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Abstract— With the emergence of the Internet of Things that
allows communications and local computations and with the
vision of Industry 4.0, a foreseeable transition is from cen-
tralized system planning and operation toward decentralization
with interacting components and subsystems, e.g., self-optimizing
factories. In this article, a new “price-based” decomposition
and coordination methodology is developed to efficiently coor-
dinate a system consisting of distributed subsystems such as
machines and parts, which are described by mixed-integer linear
programming (MILP) formulations, in an asynchronous way.
The novel method is a dual approach, whereby the coordina-
tion is performed by updating Lagrangian multipliers based
on economic principles of “supply and demand.” To ensure
low communication requirements within the method, exchanges
between the “coordinator” and subsystems are limited to “prices”
(Lagrangian multipliers) broadcast by the coordinator and to
subsystem solutions sent at the coordinator. Asynchronous coor-
dination, however, may lead to convergence difficulties since the
order in which subsystem solutions arrive at the coordinator
is not predefined as a result of uncertainties in communication
and solving times. Under realistic assumptions of finite com-
munication and solve times, the convergence of our method is
proven by innovatively extending the Lyapunov stability theory.
Numerical testing of generalized assignment problems through
simulation demonstrates that the method converges fast and
provides near-optimal results, paving the way for self-optimizing
factories in the future. Accompanying CPLEX codes and data
are included.

Note to Practitioners—In view of a foreseeable transition
toward self-optimizing factories whereby machines and parts
have communication and computational capabilities, a novel
“price-based” distributed and asynchronous method to coordi-
nate a system consisting of distributed subsystems is developed.
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Under realistic assumptions of finite communication and solve
times, method convergence is proven. Numerical testing of gen-
eralized assignment problems through simulation demonstrates
that the method converges fast and provides near-optimal results,
paving the way for self-optimizing factories in the future. Accom-
panying CPLEX codes and data are included.

Index Terms—Distributed and asynchronous algorithms,
mixed-integer linear programming (MILP) problems,
self-optimizing factories, surrogate Lagrangian relaxation
(LR).

I. INTRODUCTION

ITH the emergence of the Internet of Things [1], [2]
Wempowered by smart sensors together with advanced
computation and communication technologies and with the
vision of Industry 4.0 [3], [4], a foreseeable transition is from
centralized system planning and operation toward decentraliza-
tion. For example, within self-optimizing factories, a system
will consist of multiple distributed and interacting compo-
nents/subsystems that need to be coordinated. Within these
futuristic factories, distributed subsystems, such as machines
and parts, are coordinated through 5G networks to meet certain
objectives, such as on-time delivery. In manufacturing, exam-
ples of operations optimization problems include planning,
scheduling, and dispatching problems [5], [6]. Scheduling
problems are solved before each shift and require short solving
times, such as a few minutes, and online dispatching of a
part to a machine may require a few seconds. Because of the
many possible interconnections among parts, operations, and
machines, an efficient communication scheme is required to
prevent bandwidth overloading. This motivates the need for
efficient, coordinated operations while ensuring high compu-
tational and communication efficiency.

A system consisting of subsystems are frequently formu-
lated as mixed-integer linear programming (MILP) subprob-
lems. For complicated systems, the complexity of MILP
problems is a serious issue because of the presence of integer
decision variables, and the goal of obtaining high-quality solu-
tions within short times as delineated earlier, typically cannot
be met. Nevertheless, the structures of these systems and the
associated MILP problems are amenable to decomposition into
individual MILP subproblems associated with corresponding
subsystems with drastically reduced complexity. Tradition-
ally, to coordinate subproblems, price-based decomposition
and coordination Lagrangian relaxation (LR) method [7]-[11]
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has been used by exploiting problem separability in manu-
facturing problems, such as job-shop scheduling [10]. The
LR method is a dual approach, whereby the coordination
is performed by updating Lagrangian multipliers based on
economic principles of “supply and demand.” Multipliers (or
“shadow prices”) are updated based on levels of violation of
relaxed constraints by using subgradient methods [12], [13].
Because of the exploitation of decomposability, the method
is a good candidate for coordinating distributed subsystems
whereby a coordinator updates multipliers and only needs
to know solutions of subproblems associated with distributed
subsystems. However, standard LR methods suffer from major
convergence difficulties, such as high computational effort,
zigzagging of multipliers, and the need to know the optimal
dual values. Moreover, since standard LR requires solving all
subproblems to update multipliers, the method is synchronous.
When the number of subproblems is large, synchronous coor-
dination may lead to inefficient time management since “fast”
subproblem solvers will likely spend a significant amount of
time waiting for synchronization.

Some the above-mentioned difficulties have been overcome
within several versions of LR, such as incremental subgradient
methods [14], [15], alternate direction method of multipliers
(ADMM) [16]-[21], surrogate subgradient method [22], and
surrogate Lagrangian relaxation (SLR) [23], [24], [48], to be
reviewed in Section II. The distributed and asynchronous
incremental subgradient method [15] for optimizing convex
dual functions consisting of a large number of components,
which arise within the LR framework with a large num-
ber of subproblems, overcomes the synchronization difficulty.
However, the method may be slow when there are both
“slow” and “fast” subsystems since the method requires that
all subproblem solutions arrive at the coordinator with the
same “long-term” frequency, on average. ADMM [16]-[21], a
decomposable version of the method of multipliers (frequently
referred to as “augmented LR” (ALR) [25], [26]), aims
at accelerating convergence of traditional LR by penalizing
constraint violations by using quadratic penalty terms and
by decomposing relaxed problems arising in ALR to reduce
computational effort. However, when it comes to coordination
of MILP subproblems, neither synchronous nor asynchronous
versions of ADMM converge.

Our recent SLR method [23], [24], [48] has overcome
major convergence difficulties of standard LR, such as high
computational effort, zigzagging of multipliers, and the need
to know the optimal dual value for convergence. Moreover,
as demonstrated in [24, Fig. 1, p. 537], the method outperforms
another coordination method—ADMM. In [48], it has been
demonstrated that the surrogate ALR method, which is built
upon the SLR method, is capable of efficiently coordinating
thousands of subsystems. The method has, thus, been demon-
strated to be powerful, and the asynchronous functionality will
be added to efficiently coordinate distributed subsystems to be
discussed next.

In this article, a novel distributed and asynchronous price-
based decomposition and coordination method based upon
our recent SLR method [23] is developed in Section III to
efficiently coordinate a system consisting of distributed MILP
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subsystems within futuristic self-optimizing factories while
overcoming difficulties associated with other dual methods
mentioned earlier. Within the new method, multiple distrib-
uted subsystems and one coordinator have computation and
communication capabilities. To avoid excessive data transfer
within the system, information exchanges between the coordi-
nator and subsystems are limited to: 1) “prices” (Lagrangian
multipliers) broadcast by the coordinator and to 2) subsystem
solutions sent at the coordinator. While asynchronous coor-
dination avoids the synchronization issue, it leads to major
convergence difficulties: 1) because of uncertainties in solv-
ing, communication, and multiplier-updating times, the order
in which subsystem solutions arrive at the coordinator is
uncertain and 2) subsystem solutions are obtained based on
multipliers of different vintages, and multipliers may not con-
verge. To overcome these difficulties while ensuring fast speed,
rather than requiring the “long-term” frequency requirement as
in [15], convergence is proven under a “freshness’” assumption,
whereby a coordinator can update multipliers without waiting
for “slow” subproblems as long as all subproblem solutions
arrive at the coordinator at least once within a finite number
of iterations. Our idea to establish convergence is through
the novel use of the Lyapunov energy function defined as
the square of the distance from the current prices to the
optimum with the idea of forcing this function to approach
zero thereby ensuring that prices approach their optimal val-
ues. Although not monotonically decreasing as required by
traditional Lyapunov methods for convergence [27], an upper
bound is innovatively established as an envelope of Lyapunov
functions for all possible (uncertain) trajectories of multipliers
(“prices”) that result from uncertain sequences of subproblem
solutions arriving at the coordinator. Based on the contraction
mapping concept whereby distances between multipliers at
consecutive iterations decrease, it is then proved in the main
theorem and several supporting propositions that these upper
bound approaches zero, thereby leading to convergence.

