arXiv:1811.02095v1 [cs.LG] 6 Nov 2018

KERNEL MACHINES BEAT DEEP NEURAL NETWORKS ON MASK-BASED
SINGLE-CHANNEL SPEECH ENHANCEMENT

Like Hui, Siyuan Ma, Mikhail Belkin

Department of Computer Science and Engineering, The Ohio State University, USA

hui.87 @osu.edu, {masi, mbelkin} @cse.ohio-state.edu

ABSTRACT

We apply a fast kernel method for mask-based single-channel
speech enhancement. Specifically, our method solves a kernel
regression problem associated to a non-smooth kernel func-
tion (exponential power kernel) with a highly efficient itera-
tive method (EigenPro). Due to the simplicity of this method,
its hyper-parameters such as kernel bandwidth can be auto-
matically and efficiently selected using line search with sub-
samples of training data. We observe an empirical correla-
tion between the regression loss (mean square error) and reg-
ular metrics for speech enhancement. This observation justi-
fies our training target and motivates us to achieve lower re-
gression loss by training separate kernel model per frequency
subband. We compare our method with the state-of-the-art
deep neural networks on mask-based HINT and TIMIT. Ex-
perimental results show that our kernel method consistently
outperforms deep neural networks while requiring less train-
ing time.

Index Terms— large-scale kernel machines, deep neu-
ral networks, speech enhancement, exponential power kernel,
automatic hyper-parameter selection

1. INTRODUCTION

The challenging problem of single-channel speech enhance-
ment has received significant attention in research and ap-
plications. In recent years the dominant methodology for
addressing single-channel speech enhancement has been
based on neural networks of different architectures [1, 2].
Deep Neural Networks (DNNs) present an attractive learn-
ing paradigm due to their empirical success on a range of
problems and efficient optimization.

In this paper, we demonstrate that modern large-scale ker-
nel machines are a powerful alternative to DNNs, capable
of matching and surpassing their performance while utilizing
less computational resources in training. Specifically, we take
the approach to speech enhancement based on the Ideal Bi-
nary Mask (IBM) and Ideal Ratio Mask (IRM) methodology.
The first application of DNNSs to this problem was presented
in [3], which used a DNN-SVM (support vector machine)
system to solve the classification problem corresponding to

estimating the IBM. [4] compared different training targets
including IRM. [5] proposed a regression-based approach to
estimate speech log power spectrum. Recently, [6] applies re-
current neural networks to similar mask-based tasks and [7]
applies convolutional networks to the spectrum-based tasks.

Kernel-based shallow models (which can be interpreted
as two-layer neural networks with a fixed first layer), were
also proposed to deal with speech tasks. In particular, [8]
gave a kernel ridge regression method, which matched DNN
on TIMIT. Inspired by this work, [9] applied an efficient one-
vs-one kernel ridge regression for speech recognition. [10]
developed kernel acoustic models for speech recognition. No-
tably, these approaches require large computational resources
to achieve performance comparable to neural networks.

In our opinion, the computational cost of scaling to larger
data has been a major factor limiting the success of these
methods. In this work we apply a recently developed highly
efficient kernel optimization method EigenPro [11], which al-
lows kernel machines to handle large datasets.

We conduct experiments on standard datasets using mask-
based training target. Our results show that, with EigenPro it-
eration, kernel methods can consistently outperform the per-
formance of DNN in terms of the target mean square error
(MSE) as well as the commonly used speech quality evalua-
tion metrics including perceptual evaluation of speech quality
(PESQ) and short-time objective intelligibility (STOI).

The contributions of our paper are as follows:
1. Using modern kernel algorithms we show performance

on mask-based speech enhancement surpassing that of
neural networks and requiring less training time.

2. To achieve the best performance, we use exponential
power kernel, which, to the best of our knowledge, has
not been used for regression or classification tasks.

3. The simplicity of our approach allows us to develop a
nearly automatic hyper-parameter selection procedure
based on target speech frequency channels.

The rest of the paper is organized as follows. Section 2 in-
troduces our proposed kernel-based speech enhancement sys-
tem: kernel machines, exponential power kernel, automatic
hyper-parameter selection for subband adaptive kernels. Ex-
perimental results and time complexity comparisons are dis-
cussed in Section 3. Section 4 gives the conclusion.



