discretised version of the mass conservation reads

∫

"n+1

ρn+1dS −
∫

"n

ρndS = 0,

where the integrals can be computed with spectral accuracy using the trapezoidal rule. To measure the local error in ρ of 
the time step from tn to tn+1 , regard

rn+1
ρ =

‖
∫
"n+1 ρn+1dS −

∫
"n ρndS‖∞

‖
∫
"n ρndS‖∞

.

Coupled method. The Runge-Kutta stages of the methods for z and ρ are the same. This means that at every stage, i.e. 
at tn and tn+1/2 , information between the equations can be exchanged. This coupling, together with the two second order 
methods, give a scheme which is second order in total. However, the most important feature is the combined adaptivity. 
The total local error of a time step is computed as the maximum of the local errors in z and ρ ,

rn+1 = max
(
rn+1
z , rn+1

ρ

)
.

As is typical in adaptive time-stepping methods, if the local error rn+1 > tol for some tolerance tol for a time step of size 
dtn

old
, the time step is retaken with updated size. To meet the tolerance, the new time step to go from tn to tn+1 , denoted 

dtnnew , needs to fulfil

(
dtnnew
dtn

old

)2

≈
tol

rn+1
.

This gives a new time step of

dtnnew = dtnold

(
0.9

tol

rn+1

) 1
2

,

where 0.9 is a safety factor, [11]. The expected second order convergence rate is confirmed in [33].

5. Validations

To validate the coupled method described in §4, the conformal-mapping techniques of Crowdy et al. [8] and Siegel [37]
are used to compute the evolution of surfactant-covered bubbles in an extensional flow for specific cases. The aim of the 
validation is to test the coupling of the solution for interface position and surfactant concentration as well as the dynamics 
over time to high accuracy. With this aim, three cases for validation have been selected:

1. the exact solutions of surfactant-covered bubbles and droplets in extensional flow at steady state
2. semi-analytic solutions for a pair of clean, deforming bubbles in extensional flow
3. semi-analytic solutions for a pair of surfactant-covered bubbles deforming in extensional flow.

The first case uses an analytical solution by Siegel and tests the dynamics of surfactant-covered bubbles and droplets over 
a long time. The second method was introduced by Crowdy et al. and regards a pair of clean bubbles in extensional flow. 
This case tests especially the special quadrature of §3.4 when the two bubbles are pushed close to each other. The third 
case builds on the second, with the addition of insoluble surfactants. This tests the time-dependent dynamics of the whole 
method put together.

In this section, an overview of how to compute the validation results for all three cases is described. Note that case two 
and three are both described in §5.2, where the former simplifies to no surfactants ρ and a constant surface tension σ .
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5.1. Surfactant-covered bubble or drop in steady state

For single surfactant-covered bubbles, analytical solutions to the interface position z and the surfactant concentration ρ
exist in certain cases. The case regarded here is that of a bubble in an extensional flow, u∞ = Q (x, −y), at steady state, for 
which exact solutions were originally obtained by Siegel [37]. A steady state is defined as the time T when u · n = 0. These 
solutions exist for bubbles deforming from an initially circular shape with a uniform surfactant concentration and where 
there is no diffusion of surfactants along the interface, i.e. Pe" = ∞. To couple the surfactant concentration to the surface 
tension, the linear equation of state (12) is used. For details and derivations on how to obtain these solutions, the reader 
is referred to the original reference. Here, it will be explained how to compute these solutions to use as a validation case. 
Given a deformation at steady state, i.e. z at time T , these solutions are used to analytically compute ρ at time T as well 
as the Capillary number Q that is needed to obtain the set deformation at the specified steady state. Using a numerical 
method to simulate the deformation and the surfactant evolution under this Capillary number, the solution at the steady 
state can then be compared to the analytical solution to determine the accuracy.

To describe the bubble interface, a conformal mapping is used,

z(ζ, t) =
a(t)

ζ
+ b(t)ζ, (25)

where a(t) < 0 and b(t) is real. Furthermore, the condition of constant area gives a2 − b2 = 1. At the bubble interface, 
|ζ | = 1, i.e. ζ = eiν for ν ∈ [0, 2π ]. At steady state, it is required that

Q = −
Ab

(1+ b2)1/2
, (26)

where

A =

∫ 2π
0

B(b,ν)1/2dν − 2π E
∫ 2π
0

B(b,ν)dν
, (27)

with E the elasticity number in (12), and

B(b,ν) = 1+ 2b2 − 2(1+ b2)1/2b cos(2ν). (28)

The deformation of a bubble is measured as

D =
Rmax − Rmin

Rmax + Rmin
, (29)

where Rmax , Rmin are the maximum and minimum radial distance of a point on the interface to the centre respectively.
To compute the surfactant concentration at steady state, (13) is used. At the steady state, this can be simplified to

ρ(
[
u(z) + zν

|zν |

]
=

1

Pe"

(
ρν

|zν |

)
= 0, (30)

where the second equality comes from having no diffusion, Pe" = ∞. This means, that on any part of the interface at the 
steady state, either ρ = 0 or u(z) = 0 (no slip condition). Assuming the extensional flow is sufficiently low such that the 
concentration of surfactants is non-zero everywhere, it fulfils

ρ(ν) =
1− A|zν |

E
. (31)

An algorithm to compute the steady state surfactant concentration ρ(ν) and Capillary number Q given the steady state 
deformation can be found in Algorithm 1. The deformation at steady state is determined through the conformal mapping 
parameters a and b in (25) which are given as input to the algorithm. How the deformation D depends on the Capillary 
number Q for different elasticity numbers is shown in Fig. 9.

To validate the results of a numerical method against these exact solutions, the results at steady state are compared when 
simulating an initially circular bubble with uniform surfactant concentration ρ0 = 1 in an extensional flow with Capillary 
number Q and Pe" = ∞, i.e. no diffusion of surfactants.

As was discussed by Milliken et al. in [26], in the case of no diffusion along the interface the viscosity ratio does not 
affect the steady state deformation. When Pe" = ∞, the interfacial velocity is dominated by the high Marangoni stresses 
and the effect of viscosity ratio is therefore negligible. Thus, the results above can be used to validate the steady state 
deformation and surfactant concentration also for drops, where λ $= 0.
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Algorithm 1: Steady state computation.

Input : Conformal mapping parameters a and b at steady state.
Output: Deformation D . Capillary number Q for which this deformation is obtained at steady state. Interface position z(ν j) and surfactant 

concentration ρ(ν j) at steady state, for ν j =
2π j
M

, j ∈ [0, M − 1].

1 Discretise ν j =
2π j

M
, j ∈ [0, M − 1].