In Section IV, by simulating asynchronous updates of multi-
pliers, two examples are presented. The first small example is
to show that Lyapunov functions within the new method while
nonmonotonic, approach zero fast. The second example is
based on generalized assignment problems (GAPs), which can
be viewed as simplified problems that arise within factories.
These results demonstrate that the new method converges fast.
With such effective distributed and asynchronous coordination,
the method has valuable implications for future self-optimizing
factories to coordinate machines or parts.

II. LITERATURE REVIEW

SLR is reviewed in Section II-A. In Section II-B, other exist-
ing price-based decomposition and coordination approaches,
such as the distributed asynchronous incremental subgradient
method, and asynchronous ADMM, both are versions of LR
tailored for asynchronous coordination, are reviewed, and their
limitations are presented. In Section II-C, our recent SLR
is reviewed as a promising approach for the development
of an efficient asynchronous coordination method. Since this
article deals with the coordination of MILP subsystems that
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use branch-and-cut to solve their subproblems, branch-and-cut
is reviewed in Section II-D. Methods that do not support
distributed coordination, such as heuristics methods, or the
distributed methods that require continuity of problems are
not reviewed.

A. Standard Lagrangian Relaxation

Traditionally, to solve MILP problems, LR [7]-[11] has
been used to exploit problem separability. Specifically, in man-
ufacturing, to solve job-shop scheduling, machine capacity
coupling constraints are relaxed to decompose the prob-
lem into part subproblems [10]. The LR method is a dual
approach whereby the coordination is performed by updating
Lagrangian multipliers based on economic principles of “sup-
ply and demand.” Within standard LR, multipliers (or “shadow
prices”) are updated after receiving subproblem solutions and
based on levels of violation of relaxed constraints by using
subgradient methods [12], [13]. Because of the exploitation of
decomposability, the LR method is a good candidate for coor-
dinating distributed subsystems whereby a coordinator updates
multipliers and only needs to know solutions of subproblems
associated with distributed subsystems. However, standard LR
methods suffer from major convergence difficulties. Because
of the presence of discrete variables, the dual function is
nonsmooth polyhedral concave [28, p. 670, Proposition 7.1.2].
Therefore, gradients may not exist, and subgradients are used.
Moreover, ridges of the dual function may be sharp. Since
the method requires solving all subproblems, because of the
sharp ridges, subgradient directions may change drastically
from one iteration to the next. As a result, multipliers suffer
from zigzagging across ridges of the dual function [23, p. 192,
Fig. 1], [29, p. 594, Fig. 1]. In addition, the convergence
proof and as practical implementations require the knowl-
edge of the optimal dual value, which is unknown and is
typically adaptively adjusted in practice as in “subgradient-
level” methods [30] or incremental subgradient methods [31].
However, these adjustments are inefficient, and convergence
is slow, as demonstrated in [23, pp. 195-196 and 199,
Figs. 3-5 and 7].

B. Distributed and Asynchronous Coordination Methods

1) Distributed Asynchronous Incremental Subgradient
Method: To optimize nonsmooth dual functions consisting
of a large number of components, which arise within the
LR framework, in a distributed and asynchronous manner,
a distributed asynchronous incremental subgradient method
was developed [15]. The method requires that all subproblem
solutions arrive at the coordinator with the same “long-term”
frequency on average, and convergence was proven using
the diminishing stepsizing rule. Moreover, convergence was
proven under the assumption that the subgradient is split
into individual components, and each component is updated
independently rather than updating the subgradient as a
whole. Under this scheme, convergence may be slow in
situations whereby there are “fast” and “slow” subsystems
solvers because ‘“fast” subsystems may spend significant

amounts of time waiting to satisfy the “long-term” frequency
requirement.

2) Alternate Direction Method of Multipliers: ADMM,
a decomposable version of the method of multipliers [25], [26]
(frequently referred to as ALR), aims at accelerating con-
vergence of traditional LR by penalizing constraint viola-
tions by using quadratic penalty terms and by decomposing
relaxed problems arising in ALR to reduce computational
effort. Within the asynchronous ADMM, to alleviate the
issues associated with synchronization, two conditions are
used: 1) “partial barrier,” which allows the coordinator to
update multipliers after receiving solutions from one or few
subsystems and 2) “bounded delay,” which requires solutions
from every subsystem to arrive at the coordinator at least
once within a finite number of iterations [21], [32]. However,
ADMM converges when solving convex problems only [21,
p. 419], but when solving nonconvex problems, ADMM does
not converge [33, p. 73]. This is because, within ADMM,
stepsizes do not approach zero, which is the requirement to
guarantee convergence when optimizing nonsmooth polyhe-
dral concave dual functions [13], [23]. Moreover, quadratic
penalties make the resulting relaxed problem nonlinear, which
cannot be solved by MILP solvers. While penalty terms can
be linearized [33], the minimum of penalties is typically not
preserved, and the performance of the method is degraded.
Furthermore, penalty terms are a part of each subproblem
formulation, but these terms involve decision variables from
multiple subproblems. Therefore, additional communication
requirements are entailed. For example, in power systems,
communication requirements among subsystems [21], [34] are
needed.

C. Surrogate Lagrangian Relaxation Method

All major difficulties of standard LR, such as high com-
putational effort, zigzagging of multipliers, and the require-
ment of the knowledge of the optimal dual value, have been
overcome within our recent SLR [23], [24], [48]. Within the
method, it is not necessary to optimally solve subproblems.
Rather, it is sufficient to optimize subproblems subject to the
simple “surrogate optimality condition” [23, p. 178, eq. 12]
guaranteeing that “surrogate dual” values approach dual values
[23, p. 181]. Convergence is proven without requiring the
knowledge of the optimal dual value. This was achieved with a
constructive process based on the contraction mapping concept
whereby distances between Lagrange multipliers decrease at
consecutive iterations, and as a result, multipliers converge to a
unique limit. At the same time, stepsizes are kept sufficiently
large to avoid premature algorithm termination. In addition,
a constructive stepsizing formula satisfying these criteria has
been developed. When solving large-scale problems, such as
unit commitment problems arising in power systems [48],
the method demonstrated high efficiency in the coordination
of thousands of power generating units. SLR, thus, satis-
fies high computational efficiency requirement because of
much-improved convergence over standard LR, and low com-
munication requirements because subsystems are not required
to communicate with each other. The method has been shown
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to outperform other previous methods, including coordination
methods, such as ADMM [24].

