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Despite the key role of the capillaries in neurovascular function, a thorough
characterization of cerebral capillary network properties is currently lacking. Here, we
define a range of metrics (geometrical, topological, flow, mass transfer, and robustness)
for quantification of structural differences between brain areas, organs, species, or patient
populations and, in parallel, digitally generate synthetic networks that replicate the key
organizational features of anatomical networks (isotropy, connectedness, space-filling
nature, convexity of tissue domains, characteristic size). To reach these objectives,
we first construct a database of the defined metrics for healthy capillary networks
obtained from imaging of mouse and human brains. Results show that anatomical
networks are topologically equivalent between the two species and that geometrical
metrics only differ in scaling. Based on these results, we then devise a method
which employs constrained Voronoi diagrams to generate 3D model synthetic cerebral
capillary networks that are locally randomized but homogeneous at the network-scale.
With appropriate choice of scaling, these networks have equivalent properties to the
anatomical data, demonstrated by comparison of the defined metrics. The ability to
synthetically replicate cerebral capillary networks opens a broad range of applications,
ranging from systematic computational studies of structure-function relationships in
healthy capillary networks to detailed analysis of pathological structural degeneration, or
even to the development of templates for fabrication of 3D biomimetic vascular networks
embedded in tissue-engineered constructs.
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1. INTRODUCTION

Archaeologists can understand past human economic and socio-
political behavior, or resilience of ancient societies to strong
perturbations such as repeated drought, from the organization of
their infrastructures such as roadways, water supply or sewage
networks (Dillehay and Kolata, 2004). In the same way, the
mechanisms of cognition in health and disease might ultimately
be informed by studying the brain micro-vascular system.

This system provides a highly integrated and dynamic
infrastructure for the distribution of blood: it supplies oxygen,
nutrients and, in some cases, drugs to every cell in the brain,
and ensures the removal of metabolic waste. Since the brain lacks
any substantial energy reserve, the cerebral microcirculation also
acts as a short-term regulation system, which responds quickly
and locally to the metabolic needs of neurons (Hillman, 2014;
Rungta et al., 2018). In imaging neuroscience, changes in blood
supply are thus considered as a surrogate for changes in neuronal
activity, providing a unique way to observe the functioning brain.

The brain microvascular system is also involved in disease,
including stroke and neurodegenerative disease, through
vascular damage, such as capillary occlusions and progressive
rarefaction (Qstergaard et al, 2016; Cruz Hernandez et al,
2019), and decrease in regulation efficiency (Farkas and Luiten,
2001; Tadecola, 2004). Together, these act to reduce blood
flow and the availability of vital nutrients, which, on one
hand, plays a key role in disease progression (Zlokovic, 2011;
Cruz Herndndez et al.,, 2019) and, on the other hand, makes
it difficult to interpret functional imaging data in patient
populations (D’Esposito et al., 2003).

Consistent with its functions of distribution and exchange, the
microvascular system includes several architectural components.
The arterioles form a quasi-fractal hierarchy of vessels
(Nishimura et al., 2007; Blinder et al., 2010; Lorthois and
Cassot, 2010; Shih et al., 2015) whose diameter decreases at each
successive bifurcation, thus minimizing the time for supplying
resources (Lorthois and Cassot, 2010). These vessels feed into
the capillary network, a dense, mesh-like, three-dimensional
(3D) interconnected structure, which is space-filling above a
characteristic length scale of order 25 — 75um (Lorthois and
Cassot, 2010). This ensures that no point in the tissue is further
than half this characteristic length from the nearest vessel, due
to the diffusion-limited distance of oxygen transport in oxygen
consuming tissue. Their mesh-like structure gives the capillaries,
the smallest vessels in the vasculature with a diameter ~ 5um, an
extremely large surface area facilitating their vital role in nutrient
exchange (Popel and Johnson, 2005). De-oxygenated blood then
drains into the venules, which broadly mirror the architecture of
the arterioles.

These basic principles apply to a large variety of mammals,
from rodents to humans, where the main difference in vascular
organization described so far is the ratio between arterioles
and venules which feed/drain a given region (Hartmann et al.,
2017). Beyond these principles, thorough characterization of
microvascular structure in the cortex is still incomplete. Thanks
to the increasing number of vascular anatomical datasets in the
literature (e.g., Cassot et al., 2006; Mayerich et al., 2008; Tsai

et al., 2009; Blinder et al., 2013; Xiong et al., 2017; Di Giovanna
et al., 2018), the arterioles and venules both within the cortex
(Cassot et al., 2010; Hirsch et al., 2012; Lorthois et al., 2014b)
and at the level of the pial surface (Blinder et al., 2010) have been
rigorously analyzed. However, despite their key role in supplying
neurons with the required nutrients, there has been much less
focus on the dense, complex mesh of capillaries. Previous studies
of 3D cortical capillaries have principally been qualitative (e.g.,
Duvernoy et al., 1981), or limited to the characterization of global
spatial properties, such as their space-filling nature, density, or
diameter and length distributions (Lauwers et al., 2008; Lorthois
and Cassot, 2010), with few insight on topology. One notable
exception (Blinder et al., 2013) studied minimal loops and vessel
resistance distributions to conclude that the capillaries form a
highly interconnected mesh with no structural correlation to the
location of cortical columns.

As a result, current understanding of the architectural
organization of healthy brain capillary networks within the cortex
is limited to a few striking features:

1. Brain capillary networks are approximately isotropic
anastomosing networks whose vertices mainly have three
connections (e.g., Duvernoy et al., 1981; Blinder et al., 2013);

2. They are space-filling above a cut-off length of order 25 —
75um (e.g., Lorthois and Cassot, 2010);

3. They approximately demarcate convex tissue domains with
a characteristic length of similar order (in contrast to tumor
networks whose tissue domains are multi-scale in nature, e.g.,
Baish et al., 2011).

This makes it difficult to build a precise mental representation
of these networks that can materialize into a relevant generic
capillary network model (or geometric archetype in the words
of Baish et al, 2011). Besides a better understanding of the
fundamental organization of the cortical capillaries, such a
generic network model is also needed for fundamental studies
focused on understanding how structural differences between
brain areas, organs, species or patient populations translate into
functional differences with regard to blood flow, blood/tissue
exchange, and associated imaging signals, e.g., in BOLD fMRI.

Similarly, implementation of image-guided, biofabrication
techniques (Brandenberg and Lutolf, 2016; Heintz et al., 2016,
2017; Pradhan et al., 2017; Hoon et al., 2018) provides the ability
to generate 3D, biomimetic vascular networks embedded in
tissue-engineered constructs. These microphysiological systems
could be useful for investigating the impact of capillary
architecture and hemodynamics on complex biological processes
in the brain, e.g., transport across the blood brain barrier.

Hence, the goals of this paper are:

1. To thoroughly characterize the structure and function of
healthy cerebral capillary networks in both mice and humans,
thereby identifying the similarities;

2. To generate synthetic capillary networks with equivalent
properties via a generic method which is not tuned to a specific
dataset, thereby evidencing key common organizational
features among mice and humans.
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These goals are inherently inter-linked and must be developed
in parallel, to overcome the following challenge. A geometric
archetype is necessary to guide definition and scaling of an
appropriate set of metrics for characterizing both the structural
and functional properties of brain capillary networks. On the
other hand, thorough characterization of these properties from
real experimental data is needed to ensure the relevance of this
geometric archetype.

Therefore, the present paper is organized as follows. First, we
describe the anatomical capillary datasets from mice and human
cerebral cortex (section 2.1; mouse data shown in Figures 1 A-C).
Then, we postulate that the current understanding of their
architectural organization, as described by the three general
features above, is sufficient to generate model networks
replicating not only the morphological and topological properties
of cerebral capillary networks, but also their flow and transport
properties. Based on this postulate, we introduce in section 2.2, a
constrained Voronoi-based method for generating 3D synthetic
capillary networks with these three features, as summarized in
Figure 2. Simpler, periodic grid-like lattice networks are also
introduced (Figure 1D) to enable analytical derivation of metrics
and associated scaling properties.

In section 2.3, we present a comprehensive set of quantitative
metrics enabling characterization of network structure and
function, that is: morphometrical metrics for the tissue (e.g.,
mean extravascular distances) and the capillary network (e.g.,
mean vessel length, length density); topological metrics (e.g.,
number of edges per capillary loop); flow metrics (e.g., velocity,
permeability); mass transfer metrics (e.g., intravascular transit
times, mass exchange coefficient) and robustness to occlusions
(post vs. pre-occlusion flow ratio).

In the Results, these metrics are used in combination to
demonstrate that, with appropriate scaling, mice and human
capillary networks have similar properties. Moreover, we show
that these properties can be matched by synthetic networks,
and even to some extent simple lattice networks, demonstrating
that only a few organizational requirements are sufficient
to fully reproduce the fundamental properties of cerebral
capillary networks.

