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Abstract

We propose a method for analyzing repeated residential movements based on graphical
loglinear models. This method allows an explicit representation of residential presence and
absence patterns from several areas without defining mobility measures. We make use of
our method to analyze data from one of the most comprehensive demographic surveillance
sites in Africa that is characterized by high adult HIV prevalence, high levels of poverty and
unemployment and frequent residential changes. Between 2004 and 2016, residential
changes were recorded for 8,857 men over 35,500.01 person-years, and for 12,158 women
over 57,945.35 person-years. These individuals were HIV negative at baseline. Over the
study duration, there were a total of 806 HIV seroconversions in men, and 2,458 HIV sero-
conversions in women. Our method indicates that establishing a residence outside the

rural study area is a strong predictor of HIV seroconversion in men (OR =2.003, 95% Cl =
[1.718,2.332]), but not in women. Residing inside the rural study area in a single or in multi-
ple locations is a less significant risk factor for HIV acquisition in both men and women com-
pared to moving outside the rural study area.

Introduction

This paper is concerned with modeling repeated residential movements of a group of individu-
als over a certain period of time, and with the assessment of the predictive associations
between these multivariate patterns of residential changes and health outcomes of interest
such as HIV acquisition. To a good extent, the statistical literature on human mobility has
focused on the estimation of migration flows [1-3]. Migration flows are represented as origin-
destination migration flow tables. These are square tables in which the rows and columns cor-
respond with areas of interest. The (4, j) cell contains a count of the number of individuals that
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left from area A; and moved to area A; over the course of a specified time frame. The inclusion
of other categorical variables lead to higher-dimensional migration flow tables. However,
migration flow tables cannot capture the movement of those individuals that resided in more
than three areas during the time frame of observation. An example individual that left from an
area A, to move to another area A,, then moved again to area A;, would contribute with a
count of 1 to the (1, 2) and (2, 3) cells of the resulting migration flow table. But, the link
between residential movements that are associated with the same individual will be lost.

Other important classes of statistical models for human mobility are Lévy flights models [4]
and multiplicative latent factor models [5]. Lévy flights models make use of a power law to rep-
resent the probability that an individual changes their residence over a certain distance. Under
this model, moving over a shorter distance is more likely than moving over longer distances,
but residential movements over longer distances can still take place even if they occur less
often. Multiplicative latent factor models improve the Levy flights models with their ability to
quantify the desirability of residing in certain areas over other areas. Both the Lévy flights
models and the multiplicative latent factor models are based on the crude assumption that
human travel can be seen as a Markov process in which the probability of residing in an area
depends only on area in which the previous residence was located, and does not depend on
the locations of previous residences. However, it is possible that individuals move repeatedly
across multiple areas over longer time periods of several years. Markov process models break
residential trajectories that involve multiple residential locations into pairs of consecutive loca-
tions of residency, and, by doing so, loose key dependencies that are induced by multiple loca-
tions of residency of the same individuals in a reference time frame.

Information about residential locations has also been used in statistical models through the
construction of mobility measures—see, for example, [6] and the references therein. These
measures are summaries of distances between consecutive residencies, or of time spent in cer-
tain locations. While mobility measures can be successfully used as independent variables in
a wide range of statistical models, the connection between these measures and the areas in
which individuals have resided is lost. The method for analyzing repeated residential move-
ments we follow in this paper allows an explicit representation of residential presence and
absence patterns from several areas without defining mobility measures. As such, this method
offers a new perspective on what can be learned from this important type of human mobility
data.

We assume that the residential locations of N individuals belong to K areas denoted by
{A, A,, . .., Ag}. For each individual, we know which areas they resided in. These data can be
represented as a N x K mobility matrix M = (m,,), where

{ 1, if individual n resided in area k,
mnk =
0, if individual #n did not reside in area k.

Our framework does not impose any constraints on the number of individuals N, or on the
number of areas K. Other categorical variables of interest can be recorded as additional col-
umns in the mobility matrix M.

By counting the number of times the same combination of levels of the categorical variables
in M appear as rows of this matrix, a multi-dimensional contingency table is formed [7]. We
propose representing the multivariate patterns of associations in this contingency table with
graphical loglinear models that are a special type of hierarchical loglinear models [8, 9]. These
models are determined by graphs that have vertices associated with each area. They character-
ize the multivariate dependency structure (e.g., independence or conditional independence)
among random variables using graphs [9]. The complete subgraphs of these graphs define
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interaction terms of joint presence and absence patterns from two, three or several areas. A
missing edge between two areas means that, conditional on presence or absence in the rest of
the areas, the presence or absence of a random individual in the first area is independent of the
presence or absence of the same individual in the second area.

A key step in data analysis with graphical loglinear models consists of the estimation of the
underlying graph. This is called the structural learning problem [10, 11], and it becomes a very
difficult computational problem when many random variables are involved [12, 13]. Bayesian
methods provide a flexible framework for incorporating uncertainty of the graph structure:
inference and estimation are based on averages of the posterior distributions of quantities of
interest, weighted by the corresponding posterior probabilities of graphs [14]. Here we follow
a Bayesian approach for solving the structural learning problem.

The goal of our statistical analysis is to identify graphs that have vertices associated with
each area in the corresponding graphical loglinear models. Based on this approach, we exam-
ine the predictive value of residential locations as a driver of HIV transmission risk in a com-
prehensive population-based demographic surveillance site in the KwaZulu-Natal Province,
South Africa—the Africa Centre, now Africa Health Research Institute (AHRI) [15]. Specifi-
cally, we analyze mobility patterns of 21,015 individuals who were HIV negative at baseline,
and were registered in the AHRI demographic surveillance system. Their mobility patterns are
defined by residential histories over the study period. The AHRI site is characterized by high
adult HIV prevalence (24% in adults aged 15 years 30 and older in 2011), and high levels of
poverty and unemployment (in 2010, 67% of adults over the age of 18 in the rural study area
were unemployed) [16]. The geographical location of this demographic surveillance area is
ideal for our aim.

Background

Historically, human mobility has been one of the key drivers in the spread of HIV at a global
scale [17-29]. Many studies have provided significant evidence linking increased population
mobility with multiple sexual partners, reduced condom use, increased risky behavior (e.g.,
encounters with commercial sex workers, engaging in transactional sex) [30-32], increased
sexual behavior [20, 33-38], and increased likelihood of HIV acquisition [6, 28, 39]. Mining
settlements, transport corridors, or poor urban or periurban communities exacerbate the effect
of the risk factors of HIV acquisition [28, 40, 41]. It has been empirically demonstrated that an
individual’s risk of acquisition of HIV is strongly driven by community-level HIV prevalence
[16], community-level migration intensity [42], mean number of sexual partners in the sur-
rounding local community [43], as well as ART coverage and population viral load in the local
community, respectively [16, 44]. These community-level risk factors confer substantial addi-
tional risk of new HIV infection after controlling for a suite of well-established individual-level
risk factors.

In South Africa, which is the focus of this study, the risk of HIV infection has been shown
to be increased by human mobility [19, 45, 46]. South Africa is one of the countries with the
highest burden of HIV, and has a long history of internal labor migration of men that periodi-
cally leave their areas of permanent residence to seek temporary employment in mines and fac-
tories due to the scarcity of local employment [47]. During the apartheid era which imposed
travel restrictions for Blacks, women were typically left behind to take care of families, while
men submitted remittances back to their households. Because of economic conditions, this
way of life continues to exist in poor rural regions of South Africa including this rural study
community. However, as opposed to the aparheid era, in the last decade both men and women
frequently establish residencies for various periods of time to work or for many other reasons
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in locations within the KwaZulu-Natal Province (e.g., Richards Bay or Durban), or in other
more distant locations in South Africa (e.g., Johannesburg, Pretoria or Cape Town) [6].

The rapid increase in the adult HIV prevalence in South Africa, from 0.7% in 1990 to 13%
in 2000 [48, 49], is broadly consistent with ongoing patterns of circular labor migration within
the country and increased in-migration from neighboring countries after the collapse of
Apartheid [50-52]. For example, a phylogenetic study from the KwaZulu-Natal province
reveals that external introductions in the early 1990s, via human movement from neighboring
countries, played a vital role in driving the early HIV epidemic [53]. Historically, patterns of
circular migration in South Africa were shaped by the migrant labor policies of the Apartheid
system. From the 1950s until the democratic transition in 1994, Apartheid authorities sought
to consolidate white rule by developing urban centers and resettling black Africans into rural
and undeveloped homelands. Racial segregation and resettlement was seen as a more rational
distribution of African labor between white cities, industries, mines, and farms [54]. Men had
to migrate from their homeland residencies to their work place for long periods of time, with-
out the possibility of their families joining them [55]. Because of separate spheres of living,
migrant men took other partners and formed second families at the places where they worked
[56, 57], thus increasing the risk of HIV infection and the probability of transmission upon
returning home. Apartheid policies had a profound effect on the stability of the family system,
a demographic reality that drove the spread of HIV in the 1990s and thereafter.

