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Abstract—Ledger-based systems that support rich applications
often suffer from two limitations. First, validating a transaction
requires re-executing the state transition that it attests to. Second,
transactions not only reveal which application had a state
transition but also reveal the application’s internal state.

We design, implement, and evaluate Zexe, a ledger-based
system where users can execute offline computations and sub-
sequently produce transactions, attesting to the correctness of
these computations, that satisfy two main properties. First,
transactions hide all information about the offline computations.
Second, transactions can be validated in constant time by anyone,
regardless of the offline computation.

The core of Zexe is a construction for a new cryptographic
primitive that we introduce, decentralized private computation
(DPC) schemes. In order to achieve an efficient implementation of
our construction, we leverage tools in the area of cryptographic
proofs, including succinct zero knowledge proofs and recursive
proof composition. Overall, transactions in Zexe are 968 bytes re-
gardless of the offline computation, and generating them takes less
than 1min plus a time that grows with the offline computation.

We demonstrate how to use Zexe to realize privacy-preserving
analogues of popular applications: private user-defined assets and
private decentralized exchanges for these assets.

I. Introduction
Distributed ledgers are a mechanism for maintaining data

across a distributed system while ensuring that every party
has the same view of the data, even in the presence of
corrupted parties. Ledgers can provide an indisputable history
of all “events” logged in a system, thus enabling multiple
parties to collaborate with minimal trust, as any party can
ensure the system’s integrity by auditing history. Interest in
distributed ledgers has soared recently, catalyzed by their use
in cryptocurrencies (peer-to-peer payment systems) and by
their potential as a foundation for new forms of financial
systems, governance, and data sharing. In this work we study
two limitations of ledgers, one about privacy and the other
about scalability.
A privacy problem. The main strength of distributed ledgers
is also their main weakness: the history of all events is available
for anyone to read. This severely limits a direct application of
distributed ledgers.
For example, in ledger-based payment systems such as Bit-

coin [Nak09], every payment transaction reveals the payment’s
sender, receiver, and amount. This not only reveals private
financial details of individuals and businesses using the system,1

1Even just revealing addresses in transactions can reveal much information
about the flow of money [RH11; RS13; And+13; Mei+13; SMZ14; Kal+17].
There are even companies that offer analytics services on the information
stored on ledgers [Ell13; Cha14].

but also violates fungibility, a fundamental economic property
of money. This lack of privacy becomes more severe in smart
contract systems like Ethereum [Woo17], wherein transactions
not only contain payment details, but also embed function calls
to specific applications. In these systems, every application’s
internal state is necessarily public, and so is the history of
function calls associated to it.
This problem has motivated prior work to find ways to

achieve meaningful privacy guarantees on ledgers. For example,
the Zerocash protocol [Ben+14b] provides privacy-preserving
payments, and Hawk [Kos+16] enables general state transitions
with data privacy, that is, an application’s data is hidden from
third parties.
However, all prior work is limited to hiding the inputs and

outputs of a state transition, but not which transition function
is being executed. That is, prior work achieves data privacy but
not function privacy. In systems with a single transition function
this is not a concern.2 In systems with multiple transition
functions, however, this leakage is problematic. For example,
Ethereum currently supports thousands of separate ERC-20
“token” contracts [Eth18], each representing a distinct currency
on the Ethereum ledger; even if these contracts each individually
adopted a protocol such as Zerocash to hide details about token
payments, the corresponding transactions would still reveal
which token was being exchanged. Moreover, the leakage of
this information would substantially reduce the anonymity set
of those payments.

A scalability problem. Public auditability in the afore-
mentioned systems (and many others) is achieved via direct
verification of state transitions that re-executes the associated
computation. This creates the following scalability issues.
First, note that in a network consisting of devices with
heterogeneous computing power, requiring every node to re-
execute transactions makes the weakest node a bottleneck, and
this effect persists even when the underlying ledger is “perfect”,
that is, it confirms every valid transaction immediately. To
counteract this and to discourage denial-of-service attacks
whereby users send transactions that take a long time to
validate, current systems introduce mechanisms such as gas to
make users pay more for longer computations. However, such
mechanisms can make it unprofitable to validate legitimate
but expensive transactions, a problem known as the “Verifier’s

2For example, in Zerocash the single transition function is the one governing
cash flow of a single currency.



Dilemma” [Luu+15]. These problems have resulted in Bitcoin
forks [Bit15] and Ethereum attacks [Eth16].

In sum, there is a dire need for techniques that facilitate
the use of distributed ledgers for rich applications, without
compromising privacy (of data or functions) or relying on
unnecessary re-executions. Prior works only partially address
this need, as discussed in Section I-B below.

A. Our contributions
We design, implement, and evaluate Zexe (Zero knowledge

EXEcution), a ledger-based system that enables users to
execute offline computations and subsequently produce publicly-
verifiable transactions that attest to the correctness of these
offline executions. Zexe simultaneously provides two main
security properties.
• Privacy: a transaction reveals no information about the
offline computation, except (an upper bound on) the number
of consumed inputs and created outputs.3 One cannot link
together multiple transactions by the same user or involving
related computations, nor selectively censor transactions
based on such information.

• Succinctness: a transaction can be validated in time that
is independent of the cost of the offline computation whose
correctness it attests to. Since all transactions are indistin-
guishable, and are hence equally cheap to validate, there is
no “Verifier’s Dilemma”, nor a need for mechanisms like
Ethereum’s gas.

Zexe also offers rich functionality, as offline computations
in Zexe can be used to realize state transitions of multiple
applications (such as tokens, elections, markets) simultaneously
running atop the same ledger. The users participating in
applications do not have to trust, or even know of, one another.
Zexe supports this functionality by exposing a simple, yet
powerful, shared execution environment with the following
properties.
• Extensibility: users may execute arbitrary functions of their
choice, without seeking anyone’s permission.

• Isolation: functions of malicious users cannot interfere with
the computations and data of honest users.

• Inter-process communication: functions may exchange data
with one another.

DPC schemes. The technical core of Zexe is a protocol for
a new cryptographic primitive for performing computations
on a ledger called decentralized private computation (DPC).
Informally, a DPC scheme supports a simple, yet expressive,
programming model in which units of data, which we call
records, are bound to scripts (arbitrary programs) that specify
the conditions under which a record can be created and
consumed (this model is similar to the UTXO model; see
Remark III.3). The rules that dictate how these programs
interact can be viewed as a “nano-kernel” that provides a

3One can fix the number of inputs and outputs (say, fix both to 2), or
carefully consider side channels that could arise from revealing bounds on the
number of inputs and outputs.

shared execution environment upon which to build applications.
From a technical perspective, DPC can be viewed as extending
Zerocash [Ben+14b] to the foregoing programming model,
while still providing strong privacy guarantees, not only within
a single application (which is a straightforward extension) but
also across multiple co-existing applications (which requires
new ideas that we discuss later on). The security guarantees of
DPC are captured via an ideal functionality, which our protocol
provably achieves.
Applications. To illustrate the expressivity of the RNK, we
show how to use DPC schemes to construct privacy-preserving
analogues of popular applications such as private user-defined
assets and private decentralized or non-custodial exchanges
(DEXs). Our privacy guarantees in particular protect against
vulnerabilities of current DEX designs such as front-running
[Bre+17; Ben+17; EMC19; Dai+19]. Moreover, we sketch how
to use DPC to construct a privacy-preserving smart contract
system. See Section III-A and Section V for details.
Techniques for efficient implementation. We devise a set of
techniques to achieve an efficient implementation of our DPC
protocol, by drawing upon recent advances in zero knowledge
succinct cryptographic proofs (namely, zkSNARKs) and in
recursive proof composition (proofs attesting to the validity of
other proofs).
Overall, transactions in Zexe with two input records and

two output records are 968 bytes and can be verified in
tens of milliseconds, regardless of the offline computation;
generating these transactions takes less than a minute plus a
time that grows with the offline computation (inevitably so).
This implementation is achieved in a modular fashion via a
collection of Rust libraries (see Fig. 6), in which the top-level
one is libzexe. Our implementation also supports transactions
with any number m of input records and n of output records;
transactions size in this case is 32m+ 32n+ 840 bytes (the
transaction stores the serial number of each input record and
the commitment of each output record).
A perspective on costs. Zexe is not a lightweight construction,
but achieves, in our opinion, tolerable efficiency for the
ambitious goals it sets out to achieve: data and function
privacy, and succinctness, with rich functionality, in a threat
model that requires security against all efficient adversaries.
Relaxing any of these goals (assuming rational adversaries or
hardware enclaves, or compromising on privacy) will lead to
more efficient approaches.
The primary cost in our system is, unsurprisingly, the cost

of generating the cryptographic proofs that are included in
transactions. We have managed to keep this cost to roughly a
minute plus a cost that grows with the offline computation. For
the applications mentioned above, these additional costs are
negligible. Our system thus supports applications of real-world
interest today (e.g., private DEXs) with reasonable costs.