2. MATERIALS AND METHODS

As described above, we first introduce the anatomical datasets
used (section 2.1), then present the methods for generation
of synthetic and lattice networks (section 2.2), before defining
the metrics used to quantify and compare network properties
(section 2.3). For clarity, in the latter sections, we focus on
the general strategy and highlight the main ingredients. Further
details not essential for understanding the present approach
are given in section S1 of the Supplementary Material and
in Appendix A, respectively. Unless otherwise indicated, the
procedures described were implemented in a custom-built C++
code (Peyrounette et al., 2018).

2.1. Anatomical Datasets
Firstly, capillary ROIs were manually extracted from mouse and
human anatomical datasets as follows.

2.1.1. Mouse Data

Vascular networks from the mouse somatorsensory cortex were
previously obtained using a morphological-preserving vascular
cast protocol (Tsai et al., 2009; Blinder et al., 2013). Briefly, the
animals were euthanized with an overdose of pentobarbital. They
were transcardially perfused at a rate of 0.5 ml/s to match the
mouse heart output, with warm (37°C) saline until all blood
was cleared (~ 40-50 ml) and then with an excess of 20 ml of
vascular casting perfusate, previously prepared by conjugating
fluorescein-labeled-albumin (no. A9771; Sigma) with a 2% (w/v)
solution of porcine gelatin (no. G1890; Sigma). The gel was
allowed to solidify for 15 min while the animal was tilted
down and immersed in an ice-cold water bath. Next, the head
was severed at the level of the neck and moved overnight for
fixation in 4% paraformaldehyde (PFA). The following day, the
brain was removed from the skull under a fluorescent binocular
(Zeiss Discovery 8). In order to preserve the dura and pial
vasculature intact, the dissection was conducted guided by the
fluoresce signal from the vascular cast which allowed the careful
identification of dura to skull attachment places that were crucial
to disconnect prior to removal of the corresponding skull bone.
Importantly, the bone was removed in small fractions, starting
from the dorsal aspect and working in a circular fashion while
progressing rostral until the whole brain was exposed. The brain
was then moved back to PFA for 24 h. Images of the pial
vasculature were obtained to serve as reference for subsequent
optical sectioning of thick slabs, using two-photon laser scanning
microscopy (TPLSM), at a resolution of 1 um?. After data
segmentation and vectorization of the vascular networks as
described by Tsai et al. (2009), vessel diameters were corrected
to match values observed in vivo using an histogram matching
approach (Cruz Herndndez et al., 2019).

Arterioles and venules within the cortex were differentiated
from the capillary mesh by manually classifying surface
arteries/veins and then following connecting vessels
downstream/upstream while vessel diameter was above a
specified minimum threshold (7.2 pum), chosen for this
dataset so that the resulting trees did not contain any loops
(Cruz Herndndez et al., 2019). Seven ROIs were selected from
two cortical zones at cortical depths of over 650um, to avoid
vessels classified as arterioles and venules and extract the largest
possible sections which only contained capillaries. Nonetheless,
ROIs were limited to a size of 240 x 240 x 240m?. The location
of three such ROIs are shown in Figure 1A.

2.1.2. Human Data

Human data was obtained from the lateral part of the collateral
sulcus (fusiform gyrus) of the temporal lobe as described in
Cassot et al. (2006). Briefly, 300 pm-thick sections of a human
brain injected with Indian ink, from the collection of Henry
Duvernoy (Duvernoy et al., 1981), were imaged by confocal
laser microscopy, with a spatial resolution of 1.22 x 1.22 x 3
pum. The brain came from a 60 year old female who died from
an abdominal lymphoma with no known vascular or cerebral
disease. The procedures used to obtain a complete automatic
reconstruction of the vascular network in large volumes (1.6
mm?) of cerebral cortex, i.e., mosaic M1 in Cassot et al. (2006)
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FIGURE 1 | (A) Section of mouse cerebral cortex from Tsai et al. (2009), viewed from above the pial surface (upper section of cortex and surface vessels removed for
visualization purposes) and with vessels color-coded according to diameter. Three regions of interest (ROIs) of size 240 x 240 x 240um3 are outlined in fuschia.

(B) One ROI in further detail, with the same color scheme. (C) The same ROI with vessels straightened. Tortuosity was ignored in our analysis of network properties.
(D) Simple, periodic grid-like lattice networks enable analytical derivation of scaling properties (see section 2.2.2): CLN with 2 x 2 x 2 elementary cells (left), and 1
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FIGURE 2 | 3D extension of the 2D constrained Voronoi method of Lorthois and Cassot (2010). (A) Example of a 2D Voronoi diagram (thick black lines) generated
from an array of seed points (in blue), one randomly placed in each cell with side length L of a square grid (dashed lines). Inset: the distribution of polygonal areas,
collected over 80 networks of size (3.2LC)2, followed a Gaussian distribution with mean of approximately L% (4473 polygons in total). (B) In 3D, a subset of polyhedra
of the Voronoi diagram generated from the seed points in blue, one randomly placed in each cell with side length L of a cubic grid (not showing all polyhedra for
visualization purposes). (C) The same polyhedra with faces merged according to minimum angle and face area criteria as detailed in section 2.2 and section S1 of the
Supplementary Material. Inset: the distribution of polyhedral volumes, collected over 10 networks of size (3.2LC)3, followed a Gaussian distribution with mean
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have been described in detail elsewhere (Cassot et al., 2006;
Fouard et al., 2006). The mean radius and length of each segment
were rescaled by a factor of 1.1 to account for the shrinkage
of the anatomical preparation (Lorthois et al, 2011a). The
main vascular trunks were identified manually and divided into
arterioles and venules according to their morphological features,
following Duvernoy’s classification (Duvernoy et al., 1981; Reina
De La Torre et al., 1998). Arteriolar (resp. venular) trees within
the cortex were then differentiated from the capillary mesh as
above, with a threshold value of 9.9um (Lorthois et al., 2011a).

From this classification, the largest possible capillary-only
zones were identified, being limited in the x and y directions by
the need to avoid arterioles and venules, and in the z-direction by
the imaging depth. Since the slice of cortex studied was originally
selected for its many large arborescences, this made difficult the
extraction of capillary-only zones. Only four ROIs, of size 264 x
264 x 207um, were identified, one at a cortical depth of 300em
and three at a depth of over 1 mm. These regions were segmented
from the raw images using DeepVess (Haft-Javaherian et al.,
2019), a 3D deep convolutional neural network architecture for
vasculature segmentation. The segmentation was then manually
corrected by direct comparison with the raw images in Avizo
to ensure that the network connectivity was well-reproduced.
Despite this, the final segmentation was inevitably less reliable
for vessels near the limit of the confocal imaging depth due to
the associated attenuation.

2.2. Synthetic Capillary Networks
As summarized in the Introduction, we hypothesize that the
minimal organizational requirements of healthy cerebral
capillary networks are that they are isotropic, three-
connected and space-filling with approximately convex
extravascular domains. The physiological hypothesis is that this
ensures that no point in the oxygen consuming tissue is further
than the diffusion-limited distance of oxygen transport from the
nearest vessel.

To generate such networks, a method was sought to derive
a tessellation of space into semi-regular “supply regions,” where
capillaries lie along the boundaries separating these regions.
Voronoi diagrams provide a simple way to achieve this, as
illustrated in Vrettos et al, 1989; Kou and Tan, 2010; Wu
et al,, 2012, and have been previously employed to generate 2D
capillary networks (Lorthois and Cassot, 2010). We first present
this method and its generalization to 3D, before defining grid-
like lattice networks whose properties can be studied analytically.
All these networks are defined up to a constant factor, the
characteristic length L, which only controls the network scaling,
and has no impact on topology. The exact choice of L¢ is
non-trivial and will thus be investigated in the Results.

2.2.1. Generation of Synthetic Capillary Networks
Using Voronoi Diagrams

A Voronoi diagram or tessellation is the unique graph
partitioning the space into polyedra based on distance to pre-
selected “seed” points so that each polyhedra associated to a given
seed is the region consisting of all points closer to that seed than

to any other (Okabe et al.,, 2008). Here, the edges of the resulting
Voronoi polyhedra (or polygons in 2D) represent the capillaries.

2.2.1.1. 2D case

The constrained Voronoi-based approach of Lorthois and Cassot
(2010) consists of the construction of a 2D Voronoi diagram
from a set of uniformly distributed seed points under the strong
constraint that there is only one point in each cell of size L% in
a square grid (Figure 2A). The characteristic length L¢, which
controls the network scaling, corresponds roughly to twice the
typical maximum inter-capillary distance. From Lorthois and
Cassot (2010), it is understood to be at least equal to the mean
capillary length and broadly in the range 50 — 100tm.