Efforts to contain the HIV epidemic after 2000 were stalled by the South African govern-
ment’s refusal to make ART available at public health-care facilities nationwide [58, 59]. This
refusal was motivated by AIDS denialism among government officials, who claimed that HIV
was not the cause of AIDS, that ART was toxic, and that the spread of HIV was being over-sen-
sationalized [60, 61]. During this time, the adult HIV prevalence increased to 15.2% [49] and
was as high as 29.5% among pregnant women attending antenatal clinics [48]. Following pub-
lic pressure from AIDS activists and civil society organizations, the South African government
made ART with a CD4+ T-cell count eligibility criteria of <200 cells/yL in 2004 [62]. In 2010,
treatment eligibility was extended to pregnant woman with CD4+ T-cell counts <350 cells/uL
and patients with active tuberculosis [62]. By 2012, the HIV prevalence among 15-49 year-
olds was at 18.8% [63] and at 20.6% in 2017 [64].

Methods

Study setting

The study was conducted in the Africa Health Research Institute (AHRI) Population Interven-
tion Platform Study Area (PIPSA), formerly the Africa Centre Demographic Information Sys-
tem (ACDIS), in uMkhanyakude District, KwaZulu-Natal Province. PIPSA was commissioned
in 2000 by the Wellcome Trust as a platform for longitudinal population based studies of epi-
demiology and intervention research. This rural study area covers 438 km?, and comprises
approximately 11,000 households with 100,000 individuals. This community is characterized
by high HIV prevalence frequent migration, low marital rates, late marriage especially for
men, polygamous marriages and multiple sexual partnerships, as well as by poor knowledge
and disclosure of HIV status [15, 39, 56, 65]. Incidence peaked at 6.6 per 100 person-years in
women aged 24 years, and at 4.1 per 100 person-years in men aged 29 years over the same
period [39].

For over 15 years, PIPSA has continuously collected longitudinal surveillance data on a
range of health care and social intervention exposures, as well as health, socio-economic
and behavioral outcomes [15]. During the household data collection cycle, households are
visited every 6 months by fieldworkers and information supplied by a single key informant.
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Population-based HIV surveillance and sexual behavior surveys take place annually. Since
2003, annual HIV testing became part of household surveillance.

Study eligibility

Starting with 2007, all adults and adolescents aged 15-17 residing in the rural study area who
were able to provide written consent were eligible to participate in the study. From 2003 to
2006, eligibility was restricted to women aged 15-49 years and men aged 15-54. We note that,
although individuals under 18 are legal minors, under South African law, they can consent
independently to medical treatment from the age of 14. Minors can legally consent indepen-
dently to an HIV test from the age of 12, when it is in their best interest, and below the age of
12 if they can understand the benefits, risks and social implications of an HIV test [66].

Ethics statement

Informed written consent was obtained from all eligible individuals. After signing the consent,
eligible participants are interviewed in private by trained fieldworkers, who also extract blood
from consenting individuals by finger-prick for HIV testing, prepare dried blood spots for
HIV testing according to the Joint United Nations Programme on HIV/AIDS (UNAIDS) and
World Health Organization (WHO) Guidelines for Using HIV Testing Technologies in Sur-
veillance [15]. Ethics approval for data collection and use was obtained from the Biomedical
Research and Ethics Committee (BREC) of the University of KwaZulu-Natal (Durban, South
Africa), BREC approval number BE290/16. The BREC was aware that some of the study partic-
ipants were legal minors, and approved the age range of participation and the specific consent
procedure for minors.

Cohort description

From the entire population under surveillance in PIPSA between January 1, 2004 and Decem-
ber 31, 2016, we selected those individuals who consented to test at least twice for HIV after
the age of 15, and whose first test was negative. Although the annual participation rates in HIV
testing are not high (see Table 1), a number of 8,857 men and 12,158 women satisfy these
inclusion criteria. Participants seldom test every year, and, in this cohort, the median time
between the last HIV negative and the first HIV positive tests in men was 3.34 years

(IQR =4.64), and in women 2.58 years (IQR = 3.69). The date of HIV seroconversion was
assumed to occur according to a uniformly random distribution between the date of the last
negative and first positive HIV test [67]. Here seroconversion refers to the transition from
infection with the HIV virus to the detectable presence of HIV antibodies in the blood. Fig A
from S1 Supporting Information gives the crude annual consent rates, while Fig B from S1
Supporting Information shows the consent rates by age group and gender. Although the over-
all consent rate changes over time, there does not seem to be any relevant difference in consent
by sex and age.

PIPSA collects data about all the individuals that are members of a family unit or a house-
hold in the rural study area irrespective of the current residency status. It collects longitudinal
residential information about the exact periods of time each study participant spent living in
each location. Fieldworkers record changes in residency as the origin place of residence, the
destination place of residence and the date of the move. Residencies can be located inside or
outside the rural study area. The residential locations inside the rural study area have been
comprehensively geolocated to an accuracy of <2m [68]. Repeat-testers can change their place
of residence multiple times: they can move between two residencies located inside the rural
study area, between two residencies located outside the rural study area, or between a
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Table 1. Annual summaries of eligibility and consent for the study participants.

Year Eligible and Present’ Present and Tested* Ever Tested®
no./total no. % no./total no. % %
2005 24,317/29,690 81.9 21,359/24,317 87.8 37.6
2006 22,505/29,314 76.8 20,676/22,505 91.9 49.5
2007 21,372/29,510 72.4 19,080/21,372 89.3 53.9
2008 23,107/31,846 72.6 21,251/23,107 92.0 55.1
2009 20,197/28,957 69.7 18,211/20,197 90.2 59.3
2010 24,797/32,447 76.4 19,828/24,797 80.0 58.4
2011 24,677/29,915 82.5 18,991/24,677 77.0 61.4
2012 22,872/29,245 78.2 16,939/22,872 74.1 59.1
2013 22,438/28,642 78.3 18,360/22,438 81.8 63.9
2014 21,443/28,194 76.1 17,850/21,443 83.2 65.8
2015 21,441/27,587 77.7 19,866/21,441 92.7 72.8
2016 14,757/18,075 81.6 13,438/14,757 91.1 75.6

" Shows the number of study participants eligible for testing (denominator) and the number present on the date of
the household visit (numerator).

¥ Shows the number of study participants present at the household visit (denominator) and the number that
consented to an HIV test (numerator).

¥ Shows the percentage of study participants that had at least one HIV test over the observation period. Summaries

have not been produced for the first year of the study (2004).

https://doi.org/10.1371/journal.pone.0217284.t001

residency inside the rural study area and another residency outside the rural study area. The
relevance of looking whether repeat-testers have resided outside the rural study area comes
from the findings of Dobra et al. [6]. Their results indicate that, for the same rural study area,
the risk of HIV acquisition is significantly increased for both men and women when they
spend more time outside the rural study area, or when they change their residencies over lon-
ger distances.

For the purpose of this study, the geolocations of the homesteads have been mapped into 45
non-overlapping communities that cover the rural study area—see Figs E and F in S1 Support-
ing Information. The division of the rural study area into communities is motivated by the
results of Tanser et al. [69]. Their study identified a significant geographical variation in HIV
incidence in the same rural study area. Specifically, they identified three large irregularly-
shaped clusters of new HIV infections. Although these clusters cover only 6.8% of the rural
study area, about 25% of the sero-conversions that occurred over this study’s period are associ-
ated with residencies in them. This suggests the existence of clear corridors of HIV transmis-
sion inside the rural study area. Together, the results of Dobra et al [6] and Tanser et al [69]
indicate that men and women who reside outside the rural study area, or occupy residencies
that are located in the corridors of HIV transmission inside the rural study area are at an
increased risk of acquiring HIV.

We note that the exposure period for a repeat-tester starts at the time of their first HIV test,
and ends at their HIV seroconversion date for seroconverters, or at the time of their last HIV
negative test for those that did not seroconvert. The residential locations occupied before sero-
conversion coud have contributed to changes in sexual behavior that led to HIV acquisition,
while residential locations occupied after seroconversion could be associated with repeat-testers
seeking family support, health care or moving away to avoid social stigma [22, 38]. For this rea-
son, the residential locations occupied by seroconverters after they acquired HIV were discarded.
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Statistical analyses

We determined in which of the 45 communities each of the 8,857 men and 12,158 women
lived in during the study period. This information was recorded as binary variables C1, C2,
..., C45 with levels “yes” or “no” in two mobility matrices, one for men and one for women.
We also determined whether a repeat-tester moved outside the rural study area. This informa-
tion was recorded as a binary variable Outside with levels “yes” or “no”. Furthermore, we
determined whether a repeat-tester has seroconverted, and whether a repeat-tester was youn-
ger than 30 years at start of their observation period. This information was recorded as two
additional binary variables Seroconverted and Young with levels “yes” or “no”. For example, a
repeat-tester that lived in communities C1 and C2, moved outside the rural study area, was
older than 30 years at baseline, and has seroconverted, would have C1 = C2 = Outside = Sero-
converted = yes and C3 = ... = C45 = Young = no.