2 Compute z(ν j) through (25).
3 Find Rmax , Rmin and compute deformation D in (29).
4 Compute B(b, ν j) in (28).
5 Compute A in (27) using trapezoidal rule.
6 Compute ρ(ν j) with (31).
7 Compute Q from (26).

5.2. A pair of bubbles in extensional flow

This method of using complex-variable formulations to semi-analytically compute the deformation of a pair of bubbles 
in an extensional flow was introduced by Crowdy et al. [8]. There, the specific problem setting was a pair of bubbles, λk = 0

for k = 1, 2, without surfactants. Here, the method is extended to also include surfactant-covered bubbles, using a linear 
equation of state (12). The imposed far-field flow is the extensional flow u∞ = Q (x, −y), where Q is the Capillary number 
as previously defined. This method considers the special case when two bubbles are reflectionally symmetric about both x-
and y-axes, see Fig. 11 (left).

The method is based on the reformulation of the Stokes equations using complex-variable methods. The bubble bound-
aries can then be parametrised in terms of a conformal mapping. The numerical algorithm boils down to solving a system 
of ODEs for the time evolution of the conformal mapping parameters. At each instance of time, the flow field is computed 
on the unit disc in the conformal-mapping space, using Laurent series.

For a detailed explanation of each of these steps, the reader is referred to [8]. Here, only the numerical approach will 
be explained in detail. The equations follow those of [8], with two modifications: firstly, the nondimensionalisation has 
been adjusted to allow for a non-uniform surface tension, σ , along the interface. This is in order to make the extension 
to surfactant-covered bubbles. Secondly, the convection-diffusion equation for surfactants (13) is coupled to the problem. 
When considering the original case of clean bubbles, the surface tension is set to be constant and (13) does not need to be 
solved.

The fluid domain and bubble interfaces are described by the conformal mapping,

z (ζ, t) =
b(t)

ζ −
√

φ(t)
+ ẑ (ζ, t) , (32)

where

ẑ (ζ, t) =

∞∑

n=−∞
an(t)ζ

n. (33)

From the symmetry of the problem, it holds that

z(ρ/ζ, t) = −z(ζ, t),

which gives the relations (using (32))

a0(t) =
b(t)

2
√

φ(t)
, a−n(t) = −φ(t)nan(t), n ≥ 1, (34)

where 0 < φ(t) < 1 and b(t) is real. On the bubble interfaces, ζ = eiν , for ν ∈ [0, 2π ]. In order to also consider the surface 
tension in the ζ -plane, the composite functions σ (ζ, t) = σ (z(ζ, t), t) for the surface tension and ρ(ζ, t) = ρ(z(ζ, t), t) for 
the surfactant concentration are defined.

In the numerical implementation, all Laurent series expansions are truncated to only include terms {ζn, n = −NV , . . . ,
NV }. When zero-padding is needed to avoid aliasing, a factor two is used: giving a new truncation limit MV = 2NV . The 
upper bubble interface is discretised by ζ j = eiν j , for j = 1, . . . , 2MV + 1, where ν j is equidistant in [0, 2π) with 2MV + 1

discretisation points.

5.2.1. Computing the flow field
At a given time t̄ , the interface position of bubbles, z(ζ, ̄t), its conformal mapping parameters b(t̄) =: b, φ(t̄) =: φ, {

an(t̄), n = −NV , . . . ,NV

}
and σ (ζ, ̄t) are known.
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In [8], it is shown that the flow field at ζ at time t̄ can be described by functions F (ζ, ̄t), G(ζ, ̄t) and C(t̄). On the upper 
bubble interface, |ζ | = 1, these functions are determined by solving the equation

A(ζ )F0 + i F (ζ, t̄) + P (ζ ) − iG(ζ−1, t̄) − iC(t̄) = E(ζ ), (35)

where





A(ζ ) = 2
√

φ

(
i

ζ −
√

φ
−

iz(ζ, t̄)

zζ (ζ−1, t̄)
(
ζ−1 −

√
φ
)2

)
,

E(ζ ) = σ (ζ, t̄)
ζ zζ (ζ, t̄)

2|zζ (ζ, t̄)|
+

iQ b

ζ−1 −
√

φ
,

P (ζ ) = B(ζ )Fζ (ζ−1, t̄), where B(ζ ) =
iz(ζ, t̄)

zζ (ζ−1, t̄)
.

(36)

Both F (ζ, ̄t) and G(ζ, ̄t) can be expanded into Laurent series,

F (ζ, t̄) =

∞∑

n=−∞
Fnζ

n, G(ζ, t̄) =

∞∑

n=−∞
Gnζ

n,

for real coefficients {Fn} and {Gn}.

Expanding (35) into a Laurent series on both sides of the equality sign, and using the orthogonality of ζ = eiν , gives 
2NV + 1 equations:

An F0 + i Fn + Pn − iG−n − iδnC(t̄) = En, n ∈ [−NV ,NV ], (37)

where δn := 1 for n = 0 and 0 otherwise. To compute the flow field at a given time t̄ , the Laurent coefficients {Fn, ∀n ∈
[−NV , NV ]} and {Gn, ∀n ∈ [−NV , NV ]} need to be determined together with C(t̄). The coefficients {Fn}, {Gn} obey

F−n = −φn Fn, n ≥ 1, and (38)

G−n = −φnGn, n ≥ 1, G0 =
Q b

2
√

φ
, (39)

thus the unknowns are reduced to {Fn, ∀n ∈ [0, NV ]}, {Gn, ∀n ∈ [1, NV ]} and C(t̄). Note that since Q is known, G0 is known 
for time t̄ . Therefore, in (37), G0 should be moved to the right hand side for n = 0.

The number of unknowns in the problem is thus 2NV + 2, and the vector of unknowns is

x =
(
F0 F1 . . . Fn G1 . . . Gn C(t̄)

)T
. (40)

From (37), 2NV + 1 equations are obtained. The system is completed with the equation

Gζ

(√
φ, t̄

)
=

NV∑

n=1

2nφ
n−1
2 Gn = Q ẑζ

(√
φ, t̄

)
, (41)

which originates from the presence of an irrotational extensional flow at infinity. As typically φ < 1, the expressions above 
need to be computed using the relations between an and a−n (34) as well as between Gn and G−n (39) for stability.

Put together, to compute x in (40) it is necessary to solve a system Mx = b of size 2NV + 2, where Mx corresponds to 
the left hand side in (37) together with (41), and

b =
(
E−NV . . . E−1 E0 + iG0 E1 ENV Q ẑζ (

√
φ, t̄)

)T
. (42)

The algorithm to compute x is described in Algorithm 2 with MV = 2NV . Despite the fact that the system matrix M has a 
reasonable condition number at around 105 the system Mx = b is sensitive, especially to the value of φ. The authors note 
that not all conventional approaches to solve the linear system will give a satisfying solution. It has been found numerically, 
however, that treating the matrix as sparse helps with stability.