The constrained spacing of initial seed points yields an
isotropic, homogeneous and space-filling network, which results
in a Gaussian distribution of Voronoi polygon areas with mean
approximately L? (Figure 2A, inset). In contrast, tumorous
microvascular networks, which are not space-filling, display a
non-Gaussian distribution of extravascular spaces with some very
large gaps in the network, inhibiting tractable drug delivery to the
tissue (Baish et al., 2011).

The resulting 2D networks are also quasi-regular in the
sense that almost all junctions are bifurcations i.e., have
three-connectivity. The network structure is randomized
but sufficiently ordered that the networks are vectorizable
(Moukarzel and Herrmann, 1992), i.e., topologically equivalent
to a strongly perturbed square grid (Schaller and Meyer-
Hermann, 2004), and homogeneous at the network scale. In
short, the resulting networks possess all the desired features,
except for being two-dimensional.

2.2.1.2. Extension to 3D

This method can be generalized to 3D by dividing a 3D
region into a regular grid comprising sub-cubes with edges
of length Lc (section Sl.1. in the Supplementary Material).
The resulting 3D Voronoi tessellation fulfills all the desired
properties  (isotropic, space-filling, convex extravascular
domains), but has high connectivity. Many vertices have up
to 5 connections (Figure 2B), in contrast to cerebral capillary
networks. Additionally the networks contain many unrealistic
features, such as closely-located vertices, short edges, sharp
branching angles and high vascular density. In brief, these
networks are overly-precise tessellations of space with the
associated polyhedra strictly defining convex monodisperse
extravascular volumes (Figure 2B).

Our hypothesis is that sub-networks with mostly three-
connectivity can be extracted from these initial networks while
retaining the desired characteristics (Figure2C). For that
purpose, edge and vertices were randomly merged, pruned
or added under geometrical constraints as described below,
so that the final 3D network retains tissue volumes with a
Gaussian distribution that scales with L2, and also achieves
three connectivity (Figure 2C). This procedure was developed in
MATLAB R2018a.

In this approach, we have chosen not to incorporate tortuous
capillaries, but rather to validate the basic network structure
before adding any additional complexity. For a fair comparison
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tortuous lengths were ignored in the anatomical networks and
instead straight vessel lengths were computed directly as the
distance between each pair of connected vertices.

Similarly, although a Gaussian distribution of capillary
diameters has been reported (6.23 £ 1.3um in humans; Cassot
et al., 2006), we have not attempted to assign physiological
diameters. To do so would be a complex task due to possible
variations along arteriolar-venular flow pathways, local parent-
daughter correlations, and imaging uncertainties (e.g., shrinkage
of vessels; Tsai et al., 2009; Steinman et al., 2017; Di Giovanna
etal,, 2018). Instead, uniform diameters of 5;4m were imposed in
all synthetic, anatomical, and lattice networks.

2.2.1.3. Pruning the network

Details of these steps are given in section S1.2. of the
Supplementary Material. Throughout, vertex indices were
randomized to avoid any anisotropy arising from deleting
vertices or edges in a preferential order. Firstly, by considering
each polyhedron of the Voronoi diagram in turn, very small or
narrow polyhedral faces were merged with neighboring faces,
which greatly reduced the vessel density (Figure 2C). Despite no
longer strictly defining a Voronoi tessellation according to the
initial distribution of seed points, the distribution of polyhedral
volumes remained Gaussian with mean approximately L.
(Figure 2C, inset), analogous to the distribution of polygonal
areas in the 2D case.

Next, pairs of closely-located vertices (less than a specified
distance apart, see section S1.2. and Figures Sla-c) were
identified and merged, thus reducing the vertex density and the
number of very short capillaries. Excess edges were deleted, with
the criterion that neighboring vertices still had at least three
connecting edges. For this reason some vertices with more than
three connections may remain because all their neighboring
vertices had only three connections. These vertices were finally
split into multiple bifurcations (section S1.3 and Figures S1d-g).

A smaller ROI was extracted from a larger network in order
to avoid boundary effects (section S1.4). For a fair comparison,
synthetic networks were generated with equal dimensions to the
relevant anatomical (mouse or human) ROIs. A final check for
close-lying vertices was performed, and vertices merged/removed
if necessary. At this stage, a small percentage of multiply-
connected vertices with >3 connections may arise (quantified in
the Results). The final network data was written in the standard
Avizo ASCII format, generating 10 networks for each set of
parameter values studied.

2.2.2. Simple Grid-Like Lattice Networks
Two types of simple lattice networks were generated following
(Peyrounette et al., 2018); their elementary motifs are shown
in Figure 1D. Both of these networks are by design periodic,
isotropic and homogeneous.

The cubic lattice network (CLN) is a regular 3D cubic grid
with side length L and 6-connectivity.

The periodic lattice network (PLN) is also composed of
a periodically repeating motif but with 3-connectivity, a
characteristic topological feature of cerebral capillaries (see
section 3.3.3). Thus, it is expected that this PLN will more closely

mimic the anatomical and synthetic networks than the CLN. This
network was generated by connecting regularly-placed cubes of
side length 2L with one capillary link of length 0.5L on each edge
of the cube, inspired by the simple foam model of Gibson and
Ashby (1982).

By analogy with the characteristic length L¢, defined above as
the length of the cells used to constrain the Voronoi diagrams,
we use here L¢ to refer to the length of the elementary motifs
in lattice networks, thus Lc = L in the CLN and L¢ = 3L in
the PLN.

2.3. Definition of Quantitative Metrics for
Characterizing Cerebral Capillary

Networks

Next, we define the quantitative metrics used in combination
to characterize and compare capillary networks. These metrics
can be classified into two types: the architectural metrics asses
their space-filling nature (section 2.3.1), morphology (section
2.3.2) and topology (section 2.3.3). The functional metrics asses
flow (section 2.3.4), blood/tissue exchange (section 2.3.5) and
robustness to capillary occlusions (section 2.3.6). Many of these
metrics have been previously used to analyze capillary networks.
Others ones are inspired from other fields, e.g., porous media
physics (section 2.3.5) or constitute novel additions to the
literature (section 2.3.6).

2.3.1. Space-Filling Nature of Capillary Networks
A key feature of cerebral capillary architecture that we wish to
replicate in the synthetic networks is that they are homogeneous
i.e., space-filling at scales above a cut-off length of 25-75 um
(Lorthois and Cassot, 2010). In contrast, arterioles and venules
are quasi-fractal and scale-invariant (Cassot et al., 2009; Lorthois
and Cassot, 2010). Following (Lorthois and Cassot, 2010), the
non-fractal, space-filling nature of the capillary networks in all
ROIs was tested via a multiscale box-counting analysis of the local
maxima of extravascular distances (EVDs), see Appendix A.1.
Additional metrics were extracted from the EVDs, starting
with the mean EVD and the mean of the local maxima, i.e., the
mean of EVD values computed for all local maxima. The EVD
is also related to mass transfer properties, which are strongly
dependent on the local spatial arrangement of the capillaries,
among other factors (see section 2.3.5). Indeed, Baish et al. (2011)
showed that both the maximum EVD and the “convexity index”
reveal distinct properties for tumor vs. healthy networks. The
convexity index was defined as the slope of a linear fit to the
log-log scale histogram of EVDs at small scales (Appendix A.1).
Baish et al. showed that the maximum EVD was inversely (non-
linearly) correlated to the convexity index. Here, both metrics
were calculated.

2.3.2. Morphometrical Metrics
The following metrics were computed to quantitatively compare
the morphometrical properties of networks:

1. Distribution, mean and SD of vessel lengths,
2. Edge density (number of vessels per volume),
3. Length density (sum of vessel lengths per volume),
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4. Interior vertex density (number of non-boundary vertices
per volume),

5. Boundary vertex density (number of boundary vertices per
surface area of the region of interest).

2.3.3. Topological Metrics
For a simple topological metric, the percentage of interior vertices
with more than three connections was calculated.

For a more thorough quantitative assessment, an algorithm to
identify the shortest loops in a network was developed.

The shortest loops associated with each vertex v; were defined
as the set of closed loops starting at v; that also pass through
neighboring connected vertices vfelgh and vZezgh, for all values of
j=1....mand k = 1,...,n, k # j, where n is the number
of neighboring vertices. The procedure for identifying capillary
loops is illustrated in Figure 3A. Identifying the neighbor vertices
2, 3, and 5 directly connected to the root vertex 1, each of the
three possible pairs of these vertices was considered in turn.
The shortest path between each pair of vertices without passing
through the root vertex was computed using Dijkstra’s algorithm.
Here, each edge was assumed to have unit weight for simplicity,
but in practice edges were weighted by their length. The shortest
path between vertices 3 and 5 without passing through vertex 1
is 3-4-5. This path was then added to the edges linking vertices
3 and 5 with the root vertex to obtain the final loop path 1-3-
4-5-1. For this “root vertex,” two other loops, 1-5-7-6-2-1 and
1-2-8-3-1, were also found. For each root vertex, there are a
maximum of C,(n) loops, where 1 is normally 3. However, each
loop was identified multiple times (once for each vertex in the
loop) and repetitions were identified and deleted. Selected loops
identified in a synthetic network are shown in Figure 3B. The
mean number of edges per loop, mean total loop length and mean
number of loops per edge were calculated for all networks.