D. MILP Method: Branch-and-Cut

The main premise behind branch-and-cut [35] is that if the
convex hull! of an MILP problem is obtained, the solution
process is reduced to solving an LP problem. Owing to
the linearity of the problem, the surface of the convex hull
is polyhedral [40], and the vertices of the convex hull are
feasible solutions to the original MILP problem. Because of
finite numbers of variables and constraints, the number of
vertices is finite, and linear programming methods, such as
simplex methods converge to the optimal feasible solution
within a finite number of iterations [36, p. 6]. However,
the convex hull generally cannot be obtained. After relaxing
integrality requirements, branch-and-cut solves the LP-relaxed
problem. Attempting to obtain feasible solutions, branch-
and-cut uses “cuts” to cutoff LP regions that contain fractional
vertices without cutting off feasible solutions. While cuts
generally require an infinite number of iterations to define
facets of the convex hull, branch-and-cut resorts to branch-
and-bound [37], [38] after a finite number of iterations when
“tailing off” of cuts occurs [39, p. 349]. Since the number of
fractional vertices that correspond to integer variables is finite,
the number of branching operations required to obtain optimal
feasible solutions is also finite.

III. CONVERGENCE OF DISTRIBUTED AND
ASYNCHRONOUS SURROGATE LAGRANGIAN RELAXATION

In Section III-A, an MILP problem formulation of a system
consisting of several distributed subsystems is considered.
In Section III-B, our recent price-based decomposition and
coordination SLR method is presented. In Section III-C, a
novel distributed and asynchronous SLR (DA-SLR) method
is developed. In Section III-D, the convergence of DA-SLR
is proven in the dual space. In Section III-E, the practical
considerations of the new method are presented.

A. MILP System With Distributed Subsystems

Consider a system consisting of one coordinator and [
distributed subsystems. Each subsystem is subject to its local
linear constraints, which will not be considered for simplicity
and ease of presentation. The entire system is subject to
system-wide coupling constraints. These constraints couple
individual subsystems and the MILP formulation of an overall
system can be written as follows:

I
min > fi (xi) M
i—1
I
subject to Z gi(x)=0 2)

i—1
where x; = (yi, z;) € X; ¢ RM x ZN', X; are closed and
bounded sets, x = (x1,...,x;) = (v,z) € X ¢ RV x 72V,

IThe convex hull is the smallest convex set that encloses feasible solutions
of a problem.
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y=0On....,y) € RV, z = (z1,...,27) € ZV, with R
denoting the set of real numbers, and Z denoting the set of
integers. Functions f;: X; — R and g;: X; — R are linear.
It is assumed that a set of feasible solutions that satisfy (1)
and (2) is nonempty. To rule out possible irregularities, such
as linear dependence of gradients, of active constraints in the
continuous subspace R"', it is assumed that gradient vectors
of active inequality constraints with respect to continuous
variables y only are linearly independent at a local minimum
x* = (y*, z*) of [41].

B. Surrogate Lagrangian Relaxation

As discussed in Section II, separability of the problem is
exploited by relaxing coupling constraints (2) by introducing
Lagrangian multipliers A7 = (11,...,4,) € R™ and by
decomposing the resulting relaxed problem into individual
subproblems

min{f;(x;) + ()" g;(x;)}- )

As discussed in Section II, it is not necessary to fully
optimize subproblems within SLR. Rather, it is sufficient to
stop optimization after the “surrogate” optimality condition for
subproblems [23, eq. 57] is satisfied at iteration k + 1

FOE) + () gy () < £ (xf) + () 5 (). )

This condition is not the necessary requirement in the sense
that if a subproblem is solved to optimality and the best
solution found is the same as the most recent subproblem
solution, i.e., x?’l = xj?, then, although this solution does
not satisfy (4), the algorithm can proceed. To coordinate

subsystems, multipliers are updated in the following way:
=0 4558 (xY), k=0,1,.... (5)

Here,

I

> el )+l ©6)
i=li#j
are “surrogate” subgradient directions that are obtained instead
of subgradient directions by using a solution from one sub-
problem. If inequality constraints are present in the formula-
tion, multipliers are updated according to (5) with subsequent
projection onto the positive orthant.

Multipliers (5) are updated using stepsizes s* that satisfy

[23, p. 180, egs. (21a) and (21b)], which are derived based on
the contraction mapping concept and are set as

k=1 (k-1
sk:akw, O<ar <1, k=1,2.... (1)
with
! -l
Ok = _Mkp, pP= _k_ra >
O<r<lk=123.... (8

To ensure that stepsizes (7) are well defined, the following
assumption is required.
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Assumption 1 (Boundedness of Surrogate Subgradients):
Surrogate subgradients satisfy the following condition:

|2(x")] <€ < oe. 9)

This assumption is realistic for MILP problems defined
over a closed and bounded set. Indeed, surrogate subgradients
are levels of constraint violations. Since constraints are linear
and each variable is defined over a closed and bounded set,
constraint violations are finite.

Unlike the subgradient method, whereby zero subgradients
imply that the optimum is obtained and the algorithm ter-
minates with the optimal primal solution, within SLR, zero
surrogate subgradient implies that there are no constraint
violations and that a feasible solution is obtained, but it does
not imply zero subgradients. Therefore, this solution is not
guaranteed to be optimal. In this case, an iteration is skipped
without updating multipliers (5) and stepsizes (7) and (8).

As proven in [23], multipliers (5) converge to their optimal
values A* that maximize the following dual function:

q() =minL(2, x) (10)
where
1 1
L, x) =D fie)+ (D) D gilxi) (1)
i=1 i=1

is the Lagrangian function. The problem of minimizing the
Lagrangian function (11) within (10) is referred to as “the
relaxed problem.”

C. Distributed and Asynchronous Surrogate
Lagrangian Relaxation

Within DA-SLR, it is assumed that subsystems have com-
putational and communication capabilities. Namely, subsys-
tems are capable of solving subproblems to obtain solutions
that satisfy the surrogate optimality condition (4) and to
send the resulting solution at the coordinator. To coordinate
subsystems, it is also assumed that the coordinator has the
capability to receive subproblem solutions, update multipli-
ers, and send them to all subproblems. Throughout the rest
of this article, superscript k will denote multiplier-updating
iterations performed by the coordinator. Within the distributed
and asynchronous framework, subproblems are assumed to
perform their own “surrogate” optimization without waiting
for other subproblems to finish, and the coordinator updates
multipliers asynchronously without waiting for all subproblem
solutions to arrive. For notational convenience, superscripts
k of subproblems will denote the most recent subproblem
solution available at iteration k.

Distributed Architecture of the Method: High-level architec-
ture of the method is shown in Fig. 1.

As shown in Fig. 1, information exchanges are limited to
multipliers 4 that the coordinator broadcasts to all subsystems
and subsystem solutions xi, x», .. ., x; that corresponding sub-
systems send at the coordinator. Each subproblem corresponds
to a thread, and each thread is using branch-and-cut to solve
the corresponding subproblem. The coordinator corresponds to
a separate thread to update stepsizes, subgradient directions,

Subproblem 2 Subproblem /

Distributed architecture of the method.

Subproblem 1

Fig. 1.

and multipliers. The dynamic aspect of the coordination will
be discussed next.