B. Related work

Avoiding naive re-execution. A number of proposals for
improving the scalability of smart contract systems, such as
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TrueBit [TR17], Plasma [PB17], and Arbitrum [Kal+18], avoid
naive re-execution by having users report the results of their
computations without any cryptographic proofs, and instead
putting in place incentive mechanisms wherein others can
challenge reported results. The user and challenger engage in
a so-called refereed game [FK97; CRR11; CRR13; Jai+16;
Rei16], mediated by a smart contract acting as the referee, that
efficiently determines which of the two was “telling the truth”.
In contrast, in this work correctness of computation is ensured
by cryptography, regardless of any economic motives; we thus
protect against all efficient adversaries rather than merely all
rational and efficient ones. Also, unlike our DPC scheme, the
above works do not provide formal guarantees of strong privacy
(challengers must be able to re-execute the computation leading
to a result and in particular must know any private inputs).
Private payments. Zerocash [Ben+14b], building on earlier
work [Mie+13], showed how to use distributed ledgers to
achieve payment systems with strong privacy guarantees.
The Zerocash protocol, with some modifications, is now
commercially deployed in several cryptocurrencies, including
Zcash [Zcaa]. Solidus [Cec+17] enables customers of financial
institutions (such as banks) to transfer funds to one another in
a manner that ensures that only the banks of the sender and
receiver learn the details of the transfer; all other parties (all
other customers and banks) only learn that a transfer occurred,
and nothing else. zkLedger [NVV18] enables anonymous
payments between a small number of distinguished parties
via the use of homomorphic commitments and Schnorr proofs.
None of these protocols support scripts (small programs that
dictate how funds can be spent), let alone arbitrary state
transitions as in Zexe.
Privacy beyond payments. Hawk [Kos+16], combining
ideas from Zerocash and the notion of an evaluator-prover
for multi-party computation, enables parties to conduct offline
computations and then report their results via cryptographic
proofs. Hawk’s privacy guarantee protects the private inputs
used in a computation, but does not hide which computation
was performed. That said, we view Hawk as complementary to
our work: a user in our system could in particular be a semi-
trusted manager that administers a multi-party computation and
generates a transaction about its output. The privacy guarantees
provided in this work would then additionally hide which
computation was carried out offline.
Zether [Bün+19] is a system that enables publicly known

smart contracts to reason about homomorphic commitments
in zero knowledge, and in particular enables these to transact
in a manner that hides transaction amounts; it does not hide
the identities of parties involved in the transaction, beyond
a small anonymity set. Furthermore, the cost of verifying a
transaction scales linearly with the size of the anonymity set,
whereas in Zexe this cost scales logarithmically with the size
of anonymity set.
Succinct blockchains. Coda [MS18] uses arbitrary-depth
recursive composition of SNARKs to enable blockchain nodes
to verify the current blockchain state quickly. In contrast, Zexe

uses depth-2 recursive composition to ensure that all blockchain
transactions are equally cheap to verify (and are moreover
indistinguishable from each other), regardless of the cost of the
offline computation. In this respect, Coda and Zexe address
orthogonal scalability concerns.
MPC with ledgers. Several works [And+14b; And+14a;
KMB15; KB16; BKM17; RC+17] have applied ledgers to
obtain secure multi-party protocols that have security properties
that are difficult to achieve otherwise, such as fairness. These
approaches are complementary to our work, as any set of
parties wishing to jointly compute a certain function via one
of these protocols could run the protocol “under” our DPC
scheme in such a way that third parties would not learn any
information that such a multi-party computation is happening.
Hardware enclaves. Kaptchuk et al. [KGM19] and Eki-
den [Che+18] combine ledgers with hardware enclaves, such as
Intel Software Guard Extensions [McK+13], to achieve various
integrity and privacy goals for smart contracts. Beyond ledgers,
several systems explore privacy goals in distributed systems by
leveraging hardware enclaves; see for example M2R [Din+15],
VC3 [Sch+15], and Opaque [Zhe+17]. All of these works are
able to efficiently support rich and complex computations. In
this work, we make no use of hardware enclaves, and instead
rely entirely on cryptography. This means that on the one
hand our performance overheads are more severe, while on
the other hand we protect against a richer class of adversaries
(all efficient ones). Moreover, the techniques above depend on
secure remote attestation capabilities, which have recently been
broken for systems like SGX [VB+19].

II. Technical challenges
We now describe the key technical challenges that arise when

trying to design a ledger-based system which achieves the goals
of this paper, namely enabling arbitrary offline computations
while simultaneously providing privacy and succinctness.

Most of the challenges we face revolve around achieving
privacy. Indeed, if privacy is not required, there is a straight-
forward folklore approach that provides succinctness and low
verification cost: each user accompanies the result reported in a
transaction with a succinct cryptographic proof (i.e., a SNARK)
attesting to the result’s correctness. Others who validate the
transaction can simply verify the cryptographic proof, and
do not have to re-execute the computation. Even this limited
approach rules out a number of cryptographic directions, such
as the use of Bulletproofs [Boo+16; Bün+18] (which have
verification time linear in the circuit complexity), but can be
accomplished using a number of efficient SNARK techniques
[Gen+13; Ben+14a; BCS16; Ben+17]. In light of this, we shall
first discuss the challenges that arise in achieving privacy.

A. Achieving privacy for a single arbitrary function
Zerocash [Ben+14b] is a protocol that achieves privacy for

a specific functionality, namely, value transfers within a single
currency. Therefore, it is natural to consider what happens if
we extend Zerocash from this special case to the general case
of a single arbitrary function that is publicly known.
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Sketch of Zerocash. Money in Zerocash is represented via
coins. The commitment of a coin is published on the ledger
when the coin is created, and its serial number is published
when the coin is consumed. Each transaction on the ledger
attests that some “old” coins were consumed in order to
create some “new” coins: it contains the serial numbers of
the consumed coins, commitments of the created coins, and a
zero knowledge proof attesting that the serial numbers belong
to coins created in the past (without identifying which ones),
and that the commitments contain new coins of the same total
value. A transaction is private because it only reveals how
many coins were consumed and how many were created, but
no other information (each coin’s value and owner address
remain hidden). Also, revealing a coin’s serial number ensures
that a coin cannot be consumed more than once (the same
serial number would appear twice). In sum, data in Zerocash
corresponds to coin values, and state transitions are the single
invariant that monetary value is preserved.
Extending to an arbitrary function. One way to extend
Zerocash to a single arbitrary function Φ (known in advance
to everybody) is to think of a coin as a record that stores
some arbitrary data payload, rather than just some integer
value. The commitment of a record would then be published
on the ledger when the record is created, and its unique serial
number would be published when the record is consumed. A
transaction would then contain serial numbers of consumed
records, commitments of created records, and a proof attesting
that invoking the function Φ on (the payload of) the old records
produces (the payload of) the new records.
Data privacy holds because the ledger merely stores each

record’s commitment (and its serial number once consumed),
and transactions only reveal that some number of old records
were consumed in order to create some number of new records
in a way that is consistent with Φ. Function privacy also holds
but for trivial reasons: Φ is known in advance to everybody,
and every transaction is about computations of Φ.

Note that Zerocash is indeed a special case of the above: it
corresponds to fixing Φ to the particular (and publicly known)
choice of a function Φ$ that governs value transfers within
a single currency. However the foregoing protocol supports
only a single hard-coded function Φ, while instead we want to
enable users to select their own functions, as we discuss next.

B. Difficulties with achieving privacy for user-defined functions
We want to enable users to execute functions of their choice

concurrently on the same ledger without seeking permission
from anyone. That is, when preparing a transaction, a user
should be able to pick any function Φ of their choice for creating
new records by consuming some old records. If function privacy
is not a concern, then this is easy: just attach to the transaction
a zero-knowledge proof that Φ was correctly evaluated offline.
However, because this approach reveals Φ, we cannot use it
because function privacy is a goal for us.

An approach that does achieve function privacy would be to
modify the sketch in Section II-A by fixing a single function that
is universal, and then interpreting data payloads as user-defined

functions that are provided as inputs. Indeed, zero knowledge
would ensure function privacy in this case. However merely
allowing users to define their own functions does not by itself
yield meaningful functionality, as we explain next.
The problem: malicious functions. A key challenge in this
setting is that malicious users could devise functions to attack
or disrupt other users’ functions and data, so that a particular
user would not know whether to trust records created by other
users; indeed, due to function privacy, a verifier would not
know what functions were used to create those records. For a
concrete example, suppose that we wanted to realize the special
case of value transfers within a single currency (i.e., Zerocash).
One may believe that it would suffice to instruct users to pick
the function Φ$ (or similar). But this does not work: a user
receiving a record claiming to contain, say, 1 unit of currency
does not know if this record was created via the function Φ$

operating on prior records; a malicious user could have instead
used a different function to create that record, for example, one
that illegally “mints” records that appear valid to Φ$, and thus
enables arbitrary inflation of the currency. More generally, the
lack of any enforced rules about how user-defined functions
can interact precludes productive cooperation between users
that are mutually distrustful. We stress that this challenge arises
specifically due to the requirement that functions be private:
if the function that created (the commitment of) a record was
public knowledge, users could decide for themselves if records
they receive were generated by “good” functions.

One way to address the foregoing problem is to augment
records with a new attribute that identifies the function that
“created” the record, and then impose the restriction that in
a valid transaction only records created by the same function
may participate. This new attribute is contained within a hiding
commitment and thus is never revealed publicly on the ledger
(just like a record’s payload); the zero knowledge proof is
tasked with ensuring that records participating in the same
transaction are all of the same “type”. This approach now
does suffice to realize value transfers within a single currency,
by letting users select the function Φ$. More generally, this
approach generalizes that in Section II-A, and can be viewed
as running multiple segregated “virtual ledgers” each with a
fixed function. Function privacy holds because one cannot tell
if a transaction belongs to one virtual ledger or another.
The problem: functions cannot communicate. The limita-
tion of the above technique is that it forbids any “inter-process
communication” between different functions, and so one cannot
realize even simple functionalities like transferring value
between different currencies on the same ledger. It also rules
out more complex smart contract systems, as communication
between contracts is a key part of such systems. It is thus clear
that this crude “time sharing” of the ledger is too limiting.