The data in the resulting mobility matrices involve 48 binary variables. The mobility matrix
for men is available in S1 Data, and the mobility matrix for women is available in S2 Data.
They define two dichotomous contingency tables with 2*® cells, one table for men and another
table for women. These tables which we call mobility tables are hyper-sparse: most of their
counts are zero. The mobility table for men has only 598 positive counts—see Table E in S1
Supporting Information. Among these counts, there are 292 (48.83%) counts of 1, 48 (8.03%)
counts of 2, 30 (5.02%) counts of 3, 28 (4.68%) counts of 4, and 13 (2.17%) counts of 5. The top
five largest counts are 192, 186, 180, 177 and 168, respectively. They correspond with men that
were less than 30 years old at the start of their observation period, did not seroconvert by the
end of their observation period, never moved outside the rural study area, and lived in exactly
one of these communities: C7, C37, C40, C39 and C22. The mobility table for women has only
939 positive counts—see Table F in S1 Supporting Information. Among these counts, there are
534 (56.87%) counts of 1, 98 (10.44%) counts of 2, 30 (3.19%) counts of 3, 15 (1.60%) counts of
4 and 15 (1.60%) counts of 5. The top five largest counts are 185, 176, 175, 172 and 171. They
correspond with women that were less than 30 years old at the start of their observation period,
did not seroconvert by the end of their observation period, never moved outside the rural
study area, and lived in exactly one of these communities: C22, C10, C25, C39, and C7, respec-
tively. Tables A and B in S1 Supporting Information give the cross-classification of the men
and women in the study with respect to the binary variables Seroconverted, Young and Outside.
These tables have 2° = 8 cells, and are the three dimensional marginal tables of the 48 dimen-
sional mobility tables.

Statistical modeling framework

In this paper we make use of a Bayesian framework for solving the structural learning problem
that is suitable for the analysis of hyper-sparse contingency tables with p = 48 variables. This
framework [70] determines graphical loglinear models that are a special type of hierarchical
loglinear models [8, 9]. A graphical model for a random vector X = (X, X5, . . ., X,,) is specified
by an undirected graph G = (V, E) where V= {1, .. ., p} are vertices or nodes,and EC Vx V
are edges or links [9]. A vertex i € V of G corresponds with variable X;. The absence of an

edge between vertices 7 and j in G means that X; and X; are conditional independent given

the remaining variables Xy, ;. The graph G also has a predictive interpretation. Denote by
nbdg(i) = {j € V: (i, j) € E} the neighbors of vertex i in G. Then X; is conditionally independent
of X\ (npag oy 8iven Xnpa ;) which implies that, given G, a mean squared optimal prediction
of X; can be made from the neighboring variables X ;5 . The structural learning problem
estimates the structure of G (i.e., which edges are present or absent in E) from the available
datax = (x', .., xX™) by sampling from the posterior distribution of G conditional on the
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datax,ie.

_ Pr(G)Pr(x | G)
PG = PrGPr(x [ G) )

where Pr(G) is a prior distribution on the graph space G, with p variables, and Pr(x | G) is
the marginal likelihood of the data conditional on G [10]. We use a prior on the space of
graphs G, that encourages sparsity by penalizing for the inclusion of additional edges in the
graph G = (V, E) [10]:

br(G) (1_ﬁﬁ)F _ (ﬁ(%)mbddi))n, .

where 8 € (0, 1) is set to a small value, e.g. f = 1/(%) ~ 0.00089. Under this prior, the

expected number of edges for a graph is 1. This means that sparser graphs with few edges
receive larger prior probabilities compared with denser graphs in which most edges are
present.

Determining the graphs with the highest posterior probabilities (1) is a complex problem

since the number of possible undirected graphs 2% becomes large very fast as p increases. For
example, our two mobility tables involve p = 48 variables, and the number of possible undi-
rected graphs in G is approximately 10°>°, This motivated the development of computation-
ally efficient search algorithms for exploring large spaces of graphs that have the ability to
move quickly towards high posterior probability regions by taking advantage of local computa-
tion. Among them, the birth-death Markov chain Monte Carlo (BDMCMC) algorithm [70]
determines graphical loglinear models. BDMCMC is a trans-dimensional MCMC algorithm
that is based on a continuous time birth-death Markov process [71]. Its underlying sampling
scheme traverses G, by adding and removing edges corresponding to the birth and death
events. This algorithm is implemented in the package BDgraph [72, 73] for R [74].

By employing the BDgraph package, we ran the BDMCMC algorithm for 250,000 itera-
tions to sample graphs from the posterior distribution (1) on G for the mobility tables for
men and women. Figs C and D in S1 Supporting Information give the estimated posterior
inclusion probabilities of the (%) = 1128 edges across iterations. We see that, after about

50,000 iterations, the subsequent posterior edge inclusion estimates stabilize. For this reason,
the first 50,000 sampled graphs were discarded as burn-in, and the remaining 200,000 sampled
graphs were used to estimate posterior edge inclusion probabilities.

Limitations

Representing residential locations data as mobility matrices leads to information loss, as fol-
lows: (i) the order in which an individual resides in two or more areas is no longer accounted
for; (ii) residential movements that occur within the same area are missed; (iii) the amount of
time an individual maintains a residence in the same area is overlooked; and (iv) the number
of times an individual establishes a residence in the same area is lost. Although this loss of
information can be seen as significant, the major advantage of our proposed methodology
for analyzing repeated residential movements is its ability to capture repeated presence and
absence patterns from several areas. For this purpose, mobility matrices suffice.

Another limitation is related to the graphs identified by structural learning in graphical log-
linear models. The prior on the graph space (2) gives the same probability of existence of an
edge between any two areas irrespective of the actual spatial distance between them. In this
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application, the use of this prior is justified: there is no reason to assume that more distant
areas are less likely to be connected than areas that are closer to each other. In fact, as we will
see in the Results section, the repeat-testers were more likely to make residential movements
between more distant locations (e.g., a location inside the rural study area and another location
outside the rural study area) than between less distant locations (e.g., two locations inside the
rural study area). As such, while specifying a prior on the graph space that takes actual physical
distances between areas into account is mathematically possible [75], the use of this type of
spatial prior in this study was not necessary.

A third limitation of our study is related to mapping the locations inside the rural study
area into 45 communities (spatial units), and of all the locations outside the rural study area
into an additional spatial unit. These specific choices could induce biases related to the modifi-
able areal unit problem (MAUP) [76, 77]. MAUP identifies the inevitable statistical bias that
occurs due to scale (i.e., different sized spatial units) and zoning (i.e., different definitions of
boundaries used to define spatial units). Due to MAUP, altering the choices of spatial units
employed in a statistical analysis could potentially affect the results reported in a significant
manner. However, in our application, the spatial units employed were not arbitrary: the 45
communities have not been defined for the purpose of this study alone. Instead, these commu-
nities were employed in several studies conducted in AHRI/PIPSA—see, for example, [69].
These communities have specific social, economic and demographic relevance for the rural
study area. For this reason, reporting results based on spatial units constructed with respect to
these 45 communities is meaningful.

Results
Descriptive summaries

We recorded residency changes for 8,857 men over 35,500.01 person-years, and for 12,158
women over 57,945.35 person-years. The median observation period for men was 3.72 years
(IQR = 4.00), while the median observation period for women was 4.41 years (IQR = 5.47).
Tables 2, 3, 4 and 5 give cumulative durations of exposure of the repeat-testers stratified by
age, calendar year, marital status and education level. The calculation of person-years is based
on a random imputation of the seroconversion date between the date of the last negative and
first positive test for HIV sero-converters [67], and on the date of the last negative test for
those who are censored. We see that longer exposure periods are recorded for younger

study participants between 15 and 24 years old. The length of exposure over calendar years
remains relatively unchanged between 2005 and 2011, but has a slight tendency to decrease

Table 2. Length of exposure of the repeat-testers by age stratum.

Age Stratum (years)

15-19
20-24
25-29
30-34
35-39
40-44
>45
Total

https://doi.org/10.1371/journal.pone.0217284.t1002

Men Women
Person-years % Person-years %
11,112.86 31.30 12,633.22 21.80
10,067.54 28.36 12,844.92 22.17
4,499.06 12.67 6,390.93 11.03
2,332.67 6.57 4,001.85 6.91
1,788.91 5.04 4,186.15 7.22
1,673.96 4.72 5,172.23 8.93
4,025.02 11.34 12,716.05 21.94
35,500.01 100 5,7945.35 100
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Table 3. Length of exposure of the repeat-testers by calendar year.

Calendar Year Men Women
Person-years % Person-years %
2004 1,427.95 4.02 2,194.87 3.79
2005 2,982.77 8.40 4,417.9 7.62
2006 3,471.36 9.78 5,171.38 8.92
2007 3,516.45 9.91 5,385.17 9.29
2008 3,510.61 9.89 5,497.93 9.49
2009 3,378.54 9.52 5,365.29 9.26
2010 3,093.13 8.71 5,076.53 8.76
2011 3,045.45 8.58 5,066.04 8.74
2012 2,652.26 7.47 4,636.20 8.00
2013 2,526.03 7.12 4,458.78 7.69
2014 2,438.65 6.87 4,347.10 7.50
2015 2,248.12 6.33 3,957.17 6.83
2016 1,208.69 3.40 2,370.99 4.09
Total 35,500.01 100 57,945.35 100

https://doi.org/10.1371/journal.pone.0217284.1003

towards 2016. Most repeat-testers were single during the study period, and had different levels
of education.