By using a simple illustrative example, Fig. 2 demon-
strates the asynchronous update by using one coordinator and
three subproblems, and the difficulties caused by asynchro-
nous updating of multipliers. After obtaining a solution to
the first subproblem, the coordinator updates the multipliers
without waiting for other solutions to arrive and broadcasts
the updated multipliers to all subproblems. Subproblem 1
can then start solving the problem once receiving updated
multipliers. Then, after the third subproblem is solved and
its solution arrives at the coordinator, the coordinator once
again updates multipliers and broadcasts their values to all
subproblems, and so on. While asynchronous coordination
avoids the synchronization issue, it leads to major convergence
difficulties: 1) because of uncertainties in solving, commu-
nication and multiplier-updating times, the order in which
subsystem solutions arrive at the coordinator is uncertain
and 2) subsystem solutions are obtained based on multipliers
of different vintages, and multipliers may not converge. For
example, as demonstrated in Fig. 2, at coordinator iteration 4,
xi is obtained using 1%, xj is obtained using 1°, and x3
is obtained using A!. As a result, there may be conver-
gence difficulties. In Section III-D, under realistic “freshness”
assumption, the convergence of the DA-SLR method will be
proved.

D. Convergence of Distributed and Asynchronous Surrogate
Lagrangian Relaxation

It is assumed that within the DA-SLR method, subproblem
solving times and communication times are finite, which is
equivalent to the following “freshness” assumption.

Assumption 2 (Freshness): There exists integer number D >
0 such that within any consecutive D iterations, all subproblem
solutions arrive at the coordinator at least once. ]

Indeed, if solving and communication times are bounded,
then each subproblem solution should arrive at the coor-
dinator at least once within a finite number of iterations.
The convergence of DA-SLR is stated in the following
theorem.

Main Theorem: Suppose that Assumptions 1 and 2 hold,
the surrogate optimality condition (4) is satisfied by subprob-
lem solutions to (3) that are obtained by using branch-and-
cut, Lagrange multipliers are updated per (5), and stepsizes
are updated per (7) and (8). Within the DA-SLR method for
coordinating MILP problems with separable structure as in (1)
and (2), multipliers converge to 1*. O
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Thread 3
Thread 4

\

Solver 2: use A° to

Solver 3: use A° to
solve its subproblem

solve its subproblem

Solver 2: receive A!
but keep solving

Solver 3: receive A!
but keep solving

I

Solver 3: output x2

Solver 3: use A% to
solve its subproblem

Solver 2: receive A2
but keep solving

Solver 3: receive 13
but keep solving

Solver 2: receive A3
but keep solving
1

L Solver 2: output x5

6
— ~
< =
B s
= =
= E
Coordinator: initialize
x0,%9,x9,2°, and send 2° to
all solvers
Solver 1: use 2° to
solve its subproblem
Solverl: 1 | | Coordinator: use x{, x3, x3,
olverl:output X1 N oo mpute A1 and broadcast it
to all solvers
Solver 1: use A* to
solve its subproblem
Coordinator: use x,x2, x2
compute A2 and broadcast
it to all solvers
Solver 1: receive A2
but keep solving
5 | | Coordinator: use x, x3, x3
Solver I: output X N compute 43 and broadcast
it to all solvers
Solver 1: use A3 to
solve its subproblem
Coordinator: use x3, x5, x2
compute A* and broadcast
it to all solvers
Fig. 2. Tlustration of distributed and asynchronous SLR.

For the ease of understanding, the proof is split into three
steps. In Step 1, it is proven that “surrogate” dual values
approach dual values and multipliers approach the optimum
“infinitely often” (Propositions 1-4). In Step 2, the Lyapunov
function is introduced as the square of distances from mul-
tiplies to the optimum, and the upper bound on Lyapunov
functions is developed (Propositions 5 and 6). In Step 3, with
the help of the result obtained in Steps 1 and 2, in the Main
Theorem, it is proven that the upper bound on Lyapunov
functions approaches zero, thereby leading to convergence of
multipliers.

Step 1 (Convergence of “Surrogate” Dual Values to Dual
Values): Since subproblems are solved subject to the “sur-
rogate” optimality condition (4), rather than obtaining dual
values as within standard LR, “surrogate” dual values are
obtained, which are generally above the dual surface. To prove
that surrogate dual values approach dual values, Propositions 1

and 2 will first prove that the subproblem solutions satisfy-
ing (4) converge to their optimal values.

Proposition 1 (Convergence to Optimal Subproblem Solu-
tions for Fixed 1): Assuming that subproblem solutions satisfy
the surrogate optimality condition (4), then for each subprob-
lem j, there exist finite K ; such that the subproblem solution
is optimal for multiplier values A

(12)

Proof: As explained in Section II-D, an optimal subprob-
lem solution is obtained by branch-and-cut within a finite
number of steps. A subproblem-feasible solution satisfying (4)
is also obtained within a finite number of steps. Since multipli-
ers are assumed to be constant here, (4) implies the decrease
of subproblem objective function. Essentially, branch-and-cut
will continue to search along with the unexplored nodes of
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the branch tree, trying to find a lower objective function value
until the subproblem-optimal solution is obtained. O
The limitation of Proposition 1 is that it is proven for a fixed
set of multipliers. Within DA-SLR, multipliers are updated,
and, therefore, the objective functions of subproblems (3) will
change. In turn, this will affect the optimal solution of a
subproblem. Proposition 2 removes this limitation.
Proposition 2 (Convergence to Optimal Subproblem Solu-
tions): Assuming that subproblem solutions satisfy (4), then
for each subproblem j, there exist finite K; (>K ;) such that
solution to subproblem j is optimal for multiplier values A%/
K; e
x.’ :xj(/IKf).

J

13)

Proof: As proven in Proposition 1, for K; and fixed
AKia subproblem-optimal solution is x (4%7). What remains
to prove is that when multipliers are updated, there exist
K; (> K;) such that optimal solutions at A%/ and A%/ are
the same

405 = 55,
To prove (12), introduce the following operator:
A(f5 (%)) + )" g5(x;)) = argmin{f; (x;) + ()" g (x;)}-
’ 5)

(14)

Because subproblems are defined over bounded sets X,
solutions are finite, and the following inequality holds:

JA(fi(x)) + D" g;(x))] < oo

The operator A is, thus, bounded [42]. Therefore, there exists
a finite constant C/; > 0 such that the following inequality
holds:

A () + D g5 ()| < Cull(fi(xg) + )T g5 (x))) -
(17)

(16)

To establish (12), consider the following norm:
x (1K' x(1K;
x5 (2%) = x5 (2% .
Using (15), (18) can be rewritten as

A ) + (5 g (00) = A () + (25) (7)) |-
(19)

(18)

Because X; is bounded, subproblem objective functions (3)
take on finite values, and therefore, the following inequality
also holds:

JA(F e+ (A59) g5 () = A(fip) + (459) g(x) |
< Cal| (i) + (5N g5x) = (fr) + (A59) ;) |
= Cal (25)" = (2K ) g, 20)

Here, C4 is a finite positive constant. Using the Cauchy—
Schwarz inequality, (20) becomes

[A(F () + (25 g5 (x))) = A5 (x)) + (%Kj)ng @)
< Callg;(x)[25 = 2%]. @b

Since g;(x;) is a component of constraint violations, Assump-
tion 1 is applicable, and therefore

|5 (25) = 5 ()| < Cac2 =25 @)