2.3.4. Flow Metrics

As discussed in section 2.2.1, for simplicity, uniform vessel
diameters of 5um were assigned in all ROIs for the purpose
of blood flow simulations. Flow solutions were computed using

FIGURE 3 | (A) Schematic illustration of a section of network containing three
capillary loops (identified in red, green, and blue) centered around a “root
vertex” labeled 7. (B) Four individual loops (in thick red) identified in a synthetic
network (in dark blue).

an in-house 1D network flow solver (Peyrounette et al., 2018),
which takes a classical network approach i.e., assumes a linear
relationship between flow and pressure drop in vessels, and
conservation of flow at vertices (Appendix A.2). For brevity,
all flow results are presented for a pressure gradient in the
x-direction only.

The velocity in each capillary was calculated by dividing the
flowrate by the vessel cross-section, and the mean and SD of
velocities in each ROI was computed.

Next, the permeability was computed. This effective parameter
captures the capacity for blood to flow through a representative
portion of the network. If divided by the effective viscosity, it
is sometimes referred to as the network conductance (Smith
et al,, 2014; El-Bouri and Payne, 2015). Following (Reichold
et al, 2009), the permeability was calculated by applying a
pressure gradient across the ROIL By analogy with the theoretical
value obtained by applying volume-averaging/homogenization
techniques to derive Darcy flow (Smith et al, 2014), the
permeability is then given by:

n Qx

Ke= o,
APy /Ly Ax

(1)

where Ky, APy, and L, are the permeability, pressure drop and
length of the domain, respectively, in the x-direction. Qy is the
corresponding global flowrate, defined as the sum of the flows
entering the domain through the face perpendicular to the x-
direction, and A, is the area of this face. Because all diameters
are uniform, the effective viscosity j is simply the viscosity in all
vessels. Note that in contrast to the velocity, the permeability is
independent of the magnitude of AP.

2.3.5. Mass Transfer Metrics

Firstly, the transit time (i.e., the time spent by blood traversing
each capillary) was calculated as the vessel length divided by the
mean vessel velocity, to yield the distribution of transit times, and
the median transit time was recorded.

Secondly, in a similar way to the permeability calculation,
averaging techniques were employed to derive a macro-scale
effective parameter h, known as the mass exchange coefficient
(Whitaker, 1999). For details of this method see Appendix A.3.
This coeflicient captures the network-specific capability for mass
transfer between the capillaries and the surrounding tissue.
The value of h characterizes the network architecture and the
diffusion properties of both blood and tissue. Here, we consider
the diffusion of a non-reactive, non-metabolic tracer, which is
highly diftusible through the blood brain barrier. Under these
assumptions, and for space-filling networks, A is correlated with
the surface area available for mass exchange and hence also
with the vessel length density, given the uniform distribution
of diameters assigned here. The mass exchange coefficient h is
reported for a ratio of tissue to vessel diffusion coeflicients of
0.25 (Appendix A.3).

2.3.6. Robustness to Occlusions

The robustness of the capillary networks to occlusions was
quantified by applying a single occlusion in turn to each edge
upstream of a three-connected vertex. Numerically, occlusions
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were imposed via a diameter reduction factor of 100 in the
occluded edge (Cruz Hernandez et al., 2019). Because of their
different behavior, converging (two inflows, one outflow) and
diverging (one inflow, two outflows) vertices were considered
separately as in Nishimura et al. (2006). The ratio of post- to pre-
occlusion flowrates in the outflow edge(s) was computed, with
the criterion that baseline i.e., pre-occlusion absolute flowrates
in all inflow and outflow edges were greater than a specified
tolerance (o] = 0.001% of the total inflow), otherwise the edge
was ignored. The final metric reported was the mean of these flow
ratios for each case, averaged over all ROIs.

3. RESULTS

In this section, we first assess the architecture of mice and
humans capillary networks using the simplest morphometrical
and topological metrics. As wee shall see in section 3.1, the results
suggest that rescaling is needed to accurately compare capillary
networks between species. This implies that the characteristic
length Lc of the synthetic networks developed here needs to be
independently chosen for both species. To guide this choice, we
study their scaling properties, as well as those of the simpler grid-
like networks, as a function of domain size and L¢ in section
3.2. Finally, the structure and function of these networks with

Lc = 75um and L¢ = 95um is compared to those of the mouse
and human data in sections 3.3 and 3.4, respectively.

3.1. A Simple Re-scaling Accounts for
Inter-species Differences in Anatomical

Networks
A preliminary comparison between the mouse and human
anatomical networks was conducted using the simplest
morphometric metrics (Table 1, Table S1). These showed that
capillaries in the human ROIs were longer (mean capillary
length 34.4% higher) and spaced further apart (mean EVD
15.8% higher) than in mice. Nonetheless, loop metrics were
very similar, with the mean number of edges per loop almost
identical between species. The histograms of this metric
were also similar, although with more variance for humans
(Figure 4A) suggesting that this distribution was not statistically
converged with N = 4 samples (compared to N = 7 for mice).
Thus, the underlying topology of the networks is comparable
but the scaling of the human network is increased relative
to the mouse.

This hypothesis was supported by down-scaling the human
capillary lengths by the cross-species difference in mean lengths.
The rescaled length histograms for humans (red dashed lines in

TABLE 1 | The geometrical, topological and functional metrics calculated here, for mice, synthetic with Lo = 75um (“S75”), and lattice ROls.

Metric Mice S75 Periodic Lattice Cubic Lattice
N 7 10 1 1
Mean EVD (um) 18.4 £ 0.9 20.2 £ 0.6 18.9 19.3
Mean local max EVD (um) 29.4+1.5 345+1.4 36.0 47.4
Max EVD (um) 50.1 £ 3.7 534 +26 57.3 47.4
Convexity index 0.9+ 0.1 09+0.0 0.8 0.8
Mean length (1.m) 448+2.4 36.0+1.5 41.0 67.0
SD length (um) 281 +2.3 185+1.5 0.0 0.0
Edge density (103 mm—3) 17.0+1.4 213+08 17.7 12,5
Length density (mm*2) 673 + 58 674 + 20 661 668
Vertex density (108 mm—3) 8.2+0.6 11.4 £+ 0.4 10.7 3.3
Boundary vertex density (mm*2) 351 + 46 317 £ 23 132 223
% multiply-connected vertices 7.2+09 22+1.0 0.0 100.0
Mean no. edge/loop 112+£1.2 10.3 £ 0.6 9.0 5.1
Mean loop length (um) 486 + 60 368 + 35 369 345
Mean no. loop/edge 51+0.3 49+04 4.0 9.0
Mean velocity (wm/s) 197 + 43 204 + 29 286 268
SD velocity (um/s) 258 + 31 233+ 18 273 380
Permeability (1078 um?) 1.57 +0.38 1.38 +0.26 2.03 3.42
Median transit time (s) 0.14 £ 0.04 0.13 £ 0.02 0.10 0.08
Exchange coefficient h 24.9 + 3.31 21.3+0.83 31.5 33.1
Post-occlusion flow ratio (converging) 0.77 £ 0.01 0.76 + 0.01 0.69 -
Post-occlusion flow ratio (diverging; branch A) 0.26 + 0.03 0.29 + 0.02 0.07 -

Results are presented as mean + S.D. over the N ROIs studied for each network type (i.e., for the metric “Mean length,” the mean length was calculated for each ROI, and the mean
and S.D. of these mean lengths over all ROls are presented in the table). Colors indicate values that are within 10% (green), more than 10% lower (blue) or more than 10% higher (red)
than the corresponding values for the mice ROls. Permeabilities, velocities and transit times were calculated with uniform diameters of 5um. Some key metrics are represented (as

percentage errors relative to values for the mice data) in Figure 10.
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Figure 4B), coincided closely with the histogram for mice. Thus,
we hypothesize that the synthetic networks developed here can
be generated to model either mouse or human cerebral capillary
networks by an appropriate choice of characteristic length L¢ for
each species.

3.2. Scaling and Convergence of Metrics in
Synthetic Networks

Metrics characterizing the architectural, flow and transport
properties of porous or heterogeneous media usually vary with
the size of the domain under study until a characteristic size is
reached, known as a Representative Elementary Volume (REV)
(Bear, 1988). Above this REV size, the medium can be considered
homogeneous and finite-size effects become negligible. Here,
convergence of properties of the synthetic networks with domain
size is first studied to determine their REV. This enables
overcoming the difficulty associated to anatomical datasets,
where both arterioles/venules and capillaries are intermingled,
which makes it only possible to extract capillary regions of limited
size, may be smaller than the REV. The scaling properties of
the synthetic networks with L¢ are then investigated. For that
purpose, some metrics were normalized by an appropriate power
of L¢, guided by the derivation of analytical expressions for
these metrics in the lattice networks, which was possible thanks
to their simple architecture. As detailed in section S2.1 of the
Supplementary Material, the mean loop length, length density,

and permeability scaled with Lc, 1/L%, and 1%1’ respectively,
C

where d is the vessel diameter.