There were 806 HIV seroconversions in men, and 2,458 HIV seroconversions in women.
Table 6 gives seroconversion rates stratified by gender, age (younger or older than 30 years at
baseline), and residency outside the rural study area. The largest seroconversion rate 22.47%
(95% CI: 21.49-23.45) is for young women who resided in the rural study area for their entire
exposure period. The seroconversion rate for young women who resided outside the rural
study area is slightly lower: 19.20% (95% CI: 17.88-20.52). The largest seroconversion rate for
men is 13.24% (95%CI: 11.76-14.72), and corresponds to the young group that moved outside
the rural study area. The seroconversion rate for young men who did not move outside the

Table 4. Length of exposure of the repeat-testers by marital status.

Marital Status Men Women
Person-years % Person-years %
Single 32,770.44 92.31 46,605.16 80.43
Married, monogamous 2,658.74 7.49 9,922.16 17.12
Married, polygamous 70.83 0.20 1,418.03 2.45
Total 35,500.01 100 57,945.35 100

https://doi.org/10.1371/journal.pone.0217284.t1004

Table 5. Length of exposure of the repeat-testers by education level.

Years of Education Men Women
Person-years % Person-years %
0-5 4,623.64 13.02 11,499.49 19.85
6-9 11,279.37 31.77 14,108.81 24.35
10-11 10,134.68 28.55 16,353.51 28.22
>12 9,462.32 26.65 15,983.55 27.58
Total 35,500.01 100 57,945.35 100

https://doi.org/10.1371/journal.pone.0217284.t1005
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Table 6. Seroconversion rates and 95% CIs of the repeat-testers.

Gender Young
No Yes
Outside Outside
No Yes No Yes
Men 7.59 11.06 7.56 13.24
(5.91,9.26) (7.05,15.07) (6.88,8.24) (11.76,14.72)
Women 8.60 12.64 22.47 19.20
(7.49,9.71) (8.72,16.55) (21.49,23.45) (17.88,20.52)

The repeat-testers are cross-classified by whether they moved outside the rural study area (Outside: Yes/No) and whether they were less than 30 years old at the start of

the study (Young: Yes/No).

https://doi.org/10.1371/journal.pone.0217284.1006

rural study area is significantly lower: 7.56% (95% CI: 6.88-8.24). Table 6 also shows that the
seroconversion rates for both men and women in the older age group are higher for the
repeat-testers that moved outside the rural study area as compared to the repeat-testers that
did not move outside the rural study area.

We determined the number of repeat-testers that moved their residence between any two
communities, or between a community and a location outside the rural study area. The result-
ing mobility flow diagrams are shown in Figs 1 and 2. We see that, while men and women
move between the 45 communities, substantially larger flows are associated with changes of
residencies to and from locations outside the rural study area. Table 7 gives a summary of the
frequency of residential movements inside the rural study area, and also between a location
outside the rural study area and another location inside or outside the rural study area by age
group and gender. Women in the 20-24 age group move outside the rural study area more
often than men in the same age group (26.56% vs. 23.31%). Residential movements outside the
rural study area become less frequent for women in the 25-29 age group, but are comparable
in frequency with residential movements of men in the 25-29 age group. Men in the 30-34 age
group move to and from locations outside the rural study area more frequently than women in
the 30-34 age group. Residential movements outside the rural study area of women become
significantly less frequent in the age groups 35-39, 40-44 and older than 45 as compared to res-
idential movements of men in the same age group. Residential movements inside the rural
study area of both men and women are substantially less frequent than residential movements
to and from a location outside the rural study area in any age group. However, inside the rural
study area, women tend to be more mobile than men in the younger age groups.

We remark that residential movements inside the rural study area occur over much smaller
distances (mean = 10.44 km, IQR = 9.14 km) compared to residential movements that involve
locations outside the rural study area (mean = 128.50 km, IQR = 178.33 km).

Graphical loglinear models for mobility tables

Fig 3 shows a heatmap of the estimated posterior inclusion probabilities of edges connecting
the 48 binary variables cross-classified in the mobility tables for men and women. These esti-
mates are based on the 200,000 graphs sampled with the BDMCMC algorithm. For the men’s
mobility table, 115 (10.20%) posterior edge inclusion probabilities are 0, and 993 (88.03%) are
1. A number of 18 and 2 edges have estimated posterior inclusion probabilities in (0, 0.5) and
[0.5, 1), respectively. For the women’s mobility table, 100 (8.87%) posterior edge inclusion
probabilities are 0, and 1,013 (89.80%) are 1. A number of 6 and 9 edges have estimated poste-
rior inclusion probabilities in (0, 0.5), [0.5, 1), respectively. We use the median graph which
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Fig 1. Mobility flows of the repeat-testers who were men. Men moved between the 45 communities labeled C1, C2,
..., C45 and locations outside the rural study area. Flows that involve less than 10 men are not depicted.

https://doi.org/10.1371/journal.pone.0217284.g001

includes the edges with estimated posterior inclusion probabilities greater than 0.5 as our esti-
mate of the conditional independence graph. The median graph for men’s mobility table has
995 edges, while the median graph for women’s mobility table has 1,022 edges. We refer to
these two graphs as men’s and women’s mobility graphs.

The overall structure of the two mobility graphs is remarkably similar. In the men’s
mobility graph, the vertex associated with the variable Outside is connected with the vertices
associated with 33 out of the 45 communities—see the map from Fig E in S1 Supporting
Information. The subgraph that involves vertices associated with the 45 communities is dense:
it has 1,922 edges—97.07% of the 990 possible edges. In the women’s mobilty graph, the vertex
Outside is connected with vertices associated with 39 out of 45 communities—see the map
from Fig F in S1 Supporting Information. The subgraph associated with the 45 communities
is also dense: it has 1,962 edges—99.09% of the 990 possible edges. In both graphs, there is
no edge between the vertices associated with variables Seroconverted and Young, and the com-
munity vertices. This implies that, conditional on the variable Outside, the variables Serocon-
verted and Young are independent of the community variables C1, . . ., C45 for both men and
women.
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Fig 2. Mobility flows of repeat-testers who were women. Women moved between the 45 communities labeled C1,
C2, ..., C45 and locations outside the rural study area. Flows that involve less than 10 women are not depicted.

https://doi.org/10.1371/journal.pone.0217284.9002

The most relevant differences between the two mobility graphs are related to the edges that
link the variables Outside, Seroconverted and Young—see Figs 4 and 5. For men, vertex Outside
is connected with vertex Seroconverted, but the edges between vertices Outside and Young, and
between vertices Seroconverted and Young are missing. For women, the situation is reversed:
the edges between vertices Outside and Young, and between vertices Seroconverted and Young
are present, but the edge between vertices Outside and Seroconverted is missing. This has the
following implications: (a) for men, variable Young is independent of variables Outside and
Seroconverted; (b) for men, only variable Outside is predictive of variable Seroconverted; (c) for
women, variable Young is predictive of variable Seroconverted; and (d) for women, given vari-
able Younyg, variable Seroconverted is independent of variable Outside.

The presence of an edge between Outside and Seroconverted in the subgraph for men means
that whether a man moved outside the rural study area is predictive of whether he seroconverts
(unadjusted OR = 2.003, 95% CI = [1.718,2.332]). The absence of an edge between Young and
Seroconverted in the same subgraph means that age has less predictive power for the HIV sero-
conversion of a man given that we know whether this man had a residence outside the rural
study area. We point out that this does not imply that age is not a risk factor for HIV acquisi-
tion in men. For women, the relative predictive importance of moving outside the rural study
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Table 7. Residential changes of the repeat-testers.