Since stepsizes (7) and (8) approach zero [23], there exist
iteration K ; and K; such that for any ¢ > 0, the following
inequality holds:

K’ €
_— . 23
sk < CACI(K, = KJ’) (23)

Therefore

C(K; -

A)g_g

K;—1
|25 =25 < D7 [aeh]s' <

=, CaC? ( ) CsC
(24)
From (22) and (24), it is followed that:
) X7 (ikl;) —xj (/IKI') <e. (25)

As reviewed in Section II, subproblem convex hulls contain
a finite number of vertices, each corresponding to a feasible
solution. Moreover, it can be assumed that distances between
any two adjacent vertices are greater than €. Therefore, optimal
solutions at iterations K ; and K; are the same, and (14)
holds. Since it takes a finite number of iterations to obtain
X7 (%7 without updating multipliers, it will also take a finite
number of iterations to obtain x;‘(ikf ) when multipliers are
updated. ]
Proposition 3 (Convergence of “Surrogate” Dual Values to
Dual Values): With stepsizing formulas (7) and (8), Lagrange
multipliers (5) converge to a unique fixed point
pLy} (26)
(not necessarily A*), and surrogate dual values approach dual
values

L( ") = q(2) @7)

where

g(1) =min L(Z, x) (28)

xeX
is a dual value obtained by solving all subproblems optimally
and

Zﬁ +(2) g (xh)

is a “surrogate” dual value obtained after solving one or a few
subproblems subject to the surrogate optimality condition (4).

Proof: As proven in [23], stepsizes (7) and (8) approach
zero. To prove that surrogate dual values approach dual
values, consider first the surrogate optimality condition for
one subproblem j

Fi )+ ) g () < o () +

(29)

(AN g5 (x5). 30)
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By using (5), inequality (30) can be rewritten as
0 + () g5 (x5
< Fi() + (1) g5 () + Mg (). 3D
The inequality (31) can then be equivalently rewritten as
O + () 5 () = £ () = () 8 (%)
<sHles I G

As stepsizes approach zero, there exists x so that for all k > x
and all ¢ > 0, the following inequality holds:

Sl + ) g () = 1 () = () g5 ()
< g“gj(xf) H2 <eC?  (33)

Therefore, {f;(x}) + (#)"g;(x})} forms a convergent
sequence

T _ T

Fi5) + (1) 8, (x5) = £i(x5) + (4) g5(%)) < 00 (34)
Indeed, as proven in Propositions 1 and 2, subproblem solu-
tions approach a limit, which is here denoted as X;. Moreover,
the situation whereby

(25" g (x4) = o0 (35)

is impossible. Multipliers cannot grow without bound because
it would imply that there is always positive or always nega-
tive constraint violation,? implying infeasibility of (1) and (2),
which is impossible. From Assumption 2, within any con-
secutive D iterations, all subproblem solutions arrive at the
coordinator at least once. Moreover, by Propositions 1 and 2,
subproblem-feasible solutions are obtained within a finite
number of iterations. Therefore, optimal solutions to all sub-
problems are obtained within a finite number of iterations,
implying that “surrogate” dual values approaches dual values

L(Z,x") > q(1) ass* —o0. (36)

]

Proposition 4 (Rate of Convergence [23, p. 187]): When

stepsizes are updated per (7) and (8), there exists v > 0, and
the following condition is satisfied “infinitely often”:

gt = LOM ) = v |2 =24, ke (37)

Here, R is an infinite subset of natural numbers.

Proof: If condition (37) is not satisfied infinitely often for
v > 0, then starting from iteration x, the following inequality
holds:

g — LA, x*) <v|ar = 2% k> k.

(38)

There are three cases.

Case 1: The left-hand side of (38) is negative. Surrogate
dual values are greater than ¢* for all k > x, which contradicts
Proposition 3 that states that surrogate dual values approach
dual values.

Case 2: The left-hand side of (38) is positive, and g* —
L%, x*) > ¢ for some ¢ > 0 and kK’ > k > x, then there

2If there are inequality constraints, then the violation would be positive.
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exists v = (¢/(||A* — 2X||*)) > 0, and the following condition
holds:

g = LOK X)) = v 2 = 2| (39)

There is a contradiction with (38) because, in this case, it is
possible to find v" > 0 that satisfies (37).

Case 3: The left-hand side of (38) is positive, but infinites-
imally small, ¢* — i(/lk, xk) < ¢ for all ¢ > 0, then surrogate
dual values approach g*. Since, by Proposition 3, surrogate
dual values approach dual values, then dual values approach
the optimal dual value, and convergence to the optimum is
immediate. 0

Step 2 (Development of an Upper Bound for Lyapunov
Functions): In this step, the Lyapunov function is defined as

V() = i - 2 “0)

which is the square of the distance from current to opti-
mal multipliers. Because subproblem solving times and
subproblem-coordinator communication times are uncertain,
different sequences of subproblem solutions arriving at the
coordinator lead to different trajectories of multipliers. As a
result, the exact representation of the Lyapunov function
is unknown. To resolve this issue, an upper bound of the
Lyapunov function is derived in Propositions 5 and 6 as an
envelope of all possible Lyapunov functions for any sequence
of subproblems arriving at the coordinator. Two inequalities
are derived based on whether the condition (37) holds or
not in Proposition 5. In Proposition 6, these inequalities are
combined to derive an upper bound on all possible Lyapunov
functions.

Proposition 5: As proven in [23, p. 187], under condition
(37) and assuming that stepsizes are “sufficiently small” s* <
1/(2v), the following inequality holds:

it = P = 0 = (1= 258+ (64 o)
(41)

If condition (37) is not satisfied or stepsizes are not “suf-
ficiently small” s* > 1/(2v), then the following inequality
holds:

Hi*—lkﬂ HZ < H’I* _ Ak HZ . (1 +Sk’8k Hg(x") H)
126 (5 + 186]). 40
42)

Proof: Inequality (41) has been derived in [23, Proposi-
tion 2.5]. To derive inequality (42) consider

R
< 2 =2 25t (= ) + () (9 @)
By using the Cauchy—Schwarz inequality, (43) becomes
i =P
= A X e B S R HEOT
(44)

The right-hand side of (44) contains the Lyapunov function
|A* — A¥||? at iteration k and its square root [A* — A¥|.
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In order to express the inequality (44) in terms of the Lyapunov
function, the basic inequality 2ab < Ba® + (1/8)b? [15] is
used, and the inequality (44) becomes

e = 2 < e N R PR R e
+ﬁ(sk)2!|§(xk) |+ 69 a6 @)

Therefore

[ = 2 < e = 2 (1 A4 e () )

1R (G5 + 1261). 6o

O
In Proposition 6, an upper bound on Lyapunov functions at

iteration £ + 1 in terms of Lyapunov functions at iteration
0 is derived by induction taking into account all possible
realizations of Lyapunov functions.

Proposition 6 (Upper Bound for Lyapunov Functions): The
following upper bound is valid for Lyapunov functions:

k
) < =2 [P
i=0

vV (lk+1
+§<wmaw

i) 1)

) k>1 (47)

6 le6) (52 + 126

where P! = (1 — 2s'v) if condition (37) holds at iteration i,
and P = (1 4+ s'p/||g(x")|) otherwise.

Proof: Proof will follow by induction by first proving that
the equation is true when k = 1, then assuming it is true for
k, showing it is true for k + 1.