2. model training )

Xtrain Xtmin E
(subset) Yirain '
frequency .

autotune .\ EigenPro .

iR N R S ! TR

Ytrain > ! -3
subset) | |7 u -
( ) : >
B hhht

© learned
! model |

1 4. waveform reconstruction

Fig. 1: Kernel-based speech enhancement framework

2. KERNEL-BASED SPEECH ENHANCEMENT

2.1. Kernel Machines

The standard kernel methods for classification/regression de-
note a function f that minimizes the discrepancy between
f(=;) and y;, given labeled samples (x;,y;),_, , where
x; € R%is a feature vector and y; € R is its label.

Specifically, the space of f is a Reproducing Kernel
Hilbert Space H associated to a positive-definite kernel func-
tion k : R? x R? — R. We typically seek a function f* € H
for the following optimization problem:

fr=argmingg o 1l (D

According to the Representer Theorem [12], f* has the form

fl@) =" ak(z,x)), 2
j=1
To compute f* is equivalent to solve the linear system,
Ka:(yla”' 7y7l)T7 (3)
where the kernel matrix K has entry [K];; = k(z;,z;) and
a £ (o, - ,a,)7 is the representation of f under basis

{k(~,.’l)1), e ak(vzn)}

2.2. Exponential Power Kernel

We use an exponential power kernel of the form

===l
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for our kernel machine, where o is the kernel bandwidth and ~
is often called shape parameter. [13] shows that the exponen-
tial power kernel is positive definite, hence a valid reproduc-
ing kernel. This kernel also covers a large family of reproduc-
ing kernels including Gaussian kernel (7 = 2) and Laplacian
kernel (y = 1). We observe that in many noise settings
of speech enhancement, the best performance is achieved
using this kernel with shape parameter v < 1, which is
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with parameters that we
use in our experiments.
We have not seen any ap-
plication of this kernel
(with v < 1) in super-
vised learning literature.

2.3. Automatic Subbands Adaptive Kernels

Algorithm 1 Automatic hyper-parameter selection'

Input: Dy, Dy training and validation data, I': a set
of ~y for the exponential power kernel, o;, o,: smallest and
largest bandwidth
Output: selected kernel parameters “Yopt, Sopt f0r Dirain
procedure autotune(Din, Dyar, L', 07, o)

define subprocedure cross-validate(y, o) as: train one
kernel model with k, , on Dy, using EigenPro iteration,
return its loss on Dy,.

for vin I do

0., = search(cross-validate(y, -), o7, o)
Yopts Topt ¢— argmin cross-validate(y, o)
return o, Oopt

vel, o4

procedure search(f, o, op)
if(Jh -0 < 2) then
return o;
select 0,1, 0m2 € (01, 0%)

compute f(07), f(om1), f(om2), f(on)

switch min{ f(a;), f(om1), f(om2), f(on)} do
case f(o;): return search(f, oy, 0p,1)

case f(oy,1): return search(f, oy, om2)
case f(o,2): return search(f, o1, 0p)
(

case f(oyp): return search(f, o2, 0p)

"'We apply memoization technique for computing cross-validate(-, -). We
first attempt to set 0,1, 0m2 as a value that is already used in (Jl7 o), then
we choose them to split (o7, op,) into three parts as equal as possible.



Table 1: Kernel & DNN on TIMIT: (MSE: lowest is best, STOI and PESQ: highest is best. Best results bolded.)