3.2.1. Convergence of Metrics With Domain Size

The convergence of metrics in the synthetic networks was studied
for domain sizes from L3C to (9L¢)?, with metrics normalized by
the appropriate power of L¢ (Figure 5).

The convergence of metrics was defined as:

Mk _ Mk—l

—— 2)

where M¥ is the value of the metric in question at size k. Each
metric was considered converged once this value was <0.05. The
convergence plots of loop metric with domain size are shown in
the insets of Figure 5 and Figure S4. Loop metrics in particular
were highly sensitive to finite-size effects, as expected from
the analytical results obtained in the lattice networks (section
S2.1). For example, the number of loops per edge was higher in
vessels nearer the center of the domain than near the boundary
(Figure 9A in Results), explaining the dependence of this metric
on domain size.

The mean length, mean number of edges per loop and
mean number of loops per edge all converged for domain sizes
between (3L¢)? and (4Lc)>. This is much faster than in the
lattice networks (Figure S2), suggesting that the introduction
of randomness to network structures reduces the sensitivity of
loop metrics to finite-size effects. By contrast, the permeability
converged slower, by sizes of (5.5L¢)3.

This is slower than the results recently presented by our
group (Peyrounette et al, 2018), where a range of network
sizes were obtained by extracting sub-regions from the largest
network studied; in contrast, here networks were stochastically
re-generated independently for each size, leading to more
variance. Interestingly, the permeability converged immediately
in the lattice networks (section S2.1), showing that simple lattice
networks cannot be used as an analogy to define appropriate REV
sizes for more disordered Voronoi-like networks.

In these networks, for all the considered metrics to converge
to within 5%, the domain size should be at least (5.5L¢)?, which
defines the size of the REV.

Above, e.g., with a domain size of (9L¢)3, the mean vessel
length converged to 0.49Lc, while the mean number of edges per
loop and loops per edge converged to 9.9 and 5.7, respectively.
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per loop, (D) mean permeability. Metrics were normalized by the appropriate power of L. Insets: the convergence of each metric as defined in Equation (2). The
converged size Xconv is the size from which the convergence was <0.05.

The mean permeability converged to 10.4/L%um* with vessels of
diameter 5/4m, or 0.017d*/L%.

3.2.2. Scaling With Characteristic Length L¢

The scaling of metrics was studied for Lc between 60um and
100m, with fixed domain size (240pum)?® corresponding to the
size of the mouse ROIs (Figure 6, Figure S5). As expected from
the lattice networks (section S2.1), mean capillary length, mean
EVD and mean loop length were linearly proportional to Lc,
while length density and permeability both scaled with 1/L%. For
reference, linear fits to these graphs are given in Table S2. The
mean number of edges per loop did not change with L¢ for the
range of values considered (Figure S5c), which is not surprising
since this is a purely topological metric.

We chose to derive appropriate values of L¢ by matching the
length densities in the synthetic networks and the anatomical
data. Since uniform diameters were imposed in all networks,
the length density is linearly proportional to both the porosity
i.e.,, volume fraction of the domain occupied by vessels, which

is important for the flow properties of the network, and
also to the vessel surface area per volume, which is a key
determinant of mass transfer properties. To best match the
mean length density in the mouse ROIs, we chose L¢
75um, while for humans we set L¢ 90um (Figure 6A).
By matching length density, we obtain a compromise between
matching mean length and mean loop length, which were too
low, and the mean EVD and edge density which were too
high. With these choices of Lc, the mean permeability was
lower than mice and higher than humans, but nonetheless
fell within or just outside the error bands for both species.
The SD was particularly high for the permeability and
of the same order for synthetic and anatomical networks
(Figures 6C).

Since this study was conducted with variable L¢ at a fixed
domain size, the number of unit cells decreases with increasing
Lc, possibly introducing finite-size effects. In the range
considered, the number of cells varied from 4> with Lc = 60um
to 2.4% with Lc = 100um. The decrease in the mean number of
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loops per edge as a function of L¢ (Figure S5d) demonstrates this
effect: as shown in the previous section, this metric converges
from 42 unit cells, and does not depend on L for larger domain
sizes. Nonetheless, the length density converged very quickly with
domain size, for 23 unit cells or more (Figure S4b), thus the
choice of L¢ via the length density was unaffected by finite-size
effects. Finite-size effects also had a small influence on the linear
fits shown in Table S2; if keeping the number of cells fixed to e.g.,
3%, a maximum difference of approximately 14% was found in the
predicted slope.

Final synthetic networks were thus generated in the same
domain sizes as the corresponding anatomical ROIs. Synthetic
networks matched to the mouse data had domain size (240um)>;
with L¢ 75um, this size is equivalent to (3.2Lc)>, or
(0.58)>x the REV size. The error in the calculated metrics
due to the finite domain size was estimated using the previous
convergence study. For example, the number of edges per loop
converged quickly with increasing domain size, and, in the
ROI sizes studied, was predicted to deviate only 4% from the
converged value. However, the predicted permeability with ROIs
of (240pm)® was expected to be approximately 25% lower than
its converged value. REV sizes and corresponding convergence
trends could not be determined for the anatomical datasets, due
to the limited size of capillary ROIs. However if we assume that

metrics converge in a similar way, similar finite-size related errors
can be expected.

Similar to the synthetic networks, the lattice networks were
scaled to match the mean length density in the anatomical
networks, to minimize any differences due to scaling. However,
as lattice networks did not have equivalent properties either
to mice or humans, results for the lattice networks scaled to
match the mouse data only are presented in section S2 of the
Supplementary Material.

3.3. Synthetic Networks With Lc = 75um
Effectively Replicate Mouse Capillary
Networks

Metrics computed for synthetic networks with L¢ 75um
and domain size (240um)> were compared to their values in the

mouse networks. The mean and SD across all ROIs of all metrics
are listed in Table 1.

3.3.1. Space-Filling Metrics: Synthetic Networks Have
Equivalent Space-Filling Properties as Mice ROls

Slices of the EVD map with the corresponding synthetic
network superimposed are shown in Figure 7A. Applying box-
counting methods to the local maxima of EVDs confirmed the
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homogeneous i.e., space-filling nature of the synthetic networks
as well as that of the mouse networks studied (Figure 7B). Lattice
networks are also shown for reference. There was no linear
domain but rather a continuous variation in slope, characteristic
of 3D space-filling structures, until reaching a slope of —3 for
scales on the order of L or larger.

The mean EVD in the synthetic ROIs was slightly (<10%)
higher than in the mouse ROIs, while the mean of the local
maxima of EVDs was 17% higher. The histograms of EVD on
alog-log scale (see Figure 7C) also showed a similar distribution
between all networks, including the lattice networks.

Convexity indices were very close, and the maximum
EVD was between 47 and 58um for all networks
(Figure 7D). Both metrics were well within the range of

what was classified as “normal” rather than “tumorous” by
Baish et al. (2011).

3.3.2. Morphometrical Metrics: Length Densities
Were Well-Matched but Mean Lengths Were Lower in
Synthetic Networks
The log scale distribution of straight vessel lengths collected over
all ROIs was qualitatively similar in the synthetic networks to
that of mice (Figure 8A). However, mean vessel lengths in the
synthetic networks were overall 19.4% lower while the SD was
34% lower (Table 1).

As discussed above, Lc was chosen to match length densities
between synthetic and mouse ROIs. Due to the shorter mean
capillary length, this resulted in a 25% higher edge density
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FIGURE 8 | Morphometrical, topological and functional results for the mouse ROls, synthetic networks with Lo = 75 and domain size (240/1,m)3 (“S75”), and lattice
networks. In all plots except (C), data points represent the mean over all ROls for each network type, and errorbars indicate the SD between ROls. (A) Histogram of
lengths on a log-scale. (B) Histogram of number of edges per loop. (C) Mean loop lenght, um, vs. mean number of edges per loop for each ROI. (D) Histogram of
number of loops per edge. (E) Histogram of capillary transit times, on a log-scale. (F) Histograms of post- to pre-occlusion absolute flow ratios in vessels one branch
downstream from the occlusion, where the vertex downstream of the occlusion has 3-connectivity, and divided into converging and diverging bifurcations as
illustrated in the schematics. In the diverging case, flow ratios are plotted for the outflow branch without change in flow direction post-occlusion (branch A). The CLN
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in the synthetic networks than the mice. Similarly, the vertex
density was higher (& 39%) in the synthetic networks, while
the boundary vertex density was similar (<10% fewer in the
synthetic ROIs).