Before starting the induction, consider the situation whereby
k = 0. If condition (37) is satisfied, then inequality (41) holds
fork =0

[ =217 = e = 271 = 25%) + () 2() 7. 4®)
If (37) is not satisfied, then inequality (42) holds for k =0
=27 < ar = 2017 (1 + 8% 2 ()]

60126 |55+ 126

Since the term (s)?)|g(x°)|((1/5%) + |g(x°)||) which appears
in (49) is greater than (s°)2||g(x®)||> which appears in (48),
the following expression is the upper bound for ||A* — A!|%:

|2 < a2 = 0P
(61261 (55 +1269)1 ). 4> 0 60

where P° = (1 —2s%) if condition (37) holds at k = 0,
and P° = (1 4+ 598918 (x")|)) if condition (37) does not holds
at k = 0. The inequality (50) is indeed an upper bound of
2% — 21> because if condition (37) does not hold, then (50)
reduces to (49), and if condition (37) holds, then (50) reduces
to (48) plus a positive extra term (((s°)[12(x)]))/°).

), p° > 0. (49)

Following the same logic, the following holds for k = 1:
Jar — 2|

< = 2P+ 6 )] (55 + et )
= |2 = PP+ (601260 (5 + 1G] ) P
626 (57 + 1261

where P! = (1 — 2s'v) if condition (37) holds at k = 1, and
PO = (1 +s'BYg(x")|) if condition (37) does not holds at
k = 1. Inequality (51) is indeed the same as inequality (47)
for k = 1.

What remains to prove is that assuming that (47) holds at
iteration k, it also holds for k + 1

”’1* _ k2 H2

S1Y)

k+1

e - 2P 7
+Z( (5 +] @w)ﬁpj

I=j+1
k+1\2 || & (L k+1 1
6 a6 ) ) (7

+ g1,

The validity of (52) is derived using the same logic as that
used in deriving (50). Consider the following inequality:

i =22 P s e = P

1
a6 (g +IE6 ). 69
After substituting the expression for ||1* — 2¥F1||2 from (47)
into (53), one obtains the following inequality:
s

- 2P T
%—:E:(isf

(52)

IA

I=j+1

) ﬁ P’) ph+l

(ﬁ

+ ) o) (MH+WAk“m)

The inequality (54) simplifies to the following:
|4 -

(54)

JhH2 H2

k+1

= I~ ]

(2( ||(ﬁj+||g )111 P’))Pk+1

16 (g + )] ) P

O a6 ) | (g + a6 )

(55)
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After further simplifications, the inequality (55) becomes
x|
k+1

- #PTT
o3 (@RI + Iset) TT #

Jj=0 I=j+1

() (g + 1))

The inequality (56) is the sought-for inequality (47).

Step 3 (Convergence of the Upper Bound to Zero): In
this step, the Main Theorem is proven, mainly, it is proven
that the upper bound on the Lyapunov function defined in
(47) asymptotically approaches zero, thereby leading to the
convergence of multipliers to 1*.

Proof of the Main Theorem: In order to prove that ¥ —
A*, it is necessary to prove that the upper bound on the
Lyapunov function [right-hand side of (47)] approaches zero.
This leads the Lyapunov function to converge to zero and to
the convergence of multipliers.

Since A* that maximizes the dual function (10) is assumed
to exist, the term [|1* — A°||? is finite. Therefore, it is sufficient
to prove that the following expression approaches zero:

(56)

k—1 k—1 k—1
HP" = H (1+5s' 8 g(x")]) H (1—2s'v) (57)
i=0 i=0:1eN/R i=0:eN

where R is the set is iteration numbers whereby inequality (41)
holds and N is the set of natural numbers.

To prove that (57) approaches zero, the stepsizing formulas
(7) and (8) are plugged in first, then the resulting function is
upper bounded by using standard functions and their asymptot-
ical representation, and then, through algebraic manipulations,
the condition for A is derived to ensure that (57) approaches
zero. By exploiting the fact that set 8 is a proper subset of
natural numbers & C N and that each term (1 + s’ 8%]|g(x))]))
is greater than 1, the following inequality holds:

k=1 k-1
[T (+sla) [T (1-25)
i=0:ieN/R i=0:ien
k=1 k=1 '
< H 1+2 Haj OHg ”ﬁ’ H (1—25'\1).
i=0:ieN i=0:eR

(58)

Assuming that condition (37) is satisfied at least every N
(<o0) iterations, the entire expression (58) is upper bounded

as
k—1

[T +s#1e)D) T (1-26)

i=0:1eN/R =0:ieR
k—1
= I [1+2 H% s (") |5
i=0:ieN
Lk=1)/N] iN §0
g v
< [T (r=2(]]e |’|‘g(( ))HH . (59)
i=0 j=1

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

If such N does not exist and condition (37) does not hold
infinitely often, then there is a contradiction with Proposi-
tion 3. To prove that the right-hand side of (59) approaches
zero, consider o from (8) which asymptotically behaves as
1 — (1/Mk) as k — oo [23], therefore, asymptotically, the
right-hand side of (59) becomes

o0

[T (14201 -5 letene

i=0:ieN

(60)

e
Il HH( ) T

The product Hj.:l (1 — (1/Mj)) can be expressed in terms of
a “Pochhammer function” [43], which asymptotically behaves
as (y (M — 1)/M))i1/M)=1 [43], [44] where y is the Euler’s
gamma function. Therefore, asymptotically, (60) approaches
the following expression:

NS (2]
Q(” P ()i )H(l ||g<w>ny<M71>aw)'

~

(61)
After regrouping terms, (61) becomes
(1 2l
II \'+—
4 (T)l M (62)

[e.¢]

H i=1-N+jN

] [ (e
[gG)ly (S57) GV

After expanding the inner product, and ignoring involving

(j)~*™ and higher order terms, (62) becomes

- &g ) 20z (x0) v
]1:[1 1+,~:1_2ij y (Bh)i @ () |y (M) GN)

(63)

To ensure that products involve terms less than 1 each,
consider

0 0
26
H 7 (457 ‘
el Y Nmaxi—i—yjn..inB" v )
(1= N+ jN)w |2(eN) | GNyw
(64)
To ensure that every term is less than 1, consider
. (L=N+jN)wv
B < ——— T
N g™ [ Giny
i=1—-N+jN,..., jN,j=1,2,.... (65

The second term of the right-hand side of (47) also approaches
zero, because it involves similar products as in (57), and
the proof follows exactly the same logic. The last term in
the right-hand side of (47) approaches zero because stepsizes
approach zero. O
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E. Practical Implementations of the Method

In practical implementation, the following considerations
are important. The coordinator needs to initialize stepsizes and
multipliers at the beginning of the algorithm. In addition, the
coordinator needs to obtain feasible costs and to provide the
quality of the feasible solutions during or after the iterative
process. These considerations are discussed next.

Initialization: The coordinator initializes multipliers and
stepsizes. Multiplier initialization is typically problem-
dependent; specific initialization for GAPs tested in this article
will be explained in Section IV. One possible way to initialize
stepsizes is [23, eq. 76, p. 190]

04— L(°x0)

()]

where § is an estimate of the optimal dual value. Specific ways
to obtain this estimate are discussed in Section IV.