III. Our system design
The approaches in Section II-B lie at opposite extremes:

unrestricted inter-process interaction prevents the secure con-
struction of even basic applications such as a single currency,
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while complete process segregation limits the ability to con-
struct complex applications that interact with with each other.

Balancing these extremes requires a shared execution environ-
ment: one can think of this as an operating system for a shared
ledger. This operating system manages user-defined functions: it
provides process isolation, determines data ownership, handles
inter-process communication, and so on. Overall, processes
must be able to concurrently share a ledger, without violating
the integrity or confidentiality of one another.
However, function privacy (one of our goals) dictates

that user-defined functions are hidden, which means that an
operating system cannot be maintained publicly atop the ledger
(as in current smart contract systems) but, instead, must be part
of the statement proved in zero knowledge. This is unfortunate
because designing an operating system that governs interactions
across user-defined functions within a zero knowledge proof
is not only a colossal design challenge but also entails many
arbitrary design choices that we should not have to take.
In light of the above, we choose to take the following

approach: we formulate a minimalist shared execution envi-
ronment that imposes simple, yet expressive, rules on how
records may interact, and enables programming applications in
the UTXO model (see Remark III.3 for details on privacy
in the UTXO model). Section III-A describes this shared
execution environment, which we call the “records nano-
kernel”. Section III-B then shows how to realise this nano-
kernel via a novel cryptographic primitive, decentralized private
computation schemes.

A. The records nano-kernel: a minimalist shared execution
environment
As stated above, our setting calls for a minimalist shared

execution environment, or “nano-kernel”, that enables users to
manage records containing data by programming two boolean
functions (or predicates) associated with each record. These
predicates control the two defining moments in a record’s life,
namely creation (or “birth”) and consumption (or “death”), and
are hence called the record’s birth and death predicates. A user
can create and consume records in a transaction by satisfying
the predicates of those records. In more detail,

The records nano-kernel (RNK) is an execution envi-
ronment that operates over units of data called records. A
record contains a data payload, a birth predicate Φb, and
a death predicate Φd. Records are created and consumed
by valid transactions. These are transactions where
the death predicates of all consumed records and the
birth predicates of all created records are simultaneously
satisfied when given as input the transaction’s local data
(see Fig. 4), which includes: (a) every record’s contents
(such as its payload and the identity of its predicates);
(b) a piece of shared memory that is publicly revealed,
called transaction memorandum; (c) a piece of shared
memory that is kept hidden, called auxiliary input; and
(d) other construction specifics.

The foregoing definition enables predicates to see the contents
of the entire transaction and hence to individually decide if

the local data is valid according to its own logic. This in
turn enables predicates to communicate with each other in a
secure manner without interference from malicious predicates.
In more detail, a record r can protect itself from other records
that contain “bad” birth or death predicates the r’s predicates
could refuse to accept when they detect (from reading the local
data) that they are part of a transaction containing records
having bad predicates. At the same time, a record can interact
with other records in the same transaction when its predicates
decide to accept, thus providing the flexibility that we seek.

We briefly illustrate this via an example, user-defined assets,
whereby one can use birth predicates to define and transact
with their own assets, and also use death predicates to enforce
custom access control policies over these assets.

Example III.1 (user-defined assets). Consider records whose
payloads encode an asset identifier id, the initial asset supply
v, and a value v. Fix the birth predicate in all such records
to be a mint-or-conserve function MoC that is responsible for
creating the initial supply of a new asset, and then subsequently
conserving the value of the asset across all transactions. In
more detail, MoC can be invoked in one of two modes. In mint
mode, when given as input a desired initial supply v, MoC
deterministically derives a fresh unique identifier id for a new
asset and stores (id,v, v = v) in a genesis record. Later on,
MoC can be invoked in conserve mode, where it inspects all
records in a transaction having birth predicate equal to MoC
and whose asset identifiers equal the identifier of the current
record, and ensures that these records conserve asset values.
Users can program death predicates of such records to

enforce conditions on how assets can be consumed, e.g.,
by realizing conditional exchanges with other counter-parties.
Suppose that Alice wishes to exchange 100 units of an asset
id1 for 50 units of another asset id2, but does not have a
counter-party for the exchange. She creates a record r with 100
units of id1 whose death predicate enforces that any transaction
consuming r must also create another record, consumable by
Alice, with 50 units of id2. She then publishes out of band
information about r, and anyone can subsequently claim it by
creating a transaction doing the exchange.
Since death predicates can be arbitrary, many different

access policies can also be realized, e.g., to enforce that a
transaction redeeming a record (a) must be authorized by two
of three public keys, or (b) becomes valid only after a given
amount of time, or (c) must reveal the pre-image of a hash.

One can generalize this basic example to show how the RNK
can realize smart contract systems in which the transaction
creator knows both the contract code being executed, as well
as the (public and secret) state of the contract. At a high level,
these contracts can be executed within a single transaction, or
across multiple transactions, by storing suitable intermediate
state/message data in record payloads, or by publishing that
data in transaction memoranda (as plaintext or ciphertext as
needed). We discuss in more detail below.

Example III.2 (smart contracts with caller-known state). At
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the highest level, smart contract systems operate over a set of
individual contracts, each of which consists of a function (or
collection of functions), some state variables, and some form
of address that serves to uniquely identify the contract. The
contract address ensures that the same code/functions can be
deployed multiple times by different individuals, without two
contracts inadvertently sharing state.4 A standard feature of
smart contract systems is that a contract can communicate with
other contracts: that is, a contract can invoke a second smart
contract as a subroutine, provided that the second contract
provides an interface to allow this behavior. In our setting, we
consider contracts in which the caller knows at least part of
the state of each contract.
In this setting, one can use the records nano-kernel to

realize basic smart contracts as follows. Each contract can be
implemented as a function Φsc. The contract’s state variables
can be stored in one or more records such that each record
ri is labeled with Φsc as the birth and death predicate. Using
this labeling, Φsc (via the RNK) can enforce that only it can
update its state variables, thus fulfilling one requirement of a
secure contract. Of course, while this serves to prevent other
functions from updating the contract’s state, it does not address
the situation where multiple users wish to deploy different
instances of the same function Φsc, each with isolated state.
Fortunately (and validating our argument that the RNK realizes
the minimal requirements needed for such a system), addressing
this problem does not require changes to the RNK. Instead,
one can devise the function Φsc so that it reasons over a
unique contract address identifier id, which is recorded within
the payload of every record.5 The function Φsc can achieve
contract state isolation by enforcing that each input and output
state record considered by single execution of Φsc shares the
same contract address.

To realize “inter-contract calls” between two functions Φsc1

and Φsc2
, one can use “ephemeral” records that communicate

between the two functions. For example, if Φsc1
wishes to call

Φsc2
, the caller may construct a record re that contains the

“arguments” to the called function Φsc2
, as well as the result

of the function call. A transaction would then show that both
Φsc1

and Φsc2
are satisfied.

The above example outlines how to implement a general
smart contract system atop the RNK. We leave to future work
the task of developing this outline into a full-fledged smart
contract framework, and instead focus on constructing a scheme
that implements the RNK, and on illustrating how to directly
program the RNK to construct specific applications such as
private user-defined assets and private decentralized asset
exchanges. We discuss these applications in detail in Section V.

4In concrete implementations such as Ethereum [Woo17], contract identifi-
cation is accomplished through unique contract addresses, each of which can
be bound to a possibly non-unique codeHash that identifies the code of the
program implementing the contract.

5This identifier can be generated in a manner similar to the asset identifier
in Example III.1.

Remark III.3 (working in the UTXO model). In the records
nano-kernel, applications update their state by consuming
records containing the old state, and producing new records
that contain the updated state. This programming model is
popularly known as the “unspent transaction output” (UTXO)
model. This is in contrast to the “account-based” model which
is used by many other smart contract systems [Goo14; Woo17;
EOS18]. At present, it is not known how to efficiently achieve
strong privacy properties in this model even for the simple
case of privacy-preserving payments among any number of
users, as we explain below.

In the account-based model, application state is stored in a
persistent location associated with the application’s account, and
updates to this state are applied in-place. A smart contract that
implements a currency in this model would store user balances
in a persistent table T that maps user account identifiers to
user balances. Transactions from a user A to another user B
would then decrement A’s balance in T and increment B’s
balance by a corresponding amount. A straightforward way to
make this contract data-private (i.e., to hide the transaction
value and the identities of A and B) would be to replace
the user balances in T with hiding commitments to these
balances; transactions would then update these commitments
instead of directly updating the balances. However, while this
hides transaction values, it does not hide user identities; to
further hide these, every transaction would have to update all
commitments in T , which entails a cost that grows linearly
with the number of users. This approach is taken by zkLedger
[NVV18], which enables private payments between a small
number of known users (among other things).
Even worse, achieving function privacy when running

multiple applications in such a system would require each
transaction to hide which application’s data was being updated,
which means that the transaction would have to update the
data of all applications at once, again severely harming the
efficiency of the system.

In sum, it is unclear how to efficiently achieve strong data and
function privacy in the account-based model when users can
freely join and leave the system at any time. On the other hand,
we show in this paper that these properties can be achieved in
the UTXO model at a modest cost.

B. Decentralized private computation

A new cryptographic primitive. To realize a ledger-based
system that supports privacy-preserving computations in the
records nano-kernel, we introduce a new cryptographic primi-
tive called decentralized private computation (DPC) schemes.
Fig. 1 provides an overview of their interface; see the full
version for a formal definition, including the ideal functionality
that we use to express security.

