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ABSTRACT. Using a method of Korobenko, Maldonado and Rios we show a new char-
acterization of doubling metric-measure spaces supporting Poincaré inequalities without
assuming a priori that the measure is doubling.

Non-smooth functions have played a key role in analysis since the nineteenth century.
One fundamental development in this vein came with the introduction of Sobolev spaces,
which turned out to be a key tool in studying nonlinear partial differential equations
and calculus of variations. Although classically Sobolev functions themselves were not
smooth, they were defined on smooth objects such as domains in the Euclidean space
or, more generally, Riemannian manifolds. By the late 1970s it became well recognized
that several results in real analysis required little structure from the underlying ambient
space, and could be generalized to non-smooth settings, such as to the so-called spaces of
homogeneous type. The latter spaces are (quasi)metric spaces equipped with a doubling
Borel measure (see |9, 10]). In fact, maximal functions, Hardy spaces, functions of bounded
mean oscillation, and singular integrals of Calderén-Zygmund-type all continue to have a
fruitful theory in the context of spaces of homogeneous type. However, this rich theory
was, in a sense, only zeroth-order analysis given that no derivatives were involved. The
study of first-order analysis with suitable generalizations of derivatives, a fundamental
theorem of calculus, and Sobolev spaces, in the setting of spaces of homogeneous type,
was initiated in the 1990s. This area, known as analysis on metric spaces, has since grown
into a multifaceted theory which continues to play an important role in many areas of
contemporary mathematics. For an introduction to the subject we recommend |2, 3, 4, 5,
8,12, 13, 19, 20, 23|.

One of the main objects of study in analysis on metric spaces are so called spaces
supporting Poincaré inequalities introduced in [19]. To define this notion, recall that a
metric-measure space (X, d, p) is a metric space (X, d) with a Borel measure p such that
0 < u(B(z,r)) < oo for all z € X and all r € (0,00), where B(z,r) denotes the (open)
metric ball with center  and radius r, i.e., B(z,r) := {y € X : d(z,y) < r}. If the measure
p is doubling, that is, if there exists a finite constant C' > 0 such that p(2B) < Cu(B)
for all balls B C X, then we call (X,d, u) a doubling metric-measure space. The notation
7B denotes the dilation of a ball B by a factor 7 € (0,00), i.e., 7B := B(x,7r). A Borel
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function g : X — [0, oo is said to be an upper gradient of another Borel function u : X — R
if
ule) ~uw) < [ gds 1)
Yy
holds for each z,y € X and all rectifiable curves 7,, joining z,y. Finally, a metric-measure
space (X, d, p) is said to support a p-Poincaré inequality, p € [1,00), if there exist constants
C € (0,00) and o € [1,00) such that
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whenever B is a ball of radius r € (0,00), u € L{. (X, ), and g : X — [0, 00] is an upper

gradient of u. Here and in what follows the barred integral and fg stand for the integral

average:
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where F is a u-measurable set of positive measure. To be consistent with the definition of
the upper gradient, in what follows we will always assume that functions v € L (X, i)
are everywhere finite Borel representatives. The above definitions of the upper gradient
and spaces supporting Poincaré inequalites are due to Heinonen and Koskela in [19] (see

also [20] for a more detailed exposition).

It was proved in [14] and [13, Theorem 5.1 that if a doubling metric-measure space
supports a Poincaré inequality, then the p-Poincaré inequality self-improves in the sense
that for some ¢ € (p,00) and C” € (0, 00), there holds
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whenever B is a ball of radius r € (0,00), u € L, .(X, u), and g : X — [0, 00| is an upper

gradient of wu.

The purpose of this note is to show that the family of inequalities in (3) on a metric
measure space imply that the underlying measure is doubling, and thus providing a char-
acterization of doubling metric-measure spaces supporting Poincaré inequalities without
assuming a priori that the measure is doubling, see Theorem 1, below. This result is a
minor refinement of a beautiful result in [22]|, where it was proved that in a related context,
a family of weak Sobolev inequalities imply that the measure is doubling. However, the
authors considered Sobolev inequalities where the balls had the same radius on both sides,
and such a condition is stronger than the one in (3). Moreover, they did not address the
important applications to Sobolev spaces supporting Poincaré inequalities.

