
Not Your Father’s Big Data
Carl Nuessle

University at Buffalo
carlnues@buffalo.edu

Oliver Kennedy
University at Buffalo
okennedy@buffalo.edu

Lukasz Ziarek
University at Buffalo
lziarek@buffalo.edu

ABSTRACT
Embedded database libraries provide developers with a com-
mon and convenient data persistence layer. They have spread
to many systems, including interactive devices like smart-
phones, appearing in all major mobile systems. Their perfor-
mance affects the response times and resource consumption
of millions of phone apps and billions of phone users. It is
thus critical that we better understand how they work, so
they can be used more efficiently, and so developers can
make faster libraries. Mobile databases differ significantly
from server-class storage in terms of platform, usage, and
measurement. Phones are multi-tenant, end-user devices
that the database must share with other apps. Contrary to
traditional database design goals, workloads on phones are
single-app, bursty, and rarely saturate the CPU. We argue
that mobile storage design should refocus on what matters
on the mobile platform: latency and energy. As accurate per-
formance measurement tools are necessary to evaluation of
good database design, this uncovers another issue: Tradi-
tional database benchmarking methods produce misleading
results when applied to mobile devices, due to evaluating
performance at saturation. Development of databases and
measurements specifically designed for the mobile platform
is necessary to optimize user experience of the most common
database usage in the world.

Introduction.
There are 2 billion+ smartphones on Earth, each averaging

2 queries per second [2]. Databases furnish an abstraction
to query persistent storage in a structured fashion. Data
management is a bottleneck for mobile workloads [5], so
improving mobile databases performance is critical. To do
so, we need to understand the environment and behavior
of smartphone databases. There are several key differences
between embedded platforms and traditional database en-
vironments that affect DB behavior and measurement. We
outline these differences, and show how traditional database
designs and measurement metrics focus on the wrong things.
The pH is Too High: Database guarantees need to be-
come less Acid and more Basic.

Phone databases default to correct over performant behav-
ior, for example by implementing full ACID guarantees. The
costs can be significant: SQLite, the installed database on An-
droid, by default implements file locking enabled to preserve

Enabled Disabled
Effect of File System Locking

on SQLite Performance

0
500

1000
1500
2000
2500
3000
3500
4000
4500

To
ta

l R
un

ti
m

e
(m

s)

YCSB Workload F

Figure 1: The cost of making SQLite thread safe

isolation[3]. Figure 1 shows the performance gain when run-
ning YCSB workload F [1] that can be had by eliminating
this single safeguard.

Smartphones can harvest the performance gains from im-
plementing a simpler set of safety guarantees. To be sure,
phone databases will still need to assure data integrity (Atom-
icity) and storage invariants (Consistency).

But do we really need Durability on current phones? Bat-
teries are typically soldered in, so the chance of an abrupt
power cut is remote. The Isolation guarantee is unneces-
sary in most cases. While modern server-class databases, to
maximize throughput, support simultaneous connections,
smartphone databases are per-app. Additionally, apps have
low throughput requirements.We speculatemost phone apps
never implement internal database threading, and that the
threading and locking overhead can be eliminated from most
phone databases.
Workloads are bursty.

Server-class databases must expect continuous operation
requests; transaction rate is a key performance metric[4].
Embedded databases, however, should not: Figure 2 shows
the irregular bursts of a representative query pattern. Indeed,
as we discuss later, focusing on throughput during bench-
marking of database performance can produce misleading
results. A tpm of 112k can be obtained with dedicated hard-
ware costing $100k+ [4]. Yet, Figure 2 shows rate bursts of
36k tpm on phones costing $500 – 1/3 the rate for less than
.1% the cost. The key is that phones do not need to sustain
this rate.

Figure 2: Queries over time

14000 15000 16000 17000 18000 19000 20000 21000 22000 23000
Workload Latency (ms)

100

200

300

400

500

600

N
et

 E
ne

rg
y

Co
st

 (
µ
A
h
)

300

729
1036

1267

17282457

2649

Interactive

Ondemand

Workload B -- Unsaturated CPU
Fixed Speeds (MHz)
Interactive (System Default)
Ondemand (Old Default)

Figure 3: Current default suboptimal energy and la-
tency performance

Rather, latency is paramount: mobile is an end-user plat-
form, and latency directly affects app responsiveness. Devel-
opers of mobile databases, given the limited platform, cannot
rely on server-grade hardware for a solution. They need to
focus on designing DB engines to optimize burst response,
with smart cache pre-fetching to yield low latency for the
duration of the current burst, and a large enough caches to
serve the next burst request. They can safely discount access
patterns exhausting the cache – the activity burst will likely
end before that.

Mobile power and performance are suboptimal.
Resource-limited phones are particularly concerned with

power usage, and power-performance tradeoffs are a com-
mon study. Surprisingly, the default settings on Android
are often not optimal for database usage. Figure 3 shows
the power-performance results for YCSB workload B for a
number of different CPU policy settings. Several non-default
settings outperform the system defaults (Ondemand and In-
teractive) in both areas. We have found that the optimal CPU

1 2 3 4 5 6

Database Threads
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e

La
te

nc
y

(m
s)

YCSB Workload C
SQLite
Berkely DB

Figure 4: SQLite-BDB Performance Comparison

policy depends strongly on the nature of the database work-
load – in most cases studied, the setting is a non-default one.
There is thus significant room for improvement in this area.
Likely, implementation of better system policies, advised by
database workload semantics, will yield increased database
performance and/or decreased energy cost.
Mobile needs its own benchmarks.
In order to evaluate and tune any database, representa-

tive benchmarks are necessary. The different conditions and
aims of mobile platforms, however, mean that traditional
benchmark metrics can produce misleading results. Figure 4
illustrates a basic performance comparison of how two differ-
ent databases scale under increasing numbers of workloads
(YCSB-C). BDB, which scales better, would normally be seen
as the better alternative. However, for mobile, databases are
per-app, and it is the base single-thread case that is most
relevant. SQLite performs the better in this study, and in-
deed in most of the YCSB workloads and conditions that we
have studied on phones. The standard benchmark evaluation
would produce misleading results.

REFERENCES
[1] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In SOCC.

[2] Oliver Kennedy, Jerry Antony Ajay, Geoffrey Challen, and Lukasz
Ziarek. 2015. Pocket Data: The Need for TPC-MOBILE. In TPC-TC.

[3] sqlite.org. 2019. Sqlite. (2019). https://www.sqlite.org/tempfiles.html
[4] tpc.org. 2018. TPC. (2018). http://www.tpc.org/tpcc/results/tpcc_

results.asp
[5] YanWang and Atanas Rountev. 2016. Profiling the responsiveness of An-

droid applications via automated resource amplification. InMOBILESoft.
ACM, 48–58.

2

https://www.sqlite.org/tempfiles.html
http://www.tpc.org/tpcc/results/tpcc_results.asp
http://www.tpc.org/tpcc/results/tpcc_results.asp

	Abstract
	References