5.2.2. Evolving the conformal mapping parameters in time

In order to evolve the deforming bubble interfaces, z(ζ, t), |ζ | = 1, the conformal mapping parameters b(t), φ(t) and 
{an(t)}

NV
n=−NV

are integrated in time.

Discretising in time, at time tk define bk ≈ b(tk), φk ≈ φ(tk), {akn} ≈ {an(tk)} etc. The differential equations to evolve the 
bubble interfaces are
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Algorithm 2: Compute flow field functions: F , G and C(t̄).

Input : Conformal mapping parameters: b, φ and {an(t̄), n ∈ [−NV , NV ]}. Surface tension σ (ζ j, ̄t), j = 1, . . .2MV + 1.

Output: Coefficients {Fn, n ∈ [0, NV ]} and {Gn, n ∈ [1, NV ]}, C
(
t̄
)
.

1 Zero-pad {an}NV
n=−NV

to {am}
MV
m=−MV

.

2 Compute z(ζ j, ̄t) through (32). Similarly, compute z(ζ−1
j , ̄t), zζ (ζ j , ̄t) and zζ (ζ−1

j , ̄t).
3 Compute A(ζ j), B(ζ j) and E(ζ j), ∀ j ∈ [1, 2MV + 1], in (36).
4 Compute Laurent series coefficients for A(ζ ), B(ζ ) and E(ζ ) using FFTs.

5 Truncate Laurent series {Am}
MV
−MV

, {Em}
MV
−MV

to include only 2NV + 1 terms.

6 Create right hand side b to solve Mx = b, constructed according to (42).
7 Create system matrix M:

The first 2NV + 1 rows correspond to (37). To find the terms in Pn , the following expression is used

Pn =

NV∑

k=−NV

Bn+k−1kFk, ∀n ∈ [−NV ,NV ]. (43)

For all terms, the relations (38) and (39) are used.
The last row of the matrix corresponds to (41).

8 Solve Mx = b.

9 Define function coefficients: {Fn}NV

0 = (x1, . . . , xNV +1), {Gn}
NV
1 = (xNV +2, . . . , x2NV +1) and C(t̄) = x2NV +2 .

dẑ

dt
(ζ, t) =ζ ẑζ (ζ, t) −

b(t)ζ I(ζ, t) − b(t)
√

φ(t)I(
√

φ(t), t)

(ζ −
√

φ(t))2
− 2F (ζ, t)

. . . +
b(t)I(

√
φ(t), t) + b(t)

√
φ(t)Iζ (

√
φ(t), t)

ζ −
√

φ(t)
:= f (ζ, t),

(44)

dφ

dt
= −2φ(t)I(

√
φ(t), t) =: g(t), (45)

where I(ζ, tk) is known and ẑ is defined in (33). Regarding (44) and taking the Laurent series expansion of both sides, this 
can be written as a system of ODEs, as

d

dt
an = fn(t), n ∈ [−NV ,NV ], (46)

where { fn(t)} are the Laurent series coefficients of f (ζ, t) above. The function I(ζ, t) is obtained through the kinematic 
condition (3) by first computing

D(ζ ) =
1

2|zζ |
+ (

[
iC

ζ zζ

]
, (47)

and taking a Laurent series expansion D(ζ ) =
∑∞

n=−∞ Dnζ
n . The coefficients of I are obtained through





In = 2

(
1+ φn

1− φ2n

)
Dn, n ≥ 1

I0 = D0

I−n = −
(

2φn

1− φn

)
Dn, n ≥ 1.

(48)

The last conformal mapping parameter, b(t), can be decided through the constant area constraint, i.e.

A(t) = −
1

2i

∮

|ζ |=1

z(ζ−1, t)zζ (ζ, t)dζ = π . (49)

Each bubble will have an area of π due to the non-dimensionalisation. Expanding (49) the following expression for a is 
obtained:

b2
∮

|ζ |=1

dζ

(ζ−1 −
√

φ)(ζ −
√

φ)2
+ b

∮

|ζ |=1

ẑ(ζ−1, t)

(ζ −
√

φ)2
−

ẑζ (ζ, t)

(ζ−1 −
√

φ)
dζ

−
∮

|ζ |=1

ẑ(ζ−1, t)ẑζ (ζ, t)dζ = 2iπ .

(50)

How to compute the f (ζ, t) and g(t) in (44) and (45) is described in Algorithm 3.
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Algorithm 3: Computation of RHS in (44), (45).

Input : Conformal mapping parameters at time tk: bk , φk , {akn, n ∈ [−NV , NV ]}. Flow functions and surface tension at time tk: C(tk), 
{
F k
n

}Nv

n=0
, 

{
Gk
n

}NV

n=1
and σ k

j , j = 1, . . . , 2NV + 1.

Output: { fn(tk)}
NV
n=−NV

, g(tk).

1 Zero-pad {akn}
NV
n=−NV

to {akm}
MV
m=−MV

.

2 Compute zζ (ζ j , tk), ẑζ (ζ j , tk) and ẑ(ζ−1, tk) through (32), ∀ j ∈ [1, 2MV + 1].

3 Compute D(ζ j) in (47), ∀ j ∈ [1, 2MV + 1].

4 Compute {dm}
MV
m=−MV

through FFT of D(ζ j).

5 Compute {Im}
MV
m=−MV

from {dm}
MV
−MV

as in (48).
6 Using {Im}, compute I(ζ j , tk), I(

√
φ, tk) and Iζ (

√
φ, t).

7 Compute f according to (44), compute Laurent series coefficients { fm}
MV
m=−MV

by FFT and truncate to 2NV + 1 terms, { fn}NV
n=−NV

.

8 Compute g through (45).

5.2.3. Computing the surfactant concentration
On the bubble boundaries, ζ = eiν , the convection-diffusion equation for the surfactant concentration (13) can be written 

in terms of ν ∈ [0, 2π) as

∂ρ

∂t

∣∣∣∣
ν

− (
(

ρν

zν
zt

)
+

1

|zν |

∂

∂ν
( (P (ν, t)) −

1

|zν |
*

(
zνν

zν

)
* (P (ν, t))

−
1

|zν |

1

Pe"

∂

∂ν

(
ρν

|zν |

)
= 0,

(51)

where

P (ν, t) =
u(ζ, t)zνρ(t)

|zν |
. (52)

The flow velocity u(ζ, t) = u(z(ζ, t), t) is obtained from the normal stress balance (10),

u(ζ, t) =
σ (ζ, t)

2

ζ zζ

|zζ |
+ iC(t) −

4i
√

φF0

ζ −
√

φ
− 2i F (ζ, t), (53)

where F (ζ, t) and F0 as defined previously. Furthermore, zt is obtained from the kinematic condition (3)

zt = ζ zζ I(ζ, t) − −
4i

√
φF0

ζ −
√

φ
− 2i F (ζ, t), (54)

for I(ζ, t) as defined in (48).
As in §4.4, the convection and diffusion parts of (51) need to be treated explicitly and implicitly respectively. The equa-

tion becomes

∂ρ

∂t

∣∣∣∣
ν

= fexp(ν,ρ, t) + f imp(ν,ρ, t), (55)

where

fexp(ν,ρ, t) =(
(

ρν

zν
zt

)
−

1

|zν |

∂

∂ν
( (P (ν, t))

+
1

|zν |
*

(
zνν

zν

)
* (P (ν, t)) ,

(56)

and

f imp(ν,ρ, t) =
1

|zν |

1

Pe"

∂

∂ν

(
ρν

|zν |

)
. (57)

How to compute fexp is shown in Algorithm 4. The function f imp is computed in a similar way. In the time-integration 
scheme, the solution is found through solving a system using gmres.