Below we describe only a high-level sketch of our construc-
tion of a DPC scheme, and provide the details in Appendix B.
We take Zerocash [Ben+14b] as a starting point, and then
extend the protocol to support the records nano-kernel and
also to facilitate proving security in the simulation paradigm
relative to an ideal functionality (rather than via a collection
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DPC.Setup
Input: security parameter 1λ
Output: public parameters pp

DPC.GenAddress
Input: public parameters pp
Output: addr. key pair (apk, ask)

DPC.Execute
L

Input:
• public parameters pp

• old
{

records [ri]
m
1

address secret keys [aski]
m
1

• new


address public keys [apkj ]

n
1

record payloads [payloadj ]
n
1

record birth predicates [Φb,j ]
n
1

record death predicates [Φd,j ]
n
1

• auxiliary predicate input aux
• transaction memorandum memo
Output: new records [rj ]

n
1 and transaction tx

DPC.Verify
L

Input: public parameters pp and transaction tx
Output: decision bit b

Fig. 1: Algorithms of a DPC scheme.

of separate game-based definitions as in [Ben+14b]). The full
version contains our proof of security for this construction.
Data structures. A record is a data structure representing
a unit of data in our system. Each record is associated with
an address public key, which is a commitment to a seed for a
pseudorandom function acting as the corresponding address
secret key; addresses determine ownership of records, and in
particular consuming a record requires knowing its secret key.
A record itself consists of an address public key, a data payload,
a birth predicate, a death predicate, and a serial number nonce
and a record commitment that is a commitment to all of these
attributes. The serial number of this record is the evaluation
of a pseudorandom function, seeded with the record’s address
secret key and evaluated at the record’s serial number nonce.

The record’s commitment and serial number, which appear
on the ledger when the record is created and consumed
respectively, reveal no information about the record attributes.
This follows from the hiding property of the commitment, and
the pseudorandom nature of the serial number. The derivation
of a record’s serial number ensures that a user can create a
record for another in such a way that its serial number is fully
determined and yet cannot be predicted without knowing the
other user’s secret key. All the above is summarized in Fig. 2.

Records can be created and consumed via transactions, which
represent state changes in the system. Each transaction in the
ledger consumes some old records and creates new records in
a manner that is consistent with the records nano-kernel. To
ensure privacy, a transaction only contains serial numbers of the
consumed records, commitments of the created records, and a
zero knowledge proof attesting that there exist records consistent
with this information (and with the records nano-kernel). All
commitments on the ledger are collected in a Merkle tree,
which facilitates efficiently proving that a commitment appears
on the ledger (by proving in zero knowledge the knowledge
of a suitable authentication path). All serial numbers on the
ledger are collected in a list that cannot contain duplicates. This
implies that a record cannot be consumed twice because the

Commit

cm

apk payload Φb Φd !

Commit skPRF

PRF

sn

record commitment

birth & death 
predicates

serial number 
nonce

address 
public key

data 
payload

record r
serial 

number

address secret key ask
PRF secret key

CRH

unique info from 
tx that created r

Fig. 2: Construction of a record.

same serial number is revealed each time a record is consumed.
See Fig. 3.

Lledger tx1 tx2 ... tx ... txt

all record commitments all serial numbers

sn1,...,snm cm1,...,cmn memo stL !
serial numbers 
of old records

commitments 
of new records

transaction 
memorandum

ledger 
digest

zkSNARK

...

ledger 
digest

...

Fig. 3: Construction of a transaction.

System usage. To set up the system, a trusted party invokes
DPC.Setup to produce the public parameters for the system.
Later, users can invoke DPC.GenAddress to create address key
pairs. In order to create and consume records, i.e., to produce a
transaction, a user first selects some previously-created records
to consume, assembles some new records to create (including
their payloads and predicates), and decides on other aspects
of the local data such as the transaction memorandum (shared
memory seen by all predicates and published on the ledger)
and the auxiliary input (shared memory seen by all predicates
but not published on the ledger); see Fig. 4. If the user
knows the secret keys of the records to consume and if all
relevant predicates are satisfied (death predicates of old records
and birth predicates of new predicates), then the user can
invoke DPC.Execute to produce a transaction containing a
zero knowledge proof that attests to these conditions. See
Fig. 5 for a summary of Re, the NP statement being proved.
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Finally, nodes maintaining the ledger use DPC.Verify to check
whether a candidate transaction is valid.

In sum, a transaction only reveals the number of consumed
records and number of created records, as well as any data
that was deliberately revealed in the transaction memorandum
(possibly nothing).6

record 
commitment

s

serial 
numbers

address 
public keys

data 
payloads

descriptions 
of birth/death predicates

data 
from old 

records

cmold,1
⋮

cmold,m

snold,1
⋮

snold,m

apkold,1
⋮

apkold,m

payloadold,1
⋮

payloadold,m

Φb,old,1
⋮

Φb,old,m

Φd,old,1
⋮

Φd,old,m

data 
from new 

records

cmnew,1
⋮

cmnew,n

n/a
apknew,1

⋮

apknew,n

payloadnew,1
⋮

payloadnew,n

Φb,new,1
⋮

Φb,new,m

Φd,new,1
⋮

Φd,new,m

transaction 
memorandum memo common 

aux input aux

local data for predicate (ldata)

Φd,old,1(ldata) =  = Φd,old,m(ldata) = 1
Φb,new,1(ldata) =  = Φb,new,n(ldata) = 1

old death predicates
new birth predicates

Fig. 4: Predicates receive local data.

serial numbers 
of old records

commitments 
of new records

transaction 
memorandum

ledger 
digest

zkSNARK

sn1,...,snm cm1,...,cmn memo stL !
old records (rold,1, ..., rold,m) 
old secret keys (askold,1, ..., askold,m) 
new records (rnew,1, ..., rnew,n) 
auxiliary input aux

each old record rold,i 
    - has a commitment that is in a ledger with digest stL 
    - is owned by secret key askold,i 
    - has serial number sni
each new record rnew,j has commitment cmj
each old death predicate Φold,d,i (in rold,i) is satisfied by local data 
each new birth predicate Φnew,b,j (in rnew,j) is satisfied by local data

∃ 

such that

Fig. 5: The execute statement.

Achieving succinctness. Our discussions so far have focused
on achieving (data and function) privacy. However, we also
want to achieve succinctness, namely, that a transaction can be
validated in “constant time”. This follows from a straightforward
modification: we take the protocol that we have designed so far
and use a zero knowledge succinct argument rather than just
any zero knowledge proof. Indeed, the NP statement Re being
proved involves attesting the satisfiability of all (old) death
and (new) birth predicates, and so we need to ensure that the
time needed to verify the corresponding proof does not depend
on the complexity of these predicates. While turning this idea
into an efficient implementation requires more ideas (as we
discuss in Section IV), the foregoing modification suffices from
a theoretical point of view.

6By supporting the use of dummy records, we can in fact ensure that only
upper bounds on the foregoing numbers are revealed.

IV. Achieving an efficient implementation
Our system Zexe (Zero knowledge EXEcution) implements

our construction of a DPC scheme (see Section III-B and Ap-
pendix B). Achieving efficiency in our system required overcom-
ing several challenges. Below we adopt a “problem-solution”
format to highlight some of these challenges and explain how
we addressed them.
Problem 1: universality is expensive. The NP statement
Re that we need to prove involves checking user-defined
predicates, so it must support arbitrary computations that are
not fixed in advance. However, state-of-the-art zkSNARKs
for universal computations rely on expensive tools [Ben+13;
Ben+14a; Wah+15; Ben+17]. Using such “heavy duty” proof
systems would make the system costly for all users, including
those that produce transactions that attest to simple inexpensive
predicates.
Solution 1: recursive proof verification. We address this
problem by relying on one layer of recursive proof composition
[Val08; Bit+13]. Instead of tasking the NP statement with
directly checking user-defined predicates, we only task it with
checking succinct proofs attesting to the satisfaction of the
same. Checking these succinct predicate proofs is a (relatively)
inexpensive computation that is fixed for all predicates, and
which can be “hardcoded” in Re. Since the single succinct
proof produced for Re does not reveal information about the
predicate proofs (thanks to zero knowledge), the predicate
proofs do not have to hide what predicate was checked, and
hence can be specialized for particular user-defined predicates.
This approach further ensures that a user only has to incur the
cost of proving satisfiability of the specific predicates involved
in her transactions, regardless of the complexity of predicates
used by other users in their transactions.
Problem 2: recursion is expensive. Recursive proof composi-
tion has so far been empirically demonstrated for pairing-based
SNARKs [Ben+17] as these have proofs that are extremely
short and cheap to verify. We thus focus our attention on these,
and explain the efficiency challenges that we must overcome
in our setting. Recall that pairings are instantiated via elliptic
curves of small embedding degree. If we instantiate a SNARK’s
pairing via an elliptic curve E defined over a prime field Fq and
having a subgroup of large prime order r, then (a) the SNARK
supports NP statements expressed as arithmetic circuits over
Fr, while (b) proof verification involves arithmetic operations
over Fq . This means that we need to express Re via arithmetic
circuits over Fr. In turn, since the SNARK verifier is part of
Re, this means that we need to also express the verifier via
an arithmetic circuit over Fr, which is problematic because
the verifier’s “native” operations are over Fq. Simulating Fq
operations via Fr operations is expensive, and one cannot avoid
simulation by picking E such that q = r [Ben+17].