3.3.3. Topological Metrics: Synthetic Networks Had
Very Close Loop Topology and Distribution

There were fewer multiply-connected interior vertices in the
synthetic networks compared to the mice networks. The mean
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number of edges per loop compared well, and the distributions
were very similar (Figure 8B). An early topological study in the
rat cerebral cortex found lower values for this metric (between
4 and 7 capillaries per loop), perhaps due to the difficulty of
manually tracing long loops, or species differences (Hudetz et al.,
1988). Consistent with the relatively small heterogeneity of vessel
length, loop lengths were correlated with the number of edges
per loop (Figure 8C) but were on average 24% lower in the
synthetic networks, consistent with the lower mean vessel length.
The mean number of loops per edge also compared well with
mice (within 3%) and the distributions matched very closely
(Figure 8D). Both the mean number of edges per loop and loops
per edge were independent of L¢, and show that the underlying
network topology was very well matched between synthetic and
mouse networks.

3.3.4. Flow Metrics: Synthetic Networks Had Slightly
Higher Permeability

The simulated pressure distributions are visualized in synthetic
and mouse networks in Figures 9B,C, and showed a qualitatively
similar distribution. With a pressure gradient in the x-direction,
the mean blood velocity in the synthetic networks was very
close to that in mice. The mean permeability in the synthetic
networks was 12% lower. It was verified that for a large number
of samples (e.g., N = 500), the distribution of permeability values
was Gaussian.

3.3.5. Mass Transfer Metrics: Synthetic Networks Had
Slightly Lower Exchange Coefficient

The distribution of capillary transit times were very similar
between synthetic and mouse ROIs (Figure 8E), as were the
median transit times. For all networks, the exchange coeflicient h
followed a linear relationship with Dy, the ratio between tissue
and vessel diffusion coeflicients (Appendix A.3). With Dyaip =
0.25, h was 14% lower in the synthetic vs. mouse networks.

3.3.6. Robustness Metrics: Synthetic and Mouse
Networks Were Similarly Robust to Occlusions
Three-connected vertices were split approximately evenly into
two cases: converging (2 inflows, 1 outflow) and diverging (1

inflow, 2 outflows), each with distinct behavior due to their
specific configurations.

In the converging case, the flow in the outflow branch
necessarily decreased post-occlusion and did not change
direction, leading to post- to pre-occlusion flow ratios
between 0 and 1. Since in this case only one of two
inflows was cut, the mean flow reduction was moderate
(approximately 25%).

In the diverging case, the post-occlusion flowrate was of equal
magnitude in both outflow branches due to mass conservation,
and reversed in one branch (branch “B”). This yielded a flow
ratio between 0 and 1 in branch “A” and a negative (or zero)
flow ratio in branch “B.” In 70-75% of cases for the mice and
synthetic ROIs, branch A had the higher pre-occlusion flow,
while in 13-18% of cases the post-occlusion flow in both branches
was zero. Since in this case the only inflow was blocked, the flow
reduction in branch A was much more significant on average
(70-75%) than for the converging case.

The distributions of flow ratios for both converging and
diverging (branch A only) cases were almost superimposed for
synthetic and mice networks (Figure 8F), and the mean flow
ratios were also very close (Table 1).

3.4. Synthetic Networks With L = 90m

Compared to Human ROls
Results for the synthetic networks with Lc = 90um and size
264 x 264 x 207um?> compared to humans were very similar,
although the agreement was not as good (Figures S6 and S7).
This may be partly because fewer human ROIs were extracted (4,
rather than 7 for the mouse), thus metrics were less statistically
converged in terms of the number of samples. The regions were
also smaller in the z-direction, although larger in the other
two directions. With the larger L¢, the ROI size was equivalent
to 2.93 x 2.93 x 2.3L¢, further from the REV size than the
synthetic networks matched to the mouse ROIs, and thus more
susceptible to finite-size effects. Key results are discussed next,
while complete results of the mean and SD across all ROIs are
found in Table S1.

The mean and maximum EVD were 13 and 19% longer,
respectively, in the synthetic ROIs than the humans. The mean
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FIGURE 9 | Visualizations of one synthetic ROl with Lo = 75um (A,B) and one mouse ROI (C), both of size (2401m)3, color coded by the following quantities: (A)
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length was 30% lower, while the edge density was 42% higher. The
density of boundary vertices was close, and there was a similar
percentage of multiply-connected vertices. There were slightly
fewer edges per loop in the synthetic vs. humans, although loop
results in the human ROIs were noisy (Figure S7b). Similar to the
mean length, the mean loop length was 32% lower in the synthetic
ROIs. There were 42% more loops per edge in the synthetic
networks, although again the frequency distribution for humans
in Figure S7d was not statistically converged. These metrics
indicate that the synthetic networks were more closely inter-
connected than the human ROIs. This was confirmed by the flow
metrics: the mean velocity and permeability were 36 and 39%
higher, respectively. In terms of mass transfer, the median transit
time was 26% lower, while the mass exchange coefficient h was
43% lower than in humans. Finally, when subject to occlusions,
the mean post- to pre-occlusion flow ratio was very close between
the synthetic and human ROIs, and the distributions of flow
ratios in converging and diverging bifurcations were also similar
(Figure S7f).

4. DISCUSSION

Although the capillaries are the smallest vessels in the brain,
their extremely large surface area allows them to fulfill their
key function of supply of oxygen and other nutrients and
removal of toxic metabolic waste to/from the tissue. Their
crucial role in healthy neurovascular function and robustness to
vascular damage in disease is becoming increasingly recognized
(Farkas and Luiten, 2001; Shih et al., 2015; @stergaard et al.,
2016; Cruz Herndndez et al., 2019).  However, quantitative
anatomical data specifically focused on the spatial organization of
cerebral capillary networks are extremely scarce, which has made
difficult to identify the minimal organizational principles that
underly their structure and function. This has, until now, limited
the development of synthetic network models built on such
principles and prevented their thorough, quantitative validation.

4.1. Summary of Key Results

In this context, the key contributions of this paper were:

e To define a complete range of metrics that can be used in
combination for thorough characterization of the structure
and function cerebral capillary networks;

To provide a database of these metrics for healthy mouse and
human capillary networks, thereby identifying the similarities
and differences in scaling;

To present a novel method for generating 3D synthetic
capillary networks with equivalent properties, based on a
few simple organizational principles, which can be scaled
depending on the species under study.

Relevant quantitative metrics capturing together the key
information for characterizing cerebral capillary networks were
identified. Many of these metrics had been previously used to
analyze the morphology and flow properties of cerebral capillary
networks. To the best of our knowledge, however, the topology of
their looping, interconnected structure had not been described
in detail, nor their mass transfer properties or robustness to

occlusions. In particular, we showed for the first time that
differences in scaling play a key role in the comparison of
anatomical capillary networks, and that this can be evidenced
via scale-independent loop metrics that evaluate topological
equivalence. This will be useful in future studies to distinguish
between structural differences due to scaling, and those due to
more fundamental discrepancies such as vascular rarefaction in
pathological scenarios such as stroke, dementia, and Alzheimer’s
Disease (Cruz Hernandez et al., 2019). These metrics will thus
facilitate comparison between anatomical data extracted from
different samples, cortical depths, brain regions, ages, or species
(Farkas and Luiten, 2001).

Moreover, 3D synthetic networks were stochastically
generated by exploiting fundamental physiological concepts of
the spatial organization of cerebral capillary networks i.e., that
the intrinsic spacing of the cerebral capillaries is controlled by
the limited diffusion distance of oxygen. Spatially-constrained
Voronoi diagrams yielded tessellations that were locally
randomized, but with homogeneous properties at the network
scale. This approach produced networks that complied with
the desired global features ie., they were three-connected,
isotropic, space-filling, and with convex extravascular domains
of a characteristic size. Importantly, this simple algorithm
was not tuned to match specific anatomical statistics such as
length distributions, in contrast to others (e.g., Su et al., 2012).
Rather, our model relied on one single important parameter
with physiological significance, Lc, which controls the size of
extravascular domains associated with each Voronoi polygon.

The characteristic length Lc was chosen by matching the
length density in the anatomical ROIs. The resulting difference
in key metrics is summarized in Figure 10 for synthetic networks

with Lc = 75um relative to mouse ROIs, and with L¢ =
Mean no. Mean local
edge/loop max EVD
120 %
110 %
100 %
90 %
80 %
0%
60 %
50 %
40 %
30 %
o7
Mean no. 1 & Mean
loop/edge length

=590 vs Human

-=-S75 vs Mice
Cubic vs Mice

= Periodic vs Mice

) \

Permeability SD length

FIGURE 10 | Web chart showing the percentage error for synthetic networks
with Lo = 90um relative to the human ROlIs (S90, in red), and Lo = 75um
relative to the mouse ROIs (S75, in blue), and for the PLNs and CLNs vs. the
mouse ROIs (in green and turquoise, respectively), for 6 key metrics.
Percentage error calculated in terms of the mean of values across all ROls.
Length density error was <2% for all cases.
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90pum relative to humans. It is clear that the synthetic networks
performed better in comparison to the mouse networks than the
human, which may be at least in part due to issues with the
human dataset (residual imaging artifacts, fewer ROIs, network
anisotropy), see section 4.2.