5.2.4. Time-integration of the system
To evolve the system with the conformal mapping parameters and the surfactant concentration a suitable time-

integration method is needed. In this paper, the second order adaptive method in §4.5 is used. For simplicity, in Algorithm 5

a first order method with fixed time step is employed to demonstrate the method. In the case of clean drops, σ (ζ, t) is set 
to be constant and the algorithm skips steps 9 to 12. At each time step, a Krasny filter is applied where all Fourier modes 
smaller than 10−12 are set to zero.
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Algorithm 4: Computation of fexp in (56).

Input : At time tk: conformal mapping parameters; bk , φk , {akn, n ∈ [−NV , NV ]}, flow field; {F k
n}

NV

0 , {Gk
n}

NV
1 and C(tk), and surfactant concentration, 

ρk
j , j ∈ [0, 2NV + 1].

Output: fexp, j(tk)

1 Zero-pad {akn}
NV
n=−NV

to {akm}
MV
m=−MV

.

2 Using {akm}, compute zk(ζ j), zkν (ζ j) and zkνν (ζ j) through (32).
3 Zero-pad Fourier coefficients of ρk

j to {ρ̂k
m}

MV
m=−MV

and compute ρk
ν (ζ j) from coefficients.

4 Compute F (ζ j, tk) from {F k
n}

NV

0 .

5 Compute u(ζ j, tk) from (53).
6 Compute zt (ζ j , tk) from (54).
7 Compute P (ν j , tk) through (52). Derivative ∂

∂ν ((P (ν, t)) computed via FFT.
8 Compute fexp(ν j , ρk

j , tk) from (56).

Algorithm 5: First order method for time-integration of surfactant-covered bubbles using fixed time step.

Input : Conformal mapping parameters: b0 , φ0 , {a0n, n ∈ [−NV , NV ]}. Initial surfactant concentration ρ0
j and surface tension σ 0

j , j = 1, . . . , 2NV + 1. 
Time interval [t0, ts], time step dt .

Output: Conformal mapping parameters at time ts: b(ts), φ(ts), {an(ts), n ∈ [−NV , NV ]}. Surfactant concentration at time ts: ρ(ζ j , ts), 
j = 1, . . . , 2NV + 1.

1 Nt =
ts − t0

dt

2 for k ∈ [0, Nt − 1] do

3 Compute flow field functions at time tk:[
{F k

n}
NV

n=0, {G
k
n}

NV

n=0,C
k
]

= algorithm2

(
bk, {akn}

NV
−NV

,φk,σ k
j

)
.

4 Compute RHS in (44) and (45):
[{ fn}

NV
n=−NV

, g] = algorithm3

(
bk,φk, {akn}n,σ

k
j ,

{
F k
n

}
n
,
{
Gk
n

}
n
,Ck

)

5 Update {an} in discretised version of (46):
ak+1
n = akn + dt · fn , n ∈ [1, N].

6 Update φ in discretised version of (45):
φk+1 = φk + dt · g .

7 Compute bk+1 through (50).
8 Compute ak+1

n for n ≤ 0 through (34).
Steps 9 − 12 are skipped in case of clean bubbles:

9 Compute fexp(tk) in (56), ∀ j ∈ [1, 2MV + 1]:

f kexp, j = algorithm4

(
bk,φk, {akn}, {F

k
n}, {G

k
n},C(tk),ρ

k
j

)
.

10 Compute ρk+1
j from ρk+1

j = ρk
j + dt f kexp, j + dt f k+1

imp, j with gmres, f imp as in (57).
11 Truncate zero-padding from ρk+1

j .

12 Update surface tension coefficient σ k+1
j through equation of state.

13 Update time tk+1 = tk + dt .

14 end

6. Results

In this section the numerical method suggested in this paper is tested against the validation methods described in §5. 
Each test case is described in detail below. The numerical method described in §4 will be denoted the BIE method for the 
remainder of the paper.

6.1. The influence of surfactants

First, the influence of the surfactant concentration on the deformation of a pair of droplets is presented. A pair of ini-
tially circular droplets, with viscosity ratio λ = 0.2, are placed on the imaginary axis with a minimum distance of 0.2. Under 
the influence of an extensional flow with Capillary number Q = 0.2 these drops will be pushed towards each other. Their 
configuration at time t = 25 can be seen in Fig. 5 (left). The presence of surfactants affects the deformation such that the 
minimum distance between the drops is larger, as can be seen to the right in Fig. 5. Also, the drops will become more elon-
gated and narrower. For both simulations, each drop was initially discretised with 320 points. At the final time t = 25 this 
has been increased to 416 and 448 points by the spatial adaptivity, for the clean and surfactant-covered cases respectively. 
This corresponds to #s ≈ 0.003. The linear equation of state was used, and E = 0.2, Pe" = 10. A higher elasticity number 
E in (12) means that the surface tension coefficient will be more affected by the non-uniform surfactant concentration and 
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Fig. 5. Left: drop configuration at time t = 25 under the influence of an extensional flow with Q = 0.2. The coloured contours represent drops with 
surfactants present and elasticity number E = 0.2, the black contours represent those without, i.e. E = 0. Right: the minimum distance between the drops 
versus time, for both the clean and the surfactant-covered drops.

Fig. 6. How minimum distance between drops at time t = 25 changes with elasticity number E . The case E = 0 corresponds to the clean case.

Fig. 7. Interface (left) and surfactant concentration (right) at steady state for Capillary number Q = 0.14. The simulation was run with elasticity number 
E = 0.5, initial surfactant concentration ρ0 = 1, Pe" = ∞ and viscosity ratio λ = 0. The steady state according to the definition in (58) was reached at time 
T = 46.35.

thus deform more. Also, the distance between the drops will be larger for larger values of E , as can be seen in Fig. 6. Note 
that the case of E = 0 corresponds to the surfactant-free (clean) case.