Age Men Women
Stratum At least once Two or more times At least once Two or more times
(years) (95% CI) (95% CI) (95% CI) (95% CI)
Outside residency changes
15-19 9.92 2.53 13.99 4.05
(9.13,10.71) (2.11,2.95) (13.13,14.84) (3.56,4.54)
20-24 23.31 9.31 26.56 12.30
(22.00,24.62) (8.41,10.21) (25.32,27.80) (11.37,13.22)
25-29 23.45 9.65 22.12 8.81
(21.46,25.45) (8.26,11.04) (20.47,23.77) (7.69,9.94)
30-34 18.49 7.14 11.60 3.87
(16.02,20.95) (5.51,8.78) (10.02,13.18) (2.91,4.82)
35-39 16.11 7.55 8.82 3.42
(13.37,18.86) (5.57,9.52) (7.40,10.25) (2.51,4.34)
40-44 10.48 3.97 5.73 2.39
(8.08,12.87) (2.44,5.49) (4.66,6.81) (1.69,3.10)
>45 12.75 6.92 5.94 3.09
(10.69,14.80) (5.35,8.48) (5.02,6.87) (2.41,3.77)
Inside residency changes
15-19 1.75 0.25 3.02 0.76
(1.40,2.09) (0.12,0.39) (2.60,3.44) (0.55,0.97)
20-24 2.47 0.45 3.36 0.84
(1.99,2.95) (0.24,0.66) (2.86,3.87) (0.58,1.10)
25-29 1.68 0.52 453 1.07
(1.07,2.28) (0.18,0.86) (3.70,5.36) (0.66,1.48)
30-34 2.21 0.53 3.61 0.57
(1.27,3.14) (0.07,0.98) (2.69,4.53) (0.20,0.94)
35-39 2.47 0.44 2.76 0.33
(1.31,3.63) (0.00,0.93) (1.94,3.59) (0.04,0.62)
40-44 2.06 0.16 2.45 0.22
(0.95,3.17) (0.00,0.47) (1.73,3.16) (0,0.44)
>45 1.28 0.10 3.21 0.48
(0.59,1.98) (0.00,0.29) (2.52,3.91) (0.21,0.75)

Percentages of repeat-testers stratified by gender who changed residences between a location outside the rural study area and another location inside or outside the rural

study area (outside residency changes, upper panel), or between two locations inside the rural study area (inside residency changes, lower panel)

https://doi.org/10.1371/journal.pone.0217284.t1007

area and age is reversed: the edge between Outside and Seroconverted is missing, while the
edge between Young and Seroconverted is present. Whether a woman is younger than 30 years
is predictive of whether she seroconverts (unadjusted OR = 3.091, 95% CI = [2.693,3.561]).
However, given that we know the age of a woman, knowing whether she moved outside the
rural study area has less predictive power for HIV seroconversion. As such, residential loca-
tions seems to matter less for women as a risk factor for HIV acquisition in the presence of
age. As an aside, we mention that the presence of an edge that links vertices Outside and Young
in the women’s mobility graph makes sense: women younger than 30 years are more likely to
move outside the rural study area (unadjusted OR = 3.176, 95% CI = [2.787,3.633]). This edge
is missing in men’s mobility graph because the relationship between variables Young and Out-
side is weaker (unadjusted OR = 1.306, 95% CI = [1.124,1.523]).

Since the structure of interactions among variables Outside, Seroconverted and Young
is essential for our understanding of the mobility tables, we performed a second statistical
analysis of the three-way tables cross-classifying these variables—see Tables A and B in
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Color Key

Fig 3. Heatmap of the estimated posterior probabilities of edge inclusion. The matrix entries below the main
diagonal show the estimated posterior edge inclusion probabilities for men’s mobility, while the matrix entries above
the main diagonal show the estimated posterior edge inclusion probabilities for women’s mobility. Lighter shades of
gray indicate smaller (closer to 0) matrix entries, while darker shades of gray indicate larger (closer to 1) matrix entries.

https://doi.org/10.1371/journal.pone.0217284.9003

S1 Supporting Information. This time we followed a classical approach to hierarchical log-
linear model determination [7, 78] that also solves the structural learning problem, but is con-
ceptually different from the Bayesian approach implemented in the BDMCMC algorithm. We
note that this classical approach is suitable for analyzing these two tables because they involve
only three variables and they do not contain any counts of 0. However, this approach is not
feasible for analyzing the 48-dimensional mobility tables for men and women due to sparsity
and the number of variables involved. Specifically, we fitted the eight hierarchical loglinear
models that contain main effects for variables Outside, Seroconverted and Young, and also one,
two or all three of the pairwise interactions between these variables. The results are presented
in Tables C and D in S1 Supporting Information.

For men, the loglinear model that contains interactions between variables Seroconverted
and Outside, and between variables Outside and Young, and the loglinear model that contains
all three pairwise interactions do not fit the data well: the p-values for the likelihood ratio test
against the saturated loglinear model are 0.348 and 0.215, respectively. The other six hierarchi-
cal models fit the data well at the significance level o = 0.05. To select the most relevant model
among the remaining six models, we calculated their AIC and BIC. The smallest values for
both AIC and BIC are realized for the model that contains the interaction between Serocon-
verted and Outside, and no interaction involving variable Young. This is precisely the graphical
loglinear model we determined before using the BDMCMC algorithm—see Fig 4. For women,
the loglinear model that contains all three pairwise interactions does not fit the data well (p-
value = 0.264). The other seven hierarchical models fit the data well at the significance level
o = 0.05. Among these seven models, the model that has the minimum value for both AIC and
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Outside

Seroconverted

Fig 4. Conditional independence graph for men.
https://doi.org/10.1371/journal.pone.0217284.g004

BIC contains interactions between variables Outside and Young, and between variables Sero-
converted and Young. As for men, we found the same graphical loglinear model as we did
before using the BDMCMC algorithm for the women’s mobility table—see Fig 5.

Discussion

We proposed a framework for statistical analysis of repeated residential movements. In the
first step, residential histories are converted into a mobility matrix that gives the presence and
absence patterns from the areas in which study participants have lived. After the inclusion of
additional categorical variables of interest, the resulting matrix is converted into a multi-
dimensional contingency table called mobility table. The multivariate associations in this table
are modeled with graphical loglinear models. The structure of the graphs that characterize
these models induces independence or conditional independence relationships among the res-
idential areas and the other categorical variables. This framework is able to explicitly account
for individuals that moved across several areas. Existing models for human mobility are able to
represent only the movement of an individual from one area to another area without consider-
ation of the areas in which the individual has resided in the past. Our framework also goes
beyond those approaches that involve the determination of mobility measures of different
kinds; such measures loose an explicit connection with the areas in which residencies were
located.

We used this framework to link human mobility and the risk of HIV acquisition based on
data from a population-based cohort in a hyper-endemic, rural sub-Saharan African context.
The residential locations occupied by every study participant were classified as outside or
inside the rural study area. The residential locations inside the rural study area was further
classified as belonging to one of 45 non-overlapping communities that fully cover the rural
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Seroconverted

Fig 5. Conditional independence graph for women.

https://doi.org/10.1371/journal.pone.0217284.g005

study area. We also included age (younger or older than 30 years at the start of the exposure
period) as an additional risk factor for HIV acquisition.

We found that, for both men and women, the majority of residential moves involved a des-
tination outside the rural study area, rather than a destination within the rural study area.
Thus, households in the rural study area are typical net-senders of mobile individuals to desti-
nations in the KwaZulu-Natal province, or to other, more distant places throughout South
Africa [6]. This circular migration stream effectively links a poor, rural community with more
affluent urban centers where many employment opportunities are usually available, and also
with other rural areas that offer more specialized types of employment (e.g., mining).

Multivariate predictive relationships are revealed in the mobility graphs for men and
women we identified. In both graphs, in order to reach any of the communities vertices C1,
C2, ..., C45 from the vertex Seroconverted by following paths of adjacent edges, we must first
pass through the vertex Outside. Therefore, once we know whether a man or a woman moved
outside the rural study area, knowing which communities inside the rural study area they lived
in becomes less relevant for the purpose of predicting whether they seroconverted. For this
reason the communities in which an individual resides seem to play a lesser role as risk factors
for HIV seroconversion as compared with having a residence outside the rural study area. This
finding is surprising because this rural study area has three large irregularly-shaped clusters of
new HIV infections near a national road and in a rural node bordering a recent coal mine
development [69]. These spatial areas are characterized by HIV incidence rates higher the
other surrounding regions. We expected at least some of the communities spanned by these
three clusters to be linked by an edge with vertex Seroconverted. However, none of these edges
are present in the two mobility graphs. Consequently, while the places of residency inside the
rural study area certainly play a role in predicting HIV acquisition risk given the significant
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clustering of HIV infections in this rural community, their predictive power vanishes when
taking into account whether a study participant moved outside the rural study area. While this
is true for both men and women, the predictive importance of having a residence outside the
rural study area differs for men as compared to women. These differences are evidenced in the
subgraphs of the two mobility graphs associated with variables Outside, Young and Serocon-
verted—see Figs 4 and 5.

Our results indicate that, even if the frequency, duration and distance traveled associated
with residential moves is similar for men and women who live in this rural study area [6],
there must exist key differences between the behavioral processes that lead to HIV seroconver-
sion of mobile men and women. In order to formulate gender-specific combination HIV pre-
vention strategies for high-risk mobile individuals, particularly in the light of attaining the
UNAIDS 90-90-90 treatment targets [79], it is of paramount importance to understand these
differences with respect to the complex network of structural, biological and socio-demo-
graphic factors that characterize places of residency outside the rural study area, and signifi-
cantly alter the social context of mobile individuals [42].

Supporting information
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and figures referenced in the paper.
(PDF)

S1 Data. Data necessary to replicate the numerical results in the paper. This file contains
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$2 Data. Data necessary to replicate the numerical results in the paper. This file contains
the mobility matrix for women.
(CSV)

Author Contributions
Conceptualization: Adrian Dobra, Till Barnighausen, Alain Vandormael, Frank Tanser.
Data curation: Adrian Dobra.

Formal analysis: Adrian Dobra.
Funding acquisition: Adrian Dobra.
Investigation: Adrian Dobra.
Methodology: Adrian Dobra.