Criteria to Search for Feasible Solutions: To find the
feasible cost to the original problem, feasible solutions need
to be searched for within the method. Several criteria can be
used to start searching for feasible solutions: 1) search with
a predetermined frequency, e.g., once every 100 iterations or
2) search after surrogate subgradient norm is below a certain
threshold. There could be other criteria, such as the CPU
time limit. Once some of these criteria are satisfied, feasible
solutions are searched, as explained next.

Obtaining of Feasible Solutions: The process of obtaining
feasible solutions is generally problem-dependent. Solutions
to subproblems are feasible with respect to subproblems, but
these solutions, when put together, may not satisfy relaxed
constraints. To satisfy these constraints, some subproblem
solutions are adjusted. This can be performed by selecting a
few subproblems and fixing decision variables associated with
other subproblems within the original problem (1) and (2) at
x¥, the most recent values obtained by solving subproblems,
and the resulting problem is solved by B&C. If a solution
feasible with respect to the original problem is obtained,
then the feasible costis computed; otherwise, multipliers are
adjusted for a few more iterations, and a feasible solution is
searched again.

Calculation of the Lower Bound: It is assumed that subsys-
tems can solve subproblems (3) optimally. Dual values provide
valid lower bounds, which are obtained by minimizing the
Lagrangian function (10), which is equivalent to solving all
subproblems optimally without updating the multipliers.

Stopping Criteria: The algorithm is terminated after the
duality gap, which is the relative difference between the
feasible cost and the lower bound value and is below a
predetermined threshold.

Flowchart of the Algorithm: The algorithm is summarized
in the flowchart, as shown in Fig. 3.

(66)

IV. NUMERICAL TESTING

The purpose of this section is to demonstrate the perfor-
mance of the new method. In Example 1, a small integer
linear problem is considered to demonstrate that the Lyapunov
function approaches zero fast. In Example 2, a GAP with

Coordinator initializes iteration k=0,
stepsizes s° and multipliers A°

!

Coordinator sends multipliers A* to
all subproblems

v

Subsystems use latest values of multipliers
and start solving their subproblems (3) using
branch-and-cut subject to the surrogate
optimality condition

J

(o]

Coordinator updates multipliers A* (5) by using
surrogate subgradient direction (6) and stepsizes s*

(M-(®)

Are criteria for feasible
search satisfied?

Coordinator adjusts several subproblem solutions to
satisfy relaxed constraints, computes a feasible cost
and a duality gap

Are stopping criteria
satisfied?

Stop

Fig. 3. Flowchart of the DA-SLR method.

20 machines and 1600 jobs is considered to demonstrate
the capability of DA-SLR to solve large-scale optimization
problems fast with near-optimal performance. Because of
difficulties associated with other methods as reviewed in
Section II-B of Literature Review, a comparison of DA-SLR
is performed against its sequential version—SLR [23], which,
in turn, has been shown to outperform other previous coordi-
nation methods in [24], such as ADMM. Moreover, another
variation of SLR—distributed and synchronous SLR (DS-
DLR)—is used for further comparison. The new method is
implemented using IBM ILOG CPLEX Optimization Studio
Version: 12.7.1.0 on a PC with 3.10-GHz Intel Xeon CPU and
32-GB RAM.

Example 1 (Small Integer Programming Problem): Consider
the following integer optimization problem

min {x1 + 2x2 + 3x3 + x4 + 2x5 + 3x6}
{x1,%2,%3,%4,%5,%6 } €2
S.t. x1 4+ 3x2 +5x3 + x4 + 3x5 +5x¢ —26 >0
2x1 + 1.5x0 + 5x3 + 2x4 + 0.5x5 + x¢ — 16 > 0

0<x;<3, i=1,...,6. (68)

(67)
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After constraints (68) are relaxed by using multipliers u; and
U2, the Lagrangian function becomes

L(x1, X2, X3, X4, X5, X6, 41, [12)
= x1 + 2x2 + 3x3 + x4 + 2x5 + 3x¢
—|—,u1(—x1 —3x2 — 5x3 — x4 — 3x5 — 5x¢ + 26)

+ ﬂz(—z)ﬁ —1.5x,—5x3—2x4—0.5x5—x¢ + 16). (69)

The relaxed problem is then decomposed into six individual
subproblems, one for each variable

min{x; — pu1x; — 2p0x1}
X1€Z

st.0<x; <3
min{2x; — 3uxo — L.5u0x7}

szZ
st.0<x, <3

min{3x3 — Su1x3 — Spaxs}
X3€Z

st.0<x3<3

min{xy — w1x4 — 2u0x4}
.X4EZ

st.0<x4 <3

min{2xs — 3u x5 — 0.5u0x5}
xs€Z

st.0<x5<3

min{3xs — Su1x6 — paxe}

X6 EZL

s.t. 0 < xg < 3. (70)

Derivation of Dual Function and Optimal Multipliers: Since
the purpose of this example is to demonstrate the convergence
of multipliers to their optimal values, the knowledge of the
dual function and optimal multipliers is needed. The dual
function is obtained by minimizing the Lagrangian function
(6669) by using software Mathematica [44], which allows
symbolic manipulations. Because of technical limitations that
do not allow performing symbolic minimization with respect
to six integer variables, the dual function is obtained iteratively.
The Lagrangian function is minimized over {x, x», x3} and
the resulting function is minimized over {x4, x5, xg}. The
analytical expression for the dual function then becomes

q(p, 12)
= min L(x1, X2, X3, X4, X5, X6, U1, 12)
{x1,22,X3,%4,X5, X6 }
(26401 + 1612, if pr+p2 <06, 01 +2p, <1
6420w, + 4uz, if g+ 42 <06, 41 +2p0 > 1
20 =4 —15.5us, if 3ur 4 1.512 > 2,501 + 2 <3
18+ 21 —2ua, i Spuy + 2 <3, w1 +2u2 > 1,

30 + 050, <2
if Sy 4 o > 3, 0 4+ 2u2 > 1,
3ur +05u, <2

30— 19u;—18.5us,

_ )9+ i+ po, if gy + o> 0.6,5u1 + s <3,
w4+ 2u0 <1
18 —4u; —2u», if Suy 4+ po > 3,3u1 +05u,<2

15+ 5u; — u,, if w4 w2 > 0.6, 101 +2ur > 1,
3ur +05u, <2

if 3pp + 1.5u0 > 2,y +2u, <1,
3ur +05u, <2

30 —22puy — 8uo, if3u; +05ur > 2, 4y +2ur <1

L0, otherwise.

24—13/11—6.5#2,

(71)
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By maximizing the dual function (71) over x; and u, in
Mathematica, the optimal dual value and optimal multipliers
are obtained as

q(uh 1) =15.6, with uf =0.6 and ui=0. (72)

Initialization: The stepsize is initialized by using [23,
eq. (76), p. 190], whereby the optimal dual value ¢* from (72),
rather than its estimate, is used. Multipliers are initialized at
Zero.