Prior work overcomes this by using multiple curves [Ben+17].
Specifically, Ben-Sasson et al. distribute the recursion across
a two-cycle of pairing-friendly elliptic curves, which is a pair
of prime-order curves E1 and E2 such that the size of one’s
base field is the order of the other’s subgroup. This ensures
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that a SNARK over E1 can be verified by a SNARK over E2,
and vice versa. However, known cycles are inefficient at 128
bits of security [Ben+17; CCW19].
Solution 2: tailored set of curves. In our setting we merely
need “a proof of a proof”, with the latter proof not itself
depending on further proofs. This implies that we do not
actually need a cycle of pairing-friendly elliptic curves (which
enables recursion of arbitrary depth), but rather only a “two-
chain” of two curves E1 and E2 such that the size of the base
field of E1 is the size of the prime order subgroup of E2. We
can use the Cocks–Pinch method [FST10] to set up such a
bounded recursion [Ben+17]. We now elaborate on this.
First, we pick a pairing-friendly elliptic curve E1 that not

only is suitable for 128 bits of security, but moreover, enables
efficient SNARK provers at both levels of the recursion. Namely,
letting p be the prime order of E1’s base field and r the
prime order of the group, we need that both Fr and Fp have
multiplicative subgroups whose orders are large powers of 2.
The condition on Fr ensures efficient proving for SNARKs
over E1, while the condition on Fp ensures efficient proving
for SNARKs that verify proofs over E1. In light of the above,
we set E1 to be EBLS, a curve from the Barreto–Lynn–Scott
(BLS) family [BLS02; CLN11] with embedding degree 12.
This family can be implemented at 128 bits of security very
efficiently [Ara+12]. We ensure that both Fr and Fp have
multiplicative subgroups of order 2α for α ≥ 40 by a suitable
condition on the parameter of the BLS family.7
Next we use the Cocks–Pinch method to pick a pairing-

friendly elliptic curve E2 = ECP over a field Fq such that the
curve group ECP(Fq) contains a subgroup of prime order p
(the size of EBLS’s base field). Since the method outputs a
prime q that has about 2× more bits than the desired p, and in
turn p has about 1.5× more bits than r (due to properties of
the BLS family), we only need ECP to have embedding degree
6 in order to achieve 128 bits of security [FST10].

In sum, a SNARK over EBLS is used to generate proofs of
predicates’ satisfiability; after that a zkSNARK over ECP is
used to generate proofs that these predicate proofs are valid
(along with the remaining NP statement’s checks). Because
the two curves have “matching” fields, proofs over EBLS are
efficiently verifiable.
Problem 3: Cocks–Pinch curves are costly. While the curve
ECP was chosen to facilitate efficient checking of proofs over
EBLS, the curve ECP is at least 2× more expensive (in time and
space) than EBLS simply because ECP’s base field is 2× larger
than EBLS’s base field. Checks in the NP relation Re that are
not directly related to proof checking are now unnecessarily
performed on a less efficient curve.
Solution 3: split relations across two curves. We split Re

into two NP relations RBLS and RCP, with the latter containing

7We achieve this by choosing the parameter x of the BLS family to satisfy
x ≡ 1 mod 3 · 2α; indeed, for such a choice of x both r(x) = x

4 − x2 + 1

and p(x) = (x− 1)
2
r(x)/3 + x are divisible by 2

α. This also ensures that
x ≡ 1 mod 3, which ensures that there are efficient towering options for the
relevant fields [Cos12].

just the proof check and the former containing all other checks
(see the full version for details on these). We can then use a
zkSNARK over the curve EBLS (an efficient curve) to produce
proofs for RBLS, and a zkSNARK over ECP (the less efficient
curve) to produce proofs for RCP. This approach significantly
reduces the running time of DPC.Execute (producing proofs
for the checks in RBLS is more efficient over EBLS than over
ECP), at the expense of a modest increase in transaction size
(a transaction now includes a zkSNARK proof over EBLS in
addition to a proof over ECP). An important technicality that
must be addressed is that the foregoing split relies on certain
secret information to be shared across the NP relations, namely,
the identities of relevant predicates and the local data.
Problem 4: the NP relations have many checks. Even
using ECP only for SNARK verification and EBLS for all other
checks does not suffice: the NP relations RBLS and RCP still
have to perform expensive checks like verifying Merkle tree
authentication paths and commitment openings, and evaluating
pseudorandom functions and collision resistant functions.
Similar NP relations, like the one in Zerocash [Ben+14b],
require upwards of four million gates to express such checks,
resulting in high latencies for producing transactions and large
public parameters for the system.
Solution 4: efficient EC primitives. Commitments and
collision-resistant hashing can be expressed as very efficient
arithmetic circuits if one opts for Pedersen-type constructions
over suitable Edwards elliptic curves (and techniques derived
from these ideas are now part of deployed systems [Hop+18]).
To do this, we pick two Edwards curves, EEd/BLS over the field
Fr (matching the group order of EBLS) and EEd/CP over the
field Fp (matching the group order of ECP). This enables us
to achieve very efficient circuits for primitives used in our NP
relations, including commitments, collision-resistant hashing,
and randomizable signatures. (Note that EEd/BLS and EEd/CP

do not need to be pairing-friendly as the primitives only rely
on their group structure.) Overall, we obtain highly optimized
realizations of all checks in Fig. 5.
A note on deploying Zexe with trusted setup. DPC
schemes include a setup algorithm that specifies how to sample
public parameters for the scheme. The setup algorithm in our
DPC construction (see Section III-B) simply consists of running
the setup algorithms for the various cryptographic building
blocks that we rely on (like NIZKs). However, this can be a
challenge for deployment because the entity performing the
setup may be able to break certain security properties of the
scheme by acting maliciously.
While one can mitigate this by using primitives that have

a transparent setup (one that uses only public randomness),
the efficiency considerations mentioned above drive our imple-
mented system to use pairing-based zkSNARKs whose setup is
not transparent (all other primitives we use are transparent). We
thus discuss below how to perform this setup when deploying
our implemented system.
Recall that prior zkSNARK deployments have used secure

multiparty computation [Ben+15; Zcab; BGM17; BGG18],
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so that the sampled public parameters are secure as long as
even a single participating party is honest. One can use this
technique to sample “master” parameters for SNARKs for the
NP relations RBLS and RCP. Since these public parameters do
not depend on any user-defined functions, they can be sampled
once and for all regardless of which applications will run over
the system. Note that these public parameters must be trusted by
everyone, because if they were compromised then the security
(but not privacy) of all applications running over the system
would be compromised as well.

In addition to these “master” parameters, application devel-
opers must also sample “application” parameters. These are
the parameters corresponding to the predicates comprising an
application. Unlike “master” parameters, “application” parame-
ters can be sampled as applications are developed and deployed.
Furthermore, users only need to trust the parameters needed by
applications that the user cares about; compromised parameters
for other applications will not affect (the security and privacy
of) the user’s applications.
Very recent works [Mal+19; CFQ19; Chi+19; GWC19]

have proposed pairing-based SNARKs that have a universal
setup that can be used for any circuit. Once such SNARK
constructions mature into efficient implementations, our system
can be easily modified to use these instead of [GM17] to
mitigate the above concerns, as both our construction and
implementation make use of the underlying SNARKs in a
modular manner.

V. Applications
We describe example applications of DPC schemes by

showing how to “program” these within the records nano-kernel.
We focus on financial applications of smart contract systems
as these are not only popular, but also demand strong privacy.
We begin in Section V-A by describing how to enable users to
privately create and transact with custom user-defined assets
(expanding on Example III.1). We then describe in Section V-B
how to realize private DEXs, which enable users to privately
trade these assets while retaining custody of the same. These
descriptions are a high-level sketch; further details are available
in the full version.

A. User-defined assets
One of the most basic applications of smart contract systems

like Ethereum is the construction of assets (or tokens) that can
be used for financial applications. For example, the Ethereum
ERC20 specification [VB15] defines a general framework
for such assets. These assets have two phases: asset minting
(creation), and asset conservation (expenditure). We show below
how to express such custom assets via the records nano-kernel.
We consider records whose payloads encode: an asset

identifier id, the initial asset supply v, a value v, and application-
dependent data c (we will use this in Section V-B). We
fix the birth predicate in all such records to be a mint-or-
conserve function MoC that is responsible for asset minting
and conservation. In more detail, the birth predicate MoC can
be invoked in two modes, mint mode or conserve mode.

When invoked in mint mode, MoC creates the initial supply
v of the asset in a single output record by deterministically
deriving a fresh, globally-unique identifier id for the asset,
and storing the tuple (id,v,v,⊥) in the record’s payload.
The predicate MoC also ensures that in the given transaction
contains no other non-dummy input or output records. If MoC
is invoked in mint mode in a different transaction, a different
identifier id is created, ensuring that multiple assets can be
distinguished even though anyone can use MoC as the birth
predicate of a record.

When invoked in conserve mode, MoC inspects all records in
a transaction whose birth predicates all equal MoC (i.e., all the
transaction’s user-defined assets) and whose asset identifiers all
equal to the identifier of the current record. For these records
it ensures that no new value is created: that is, the sum of the
value across all output records is less than or equal to the sum
of the value in all input records.
The full version contains pseudocode for MoC.

B. Decentralized exchanges
We describe how to use death predicates that enforce custom-

access policies to build privacy-preserving decentralized ex-
changes, which allow users to exchange custom assets with
strong privacy guarantees while retaining full custody of these
assets. We proceed by first providing background on centralized
and decentralized exchanges. Then, we formulate desirable
privacy properties for decentralized exchanges. Finally, we
describe constructions that achieve these properties.
Motivation. Exchanging digital assets is a compelling use case
of ledger-based systems. A straightforward method to exchange
such assets is via a centralized exchange: users entrust the
exchange with custody of their assets via an on-chain transaction
so that subsequent trades require only off-chain modifications in
the exchange’s internal database. To “exit”, users can request an
on-chain transaction that transfers their assets from the exchange
to the user. Examples of such exchanges include Coinbase [Coi]
and Binance [Bin]. This centralized architecture is efficient,
because trades are recorded only in the exchange’s off-chain
database, and relatively private, because only the exchange
knows the details of individual trades. However, it also has
a serious drawback: having given up custody of their assets,
users are exposed to the risk of security breaches and fraud
by the exchange [PA14; De18; Zha18; Cim18].