Project administration: Adrian Dobra.
Software: Adrian Dobra.

Supervision: Adrian Dobra.

Validation: Adrian Dobra.
Visualization: Adrian Dobra.

Writing - original draft: Adrian Dobra.

Writing - review & editing: Adrian Dobra, Till Birnighausen, Alain Vandormael, Frank
Tanser.

PLOS ONE | https://doi.org/10.1371/journal.pone.0217284 June 5, 2019 18/22


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217284.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217284.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217284.s003
https://doi.org/10.1371/journal.pone.0217284

@ PLOS | O N E A method for statistical analysis of repeated residential movements to link human mobility and HIV acquisition

References

1.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21,

Raymer J, Abel G, Smith PWF. Combining census and registration data to estimate detailed elderly
migration flows in England and Wales. Journal of the Royal Statistical Society: Series A (Statistics in
Society). 2007; 170:891-908. https://doi.org/10.1111/j.1467-985X.2007.00490.x

Smith PWF, Raymer J, Giulietti C. Combining available migration data in England to study economic
activity flows over time. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2010;
173:733-753. https://doi.org/10.1111/j.1467-985X.2009.00630.x

Raymer J, Wisniowski A, Forster JJ, Smith PWF, Bijak J. Integrated Modeling of European Migration.
Journal of the American Statistical Association. 2013; 108:801-819. https://doi.org/10.1080/01621459.
2013.789435

Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel. Nature. 2006; 439(7075):462—
465. https://doi.org/10.1038/nature04292 PMID: 16437114

Guerzhoy M, Hertzmann A. Learning Latent Factor Models of Travel Data for Travel Prediction and
Analysis. In: Sokolova M, van Beek P, editors. Advances in Artificial Intelligence: 27th Canadian Confer-
ence on Atrtificial Intelligence, Canadian Al 2014, Montréal, QC, Canada, May 6-9, 2014. Proceedings.
Cham: Springer International Publishing; 2014. p. 131-142. Available from: http://dx.doi.org/10.1007/
978-3-319-06483-3_12.

Dobra A, Barnighausen T, Vandormael A, Tanser F. Space-time migration patterns and risk of HIV
acquisition in rural South Africa. AIDS. 2017; 31:137-145. https://doi.org/10.1097/QAD.
0000000000001292 PMID: 27755099

Bishop YMM, Fienberg SE, Holland PW. Discrete Multivariate Analysis: Theory and Practice. MIT
Press, Cambridge, MA; 1975.

Whittaker J. Graphical Models in Applied Multivariate Statistics. John Wiley & Sons; 1990.
Lauritzen SL. Graphical models. vol. 17. Oxford University Press, USA; 1996.

Jones B, Carvalho C, Dobra A, Hans C, Carter C, West M. Experiments in stochastic computation for
high-dimensional graphical models. Statistical Science. 2005; 20(4):388—400. https://doi.org/10.1214/
088342305000000304

Drton M, Maathuis MH. Structure Learning in Graphical Modeling. The Annual Review of Statistics and
Its Application. 2017; 4:365-393. https://doi.org/10.1146/annurev-statistics-060116-053803

Dobra A, Hans C, Jones B, Nevins JR, Yao G, West M. Sparse graphical models for exploring gene
expression data. Journal of Multivariate Analysis. 2004; 90:196—212. hitps://doi.org/10.1016/j.jmva.
2004.02.009

Dobra A, Lenkoski A. Copula Gaussian graphical models and their application to modeling functional
disability data. The Annals of Applied Statistics. 2011; 5(2A):969-993. https://doi.org/10.1214/10-
AOAS397

Dobra A, Lenkoski A, Rodriguez A. Bayesian inference for general Gaussian graphical models with
application to multivariate lattice data. Journal of the American Statistical Association. 2011; 106
(496):1418-1433. https://doi.org/10.1198/jasa.2011.tm10465 PMID: 26924867

Tanser F, Hosegood V, Barnighausen T, Herbst K, Nyirenda M, Muhwava W, et al. Cohort Profile: Africa
Centre Demographic Information System (ACDIS) and population-based HIV survey. International Jour-
nal of Epidemiology. 2008; 37(5):956—-962. https://doi.org/10.1093/ije/dym211 PMID: 17998242

Tanser F, Barnighausen T, Grapsa E, Zaidi J, Newell ML. High coverage of ART associated with decline
in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science. 2013; 339:966—971. https://doi.
org/10.1126/science.1228160 PMID: 23430656

Quinn TC. Population migration and the spread of types 1 and 2 human immunodeficiency viruses. Pro-
ceedings of the National Academy of Sciences. 1994; 91:2407-2414. https://doi.org/10.1073/pnas.91.
7.2407

Lurie M. The Epidemiology of Migration and HIV/AIDS in South Africa. Journal of Ethnic and Migration
Studies. 2006; 32(4):649-666. https://doi.org/10.1080/13691830600610056

Voeten HACM, Vissers DCJ, Gregson S, Zaba B, White RG, de Vlas SJ, et al. Strong association
between in-migration and HIV prevalence in urban sub-Saharan Africa. Sexually Transmitted Diseases.
2010; 37(4):240—-243. PMID: 19959971

Camlin CS, Hosegood V, Newell ML, McGrath N, Bérnighausen T, Snow RC. Gender, migration and
HIV in rural KwaZulu-Natal, South Africa. PLOS ONE. 2010; 5:1-10. https://doi.org/10.1371/journal.
pone.0011539

Deane KD, Parkhurst JO, Johnston D. Linking migration, mobility and HIV. Tropical Medicine and Inter-
national Health. 2010; 15(12):1458—1463. https://doi.org/10.1111/j.1365-3156.2010.02647.x PMID:
20958895

PLOS ONE | https://doi.org/10.1371/journal.pone.0217284 June 5, 2019 19/22


https://doi.org/10.1111/j.1467-985X.2007.00490.x
https://doi.org/10.1111/j.1467-985X.2009.00630.x
https://doi.org/10.1080/01621459.2013.789435
https://doi.org/10.1080/01621459.2013.789435
https://doi.org/10.1038/nature04292
http://www.ncbi.nlm.nih.gov/pubmed/16437114
http://dx.doi.org/10.1007/978-3-319-06483-3_12
http://dx.doi.org/10.1007/978-3-319-06483-3_12
https://doi.org/10.1097/QAD.0000000000001292
https://doi.org/10.1097/QAD.0000000000001292
http://www.ncbi.nlm.nih.gov/pubmed/27755099
https://doi.org/10.1214/088342305000000304
https://doi.org/10.1214/088342305000000304
https://doi.org/10.1146/annurev-statistics-060116-053803
https://doi.org/10.1016/j.jmva.2004.02.009
https://doi.org/10.1016/j.jmva.2004.02.009
https://doi.org/10.1214/10-AOAS397
https://doi.org/10.1214/10-AOAS397
https://doi.org/10.1198/jasa.2011.tm10465
http://www.ncbi.nlm.nih.gov/pubmed/26924867
https://doi.org/10.1093/ije/dym211
http://www.ncbi.nlm.nih.gov/pubmed/17998242
https://doi.org/10.1126/science.1228160
https://doi.org/10.1126/science.1228160
http://www.ncbi.nlm.nih.gov/pubmed/23430656
https://doi.org/10.1073/pnas.91.7.2407
https://doi.org/10.1073/pnas.91.7.2407
https://doi.org/10.1080/13691830600610056
http://www.ncbi.nlm.nih.gov/pubmed/19959971
https://doi.org/10.1371/journal.pone.0011539
https://doi.org/10.1371/journal.pone.0011539
https://doi.org/10.1111/j.1365-3156.2010.02647.x
http://www.ncbi.nlm.nih.gov/pubmed/20958895
https://doi.org/10.1371/journal.pone.0217284

@ PLOS | O N E A method for statistical analysis of repeated residential movements to link human mobility and HIV acquisition

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

Anglewicz P. Migration, marital change, and HIV infection in Malawi. Demography. 2012; 49:239-265.
https://doi.org/10.1007/s13524-011-0072-x PMID: 22109083

Goldenberg SM, Strathdee SA, Perez-Rosales MD, Sued O. Mobility and HIV in Central America and
Mexico: a critical review. Journal of Immigrant and Minority Health. 2012; 14(1):48—64. https://doi.org/
10.1007/s10903-011-9505-2 PMID: 21789558

Veary J. Learning from HIV: exploring migration and health in South Africa. Global Public Health. 2012;
7(1):58-70. https://doi.org/10.1080/17441692.2010.549494

Weine SM, Kashuba AB. Labor migration and HIV risk: a systematic review of the literature. AIDS and
Behavior. 2012; 16:1605—-1621. https://doi.org/10.1007/s10461-012-0183-4 PMID: 22481273

Cassels S, Jenness SM, Biney AAE, Ampofo WK, Dodoo FNA. Migration, sexual networks, and HIV in
Agbogbloshie, Ghana. Demographic Research. 2014; 31:861-888. https://doi.org/10.4054/DemRes.
2014.31.28 PMID: 25364298