6.2. Surfactant-covered bubble in steady state

Using the exact solutions of §5.1, the bubble deformation and surfactant concentration at steady state is tested. Given a 
Capillary number Q , the steady state interface position z(ζ, T ) and the surfactant concentration ρ(ζ, T ) are known, where T
is the time of steady state and ζ = eiν for ν ∈ [0, 2π). An example of the interface position and the surfactant concentration 
at a steady state is shown in Fig. 7, for the steady state corresponding to Q = 0.14. In a simulation, a bubble is said to have 
reached steady state when the normal velocity, u · n = 0. Practically, here the definition of steady state is that
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Fig. 8. Measured point-wise error in z (marker ◦) and ρ (marker 4) vs. α at steady state, for the same parameters as in Fig. 7, with grid spacing 
#s = 0.0016. Red line corresponds to the time-stepping tolerance.

Fig. 9. Steady state deformation, D , vs. Capillary number Q at different elasticity numbers E for inviscid bubbles, λ = 0. Black lines show validation solutions 
computed through the method in §5.1, diamonds show numerical results from the BIE method and the circles indicate the selected simulations for which 
the bubble shape and surfactant concentration are shown.

|u · n| ≤ 10−8. (58)

It should be noted that for large Capillary numbers, Q , or high viscosity ratios, λ, this threshold is slightly too large and 
should be decreased since the deformation is very slow.

The analytical solutions from Algorithm 1 are denoted by zV (ζ, T ) and ρV (ζ, T ) for the interface position and the 
surfactant concentration respectively. Defining the obtained solutions from the numerical method as z(α, T ) and ρ(α, T ), 
a comparison between the numerical results and the validation is obtained by studying the point-wise differences in α ∈
[0, 2π). Two errors will be studied: in position, ez = |z − zV | and surfactant concentration ρ , eρ = |ρ − ρV |. In order to 
compare point-wise in α ∈ [0, 2π), a mapping from ν to the equal-arc length measure αV is needed. This is defined as

αV (ν) =
Sν2π

L
, (59)

where Sν =
∫ ν
0

|zVν |dν . The solutions zV and ρV are computed at non-equidistant discrete points αV
i = αV (νi), for νi ∈

[0, 2π), i = 1, . . . , NV for some NV . Finally, to compare the results, z(α, T ) and ρ(α, T ) need to be interpolated to αV
i . This 

is done using their Fourier expansions.
In Fig. 8, the point-wise absolute error between the analytical solution and the BIE simulation can be seen for the case 

shown in Fig. 7. The spatial discretisation is adaptive, keeping the spatial distance in arc length similar at all times; here 
approximately #s = 0.008. The simulation was run with time-step tolerance 10−6 and the errors are all below the set 
tolerance.

Using the method in §5.1, one can obtain a graph for how the deformation D depends on the Capillary number Q . Such 
a graph for two different elasticity numbers, E = 0.5 and E = 0.9, is shown in Fig. 9. The black lines represent the validation 
solutions computed through the method in §5.1 and the blue diamonds show the results from simulations using the BIE 
method of this paper. All simulations have been run from the same initial setting as the previous case, with time-step 
tolerance 10−6 . The simulations differ only in the choice of Capillary number Q . Examples of bubble deformation and 
surfactant concentration are also shown, corresponding to Q = 0.07 and Q = 0.13, marked with circles in the figure.
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Fig. 10. 22 error in z and ρ vs. (left) deformation D for cases in Fig. 9 and (right) vs. viscosity ratio λ for deformation D = 0.29. Solid and dashed lines 
represent E = 0.5 and E = 0.9 respectively. Dots and triangles represent ez and eρ respectively. Red solid line shows time-step tolerance 10−6 .

Fig. 11. Clean bubbles deforming in an extensional flow. Left: interface position from time t = 0 to t = 1.5, at dt = 0.3 intervals, computed with BIE method. 
Right: final interface configuration at time t = 1.5. Red box: cut-off region for method comparisons.

To quantify the results in Fig. 9, the 22-error for each deformation D is plotted in Fig. 10 (left). For each diamond in 
Fig. 9, the simulation and the validation data is compared and plotted vs. deformation D . Note that both cases E = 0.5 and 
E = 0.9 are shown (solid and dashed lines respectively), and that they for the same D were obtained by different Q . It is 
shown that both errors (ez and eρ ) stay below the time-step tolerance.

As mentioned in §5.1, the viscosity ratio does not affect the steady state deformation in the case of Pe" = ∞. The results 
of this paper agree with this observation, as is shown in Fig. 10 (right). There, droplets of different viscosity ratios ranging 
from λ = 0 (corresponding to an inviscid bubble) to λ = 2 were deformed under Capillary number Q = 0.14. As can be seen 
in the figure, both the interface position and the surfactant concentration coincide with that for bubbles up to time-step 
tolerance.

6.3. A pair of clean bubbles in extensional flow

Using the approach described in §5.2, the semi-analytical solutions for a pair of bubbles deforming in an extensional 
flow are computed and compared against the boundary integral method of this paper.

The following case has been selected as it pushes the bubbles close to each other, thus providing an excellent test case 
for the special quadrature. The bubbles are initially circular with radius one, centred around ±1.419i which corresponds to 
an initial φ(0) = 0.35. The bubbles are clean, i.e. there are no surfactants present in this problem, and they deform under 
an extensional flow with Capillary number Q = 0.5 until time t = 1.5. At the final time, the minimum distance between 
the bubbles is 0.04. In Fig. 11 the movement of the bubbles over time and the final deformation are shown (left and right 
respectively).

The interface position obtained from the BIE method is denoted z(α, t), where α ∈ [0, 2π). In Fig. 12 (right) the dis-
cretisation along the interface is shown. Note that it is uniform around the interface. In contrast, the discretisation along 
the interface for the validation method is not uniform, see Fig. 12 (left). There, the points are clustered where the dis-
tance between the bubbles is the smallest. When comparing the results of the two methods, only the part of the interfaces 
between α = 2π

3
and α = 4π

3
will be considered. This corresponds to the red box in Fig. 11 (right). This cut-off is made 

because the discretisation of the validation method is very coarse outside of it, with large spatial errors. Also, since it is the 
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Fig. 12. Interface at time t = 1.5 for clean bubbles. The red markers to the left show every 16th point of the validation discretisation for NV = 1025. To the 
right, the red markers show every 16th point of the uniform discretisation for the BIE method, with Nk = 960, k = 1, 2.

Fig. 13. Pointwise relative difference in x- and y-coordinates for validation method (left) and BIE method (right) against reference solution. Solid lines/mark-

ers shows time-stepping tolerance 10−6 , dashed for tolerance 10−8 . BIE method computed with 576 and 800 points per bubble for tol1 and tol2 respectively. 
Validation method computed with 2049 and 9001 points respectively. Error in x denoted by ◦ and in y by !.

area of near-interaction between the bubbles which is of greatest interest, as it is there the boundary integral method will 
potentially struggle the most, it is sufficient to consider only this part.