Noise Metrics 5dB 0dB -5dB
Type Kernel | DNN | Noisy || Kernel | DNN | Noisy || Kernel | DNN | Noisy
MSE (-107?) 1.10 1.41 - 1.34 1.86 - 1.17 1.82 -
Engine STOI 0.91 0.90 | 0.80 0.86 0.85 | 0.68 0.80 0.77 | 0.57
PESQ 2.77 2.77 1.97 2.51 2.45 1.66 2.19 2.16 1.41
MSE (-1072) 3.34 3.49 - 4.18 4.37 - 4.94 5.43 -
Babble STOI 0.86 0.86 | 0.77 0.77 0.77 | 0.66 0.64 0.64 | 0.55
PESQ 2.54 252 | 2.08 2.12 2.10 1.73 1.70 1.61 1.42
MSE (-1072) 1.35 1.53 - 1.48 1.67 - 1.60 1.76 -
SSN STOI 0.88 0.88 | 0.81 0.82 0.82 | 0.69 0.74 0.74 | 0.57
PESQ 2.68 2.66 | 2.05 2.36 2.32 1.75 2.03 2.00 1.48
MSE (-1072) 1.44 1.85 - 1.34 1.86 - 1.17 1.82 -
Oproom | STOI 0.88 088 | 0.79 0.84 0.83 | 0.70 0.79 0.76 | 0.59
PESQ 2.80 279 | 2.16 2.50 247 1.78 2.23 2.12 1.40
MSE (-1072) 2.51 2.53 - 2.52 2.55 - 2.71 2.77 -
Factoryl | STOI 0.86 0.86 | 0.77 0.78 0.79 | 0.65 0.68 0.68 | 0.54
PESQ 2.56 2.51 1.99 2.20 2.23 1.62 1.79 1.77 1.29

As empirically shown in Section 3.3, we see that models
with lower MSE at every frequency channel consistently out-
perform other models in STOI. This motivates us to achieve
lower MSE for all frequency channels by tuning kernel pa-
rameters for each of them. In practice, we split the band of
frequency channels into several blocks , which we call sub-
bands.

We propose a simple kernel-based framework as depicted
in Fig. 1 to achieve automatic parameter selection and fast
training for each subband. For i-th subband, the framework
learns one model f(*) related to an exponential power kernel
k() with parameters automatically tuned for this subband,

@) =3 ol 50 (@, ;). )
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Our framework starts by splitting the training targets Yiain
into subband targets YV ... V() For training data re-
lated to the i-th subband (Xsin, Y(i)), we perform fast and
automatic kernel parameter selection using autotune (Algo-
rithm 1) on its subsamples, which selects one exponential
power kernel k() for this subband. We then train a kernel
model on (Xrin, Y(i)) with kernel k() using EigenPro itera-
tion proposed in [11]. It learns an approximate solution «(*)
(or f)) for the optimization problem (1). Our final kernel
machine is then formed by {f(1),--. | f(®},

For any unseen data , our kernel machine first computes
estimated mask f(*)(z) for each subband. Then it combines
the results of { () (x),---, f®) (z)} to obtain the estimated
mask for all frequency channels. Applying this mask to the
noisy speech produces the estimated clean speech.

3. EXPERIMENTAL RESULTS

We use kernel machines with 4 subbands (block of frequen-
cies) for speech enhancement. For fair comparison, we train
both kernel machines and DNNs from scratch using the same
features and targets. We halt the training for any model when
error on validation set stops decreasing. Experiments are run
on a server with 128GB main memory, two Intel Xeon(R) E5-
2620 CPUs, and one GTX Titan Xp (Pascal) GPU.

3.1. Regression Task

We compare kernel machines and DNNs on a speech en-
hancement task described in [4] which is based on TIMIT
corpus [14] and uses real-valued masks (IRM). We follow
the description in [4] for data preprocessing and DNN con-
struction/training. We consider five background noises: SSN,
babble, a factory noise (factoryl), a destroyer engine room
(engine), and an operation room noise (oproom). Every noise
is mixed to speech at —5, 0, 5dB Signal-Noise-Ratio (SNR).

Table 1 reports the MSE, STOI, and PESQ on test set
for kernel machines and DNNs. We also present the STOI
and PESQ of the noisy speech without enhancement. For
all noise settings, we see that kernel machines consistently
produce better MSE, in many cases significantly lower than
that from DNN5, which is also the training objective for both
models. We also see that STOI and PESQ of kernel machines
are consistently better than or comparable to that from DNNs
with only one exception (Factoryl 0dB).

3.2. Classification Task

We train kernel machines and DNNs for a speech enhance-
ment task in [15] which is based on HINT dataset and adopts



binary masks (IBM) as targets. We follow the same procedure
described in [15] to preprocess the data and construct/train
DNNS. Specifically, we use two background noises, SSN and
multi-talker babble. SSN is mixed to speech at -2, -5, -8dB
SNR, and babble is mixed to speech at 0, —2, —5dB SNR. As
our kernel machine is designed for regression task, we use a
threshold 0.5 to map its real-value prediction to binary target

{0,1}.