While the proof presented below is almost the same as the one in [22], it is important to
provide details: the proof employs an infinite iteration of Sobolev inequalities and since now
we have balls of different size on both sides, it is not obvious without checking details that
this will not cause estimates to blow up. This paper should be regarded as a supplement
to the work of [22] and an advertisement of their work. Different, but related iterative
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arguments to the one presented below were used in |7, 11, 15, 16, 17| in the proofs that
a Sobolev inequality implies a measure density condition. Other applications of a method
developed in [22| are given in [1, 21].

We now state the main result of this note.

Theorem 1. Let (X, d, ) be a metric-measure space and fizp € [1,00). Then the following
two statements are equivalent.

(a) The measure i is doubling and the space (X, d, p) supports a p-Poincaré inequality.
(b) There exist q € (p,00), Cp € [1,00), and o € [1,00) such that
1/q 1/p

][|U —upl’dp | < Cpr ][gp dp | (4)
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whenever B is a ball of radius v € (0,00), u € L (X, 1), and g : X — [0, 00] is an
upper gradient of u.

Remark 2. We could assume that (4) holds with Cp € (0, 00), but the estimates presented
below are more elegant if Cp > 1. Clearly, if (4) holds with a constant strictly greater
than zero, then we can increase it to a constant greater than or equal to 1.

A positive locally integrable function 0 < w € L (R™) defines an absolutely continuous

measure dy = w(x)dr with the weight w. A class of the so called p-admissible weights
plays a fundamental role in the nonlinear potential theory [18]. To make the presentation
brief, we will not recall the definition of a p-admissible weight, but we refer the reader
to [18] for details. As an immediate consequence of Theorem 1 and [14, Theorem 2| we
obtain a new characterization of p-admissible weights. A variant of this result has also
been proved in [22].

Corollary 3. A function 0 < w € L _(R™) is a p-admissible weight for some 1 < p < 0o,

loc

if and only if there exist q € (p,00), C € [1,00) and o € [1,00) such that
1/q 1/p
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B oB

whenever B C R™ is a ball of radius r € (0,00), u € C*(cB) and du = w dzx.

Example 4. The following example from |6, Example 6.2] shows a metric-measure space
with a non-doubling measure that supports the (p, p)-Poincaré inequality (5) for all 1 <
p < 0o. This shows that Theorem 1 is sharp in the sense that ¢ > p in (4) cannot be
replaced by ¢ = p. Let X = [0, 00) be equipped with the Euclidean metric d(z,y) = |z —y|
and the measure dy = w(z)dz, where w(z) = min{l,x7'}. First observe that w is
not doubling. Indeed, for r > 1, u(B(2r,7)) = u((r,3r)) = fr‘% rtdr = log3, but
w(2B(2r,r)) = wu((0,4r)) > f14r x7! = log(4r) — oo as r — oo. It remains to show the
(p, p)-Poincaré inequality for 1 < p < oc.
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Any ball B = B(z,r) is an interval (a,b) or [a,b) = [0,b) with r < b—a < 2r. Since the
function w is non-increasing, for any = € [a,b) we have

b
/ w(t)dt < (b—z)w(z) < 2rw(zx).

This observation and Hélder’s inequality yield

(2r)P /b
< g(x)Pw(x) dx
u(B) J, S
S0
1/p 1/p 1/p
][]u—uBV’du <2 ][|u—u(a)]pd,u <Ar ][gpdu : (5)
B B B

Note that since the measure y is not doubling, inequality (5) cannot hold with any exponent
q > p on the left hand side as otherwise we would arrive to a contradiction with Theorem 1.

Proof of Theorem 1. The implication (a) = (b) follows immediately from [14, Theorem 1].
Note however, that the constant ¢ in (4) might be larger than that in the p-Poincaré
inequality (see (3)). Thus we will focus on proving that (a) follows from (b). To this end,
suppose that X satisfies the condition displayed in (4). Making use of Holder’s inequality
and the fact that 1 < p < ¢, we may conclude that the (g, p)-Poincaré inequality in (4)
implies that the space (X, d, u) supports a p-Poincaré inequality (see (2)).