To investigate how the two methods behave, they are compared against a reference solution, zref = xref + iyref . This 
solution is computed with the boundary integral method using 600 Gauss-Legendre panels, i.e. Nk = 9600, k = 1, 2, and a 
time-step tolerance of tol = 10−10 . To compare the non-uniform discretisation of the validation method with the uniform 
discretisation of the BIE method, the map as in (59) is employed and the points are interpolated using a non-uniform FFT

[9]. Errors in both x- and y-coordinates will be considered and denoted ex = |x − xref | and ey = |y − yref | respectively, the 
combined error in z is denoted ez = |ex + iey |.

In Fig. 13 the point-wise absolute errors are shown in the region of interest for the validation method and the BIE 
method. The results have been computed using two time-step tolerances: tol1 = 10−6 (solid lines) and tol2 = 10−8 (dashed 
lines). For the validation method, NV = 2049 and NV = 9001 points were used for tol1 and tol2 respectively, and for the 
BIE method Nk = 576, k = 1, 2, was used for tol1 and Nk = 800 for tol2 . It is shown that both methods have errors below 
the set tolerance tol1 , but that the validation method does not quite achieve the tolerance 10−8 . This is due to the increase 
in #α towards the end of the cut-off, which causes some of the points to have a larger error than the set tolerance.

To quantify the behaviour of the two methods, the absolute errors in max-norm for different discretisations of the 
bubbles are plotted. Note that the number of discretisation points is constant for both methods, i.e. it does not increase 
over time as the bubbles get more stretched out. This especially means that the spatial adaptivity of the BIE method was 
turned off throughout the simulation. In Fig. 14 the errors vs number of discretisation points N are shown. It is clear that 
the BIE method (Fig. 14 (right)) agrees with the reference solution to within time-step tolerance for both tol1 and tol2 when 
the spatial resolution is high enough. For tol1 , 36 panels, i.e. Nk = 576 is sufficient to reach the set tolerance. For tol2 , 46
panels, i.e. Nk = 736, are needed. For the validation method the spatial errors dominate the solution and it is first at around 
NV = 2000 points that the method converges to the tolerance 10−6 . To achieve also tol2 , the spatial discretisation needs to 
be increased further.
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Fig. 14. Error as a function of number of discretisation points for validation method (left) and BIE method (right). Solid lines/markers show results for 
time-stepping tolerance 10−6 and dashed lines tolerance 10−8 . The spatial adaptivity of the BIE method was turned off to keep N constant throughout the 
simulation.

Fig. 15. Pair of surfactant-covered bubbles deforming over time. Left: interface position from time t = 0 to t = 1, at dt = 0.2 intervals, computed with BIE 
method. Right: surfactant concentration at corresponding times.

6.4. A pair of surfactant-covered bubbles in extensional flow

Similarly to a pair of clean bubbles, the semi-analytical solutions in §5.2 for a pair of surfactant-covered bubbles is 
computed and compared against the BIE method of this paper.

This case provides a test case for the coupling of the interface and the surfactant concentration, as well as for both 
the diffusion and the convection of the surfactants along the interface. The bubbles are initially circular, covered with a 
uniform surfactant concentration ρ0 = 1 and centred around ±1.201i which corresponds to 3(0) = 0.2875. In this problem, 
the elasticity number E = 0.5, Peclet number Pe" = 10 and the bubbles are placed in an extensional flow with Capillary 
number Q = 0.5. The bubbles will deform until time t = 1, and their change over time can be seen in Fig. 15 (left) together 
with the change of surfactant concentration over time (right). The interface position and surfactant concentration at the 
final time t = 1 can be seen in Fig. 16. At time t = 1 the minimum distance between the bubbles is 0.16. Similarly to the 
clean case, only the region where the bubbles are close to each other will be studied, corresponding to the region between 
α = 2π

3
and α = 4π

3
, shown in black in Fig. 16 (left).

To compare the two methods, a reference solution computed with the BIE method is used. It is computed with a time-

step tolerance of 10−10 and #s ≈ 6.5 · 10−4 . In Fig. 17 the point-wise absolute error between the two methods and the 
reference solution is shown, for two time-step tolerances: tol1 = 10−6 (solid lines) and tol2 = 10−8 (dashed lines). The 
errors considered are those in x- and y-coordinates, ex and ey , as well as those in surfactant concentration eρ . The BIE 
method was computed with 576 discretisation points per bubble for tol1 and 800 for tol2 and all errors stay within time-

step tolerance. Note that the spatial adaptivity of the BIE method was turned off for these simulations. In contrast, for the 
validation method NV = 2049 points was used for tolerance 10−6 and NV = 9001 points for 10−8 . Again, for this discreti-
sation the method does not meet the stricter tolerance, due to the spatial accuracy towards the end of the cut-off box. It is 
clear, however, that given enough spatial resolution the errors would come down also to tol2 . In Fig. 18 the convergence of 
the two methods is studied. To reach the set tolerances with the BIE method, 36 and 50 panels per bubble are needed for 
tol1 and tol2 respectively. In comparison, the validation method needs approximately 2049 points for tol1 and more than 
8192 to reach tol2 due to spatial resolution.
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Fig. 16. Surfactant-covered bubbles at time t = 1. Left: interface position at final time. Cut-off region shown in black box. Right: surfactant concentration at 
final time.

Fig. 17. Point-wise absolute difference in x- and y-coordinates and surfactant concentration for validation method (left) and BIE method (right) against 
reference solution. Solid lines/markers show time-step tolerance 10−6 , dashed for tolerance 10−8 . BIE method computed with 576 and 800 points per 
bubble respectively. Validation method computed with 2049 and 8193 points respectively. Markers: ◦, ! and 5 corresponds to ex , ey and eρ respectively.

Fig. 18. Error as a function of number of discretisation points for validation method (left) and BIE method (right). Solid lines/markers show results for 
time-step tolerance 10−6 and dashed lines tolerance 10−8 . The spatial adaptivity of the BIE method was turned off to keep N constant throughout the 
simulation. Markers: ◦ and 5 corresponds to ez and eρ respectively.

6.5. The Swiss roll

To further assess the BIE method, a more complicated simulation is set up to test the robustness of the method. The 
setup is inspired by that in [28]. The initial drop configuration is shown in Fig. 19. No far-field flow is imposed, instead the 
drops will be allowed to deform until circular under surface tension. A drop is deemed circular when

∣∣∣∣1−
max (|z − c|)

mean(|z − c|)

∣∣∣∣ < 10−4,

where c is the centre of each drop and z its interface discretisation.
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Fig. 19. Initial drop configuration for the swiss roll simulation.