In light of this, decentralized exchanges (DEXs) have been
proposed as an alternative means of exchanging assets that
enable users to retain custody of their assets. However, existing
DEX constructions have poor efficiency and privacy guarantees.
Below we describe how we can provide strong privacy for DEXs
(and leave improving the efficiency of DEXs to future work).
DEX architectures. There are different DEX architectures
with different trade-offs; see [Pro18] for a survey. In the
following, we consider DEX architectures where the exchange
has no state or maintains its state off-chain.8 Here we focus on

8This is in contrast to DEX architectures that involve, say, a smart contract
that stores on-chain the standing orders of all users.
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one such category of DEXs, namely intent-based DEXs; we
discuss other kinds of DEXs in the full version.

In intent-based DEXs, the DEX maintains an index, which
is a table where makers publish their intention to trade (say,
a particular asset pair) without committing any assets. A
taker interested in a maker’s intention to trade can directly
communicate with the maker to agree on terms. They can jointly
produce a transaction for the trade, to be broadcast for on-chain
processing. An example of such a DEX is AirSwap [Air]. An
attractive feature of intent-based DEXs is that they reduce
exposure to front-running because the information required for
front-running (like prices or identities of the involved parties)
has been finalized by the time the transaction representing the
trade is broadcast for processing.
Privacy shortcomings and goals. While the foregoing
DEX architecture offers attractive security and functionality,
it does not provide strong privacy guarantees. First, each
transaction reveals information about the corresponding trade,
such as the assets and amounts that were exchanged. Prior
work [Bre+17; Ben+17; EMC19; Dai+19] shows that such
leakage enables front-running that harms user experience and
market transparency, and proposes mitigations that, while
potentially useful, do not provide strong privacy guarantees.
Even if one manages to hide these trade details, transactions in
existing DEXs also reveal the identities of transacting parties.
Onlookers can use this information to extract trading patterns
and frequencies of users. This reduces the privacy of users,
violates the fungibility of assets, and increases exposure to
front-running, because onlookers can use these patterns to infer
when particular assets are being traded.

These shortcomings motivate the following privacy goals
for DEXs. Throughout, we assume that an order is defined by
the pair of assets to be exchanged, and their exchange rates.
1) Trade confidentiality: No efficient adversary A should be

able to learn the trade details (i.e., the asset pairs or amounts
involved) of completed or cancelled trades.

2) Trade anonymity: No efficient adversary A should be able
to learn the identities of the maker and taker.

A protocol that achieves trade confidentiality and trade
anonymity against an adversary A is secure against front-
running by A. We now describe how to construct an intent-
based DEX that achieves trade confidentiality and anonymity.9
Record format. Recall from Section V-A that records
representing units of an asset have payloads of the form
(id,v, v, c), where id is the asset identifier, v is the initial
asset supply, v is the asset amount, and c is arbitrary auxiliary
information. In the following, we use records that, in addition
to the mint-or-conserve birth predicate MoC, have an exchange-
or-cancel death predicate EoC. Informally, EoC allows a record
r to be consumed either by exchanging it for v? units of an
asset with birth predicate Φ?

b and identifier id? (id?, Φ?
b and v?

9Throughout, we assume that users interact with index operators via
anonymous channels. (If this is not the case, operators can use network
information to link users across different interactions regardless of any
cryptographic solutions used.).

are specified in c), or by “cancelling” the exchange and instead
sending new records with r’s asset identifier to an address
apk? (also specified in c). The information required for the
exchange includes the asset’s birth predicate in addition to its
identifier, as it enables users to interact with assets that have
birth predicate different from MoC. See the full version for
detailed pseudocode for EoC.
Private intent-based DEXs. We describe an intent-based
DEX that hides all information about an order and the involved
parties:
1) A maker M can publish to the index an intention to trade,

which is a tuple (idA, idB , pkM) to be interpreted as: “I
want to buy assets with identifier idB in exchange for assets
with identifier idA. Please contact me using the encryption
public key pkM if you would like to discuss the terms.”

2) A taker T who is interested in this offer can use pkM to
privately communicate with M and agree on the terms of
the trade (the form of communication is irrelevant). Suppose
that T and M agree that T will give 10 units of asset idB
to M and will receive 5 units of asset idA from M.

3) The taker T creates a new record r with payload
(idB ,vB , 10, c) for auxiliary data c = (idA, 5, apknew), and
with death predicate EoC. Then T sends r (along with the
information necessary to redeem r) to M.

4) If M has a record worth 5 units of asset idA, she can use
T’s message to construct a DPC transaction that consumes r
and produces appropriate new records for M and T, thereby
completing the exchange.

The record r produced by the taker T can be redeemed by
M only via an appropriate record in exchange. If M does not
possess such a record, T can cancel the trade (at any time)
and retrieve his funds by satisfying the “cancel” branch of
the predicate EoC (which requires knowing the secret key
corresponding to apknew).
Note that regardless of whether the trade was successful

or not, this protocol achieves trade anonymity and trade
confidentiality against all parties (including the index operator).
Indeed, the only information revealed in the final transaction
is that some records were consumed and others created; no
information is revealed about M, T, the assets involved in the
trade (idA and idB), or the amounts exchanged.

VI. System implementation
We now summarize our implementation of DPC schemes in

our system named named Zexe (Zero knowledge EXEcution).10
Zexe follows the strategy described in Section IV, and consists
of several Rust libraries: (a) a library for finite field and
elliptic curve arithmetic, adapted from [Bow17b]; (b) a library
for cryptographic building blocks, including zkSNARKs for
constraint systems (using components from [Bow17a]); (c) a
library with constraints for many of these building blocks;
and (d) a library that realizes our DPC construction. Our
codebase, like our construction, is written in terms of abstract
building blocks, which allows to easily switch between different

10The code is available at https://github.com/scipr-lab/zexe.
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instantiations of the building blocks. In the rest of this section
we describe the efficient instantiations used in the experiments
reported in Section VII.

libzexe

constraints for building blocks

zkSNARK
cryptographic building

blocks

algebra

Fig. 6: Stack of libraries comprising Zexe.

Pseudorandom function. Fixing key length and input length
at 256 bits, we instantiate PRF using the Blake2s hash function
[Aum+13]: PRFk(x) := b2s(k‖x) for k, x ∈ {0, 1}256.
Elliptic curves. Our implementation strategy (see Section IV)
involves several elliptic curves: two pairing-friendly curves
EBLS and ECP, and two “plain” curves EEd/BLS and EEd/CP

whose base field respectively matches the prime-order subgroup
of EBLS and ECP. Details about these curves are in Fig. 7;
the parameter used to generate the BLS curve EBLS is x =
3 · 246 · (7 · 13 · 499) + 1 (see Section IV for why).
NIZKs. We instantiate the NIZKs used for the NP relation
Re via zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARKs), which makes our DPC schemes
succinct. Concretely, we rely on the simulation-extractable
zkSNARK of Groth and Maller [GM17], used over the pairing-
friendly elliptic curves EBLS (for proving RBLS and predicates’
satisfiability) and ECP (for proving RCP).
DLP-hard group. Several instantiations of cryptographic
primitives introduced below rely on the hardness of extracting
discrete logarithms in a prime order group. We generate these
groups via a group generator SampleGrp, which on input a
security parameter λ (represented in unary), outputs a tuple
(G, q, g) that describes a group G of prime order q generated by
g. The discrete-log problem is hard in G. In our prototype we
fix G to be the largest prime-order subgroup of either EEd/BLS

or EEd/CP, depending on the context.
Commitments. We instantiate (plain and) trapdoor commit-
ments via Pedersen commitments over G. These commitments
are perfectly hiding, and are computationally binding if the
discrete-log problem is hard in G.
Collision-resistant hashing. We instantiate CRH via a
Pedersen hash function over G. Collision resistance follows
from hardness of the discrete-logarithm problem [MRK03].

VII. System evaluation
In Section VII-A we evaluate individual cryptographic

building blocks. In Section VII-B we evaluate the cost of NP
relations expressed as constraints, as required by the underlying
zkSNARK. In Section VII-C we evaluate the running time of
DPC algorithms. In Section VII-D we evaluate the sizes of
DPC data structures. All reported measurements were taken
on a machine with an Intel Xeon 6136 CPU at 3.0GHz with
252GB of RAM.

A. Cryptographic building blocks
We are interested in two types of costs associated with

a given cryptographic building block: the native execution
cost, which are the running times of certain algorithms on
a CPU; and the constraint cost, which are the numbers of
constraints required to express certain invariants, to be used
by the underlying zkSNARK.
Native execution cost. The zkSNARK dominates native
execution cost, and the costs of all other building blocks are
negligible in comparison. Therefore we separately report only
the running times of the zkSNARK, which in our case is a
protocol due to Groth and Maller [GM17], abbreviated as
GM17. When instantiated over the elliptic curve EBLS, the
GM17 prover takes 25 µs per constraint (with 12 threads),
while the GM17 verifier takes 250n µs + 9.5ms on an input
with n field elements (with 1 thread). When instantiated over
the elliptic curve ECP, the respective prover and verifier costs
are 147 µs per constraint and 1.6nms + 34ms.
Constraint cost. There are three building blocks that together
account for the majority of the cost of NP statements that we
use. These are: (a) the Blake2s PRF, which requires 21792
constraints to map a 64-byte input to a 32-byte output; (b) the
Pedersen collision-resistant hash, which requires 5n constraints
for an input of n bits; and (c) the GM17 verifier, which requires
14n+ 52626 constraints for an n-bit input.