Table 2: Kernel & DNN on HINT

Model Babble SSN

0dB | -2dB | -5dB || -2dB | -5dB | -8dB
DNN 0.90 | 091 | 0.90 091 | 091 | 0.92
Kernel || 0.92 | 0.92 | 0.91 092 | 0.90 | 0.89

DNN 0.83 | 0.80 | 0.76 || 0.79 | 0.76 | 0.74
Kernel || 0.86 | 0.83 | 0.78 || 0.81 | 0.75 | 0.71

Metrics

Acc

STOI

In Table 2, we compare the classification accuracy (Acc)
and STOI of kernel machine and DNNs under different noise
settings. We see that our kernel machines outperform DNNs
on noise settings with babble and perform worse than DNN on
noise settings with SSN. In all, the proposed kernel machines
match the performance of DNNSs on this classification task.

3.3. Single Kernel and Subband Adaptive Kernels

We start by analyzing the performance of kernel machines
that use a single kernel for all frequency channels on the re-
gression task in Section 3.1. The training of such kernel ma-
chine (1 subband) is significantly faster than that of our de-
fault kernel machine (4 subbands). Remarkably, its perfor-
mance is also quite competitive. It consistently outperforms
DNNs in MSE in all noise settings. In 8 out of 15 noise set-
tings, it produces STOI the same as that from the kernel ma-
chine with 4 subbands (it also produces nearly same PESQ).

Table 3: Comparison of kernel machines with 1 subband and
4 subbands

Noise . Kernel Kernel
setting Metrics (1 subband) | (4 subbands) DNN
SSN MSE 1.60 1.48 1.67
0dB STOI 0.81 0.82 0.82
PESQ 2.35 2.36 2.32
SSN MSE 1.67 1.60 1.76
54B STOI 0.73 0.74 0.74
PESQ 2.01 2.03 2.00
Factory] MSE 2.76 2.71 2.77
54B STOI 0.67 0.68 0.68
PESQ 1.78 1.79 1.77

However, in other noise settings, kernel (1 subband) has
smaller training loss (MSE) than DNNs, but no better STOI
(we show three cases in Table 3) [16, 17]. To improve desired
metrics (STOI/PESQ), we first compare the MSE of every fre-
quency channel of DNNs and kernel machines.
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Fig. 2: MSE along per frequency channel

As shown in Fig. 2a, for cases that kernels have much
smaller overall MSE and smaller MSE on each frequency
channel, kernels also achieve better STOI. For cases like SSN
0dB, as shown in Fig. 2b, even though single kernel (1 sub-
band) has smaller overall MSE, its STOI is not as good as
DNNs. Multiple kernels (4 subbands) decrease MSE further
and also achieve better STOI. This shows that having smaller
MSE along all frequency channels leads to better STOI. This
reveals a correlation between MSE and STOI/PESQ associ-
ated with frequency channels.

3.4. Time Complexity

Table 4: Running time/epochs of Kernel & DNN

Time (minutes) Epochs
Dataset Kernel
T subband | 4 subbands | DTV || Kemel | DNN
HINT 0.8 3.2 6.6 10 50
[TIMIT || 18 | 65 [ 124 5 [ 93 |

In Table 4, we compare the training time of DNNs and
kernel machine on both HINT and TIMIT. Note that the train-
ing of kernel machines in all experiments typically completes
in no more than 10 epochs, significantly less than the number
of epochs required for DNNs. Furthermore, the training time
of kernel machines is also less than that of DNNs. Notably,
training kernel machine with 1 subband takes much less time
than DNNS.

4. CONCLUSION

In this paper, we have shown that kernel machines using ex-
ponential power kernels show strong performance on speech
enhancement problems. Notably, our method needs no pa-
rameter tuning for optimization and employs nearly automatic
tuning for kernel hyper-parameter selection. Moreover, we
show that the training time and computational requirement of
our method are comparable or less than those needed to train
neural networks. We expect that this highly efficient kernel
method will be useful for other problems in speech and signal
processing.
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