Scaled to the mouse data, the mean vessel length was lower
in the synthetic networks, but the mean EVD was slightly higher.
Two topological metrics (the mean number of edges per loop and
the number of loops per edge) were very close to mice. In terms
of functional metrics, the mean permeability was slightly lower,
while the mean velocity and median transit times were close.
In terms of mass transport and robustness, the mass exchange
coefficient was slightly lower in the synthetic networks, while
the post-occlusion downstream flow ratios in converging and
diverging bifurcations were very close.

In contrast to the Voronoi-like synthetic networks, the
lattice networks did not replicate the anatomical networks
so well (Figure10). The CLN performed worst, notably
with very high mean length, number of loops per edge
and permeability, very few edges per loop, and zero SD
of lengths. Errors for the PLN were of a similar order of
magnitude to those for the synthetic networks scaled for the
human data, except notably the SD of vessel lengths was
zero due to its highly ordered construction, leading to a
large error relative to the mouse data. This demonstrates that
the naive approach of constructing simple grid-like networks
was not sufficient to replicate the geometrical or functional
properties of cerebral capillary networks, and highlights the
need for introducing a sufficient level of randomness in the
generation scheme. Nonetheless, the PNL performed surprisingly
well, perhaps due to having a similar connectivity to the
anatomical networks.

The excellent results in the Voronoi-like synthetic networks
show that we have identified the minimal organizational
requirements of the cerebral capillary networks which
are key to replicating their architectural and functional
properties, including flow, transport and robustness
to occlusions.

4.2, Limitations and Perspectives

The first limitation comes from the limited number of ROIs
extracted from both the human and mouse data. All mouse ROIs
were at a cortical depth of 650um or more, to maximize ROI
size while avoiding vessels of diameter > 10um (assumed to be
the maximum capillary diameter). In this zone, corresponding
roughly to layer IV, the capillary network is approximately
isotropic; in contrast, we observed more anisotropy near
the cortical surface, consistent with previous observations
(Duvernoy et al., 1981; Farkas and Luiten, 2001; Cassot et al.,
2006). In humans, however, whatever the depth of the ROI (3
out of 4 were at depths > 1 mm), the permeability was highly
anisotropic: only the permeability in the x-direction, Ky, was
presented in the Results, but preferential alignment of capillaries
perpendicular to the cortical surface led to a &~ 260% higher K.
In contrast, in the confocal imaging direction, K, was roughly
80% lower than K, probably due to signal reduction in the
deepest images.

Manual correction of the automatic segmentation of the
human data was necessary to remove various artifacts (small
capillary loops, broken capillaries indicating loss of network
connectivity) present in the original segmentation (Cassot et al.,
2006). For the same zones, the newly-segmented networks had
50%, 187% and 76% higher mean vessel length, loop length
and permeability K, respectively, compared to the original
segmentation, with a 17% lower edge density (mainly due to the
removal of short artifactual edges).

Even with manual correction, there are inevitably errors
and artifacts introduced during any image acquisition and
processing protocol (e.g., unfilled vessels, sample shrinkage
or distortion, low signal-to-noise ratio, artifactual removal or
addition of short or small diameter vessels). This means that
anatomical data may not be an exact representation of the in vivo
microvasculature. Promising methods to quantitatively evaluate
different segmentations (Mayerich et al., 2012) are nonetheless
hindered by the lack of a ground truth. Physiologically-based
synthetically-generated networks, combined with models of
the artifacts engendered by specific imaging processes, may
help quantify the imaging-associated uncertainty inherent in
anatomical datasets.

Another limitation comes from the simplified approach taken
for generating the Voronoi-like synthetic networks. Previously,
even simpler models have been introduced to mimic the capillary
bed. For example, infinite single, parallel or randomly-oriented
cylinders, have often been used (Baish et al., 2011; Pflugfelder
etal, 2011; Jespersen and Stergaard, 2012; Lorthois et al., 2014a),
which mightlead to flawed estimations of functional properties at
the scale of the capillary network. Baish et al. (2011) constructed
a range of artificial networks e.g., cylindrical arrays, spherical
holes, quasi-fractal structures and randomized networks at the
percolation limit, to derive metrics (i.e., the maximum EVD and
convexity index calculated here) which differentiate tumor-like
from healthy structures, and hence deduce scaling laws for drug
delivery times. Here, the convexity metric confirmed that our
synthetic networks were representative of healthy as opposed
to tumorous tissue. However, since results were very close for
all ROIs, including lattice networks, this metric alone could not
reliably evaluate the similarity of model networks to anatomical
data. Another model (Reichold et al., 2009) employed a regular
capillary grid connected to fractal trees to study the effect of
capillary dilation on flow and transport.

More physiologically-realistic network models have been
developed (Safaeian et al., 2011; Su et al., 2012; Linninger et al.,
2013; Merrem et al., 2017) to model the cerebral capillaries and to
understand the link between structure, blood flow, transit times,
and oxygenation in states of hypoperfusion or high metabolic
demand (Safaeian et al,, 2011; Linninger et al., 2013; Park and
Payne, 2016), or the impact of vessel occlusions or radiation
damage on capillary function (Su et al, 2012; El-Bouri and
Payne, 2015; Merrem et al., 2017). Their main features are
summarized next; the difference between metrics reported in
these key articles and those in the human ROIs are visualized in
Figure 11.

Suetal. (2012) generated two minimum spanning trees which
were merged at their end-points, before applying filters to match
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FIGURE 11 | A range of metrics expressed as a percentage of values in the human ROls, for the synthetic networks with L = 90um (“S90”), and reported by Su
et al. (2012), El-Bouri and Payne (2015), Safaeian et al. (2011), Linninger et al. (2013), and Merrem et al. (2017). The permeability in the S90 networks and reported by
El-Bouri and Payne (2015) were calculated for N = 500 networks in a domain size of (375/4m)3, with a Gaussian distribution of diameters (6.23 4 1.3um), a uniform
hematocrit of 0.45, and dividing by an assumed effective viscosity of 5.84 cP to obtain units of ,um2. The permeability in the 4 human ROls was calculated using the
same diameter distribution, hematocrit and effective viscosity. The mean EVD of Linninger et al. (2013) was estimated from their histogram of EVDs. Where tortuous
capillaries were studied, their mean length or length density was compared to the equivalent values in the human ROls.

human capillary length distributions (Cassot et al., 2006). This surrounding larger arteries (Linninger et al., 2013; Merrem et al.,
approach may not replicate the characteristic interconnectedness ~ 2017). These features could in future be incorporated into the
of the cerebral capillaries; nonetheless, El-Bouri and Payne (2015)  current model.
found a similar permeability (13% higher) in these networks to For example, vessel tortuosity could be added in future
that in the synthetic networks developed here (Figure 11). studies following Linninger et al. (2013). For flow simulations,
Other models, like the present work, employed Voronoi its contribution could be assessed by increasing effective vessel
diagrams to generate synthetic capillary networks. Safaeian et al.  lengths by approximately 20%, based on mean tortuous lengths
(2011) and Safaeian and David (2013) constructed 2D Voronoi  in mice. However the exact spatial location of vessels becomes
tessellations from uniformly distributed seed points. This was  important when considering EVDs or mass transport (Goldman
extended to 3D by assigning random angles of deviation, which ~ and Popel, 2000). To give a quantitative idea, EVDs were
may produce anisotropic networks. Small sub-networks were  computed for one mouse ROI with and without tortuosity.
stitched together via randomly-placed anastomoses, which could =~ The maximum EVD was almost 24% lower with tortuous
lead to low inter-connectedness. Alternatively, Linninger et al.  vessels, suggesting that cerebral capillaries are arranged to
(2013) generated Voronoi diagrams as the dual of a tetrahedral ~ avoid large avascular tissue volumes that would be at risk
Delaunay triangulation. After removing excess connections, 86%  of hypoxia.
of vertices were of degree 3, implying that many multiply- Many hemodynamic modeling and simulation studies of brain
connected vertices remained. Finally, Merrem et al. (2017) took ~ microvascular structure/function relationships at large scales
a similar approach to the present one with a 3D extension of  exploit 3D digital reconstructions of anatomical microvascular
Lorthois and Cassot (2010), although no pruning of excess vessels ~ networks (Cassot et al., 2006; Mayerich et al., 2008; Tsai et al.,
was reported, and it was not clear if a three-connected network ~ 2009; Lorthois et al., 2011a; Gagnon et al., 2015; Peyrounette
was obtained. et al., 2018). However, this does not enable variation of the key
Until a thorough set of metrics, such as those defined in the  structural parameters, e.g., vascular density, in a systematic way.
present paper, is computed for these different model networks,  Besides, these models are volume-limited: it is extremely difficult
it is difficult to fully compare the generated structures or  and costly to obtain datasets which resolve all capillaries in very
validate against anatomical data. Nevertheless, some of these large volumes. This problem could be addressed by generating
models went further by including additional features to make  synthetic capillary networks with L¢ tuned to represent distinct
the networks more physiologically realistic, e.g., a cortical  brain regions. These could be coupled to anatomical vascular
depth-dependent capillary density; capillary tortuosity; links to  data resolved down to arterioles and venules (Mayerich et al.,
arborescent arterioles and venules; and a capillary-free zone  2008; Xiong et al, 2017; Di Giovanna et al., 2018) to possibly
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achieve whole brain flow simulations in mice. Incorporating
a parent-daughter diameter correlation and a variation in
capillary geometry and topology along flow pathways (Sakadzi¢
et al, 2014), and eventually simulating network remodeling
and structural adaptation, or neuro-vascular coupling
(Lorthois et al., 2011b; Schmid et al., 2015), would constitute
interesting extensions.