The largest drop (i.e. the roll) will be covered with surfactants with an initial uniform concentration ρ0 = 1. Other 
parameters are Pe = 10 and E = 0.1. The authors note that the standard nondimensionalisation of length by initial radius 
is not appropriate in this case; instead the characteristic length of half of the length of a square box containing the initial 
drop configuration is used. Initially, the roll is covered with 375 panels and the ellipses 37 panels each. For this simulation 
λk = 1 for all drops k is considered, in order to make the simulation run in a reasonable time on a standard workstation. 
The simulation has also been run with 50% more points without any visible difference. Comparing the final circle radius 
and centre point between the two discretisations, they differ on the level of the circular tolerance imposed above. The 
simulation takes approximately 105 time steps.

How the drops deform in time is shown in Fig. 20. The drops reach their circular form at time t = 70. The minimal 
distance between drops measured during the simulation is 9 · 10−5 . This can be compared to a corresponding simulation 
without surfactants, where the drops are circular at time t = 32, with minimal distance 3 · 10−4 .

7. Conclusions

This paper presents a highly accurate boundary integral method to simulate deforming droplets in Stokes flow. The 
method can be used for both droplets and inviscid bubbles, both which may be covered by insoluble surfactants. The 
boundary integral method is coupled with a pseudo-spectral method for the surfactant concentration, and together they are 
spectrally accurate in space.

The errors introduced by the numerical evaluation of the integrals in the boundary integral equation when the droplets 
get close to each other are accurately estimated using contour integrals. These errors are removed using a special quadrature, 
which enables the method to simulate close drop-drop interactions very accurately.

Given a sufficient spatial resolution, the accuracy of the method is limited only by the set tolerance of the adaptive 
time-stepping scheme. To the knowledge of the authors, this method is more accurate than other methods to simulate 
Stokes flow in 2D currently available.

By presenting a set of easily accessible algorithms based on exact and semi-analytical solutions, the hope of the authors 
is that this will set a standard of validation for any proposed new method for surfactant-laden drops in 2D.
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Appendix A. Error estimates

As discussed in §3.3, the integrals in equations (15) and (16) both contain terms (z j − zi)
−1 , which is problematic 

when ‖zi − z j‖ . 1, i $= j. The integrals are then said to become near-singular, which is a numerical problem where large 
errors are introduced through under-resolving the integrand. To see how the errors grow as an evaluation point z0 ∈ ! is 
approaching an interface ", the quadrature errors of such near-singular integrals can be approximated [18,19].
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Fig. 20. Deformation over time for the swiss roll domain. Surfactant concentration in colour of the same scale as in Fig. 19.

In the following, the error of the near-singular integrals when solving Stokes equations in a domain with non-deforming 
boundaries, !, is considered. Similarly to the BIE formulation in §2.3, a complex-valued density is introduced and solved for 
on the boundary " through

µ(z) +
1

π

∫

"

µ(τ )*
{

dτ

τ − z

}
−

1

π

∫

γ

µ(τ )
*

{
dτ

(
τ − z

)}
(
τ − z

)2 = f (z), z ∈ ", (A.1)

where f (z) is the prescribed boundary condition of ". Setting the right hand side f (z), z ∈ ", as a sum of Stokeslets for 
point sources surrounding !, the analytical solution u(z) = f (z) for all z ∈ !. For a given set of point sources: f1 = 4π +4iπ

located at x1 = 1.1 + 1.3i, f2 = π − 2iπ at x2 = −1.4 − 1.3i and f3 = −0.5π + 3.5iπ at x3 = 1.3 − 0.75i, the solution is 
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given in Fig. 2(a) (right). The domain and the location of the point sources can be seen in Fig. 2(a) (left). The solution u(z0)

for z0 ∈ ! is computed through

u(z0) = −
i

π

∫

"

µ(τ )*
(

dτ

τ − z0

)
+

i

π

∫

"

µ(τ )
*

{
dτ (τ − z0)

}

(τ − z0)2
. (A.2)

Comparing (A.2) to (16), it is clear that the only difference in the integrals between the two is the imaginary part in the 
first integral in (A.2). This should not affect the near-singular behaviour of the integral. In the following (A.1) is solved to 
high accuracy, and the errors of the solution will come from solely the evaluation of (A.2).

Discretising the integrals in (A.2) with a composite 16-point Gauss-Legendre quadrature and computing u(z) for z ∈ !, 
the error compared to the analytical solution is shown in Fig. 2(b). Far away from the boundary ", the error is very small 
but as z0 approaches " the error increases. In the region where the errors are large, special treatment is needed for an 
accurate solution; the method for this is explained in §3.4. In order to decide where such special treatment is needed, it 
is important to know how the errors behave. For Laplace’s and Helmholtz equations, estimates of the quadrature error has 
been derived by af Klinteberg and Tornberg [18,19], based on contour integration and calculus of residues. This approach 
will be followed here.

Regarding the integral expression in (A.2), the error at a point z0 ∈ ! can be seen as the sum of the errors when 
integrating over each panel "i :

e(z0) =

Npanels∑

i=1

ei(z0).

The errors will be estimated on a point-panel basis, where the error ei(z0) is estimated by R i(z0). For convenience only one 
panel "i will be regarded in the following derivation.

In [18,19] estimates are shown for integrals of the type

I =

1∫

−1

f (ξ)dξ, (A.3)

where the meromorphic function f (ξ) is analytic on [−1, 1] and has a pole ξ0 ∈ C of order m + 1. To consider the integrals 
in (A.2), the panel "i is mapped to the real line [−1, 1] by a numerically constructed mapping η(ξ). Also, the point ξ0 ∈ C

that corresponds to each evaluation point z0 ∈ ! needs to be found. This procedure is explained in [19].
To compute the estimates, first the integrals are rewritten on the form of (A.3). For the first integral in (A.2), this is 

straightforward:

J1(z0) :=

∫

"i

µ(τ )*
(

dτ

τ − z0

)
= *




1∫

−1

µ(ξ)
η′(ξ)

η(ξ) − η(ξ0)
dξ




=: *




1∫

−1

f1(ξ)dξ


 .

(A.4)

The second integral is reformulated as follows

∫

"

µ(τ )
*

{
(τ − z0)dτ

}

(τ − z0)2
=

i

2

∫

"

µ(τ )n2τdτ

τ − z0
+

i

2

∫

"

µ(τ )(τ − z0)

(τ − z0)2
, (A.5)

where nτ is the (outward) normal at point τ . Then,

J2(z0) :=

∫

"

µ(τ )n2τdτ

τ − z0
=

1∫

−1

µ(ξ)

η(ξ) − η(ξ0)

(
iη′(ξ)

|η′(ξ)|

)2

η′(ξ)dξ

=:

1∫

−1

f2(ξ)dξ,

(A.6)

and
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J3(z0) :=

∫

"

µ(τ )(τ − z0)

(τ − z0)2
=

1∫

−1

µ(ξ)(η(ξ) − η(ξ0))

(η(ξ) − η(ξ0))2
η′(ξ)dξ

=:

1∫

−1

f3(ξ)dξ .