There remains to show that the condition in (4) forces the measure p to be doubling.
Fix a ball B := B(z,r), x € X, r € (0,00), and observe that specializing (4) to the case
when B is replaced by 20 B yields

1/q 1/p

][ |u — ugep|?du < 20rCp ][ g* dpu : (6)
20B 202B

whenever v € L .(X,p) and g : X — [0,00] is an upper gradient of u. Since p > 1, it

follows from (6) and Holder’s inequality that,

1/q 1/q
][ u|® dp < ][ |u — usep|? dp + |uge |
20B 20B
1/p 1/p
< 20rCp ][ g’ dp + ][ |ul? dp : (7)

202B 20B
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We now define a collection of functions {u;};en as follows: for each fixed j € N, let
r; = (27771 +27Yr and set B; := B(x,r;). Then

%r<7’j+1 <rj§2r, VjeN. (8)
For each j € N, let u; : X — R be the function defined by setting for each y € X,
1 ify € Bja,
u;(y) = %ﬁii/) if y € B; \ Bj11, (9)
0 if y e X\ Bj.

Noting that (r; — rj+1)_1 = 2772~ 4 straightforward computation will show that u; is
27+2r~1-Lipschitz on X and that the function g; := 2/*?r~!xp is an upper gradient of u,
where xp, denotes the characteristic function of the set B;. In particular, we have that
u; € LL (X, u) and that the functions u; and g; satisfy (7). Observe that for each fixed

j € N, we have (keeping in mind o > 1)

1/p

‘ B) 1/p ) M(B) 1/p
20rC ’d — ocpits (B N o gies (1B 10
o | f in) =oco ([T ) oo (0 (10)
202B
and
1/p
/p
n(By) \'
P d < . 11
frura) < (52 (1)
20B
Moreover,
1/q Vg
(Bj+1)
|7d > | ———= . 12
]i wirdn) = (M (12)
In concert, (10)-(12) and the extreme most sides of the inequality in (7), give
1/q 1/p
1(Bj+1) [ H(B)) :
— < 27 —_— N. 1
i) =™ (o) Vi "
Therefore
, Bl/p
w(Bjy1)V1 < oCp2it mB,) VjeN. (14)

M(QUB)(qu)/pq’

With a := q/p € (1,00) we raise both sides of the inequality in (14) to the power p/a/~!
in order to obtain

i—1
ol i14)/ai-1 oCp ofe ai—1 -
M(BjH)U =2 (,U(QUB)(Q—P)/M) M(Bj>1/ , VjeN (15)

If we let P; := pu(B;)"/* ™", then the inequality in (15) becomes

O'Cp p/ai™!
N(QUB)(q—p)/pq)

P < 2p(j+4)/aj‘1( P;, VjeN, (16)
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which, together with an inductive argument and the fact that P, < u(B), implies

J

P <P op(k+4)/ah 1 oCp e
JHl =21 g M(QUB)(qu)/pq
i p/ak_l
pli+4)/ab =1 oCp :
B)y 2 (u(2aB)<q—p>/pQ> ] , VjeN. (17)
=1

We claim that the product in (17) converges as j — oo. Indeed, observe that

p/ak~1 JCP Py Rl ot
H( 20’B (g— p)/m) - (M(QUB)(q—p)/pq)

b pq

- O’Cp a-l - O’CP a—p (18)
o w(20 B)a—p)/pa o (20 B)la=p)/pa '
and .
[T e W = gEEr D A(p,g) € (0, 00). (19)
On the other hand, it follows from (8) that
0<pu@2 BV < Py = w(B)Y* < u(B)YV < o0, (20)
which, in turn, further implies lim P; = 1. Consequently, passing to the limit in (17)
j—oo
yields
/(q—p)
(O_CP)pq
1<u(B)—~——A . 21
< p(B) (20D) (p,q) (21)
Hence,
w(20B) < (aCp)"" "™ A(p, q) u(B). (22)
Since o > 1, it follows that u is doubling. This finishes the proof of the second implication
and, in turn, the proof of the theorem. O

Remark 5. In the proof of the (b) = (a) in Theorem 1, one can compute the constant
A(p, q) appearing in (19) by observing that (keeping in mind a = ¢/p),

Zp(k + 4)a!F Z

k=

Oék

p dpa pq 4pq
— 4 + . 23
012 a1 (q-p? q-p (23)

Therefore,
4pgq

1"12 +
A(p’ q) = 2@@-p)? "a-p
Hence, condition (4) implies that measure p satisfies the following doubling condition:

n 4)pq/ (¢-p)

u(2B) < <an2<qu> u(B) for all balls B C X.
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