B. The execute NP relation
In many zkSNARK constructions, including the one that we

use, one must express all the relevant checks in the given NP
relation as (rank-1) quadratic constraints over a large prime
field. Our goal is to minimize the number of such constraints
because the prover’s costs grow (quasi)linearly in this number.

In our DPC scheme we use a zkSNARK for the NP relation
Re in Fig. 10. More precisely, for efficiency reasons explained
in Section IV, we split Re into the two NP relations RBLS and
RCP, which we prove via zkSNARKs over the pairing-friendly
curves EBLS and ECP, respectively.

Table III reports the number of constraints that that we use
to express RBLS, as a function of the number of input (m)
and output (n) records, and additionally reports its primary
contributors. Table IV does the same for RCP. These tables
show that for each input record costs are dominated by
verification of a Merkle tree path and the verification of a
(death predicate) proof; while for each output record costs are
dominated by the verification of a (birth predicate) proof. We
also report the cumulative number of constraints when setting
m := 2 and n := 2 because this is a representative instantiation
of m and n that enables useful applications.

C. DPC algorithms
In Table I we report the running times of algorithms in our

DPC implementation for two input and two output records (i.e.,
m := 2 and n := 2). Note that for Execute and Verify, we
have excluded costs of ledger operations (such as retrieving an
authentication path or scanning for duplicate serial numbers)
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name curve type embedding
degree

size of prime-order
subgroup

size of base
field

size of compressed group elements
(rounded to multiples of 8 bytes)
G1 G2

EEd/BLS twisted Edwards — s r 32 —
EBLS BLS 12 r p 48 96
EEd/CP twisted Edwards — t p 48 —
ECP short Weierstrass 6 p q 104 312

Fig. 7: The elliptic curves EBLS, ECP, EEd/BLS, EEd/CP. See Appendix A for details of the underlying fields.

because these depend on how a ledger is realized, which is
orthogonal to our work. Also, we assume that Execute receives
as inputs the application-specific SNARK proofs checked by the
NP relation. Producing each of these proofs requires invoking
the GM17 prover, over the elliptic curve EBLS, for the relevant
birth or death predicate; we describe the cost of doing so for
representative applications in Section VII-E.

Observe that, as expected, Setup and Execute are the most
costly algorithms as they invoke costly zkSNARK setup and
proving algorithms. To mitigate these costs, Setup and Execute
are executed on 12 threads; everything else is executed on 1
thread. Overall, we learn that Execute takes less 1min, Verify
takes roughly 50ms, and both Setup and Execute use less than
5GB of RAM. These costs are comparable to those of similar
systems such as Zerocash [Ben+14b] and Hawk [Kos+16].

D. DPC data structures

Addresses. An address public key in a DPC scheme is a
point on the elliptic curve EEd/BLS, which is 32 bytes when
compressed (see Fig. 7); the corresponding secret key is 64
bytes and consists of a PRF seed (32 bytes) and commitment
randomness (32 bytes).
Transactions. A transaction in a DPC scheme, with two input
and two output records, is 968 bytes. It contains two zkSNARK
proofs: πBLS, over the elliptic curve EBLS, and πCP, over the
curve ECP. Each proof consists of two G1 and one G2 elements
from its respective curve, amounting to 192 bytes for πBLS and
520 for πCP (both in compressed form). In general, a transaction
with m input and n output records is 32m+ 32n+ 840 bytes.
Record contents. We set a record’s payload to be 32 bytes
long; if a predicate needs longer data then it can set the payload
to be the hash of this data, and use non-determinism to access
the data. The foregoing choice means that all contents of a
record add up to 224 bytes, since a record consists of an address
public key (32 bytes), the 32-byte payload, hashes of birth and
death predicates (48 bytes each), a serial number nonce (32
bytes), and commitment randomness (32 bytes).

E. Applications
We do not report total costs for producing transactions for

the applications in Section V because the additional application-
specific costs are negligible compared to the base cost reported
in Table I. This is because all application-specific proofs are
produced over the efficient elliptic curve EBLS, and moreover,
for each application we consider, the heaviest computation
checked by these proofs is the relatively lightweight one of
opening the local data commitment; the remaining costs consist

of a few cheap range and equality checks. Indeed, with two
input and two output records, these applications require fewer
than 35, 000 constraints (compared to over 350, 000 for RBLS

and RCP), and producing the corresponding proofs takes tens
of milliseconds (compared to tens of seconds for the base cost
of DPC.Execute).

Setup 109.62 s
GenAddress 380 µs
Execute 52.5 s
Verify 46ms

TABLE I: Cost of
DPC algorithms for
2 inputs and 2 out-
puts.

2 inputs and 2 outputs 968

m inputs and n outputs 32m+32n+
840

Per input record:
Serial number 32

Per output record:
Commitment 32

Memorandum 32
zkSNARK proof over ECP 520
zkSNARK proof over EBLS 192
Predicate commitment 32
Local data commitment 32
Ledger digest 32

TABLE II: Size of a DPC transaction (in
bytes).

Breakdown of the number of constraints with m input and n output records:

Per input record Total 117699

Enforce validity of:
Merkle tree path 81824
Address key pair 3822
Serial number computation 22301
Record commitment 9752

Per output record Total 15427

Enforce validity of:
Serial number nonce 5417
Record commitment 10010

Other Enforce validity of:
Predicate commitment 21792 · d 34 (m+ n) + 1

2 e
Local data commitment 7168 ·m+ 6144 · n

Miscellaneous 7368

Total with 2 inputs and 2 outputs (m = n = 2) 387412

TABLE III: Number of constraints for RBLS.

Breakdown of the number of constraints with m input and n output records:

Per input record Total 87569

Enforce validity of:
Death predicate ver. key 45827
Death predicate proof 41742

Per output record Total 87569

Enforce validity of:
Birth predicate ver. key 45827
Birth predicate proof 41742

Other Enforce validity of:
Predicate commitment 21792 · d 34 (m+ n) + 1

2 e
Miscellaneous 1780

Total with 2 inputs and 2 outputs (m = n = 2) 439224

TABLE IV: Number of constraints for RCP.
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Appendix A
Details of elliptic curves used in Zexe

In Fig. 8 we report details of the base fields and prime orders
of the elliptic curves EEd/BLS, EBLS, EEd/CP and ECP.

Appendix B
Construction of decentralized private computation

schemes
We describe our construction of a DPC scheme. In Sec-

tion B-A we introduce the building blocks that we use, and in
Section B-B we describe each algorithm in the scheme. The
security proof is provided in the full version.

A. Building blocks

CRHs. A collision-resistant hash function CRH = (Setup,
Eval) works as follows.
• Setup: on input a security parameter, CRH.Setup samples
public parameters ppCRH.

• Hashing: on input public parameters ppCRH and message m,
CRH.Eval outputs a short hash h of m.

Given public parameters ppCRH ← CRH.Setup(1λ), it is
computationally infeasible to find distinct inputs x and y such
that CRH.Eval(ppCRH, x) = CRH.Eval(ppCRH, y).
PRFs. A pseudorandom function family PRF =
{PRFx : {0, 1}

∗ → {0, 1}O(|x|)}x, where x denotes the seed,
is computationally indistinguishable from a random function
family to anyone who does not know the x.
Commitments. A commitment scheme CM = (Setup,
Commit) enables a party to generate a (perfectly) hiding and
(computationally) binding commitment to a given message.
• Setup: on input a security parameter, CM.Setup samples
public parameters ppCM.

• Commitment: on input public parameters ppCM, message m,
and randomness rcm, CM.Commit outputs a commitment
cm to m.

We also use a trapdoor commitment scheme TCM = (Setup,
Commit), with the same syntax as above. Auxiliary algorithms
(beyond those in CM) enable producing a trapdoor and using
it to open a commitment, originally to an empty string, to an
arbitrary message. These algorithms are used only in the proof
of security, and so we introduce them there.
NIZKs. Non-interactive zero knowledge arguments of knowl-
edge enable a party, known as the prover, to convince another
party, known as the verifier, about knowledge of the witness
for an NP statement without revealing any information about
the witness (besides what is already implied by the statement
being true). This primitive is a tuple NIZK = (Setup,Prove,
Verify) with the following syntax.
• Setup: on input a security parameter and the specification
of an NP relation R, NIZK.Setup outputs a set of public
parameters ppNIZK.

• Proving: on input ppNIZK and an instance-witness pair
(x,w) ∈ R, NIZK.Prove outputs a proof π.
• Verifying: on input ppNIZK, instance x, and proof π,

NIZK.Verify outputs a decision bit.

Completeness states that honestly generated proofs make the
verifier accept; (computational) proof of knowledge states that
if the verifier accepts a proof for an instance then the prover
“knows” a witness for it; and perfect zero knowledge states that
honestly generated proofs can be perfectly simulated, when
given a trapdoor to the public parameters. In fact, we require
a strong form of (computational) proof of knowledge known
as simulation-extractability, which states that proofs continue
to be proofs of knowledge even when the adversary has seen
prior simulated proofs. For more details, see [Sah99; De +01;
Gro06].

Remark B.1. If NIZK is additionally succinct (i.e., it is
a simulation-extractable zkSNARK) then the DPC scheme
constructed in this section is also succinct. This is the case in
our implementation; see Section VI.