Tatem AJ, Hemelaar J, Gray RR, Salemi M. Spatial accessibility and the spread of HIV-1 subtypes and
recombinants. AIDS. 2012; 26:2351-2360. https://doi.org/10.1097/QAD.0b013e328359a904 PMID:
22951637

Béarnighausen T, Hosegood V, Timaeus IM, Newell ML. The socioeconomic determinants of HIV inci-
dence: evidence from a longitudinal, population-based study in rural South Africa. AIDS. 2007; 21:529—
S38. https://doi.org/10.1097/01.aids.0000300533.59483.95 PMID: 18040162

Anglewicz P, Van Landingham M, Manda-Taylor L, Kohler HP. Migration and HIV infection in Malawi.
AIDS. 2016; 30(13):2099—-2105. https://doi.org/10.1097/QAD.0000000000001150 PMID: 27163708

Dladla AN, Hiner CA, Qwana E, Lurie M. Speaking to rural women: The sexual partnerships of rural
South African women whose partners are migrants. Society in Transition. 2001; 32(1):79-82. https://
doi.org/10.1080/21528586.2001.10419032

Lurie MN, Williams BG, Zuma K, Mkaya-Mwamburi D, Garnett GP, Sweat MD, et al. Who infects
whom? HIV-1 concordance and discordance among migrant and non-migrant couples in South Africa.
AIDS. 2003; 17:2245-2252. PMID: 14523282

Collinson MA. Striving against adversity: the dynamics of migration, health and poverty in rural South
Africa. Global Health Action. 2010; 3. https://doi.org/10.3402/gha.v3i0.5080

Hunter M. The changing political economy of sex in South Africa: the significance of unemployment and
inequalities to the scale of the AIDS pandemic. Social Science & Medicine. 2007; 64:689—700. https://
doi.org/10.1016/j.socscimed.2006.09.015

Hargreaves JR, Bonell CP, Morison LA, Kim JC, Phetla G, Porter JDH, et al. Explaining continued high
HIV prevalence in South Africa: socioeconomic factors, HIV incidence and sexual behaviour change
among a rural cohort, 2001-2004. AIDS. 2007; 21:S39-S48. https://doi.org/10.1097/01.aids.
0000300534.97601.d6 PMID: 18040163

Munyewende P, Rispel LC, Harris B, Chersich M. Exploring perceptions of HIV risk and health service
access among Zimbabwean migrant women in Johannesburg: a gap in health policy in South Africa? Jour-
nal of Public Health Policy. 2011; 32:5152-S161. https://doi.org/10.1057/jphp.2011.36 PMID: 21730988

Giorgio M, Townsend L, Zembe Y, Cheyip M, Guttmacher S, Carter R, et al. HIV prevalence and risk
factors among male foreign migrants in Cape Town, South Africa. AIDS and Behavior. 2014; 18:2020—
2029. https://doi.org/10.1007/s10461-014-0784-1 PMID: 24781639

Colebunders R, Kenyon C. Behaviour, not mobility, is a risk factor for HIV. The Lancet HIV. 2015; 2:
€223-224. https://doi.org/10.1016/S2352-3018(15)00057-0 PMID: 26423190

McGrath N, Eaton JW, Newell ML, Hosegood V. Migration, sexual behaviour, and HIV risk: a general
population cohort in rural South Africa. The Lancet HIV. 2015; 2:e252—e259. https://doi.org/10.1016/
S$2352-3018(15)00045-4 PMID: 26280016

Vandormael A, Newell ML, Barnighausen T, Tanser F. Use of antiretroviral therapy in households and
risk of HIV acquisition in rural KwaZulu-Natal, South Africa, 2004—12: a prospective cohort study. The
Lancet Global Health. 2014; 2:e209-e215. https://doi.org/10.1016/S2214-109X(14)70018-X PMID:
24782953

Vearey J, Palmary |, Thomas L, Nunez L, Drimie S. Urban health in Johannesburg: the importance of
place in understanding intra-urban inequalities in a context of migration and HIV. Health & Place. 2010;
16:694—-702. https://doi.org/10.1016/j.healthplace.2010.02.007

Tanser F, de Oliveira T, Maheu-Giroux M, Barnighausen T. Concentrated HIV sub-epidemics in gener-
alized epidemic settings. Current Opinion in HIV and AIDS. 2014; 9:115-125. https://doi.org/10.1097/
COH.0000000000000034 PMID: 24356328

Tomita A, Vandormael AM, Bérnighausen T, de Oliveira T, Tanser F. Social disequilibrium and the risk
of HIV acquisition: a multilevel study in rural KwaZulu-Natal Province, South Africa. Journal of Acquired
Immune Deficiency Syndrome. 2017; 75:164—174. https://doi.org/10.1097/QAI.0000000000001349

PLOS ONE | https://doi.org/10.1371/journal.pone.0217284 June 5, 2019 20/22


https://doi.org/10.1007/s13524-011-0072-x
http://www.ncbi.nlm.nih.gov/pubmed/22109083
https://doi.org/10.1007/s10903-011-9505-2
https://doi.org/10.1007/s10903-011-9505-2
http://www.ncbi.nlm.nih.gov/pubmed/21789558
https://doi.org/10.1080/17441692.2010.549494
https://doi.org/10.1007/s10461-012-0183-4
http://www.ncbi.nlm.nih.gov/pubmed/22481273
https://doi.org/10.4054/DemRes.2014.31.28
https://doi.org/10.4054/DemRes.2014.31.28
http://www.ncbi.nlm.nih.gov/pubmed/25364298
https://doi.org/10.1097/QAD.0b013e328359a904
http://www.ncbi.nlm.nih.gov/pubmed/22951637
https://doi.org/10.1097/01.aids.0000300533.59483.95
http://www.ncbi.nlm.nih.gov/pubmed/18040162
https://doi.org/10.1097/QAD.0000000000001150
http://www.ncbi.nlm.nih.gov/pubmed/27163708
https://doi.org/10.1080/21528586.2001.10419032
https://doi.org/10.1080/21528586.2001.10419032
http://www.ncbi.nlm.nih.gov/pubmed/14523282
https://doi.org/10.3402/gha.v3i0.5080
https://doi.org/10.1016/j.socscimed.2006.09.015
https://doi.org/10.1016/j.socscimed.2006.09.015
https://doi.org/10.1097/01.aids.0000300534.97601.d6
https://doi.org/10.1097/01.aids.0000300534.97601.d6
http://www.ncbi.nlm.nih.gov/pubmed/18040163
https://doi.org/10.1057/jphp.2011.36
http://www.ncbi.nlm.nih.gov/pubmed/21730988
https://doi.org/10.1007/s10461-014-0784-1
http://www.ncbi.nlm.nih.gov/pubmed/24781639
https://doi.org/10.1016/S2352-3018(15)00057-0
http://www.ncbi.nlm.nih.gov/pubmed/26423190
https://doi.org/10.1016/S2352-3018(15)00045-4
https://doi.org/10.1016/S2352-3018(15)00045-4
http://www.ncbi.nlm.nih.gov/pubmed/26280016
https://doi.org/10.1016/S2214-109X(14)70018-X
http://www.ncbi.nlm.nih.gov/pubmed/24782953
https://doi.org/10.1016/j.healthplace.2010.02.007
https://doi.org/10.1097/COH.0000000000000034
https://doi.org/10.1097/COH.0000000000000034
http://www.ncbi.nlm.nih.gov/pubmed/24356328
https://doi.org/10.1097/QAI.0000000000001349
https://doi.org/10.1371/journal.pone.0217284

@ PLOS | O N E A method for statistical analysis of repeated residential movements to link human mobility and HIV acquisition

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Tanser F, Barnighausen T, Hund L, Garnett GP, McGrath N, Newell ML. Effect of concurrent sexual
partnerships on rate of new HIV infections in a high-prevalence, rural South African population: a cohort
study. The Lancet. 2011; 378:247-255. https://doi.org/10.1016/S0140-6736(11)60779-4

Tanser F, Vandormael A, Cuadros D, Phillips AN, de Oliveira T, Tomita A, et al. Effect of population
viral load on prospective HIV incidence in a hyperendemic rural African community. Science Transla-
tional Medicine. 2017; 9. https://doi.org/10.1126/scitransiImed.aam8012 PMID: 29237762

Lurie MN, Williams BG, Zuma K, Mkaya-Mwamburi D, Garnett GP, Sturm AW, et al. The impact of
migration on HIV-1 transmission in South Africa: a study of migrant and nonmigrant men and their part-
ners. Sexually Transmitted Diseases. 2003; 30:149-156. PMID: 12567174

Cassels S, Jenness SM, Khanna AS. Conceptual framework and research methods for migration and
HIV transmission dynamics. AIDS and Behavior. 2014; 18:2302—2313. https://doi.org/10.1007/s10461-
013-0665-z PMID: 24257897

Lurie MN, Williams BG. Migration and health in Southern Africa: 100 years and still circulating. Health
Psychology and Behavioral Medicine: An Open Access Journal. 2014; 2:34—40. https://doi.org/10.
1080/21642850.2013.866898

National Department of Health of South Africa. The 2011 National Antenatal Sentinel HIV & syphilus
prevalence survey in South Africa; 2012. Available online at https://www.health-e.org.za.