(A.7)

The whole integral over "i can be written as

I i(z0) = −
i

π
J1(z0) +

1

2π
J2(z0) +

1

2π
J3(z0). (A.8)

For each integral, error can be estimated as R1[ξ0], R2[ξ0] and R3[ξ0] respectively. In total, the error of the sum of the 
integrals over the panel "i can then be estimated as the absolute value of

R i(z0) =

∣∣∣∣−
i

π
R[ f1] +

1

2π
R[ f2] +

1

2π
R[ f3]

∣∣∣∣ . (A.9)

In the following, how to obtain each estimate R[ f1], R[ f2] and R[ f3] will be explained.
af Klinteberg and Tornberg showed that for the integral (A.3) the quadrature error Rn[ f ] can be approximated by

Rn[ f ] ≈ −
1

m!
lim

ξ→ξ0

dm

dξm

(
(ξ − ξ0)

m+1 f (ξ)kn(ξ)
)
. (A.10)

Here, kn(ξ) is the characteristic remainder function, approximated as

kn(ξ) ≈
2π

(ξ +
√

ξ2 − 1)2n+1
, (A.11)

where n is the order of the Gauss-Legendre quadrature rule used to approximate I , in this paper n = 16. They also showed 
that the derivatives of kn(ξ) can be approximated as

k
(m)
n (ξ) ≈ kn(ξ)

(
−

2n + 1√
ξ2 − 1

)m

, (A.12)

for small m, and that

lim
ξ→ξ0

(ξ − ξ0)
m+1

(η(ξ) − η(ξ0))m+1
=

1

(η′(ξ0))m+1
.

For J1 , f1 is a meromorphic function with a pole at ξ0 of order one, and the estimate is defined by (A.10) as

R[ f1] = *
(

lim
ξ→ξ0

(ξ − ξ0) f1(ξ)kn(ξ)

)

≈ * (kn(ξ0)µ(ξ0)) ,

where (A.12) is used and kn(ξ0) can be approximated as in (A.11). Instead of finding the value of µ(ξ) at the parameter ξ0 , 
it is sufficient to consider the max-norm of µ on the panel "i : ‖µi‖∞ . Thus the error estimate for J1(z0) becomes

R[ f1] ≈ *
(
kn(ξ0)‖µi‖∞

)
. (A.13)

Similarly, for the second integral J2 the function f2 is meromorphic with a pole of order one at ξ0 . The estimate reads

R[ f2] = lim
ξ→ξ0

(ξ − ξ0) f2(ξ)kn(ξ)

≈ kn(ξ0)µ(ξ0)n(ξ0)
2

≈ kn(ξ0)‖µi‖∞n(ξ0)
2
. (A.14)

Again, (A.12) is used. Note that also the value of the normal n needs to be found at ξ0 through the mapping η(ξ).

Finally, regard the integral J3 . Here, f3 is a meromorphic function with a pole of order two at ξ0 . Following (A.10), the 
estimate becomes

R[ f3] = lim
ξ→ξ0

d

dξ

(
(ξ − ξ0)

2 f3(ξ)kn(ξ)

)
.
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Assuming a good approximation can be obtained by considering only the term with the derivative of kn , see [19], this can 
be simplified into

R[ f3] ≈ k′
n(ξ0)

1

η′(ξ0)

(
η(ξ0) − η(ξ0)

)
µ(ξ0)

≈ k′
n(ξ0)

1

η′(ξ0)

(
η(ξ0) − η(ξ0)

)
‖µ‖

∞. (A.15)

Together, the complete error estimate for the integrals in (A.2) over a panel "i can be written as (A.9). This error estimate

is shown in Fig. 3, where the estimate of errors of order 10−p is marked with black level curves for p = −14, . . . , 0 with 
increment 2.

Appendix B. Special quadrature

An overview of the special quadrature follows here, for more details see [28].
The special quadrature is employed on integrals of two types:

I1(z) =

∫

"i

f (τ )dτ

τ − z
,

I2(z) =

∫

"i

f (τ )dτ

(τ − z)2
.

The function f (τ ) is interpolated on the panel "i , as f (τ ) ≈
∑15

j=0 c jτ
j , where the coefficients c j are computed through 

solving a Vandermonde system. For stability, the panel is transformed to have endpoints at −1 and 1. Using the above 
interpolation, the integrals I1 and I2 can be rewritten as

I1(z) ≈
15∑

j=0

c j

1∫

−1

τ jdτ

τ − z0
=

15∑

j=0

c jp j, (B.1)

I2(z) ≈α

15∑

j=0

c j

1∫

−1

τ jdτ

(τ − z0)2
= α

15∑

j=0

c jq j . (B.2)

Here z0 is the target point z under the same transformation as the one applied to the panel and α = 2
τe−τs

, where τs , τe are 
the start and end points of the untransformed panel respectively. The numbers p j and q j can computed through recursion, 
where





p0 =
∫ 1

−1

dτ

τ − z0
= log(1− z0) − log(−1 − z0),

p j = z0p j−1 +
1− (−1) j

j
, j = 1, . . . ,15,

(B.3)

and



q0 =

∫ 1

−1

dτ

(τ − z0)2
= −

1

1+ z0
−

1

1− z0
,

q j = z0q j−1 + p j, j = 1, . . . ,15.

(B.4)

Note that if z0 is within the contour created by the real axis from −1 to 1 and the transformed panel "i , a residue of 2π i

must be added or subtracted from p0 depending on if z0 has a positive or negative imaginary part respectively.
To apply the special quadrature on the integrals in (15) and (16), they need to be rewritten into the forms of I1 and I2 . 

The second integral can be reformulated as in (A.5), i.e.

∫

"

µ(τ )
*

{
(τ − z0)dτ

}

(τ − z0)2
=

i

2

∫

"

µ(τ )n2τdτ

τ − z0
+

i

2

∫

"

µ(τ )(τ − z0)

(τ − z0)2
.

All integrals are then on the required form, with f1(τ ) = µ(τ )τ ′ , f2(τ ) = µ(τ )n̄2τ τ
′ and f3(τ ) = µ(τ )(τ − z)τ ′ respectively. 

The improved error computed with 50 Gauss-Legendre panels can be seen in Fig. 4. Using the special quadrature it is 
possible to evaluate u(z) for points close to the boundary, with errors below 10−10 .
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