Simulation: Because of the lack of distributed comput-
ing and communicating facilities, asynchronous coordination
is simulated by simulating subproblem-solving, multiplier-
updating, and communication times. Simulated solving and
updating times are based on real times obtained by SLR
first. According to the SLR results, subproblem solving times
range from 2 to 115 ms with an average value of 5.36 ms.
The multiplier-updating time is either O or 1 ms with an
average value of 0.036 ms (the updating time is very short,
and the time resolutions within OPL CPLEX is 1 ms).
Subproblem-solving and multiplier-updating times, thus, fol-
low empirical distributions, which for simulation purposes are
used to generate solving and updating times using discrete
random number generators in the MS Excel [47]. Communi-
cation time between the coordinator and subproblem solvers is
randomly generated following a uniform distribution U[0.95,
1.05] as the average wireless 5G speed is 1 ms.?> Based on the
above-mentioned data, absolute arrival times (the time when
one subproblem solver finishes solving one subproblem -+
communication time) of subproblem solutions are computed.
Based on these absolute timestamps, a sequence of subproblem
solution arrivals at the coordinator is obtained. Given solu-
tion arrival times, the sequence, and the multiplier-updating
time, the set of latest subproblem solutions used to update
multipliers at each coordinator iteration is determined. Then,
the time of multiplier arrivals to each subproblem solver is
obtained. Given the time when one subproblem solver starts
solving, appropriate multipliers to be used are also determined
based on multiplier arrival times. In simulations, subproblems
are solved, and multipliers are updated based on simulated
sequences, which are, in turn, based on empirical distributions
as described above. To test the robustness of DA-SLR, ten
testing cases are generated following the above-mentioned
procedure. To demonstrate the convergence of DA-SLR when
there is a “slow” subsystem, another testing case with one
“slow” subproblem solver is also considered. The solving time
of the “slow” subproblem solver is assumed to range from
20 to 450 ms. The other five subproblem solver remain the
same. For comparison purposes, one more testing case with a
“slow” subsystem is also generated for sequential SLR.

Results: Distances from multipliers to the optimum, which
are square a square root of Lyapunov functions, for DA-SLR
(average, minimum, and maximum over ten cases) and sequen-
tial SLR are shown in Fig. 4. The results for the case with a
“slow” subsystem are shown in Fig. 5.

As demonstrated in Fig. 4, the average and minimum and
maximum values of Lyapunov functions within DA-SLR while
nonmonotonic, approach zero fast. Moreover, distances to the

3https://5g.co.uk/guides/how-fast-is-5g/
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Fig. 4. Distances from multipliers to the optimum (square root of Lyapunov
function) within DA-SLR and SLR.
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Fig. 5. Distances from multipliers to the optimum (square root of Lyapunov
functions) within DA-SLR and sequential SLR for a system with one “slow”
subsystem; comparison with results of Fig. 4.

optimum within DA-SLR approach zero faster, as compared
with those within SLR.

As demonstrated in Fig. 5, when there is a “slow” subsys-
tem, distances to the optimum within DA-SLR also approach
zero. While in this case, the Lyapunov function approaches
zero slower than within the system without “slow” subsystems,
and still faster than within sequential SLR.

Example 2 (Generalized Assignment Prob-
lems [23], [24], [45], [46]): The GAP can be viewed
as a futuristic and albeit simplified optimization problem that
arises within “factories of tomorrow,” whereby each machine
or a job will have computational and communicational
capabilities. The DA-SLR method will then serve as a
foundation for self-optimization to efficiently coordinate
machines and jobs.

Problem Formulation: Mathematically, the GAP is formu-
lated in the following way:

I
min z z 8i,jXi,j
M=l j=1

xi,;€{0,1}, £,;>0,a,;>0, b; >0 (73)

1

S.t. Zai,jx,»,jgbj, j=1...,J (74)
i=1
J
Dxij=1i=1...1 (75)
j=1

where [ is the number of jobs and J is the number of
machines, g; ; is the time required by machine j to perform job
i,and g; ; is the cost of assigning job i to machine j. Capacity
constraints (74) ensure that the total amount of time required
by the jobs to be performed on machine j does not exceed
its available time b;. Assignment constraints (75) ensure that
each job is to be performed on one and one machine only.

Relaxed ~ Problem: After relaxing assignment
constraints (75), the relaxed problem is formulated in a
separable form as follows [23]:

r J
min Lo, =SS ()~ 3

i=1 j=1 i=1

1
S.L. Zai,jx,»,jgbj, j=1...,J
i=1

xi,;€{0,1}, £.,;=>0,a,;>0, b; >0. (76)
Subproblems: The above-mentioned relaxed problem (76)
is decomposed into J individual machine subproblems, and

subproblem j is formulated as follows:

1

min Z (gi,j + /li)xi,j
i=1

i, j

1
S.L. E a jXij = bj
i=1

xij €{0,1}, 8,;=0, a;; >0, b; >0.  (77)
These subproblems are solved using branch-and-cut imple-
mented in CPLEX. The simulation follows the same process as
that explained in Example 1. The resulting subproblem solving
times follow uniform distributions U[0.15, 0.20], and updating
times follow U[0.01, 0.02]. Communication times follow the
same 5G assumption with uniform distribution U[0.95, 1.05].

Initialization: The stepsize is initialized by using [23,
eq. (76), p 190], whereby an estimate of the optimal dual value
q* is used. This estimate is obtained by solving (73)—(75) after
relaxing integrality requirements. Initial values of multipliers
are obtained based on heuristic initialization rules follow-
ing [46], whereby the second-highest cost of assigning a job
is used.

Results: Because this example is complicated, optimal mul-
tipliers are difficult to obtain. Therefore, Lyapunov functions
are not plotted. Rather, dual values and feasible costs obtained
by using DA-SLR and sequential (SLR) and distributed and
synchronous (DS-SLR) versions and are plotted in Fig. 6.

Fig. 6 demonstrates the performance of DA-SLR for the
GAP d201600 instance with 20 machines and 1600 jobs.
The dual value is obtained every 500 iterations by solving
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Fig. 6. Performance of DA-SLR and comparison against SLR and DS-SLR
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Fig. 7. Norm squared reduction within DA-SLR and comparison against

SLR and DS-SLR for the GAP d201600 instance.

all subproblems to optimality.* As shown in Fig. 6, with
asynchronous coordination, a feasible cost 97 852 is obtained
with a duality gap of 0.0316% after 78 s. This demonstrates
that DA-SLR converges and finds high-quality solutions sig-
nificantly fast. As shown in Fig. 6, within sequential SLR,
the best feasible cost 97855 is obtained with a duality gap
of 0.0332% after 950 s; within DS-SLR, the best feasible cost
97870 is obtained with a duality gap of 0.0528% after 121 s.

As demonstrated in Fig. 7, within DA-SLR, surrogate
subgradient norms reduce fast. The norm-squared reduction
is faster than within DS-SLR, which translates into a better
feasible cost shown in Fig. 6, and much faster than within
sequential SLR, which leads to the overall drastic CPU time
reduction, also shown in Fig. 6.

It is expected that surrogate dual value approach dual values at con-
vergence, but for demonstration purposes, dual values are obtained every
500 iterations.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

V. CONCLUSION

In anticipation of trends toward self-optimizing factories,
there is a need for efficient asynchronous price-based coor-
dination of distributed subproblems. The novel DA-SLR
is developed, and convergence is proven based on the
novel use of Lyapunov energy function without requiring its
strict monotonic decrease for convergence. Numerical results
demonstrate that the novel approach converges fast. With
this effective distributed and asynchronous coordination, the
method has a strong potential to be used in future self-
optimizing factories to coordinate machines and in future
power systems to efficiently coordinate distributed energy
resources.
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