B. Algorithms
Pseudocode for our construction of a DPC scheme is in

Fig. 9. The construction involves invoking zero knowledge
proofs for the NP relation Re described in Fig. 10. The text
below is a summary of the construction.
System setup. DPC.Setup is a wrapper around the setup algo-
rithms of cryptographic building blocks. It invokes CM.Setup,
TCM.Setup, CRH.Setup, and NIZK.Setup to obtain (plain and
trapdoor) commitment public parameters ppCM and ppTCM,
CRH public parameters ppCRH, and NIZK public parameters for
the NP relation Re (see Fig. 10). It then outputs pp := (ppCM,
ppTCM, ppCRH, ppe).
Address creation. DPC.GenAddress constructs an address
key pair as follows. The address secret key ask = (skPRF, rpk)
consists of a seed skPRF for the pseudorandom function PRF
and commitment randomness rpk. The address public key apk
is a hiding commitment to skPRF with randomness rpk.
Execution. DPC.Execute produces a transaction attesting
that some old records [ri]

m
1 were consumed and some new

records [rj ]
n
1 were created, and that their death and birth

predicates were satisfied. First, DPC.Execute computes a ledger
membership witness and serial number for every old record.
Then, DPC.Execute invokes the following auxiliary function
to create record commitments for the new records.
DPC.ConstructRecord(pp, apk, payload,Φb,Φd, ρ)→ (r, cm)
1) Sample new commitment randomness r.
2) Assemble new record commitment contents: m := (apk‖payload‖Φb‖Φd‖ρ).
3) Construct new record commitment: cm ← TCM.Commit(ppTCM,m; r).
4) Assemble new record

r :=

(
address public key apk payload payload comm. rand. r

serial number nonce ρ predicates (Φb,Φd) commitment cm

)
.

5) Output (r, cm).

Information about all records, secret addresses of old records,
the desired transaction memorandum memo, and desired
auxiliary predicate input aux are collected into the local data
ldata (see Fig. 10).

Finally, DPC.Execute produces a proof that all records are
well-formed and that several conditions hold.
• Old records are properly consumed, namely, for every old
record ri ∈ [ri]

m
1 :
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prime value size in bits 2-adicity

s 0x4aad957a68b2955982d1347970dec005293a3afc43c8afeb95aee9ac33fd9ff 251 1

r 0x12ab655e9a2ca55660b44d1e5c37b00159aa76fed00000010a11800000000001 253 47

t 0x35c748c2f8a21d58c760b80d94292763445b3e601ea271e1
d75fe7d6eeb84234066d10f5d893814103486497d95295

374 2

p 0x1ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1
ef3622fba094800170b5d44300000008508c00000000001

377 46

q 0x3848c4d2263babf8941fe959283d8f526663bc5d176b746a
f0266a7223ee72023d07830c728d80f9d78bab3596c8617c57
9252a3fb77c79c13201ad533049cfe6a399c2f764a12c4024b
ee135c065f4d26b7545d85c16dfd424adace79b57b942ae9

782 3

Fig. 8: The elliptic curves EBLS, ECP, EEd/BLS, EEd/CP.

– (if ri is not dummy) ri exists, demonstrated by checking
a ledger membership witness for ri’s commitment;

– ri has not been consumed, demonstrated by publishing
ri’s serial number sni;

– ri’s death predicate Φd,i is satisfied, demonstrated by
checking that Φd,i(i‖ldata) = 1.

• New records are property created, namely, for every new
record rj ∈ [rj ]

n
1 :

– rj’s serial number is unique, achieved by generating the
nonce ρj as CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm);

– rj’s birth predicate Φb,j is satisfied, demonstrated by
checking that Φb,j(j‖ldata) = 1.

The serial number sn of a record r relative to an address secret
key ask = (skPRF, rpk) is derived by evaluating PRF at r’s
serial number nonce ρ with seed skPRF. This ensures that sn is
pseudorandom even to a party that knows all of r but not ask
(e.g., to a party that created the record for some other party).
Note that each predicate receives its own position as input so
that it knows to which record in the local data it belongs.
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DPC.Setup
Input: security parameter 1λ

Output: public parameters pp

1) Generate commitment parameters:
ppCM ← CM.Setup(1

λ
), ppTCM ← TCM.Setup(1

λ
).

2) Generate CRH parameters: ppCRH ← CRH.Setup(1
λ
).

3) Generate NIZK parameters for Re (see Figure 10):
ppe ← NIZK.Setup(1

λ
,Re).

4) Output pp := (ppCM, ppTCM, ppCRH, ppe).

DPC.GenAddress
Input: public parameters pp
Output: address key pair (apk, ask)

1) Sample secret key skPRF for pseudorandom function PRF.
2) Sample randomness rpk for commitment scheme CM.
3) Set address public key

apk := CM.Commit(ppCM, skPRF; rpk).
4) Set address secret key ask := (skPRF, rpk).
5) Output (apk, ask).

DPC.Execute
L

Input:
• public parameters pp

• old
{

records [ri]
m
1

address secret keys [aski]
m
1

• new


address public keys [apkj ]

n
1

record payloads [payloadj ]
n
1

record birth predicates [Φb,j ]
n
1

record death predicates [Φd,j ]
n
1

• auxiliary predicate input aux
• transaction memorandum memo
Output: new records [rj ]

n
1 and transaction tx

1) For each i ∈ {1, . . . ,m}, process the i-th old record as follows:

a) Parse old record ri as
(

address public key apki payload payloadi comm. rand. ri
serial number nonce ρi predicates (Φb,i,Φd,i) commitment cmi

)
.

b) If payloadi.isDummy = 1, set ledger membership witness wL,i := ⊥.
If payloadi.isDummy = 0, compute ledger membership witness for commitment: wL,i ← L.Prove(cmi).

c) Parse address secret key aski as (skPRF,i, rpk,i).
d) Compute serial number: sni ← PRFskPRF,i

(ρi).
2) For each j ∈ {1, . . . , n}, construct the j-th new record as follows:

a) Compute serial number nonce: ρj := CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
b) Construct new record: (rj , cmj)← DPC.ConstructRecord(ppTCM, apkj , payloadj ,Φb,j ,Φd,j , ρj).

3) Retrieve current ledger digest: stL ← L.Digest.
4) Construct instance xe for Re: xe := (stL, [sni]

m
1 , [cmj ]

n
1 ,memo).

5) Construct witness we for Re: we := ([ri]
m
1 , [wL,i]

m
1 , [aski]

m
1 , [rj ]

n
1 , aux).

6) Generate proof for Re: πe ← NIZK.Prove(ppe,xe,we).
7) Construct transaction: tx := ([sni]

m
1 , [cmj ]

n
1 ,memo, ?), where ? := (stL, πe).

8) Output ([rj ]
n
1 , tx).

DPC.Verify
L

Input: public parameters pp and transaction tx
Output: decision bit b

1) Parse tx as ([sni]
m
1 , [cmj ]

n
1 ,memo, ?) and ? as (stL, πe).

2) Check that there are no duplicate serial numbers
a) within the transaction tx: sni 6= snj for every distinct i, j ∈ {1, . . . ,m};
b) on the ledger: L.Contains(sni) = 0 for every i ∈ {1, . . . ,m}.

3) Check that the ledger state is valid: L.ValidateDigest(stL) = 1.
4) Construct instance for the relation Re: xe := (stL, [sni]

m
1 , [cmj ]

n
1 ,memo).

5) Check proof for the relation Re: NIZK.Verify(ppe,xe, πe) = 1.

Fig. 9: Construction of a DPC scheme.
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xe =


ledger digest stL
old record serial numbers [sni]

m
1

new record commitments [cmj ]
n
1

transaction memorandum memo

 and we =


old records [ri]

m
1

old record membership witnesses [wL,i]
m
1

old address secret keys [aski]
m
1

new records [rj ]
n
1

auxiliary predicate input aux


where
• for each i ∈ {1, . . . ,m}, ri = (apki, payloadi,Φb,i,Φd,i, ρi, ri, cmi);
• for each j ∈ {1, . . . , n}, rj = (apkj , payloadj ,Φb,j ,Φd,j , ρj , rj , cmj).

Define the local data ldata :=

(
[cmi]

m
1 [apki]

m
1 [payloadi]

m
1 [Φd,i]

m
1 [Φb,i]

m
1 [sni]

m
1 memo

[cmj ]
n
1 [apkj ]

n
1 [payloadj ]

n
1 [Φd,j ]

n
1 [Φb,j ]

n
1 aux

)
.

Then, a witness we is valid for an instance xe if the following conditions hold:
1) For each i ∈ {i, . . . ,m}:

• If ri is not dummy, wL,i proves that the commitment cmi is in a ledger with digest stL: L.Verify(stL, cmi,wL,i) = 1.
• The address public key apki and secret key aski form a valid key pair:

apki = CM.Commit(ppCM, skPRF,i; rpk,i) and aski = (skPRF,i, rpk,i).
• The serial number sni is valid: sni = PRFskPRF,i

(ρi).
• The old record commitment cmi is valid: cmi = TCM.Commit(ppTCM, apki‖payloadi‖Φb,i‖Φd,i‖ρi; ri).
• The death predicate Φd,i is satisfied by local data: Φd,i(i‖ldata) = 1.

2) For each j ∈ {1, . . . , n}:
• The serial number nonce ρj is computed correctly: ρj = CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
• The new record commitment cmj is valid: cmj = TCM.Commit(ppTCM, apkj‖payloadj‖Φb,j‖Φd,j‖ρj ; rj).
• The birth predicate Φb,j is satisfied by local data: Φb,j(j‖ldata) = 1.

Fig. 10: The execute NP relation Re.
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