The effect of changing microstructural features in pathological
scenarios could thus be investigated. The inter-cortical capillary
network is highly robust, providing multiple “back-up routes”
if a vessel is occluded, whereas the penetrating arterioles
are the most “fragile” to occlusions (Nishimura et al., 2007;
Hirsch et al, 2012; Shih et al, 2015; Cruz Herndndez
et al, 2019). The initial study presented here showed that
synthetic and mouse capillary networks were similarly robust
to single occlusions. Previously, Nishimura et al. (2006)
found a mean post- to pre-occlusion red blood cell (RBC)
speed ratio of only 7% in the first downstream branches,
considering mainly diverging bifurcations. Although RBC speed
and blood flow ratios may differ due to post-occlusion
vessel dilation, this suggests a more important flow reduction
than predicted here (flow ratios of 26-29% in diverging
bifurcations). Extrapolating from Nishimura et al. (2010),
this could be explained by our focus on purely capillary
networks rather than vessels further up the vascular hierarchy
(small arterioles or post-arteriole capillaries). Once again,
coupling synthetic networks with arterioles and venules will
help understand the link between the site of occlusion
within the vascular hierarchy and the resulting impact on
downstream flows.

Alternately, for larger species for which computational
limitations hinder full network simulations, synthetic networks
may be used to parameterize continuum models representing the
capillary network as a porous medium (Chapman et al., 2008;
Hyde et al., 2013; Smith et al., 2014; Peyrounette et al., 2018).
Effective properties such as the permeability or mass exchange
coeflicient could be computed, examining their convergence with
domain size and number of networks (El-Bouri and Payne, 2015;
Peyrounette et al,, 2018); this is not possible for anatomical
datasets [here, capillary ROIs were limited to a size of at
most (240pm)?].

Furthermore, the generation of synthetic vascular networks
that recapitulate the architecture, flow, and transport of
in vivo capillary beds could significantly impact the field
of tissue engineering. There has been great interest over
the last decade in the generation of large-volume, tissue-
engineered constructs. These constructs must contain fluidized
vascular networks for transport of nutrients, oxygen, and
waste to promote long-term cell survival and function and
to mimic physiological and pathological processes (Novosel
et al., 2011; Miller, 2014; Kinstlinger and Miller, 2016; Song
et al, 2018). Our synthetic networks could be adapted to
model different organs (heart, liver, kidney, etc.) according to
their specific architecture: the initial Voronoi cell could be
modified to introduce variable density or anisotropy. Alternative
approaches to controlling the randomness of Voronoi networks
(Fritzen et al., 2009) could be investigated. This would greatly

facilitate the fabrication of biomimetic vasculature embedded
in tissue-engineered constructs via fabrication approaches
that rely on 3D image stacks or CAD models to define
network geometry (Brandenberg and Lutolf, 2016; Heintz
et al., 2016, 2017; Pradhan et al.,, 2017; Hoon et al., 2018).
Additionally, the ability to compare the engineered architecture
to a ground truth in vivo architecture provides a much
needed benchmark to quantify the physiological relevance of
engineered microvasculature.

In conclusion, this study has for the first time provided
a comprehensive cross-species database of metrics for
characterizing the cerebral capillaries. The ability to synthetically
replicate cerebral capillary networks, which have equivalent
properties according to these metrics, opens a broad range
of applications, ranging from systematic computational
studies of structure-function relationships in healthy capillary
networks to detailed analysis of pathological structural
degeneration, or even to the development of templates for
fabrication of 3D biomimetic vascular networks embedded in
tissue-engineered constructs.
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A. APPENDIX: DEFINITION OF METRICS

A.1. EVD

EVDs were calculated using a Python algorithm to explicitly
compute the distance from each 1 um?® voxel in the tissue to the
nearest vessel centerline% Amy: ajouter une ref sur la méthode?

The local maxima were defined as voxels with a distance
greater than or equal to that of every surrounding voxel in a
26-neighborhood.

A standard box-counting analysis was conducted by dividing
the domain into cubes of length r and counting the number N(r)
of boxes containing at least one local maxima.

Berntson’s procedure was applied to test for linear regimes
in the log-log scale plot of N(r) vs. r by searching for at least
4 consecutive points which tested negative for curvilinearity
(Berntson and Stoll, 1997; Lorthois and Cassot, 2010).

If a linear regime with slope —dy is found, the set of local
maxima is fractal with fractal dimension dy. If it is homogeneous,
there is no linear regime before converging to a slope of —3 at
large scales.

To compute the convexity index, Bernston’s procedure was
again applied to search for a linear regime in the log-log
scale histogram of EVDs at small-scales i.e., below Xpqy, the
maximum-frequency bin of the histogram. The convexity index
was the slope of this linear fit.

A.2. Flow Solution

Flow simulations were conducted assuming conservation of
flux at vertices and a linear pressure drop along vessels,
with an effective blood viscosity determined by the in vivo
viscosity law of (Pries, 2005) with a uniform discharge
hematocrit of 0.45. For the human ROIs and synthetic networks
modeling human networks, the diameter appearing in the
viscosity formulation was divided by 0.86 to account for the
difference between red blood cell volumes in humans and
rodents Roman et al. (2016).

A pressure drop AP was imposed on opposing faces of each
ROI with a no-flow condition at boundary vertices on the other
four faces. El-Bouri and Payne (2015) enforce AP = 18 mmHg

Lorthois et al. (2011a) over a capillary path length L = 340um
Sakadzi¢ et al. (2014). Here AP was scaled for each network to
obtain that same pressure gradient AP/L e.g., in the mouse ROIs
which have side length 240pum, AP = 12.7 mmHg.

The resulting linear sparse system of equations was solved via
an in-house code Peyrounette et al. (2018).

A.3. Mass Exchange Coefficient

The two-equation volume averaging method Whitaker (1999)
was applied to derive a system of two coupled advection-diffusion
equations in terms of the volume-averaged concentrations
of a given molecule in vessel and tissue domains, (C,)"
and (C;)!, respectively. These macro-scale equations contain
classical advection and diffusion terms, for which we can
compute effective diffusion coeflicients and effective velocities.
Additionally, an exchange term S h((C,)" — (Cs)"), where
h is the mass exchange coefficient, appears as a source (4S) in
the tissue-domain equation and a sink (—S) in the vessel-domain
equation. The effective properties of this upscaled model were
obtained by solving a system of Partial Differential Equations
(PDEs) on a REV of the domain Cherblanc et al. (2007). These
equations were solved by finite element methods, using the
library Feel++ PrudHomme et al. (2012). The geometry of the
domain was taken into account by a fictitious domain method
(the level-set method).

Considering the diffusion of a non-reactive, non-metabolic
tracer which is highly diffusible through the blood brain barrier,
the microscopic a dimensional parameters were reduced to the
Péclet number, Pe, and the ratio between diffusion coefficients
in the tissue and vessel domains, Dyatie = D;/D,. For given
Pe and Dy, the mass exchange coefficient /i characterizes the
mass transfer properties of the network. The diffusion coefhicient
in the vessels, D,, was assumed to be 400pm?/s Clark et al.
(1985); Bouwer et al. (1997). Having confirmed that h was largely
insensitive to Pe for a physiological range of velocities, h was
calculated for Pe = 0 and Dyui0 = 0.25. Finally h was non-
dimensionalized by multiplying by the characteristic time for
diffusion for each ROJ, i.e., Lfc /D, where L, is the length of the
ROI in the x-direction.
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