Statistics South Africa. Mid-year population estimates, South Africa; 2004. Available online at http://
www.statssa.gov.za/.

Jochelson K, Mothibeli M, Leger JP. Human Immunodeficiency Virus and Migrant Labor in South Africa.
International Journal of Health Services. 1991; 21:157-173. https://doi.org/10.2190/11UE-L88J-46HN-
HROK PMID: 2004869

Hargrove J. Migration, mines and mores: the HIV epidemic in southern Africa. South African Journal of
Science. 2008; 104:53-61.

Lurie M, Harrison A, Wilkinson D, Karim SA. Circular migration and sexual networking in rural KwaZulu-
Natal: implications for the spread of HIV and other sexually transmitted diseases. Health Transition
Review. 1997; 7:17-27.

Rasmussen DA, Wilkinson E, Vandormael A, Tanser F, Pillay D, Stadler T, et al. Tracking external
introductions of HIV using phylodynamics reveals a major source of infections in rural KwaZulu-
Natal, South Africa. Virus Evolution. 2018; 4:vey037. https://doi.org/10.1093/ve/vey037 PMID:
30555720

Posel D. Influx control and urban labour markets in the 1950s. In: Bonner PL, Delius P, Posel D, editors.
Apartheid’s genesis, 1935-1962. Ravan Press of South Africa; 1993.

Preston-Whyte E. Women who are not married: Fertility, ‘illegitimacy’, and the nature of households
and domestic groups among single African women in Durban. South African Journal of Sociology.
1993; 24:63-71. https://doi.org/10.1080/02580144.1993.10432905

Hosegood V, McGrath N, Moultrie T. Dispensing with marriage: marital and partnership trends in rural
KwaZulu-Natal, South Africa 2000-2006. Demographic Research. 2009; 20:279-312. https://doi.org/
10.4054/DemRes.2009.20.13 PMID: 25729322

Moore H. Households and gender in a South African bantustan. African Studies. 1994; 53:137—142.
https://doi.org/10.1080/00020189408707792

Butler A. South Africa’s HIV/AIDS policy, 1994-2004: How can it be explained? African Affairs. 2005;
104:591-614. https://doi.org/10.1093/afraf/adi036

Nattrass N. Mortal Combat: AIDS denialism and the struggle for antiretrovirals in South Africa. Univer-
sity of KwaZulu-Natal Press; 2007.

Vandormael A. The TAC'’s “Intellectual Campaign” (2000—2004): Social Movements and Epistemic
Communities. Politikon. 2007; 34:217-233. https://doi.org/10.1080/02589340701725306

Forsyth B, Vandormael A, Kershaw T, Grobbelaar J. The political context of AIDS-related stigma and
knowledge in a South African township community. SAHARA J: Journal of Social Aspects of HIV/AIDS
Research Alliance. 2008; 5:74—82. https://doi.org/10.1080/17290376.2008.9724904

Department of Health. The South African antiretroviral treatment guidelines: 2010. Pretoria; 2010.

Shisana O, Rehle T, Simbayi LC, Zuma K, Jooste S, Zungu N, et al. South African National HIV
Prevalence, Incidence and Behaviour Survey, 2012. Human Sciences Resource Council Press;
2014.

Human Sciences Research Council. The Fifth South African National HIV Prevalence, Incidence,
Behaviour and Communication Survey, 2017; 2018.

Muhwava W, Hosegood V, Nyirenda M, Herbst K, Newell ML. Levels and determinants of migration in
rural KwaZulu-Natal, South Africa. African Population Studies. 2010; 24:259-280.

PLOS ONE | https://doi.org/10.1371/journal.pone.0217284 June 5, 2019 21/22


https://doi.org/10.1016/S0140-6736(11)60779-4
https://doi.org/10.1126/scitranslmed.aam8012
http://www.ncbi.nlm.nih.gov/pubmed/29237762
http://www.ncbi.nlm.nih.gov/pubmed/12567174
https://doi.org/10.1007/s10461-013-0665-z
https://doi.org/10.1007/s10461-013-0665-z
http://www.ncbi.nlm.nih.gov/pubmed/24257897
https://doi.org/10.1080/21642850.2013.866898
https://doi.org/10.1080/21642850.2013.866898
https://www.health-e.org.za
http://www.statssa.gov.za/
http://www.statssa.gov.za/
https://doi.org/10.2190/11UE-L88J-46HN-HR0K
https://doi.org/10.2190/11UE-L88J-46HN-HR0K
http://www.ncbi.nlm.nih.gov/pubmed/2004869
https://doi.org/10.1093/ve/vey037
http://www.ncbi.nlm.nih.gov/pubmed/30555720
https://doi.org/10.1080/02580144.1993.10432905
https://doi.org/10.4054/DemRes.2009.20.13
https://doi.org/10.4054/DemRes.2009.20.13
http://www.ncbi.nlm.nih.gov/pubmed/25729322
https://doi.org/10.1080/00020189408707792
https://doi.org/10.1093/afraf/adi036
https://doi.org/10.1080/02589340701725306
https://doi.org/10.1080/17290376.2008.9724904
https://doi.org/10.1371/journal.pone.0217284

@ PLOS | O N E A method for statistical analysis of repeated residential movements to link human mobility and HIV acquisition

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.
79.

Strode A, Slack C, Essack Z. Child consent in South African law: Implications for researchers, service
providers and policy-makers. South African Medical Journal. 2010; 100:247-249. https://doi.org/10.
7196/SAMJ.3609 PMID: 20459973

Vandormael A, Dobra A, Barnighausen T, de Oliveira T, Tanser F. Incidence rate estimation, periodic
testing and the limitations of the mid-point imputation approach. International Journal of Epidemiology.
2018; 47:236-245. https://doi.org/10.10983/ije/dyx134 PMID: 29024978

Tanser F, Barnighausen T, Cooke GS, Newell ML. Localized spatial clustering of HIV infections in a
widely disseminated rural South African epidemic. International Journal of Epidemiology. 2009;
38:1008-1016. https://doi.org/10.1093/ije/dyp148 PMID: 19261659

Tanser F, Barnighausen T, Dobra A, Sartorius B. Identifying “corridors of HIV transmission” in a
severely affected rural South African population: a case for a shift toward targeted prevention strategies.
International Journal of Epidemiology. 2018; 47:537-549. https://doi.org/10.1093/ije/dyx257 PMID:
29300904

Dobra A, Mohammadi R. Loglinear model selection and human mobility. Annals of Applied Statistics.
2018; 12:815-845. https://doi.org/10.1214/18-AOAS1164

Preston CJ. Spatial birth-and-death processes. Bulletin of the International Statistical Institute. 1975;
46:371-391.

Mohammadi R, Wit EC, Dobra A. BDgraph: Bayesian Structure Learning in Graphical Models using
Birth-Death MCMC; 2018. Available from: http://CRAN.R-project.org/package=BDgraph.

Mohammadi A, Dobra A. The R package BDgraph for Bayesian structure learning in graphical models.
ISBA Bulletin. 2017; 4:11-16.

R Core Team. R: A Language and Environment for Statistical Computing; 2018. Available from: https://
www.R-project.org/.

Dobra A, Lenkoski A, Rodriguez A. Bayesian inference for general Gaussian graphical models with
application to multivariate lattice data. Journal of the American Statistical Association. 2011; 106:1418—
1433. https://doi.org/10.1198/jasa.2011.tm10465 PMID: 26924867

Putnam SH, Chung SH. Effects of spatial systems design on spatial interaction models. 1: The spatial
definition problem. Environment and Planning A. 1989; 21:27—-46. https://doi.org/10.1068/a210027

Fotheringham AS, Wong DWS. The multivariate areal unit problem in multivariate statistical analysis.
Environment and Planning A. 1991; 23:1025-1044. https://doi.org/10.1068/a231025

Fienberg SE. The Analysis of Cross-Classified Categorical Data. MIT Press, Cambridge, MA; 1980.
UNAIDS. 90—90-90—An ambitious treatment target to help end the AIDS epidemic; 2014. UNAIDS.

PLOS ONE | https://doi.org/10.1371/journal.pone.0217284 June 5, 2019 22/22


https://doi.org/10.7196/SAMJ.3609
https://doi.org/10.7196/SAMJ.3609
http://www.ncbi.nlm.nih.gov/pubmed/20459973
https://doi.org/10.1093/ije/dyx134
http://www.ncbi.nlm.nih.gov/pubmed/29024978
https://doi.org/10.1093/ije/dyp148
http://www.ncbi.nlm.nih.gov/pubmed/19261659
https://doi.org/10.1093/ije/dyx257
http://www.ncbi.nlm.nih.gov/pubmed/29300904
https://doi.org/10.1214/18-AOAS1164
http://CRAN.R-project.org/package=BDgraph
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1198/jasa.2011.tm10465
http://www.ncbi.nlm.nih.gov/pubmed/26924867
https://doi.org/10.1068/a210027
https://doi.org/10.1068/a231025
https://doi.org/10.1371/journal.pone.0217284

