Giving State to the Stateless:
Augmenting Trustworthy Computation with Ledgers

Gabriel Kaptchuk, Matthew Green
Johns Hopkins University
{gkaptchuk, mgreen} @cs.jhu.edu

Abstract—In this work we investigate new computational
properties that can be achieved by combining stateless trusted
devices with public ledgers. We consider a hybrid paradigm in
which a client-side device (such as a co-processor or trusted
enclave) performs secure computation, while interacting with a
public ledger via a possibly malicious host computer. We explore
both the constructive and potentially destructive implications of
such systems. We first show that this combination allows for the
construction of stateful interactive functionalities (including gen-
eral computation) even when the device has no persistent storage;
this allows us to build sophisticated applications using inexpensive
trusted hardware or even pure cryptographic obfuscation tech-
niques. We further show how to use this paradigm to achieve
censorship-resistant communication with a network, even when
network communications are mediated by a potentially malicious
host. Finally we describe a number of practical applications
that can be achieved today. These include the synchronization of
private smart contracts; rate limited mandatory logging; strong
encrypted backups from weak passwords; enforcing fairness in
multi-party computation; and destructive applications such as
autonomous ransomware, which allows for payments without an
online party.

I. INTRODUCTION

In recent years a new class of distributed system has
evolved. Loosely categorized as decentralized ledgers, these
systems construct a virtual “bulletin board” to which nodes
may publish data. Many protocols, including cryptocurrencies
such as Bitcoin [47], construct such a ledger to record financial
transactions. More recent systems target other specific applica-
tions, such as identity management [30], [1], or the execution
of general, user-defined programs, called “smart contracts” [6].
Some companies have also deployed centralized public ledgers
for specific applications; for example, Google’s Certificate
Transparency [3] provides a highly-available centralized ledger
for recording issued TLS certificates.

While the long-term success of specific systems is uncer-
tain, two facts seem clear: (1) centralized and decentralized
ledger systems are already in widespread deployment, and
this deployment is likely to continue. Moreover (2) the decen-
tralized nature of these systems makes them potentially long-
lived and resilient to certain classes of network-based attack.

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA

ISBN 1-891562-55-X

http://dx.doi.org/10.14722/ndss.2019.23060
www.ndss-symposium.org

Tan Miers
Cornell Tech
imiers @cs.cornell.edu

This provides a motivation to identify new ways that these
technologies can be used to enhance the security of distributed
systems.

In this work we focus on one such application: using
ledgers to enhance the security of Trusted Execution Envi-
ronments (TEE). In the context of this work, we use TEE
to refer to any limited, secure computing environment that is
dependent on a (possibly malicious) host computer for correct
operation. Examples of such environments include Hardware
Security Modules, smart cards [51], and the “secure element”
co-processors present in many mobile devices [12], as well
as virtualized TEE platforms such as Intel’s Software Guard
Extensions (SGX), ARM TrustZone, and AMD SEV [5], [14],
[8]. While many contemporary examples rely on hardware, it
is conceivable that future trusted environments may be im-
plemented using pure software virtualization, general-purpose
hardware obfuscation [26], [23], [48], or even cryptographic
program obfuscation [42].

While TEEs have many applications in computing, they
(like all secure co-processors) have fundamental limitations.
A trusted environment operating perfectly depends on the host
computer for essential functionality, creating an opportunity
for a malicious host to manipulate the TEE and its view of the
world. For example, an attacker may:

1) Tamper with network communications, censoring cer-
tain inputs or outputs and preventing the TEE from
communicating with the outside world.

2) Tamper with stored non-volatile data, e.g. replaying
old stored state to the TEE in order to reset the state
of a multi-step computation.

We stress that these attacks may have a catastrophic impact
even if the TEE itself operates exactly as designed. For exam-
ple, many interactive cryptographic protocols are vulnerable
to “reset attacks,” in which an attacker rewinds or resets the
state of the computation [17], [7], [27]. State reset attacks
are not merely a problem for cryptographic protocols; they
are catastrophic for many typical applications such as limited-
attempt password checking [57].

When implemented in hardware, TEE systems can mitigate
reset attacks by deploying a limited amount of tamper-resistant
non-volatile storage [50]." However, such countermeasures
increase the cost of producing the hardware and are simply

! The literature affords many examples of attackers bypassing such mech-
anisms [58], [38], [57] using relatively inexpensive physical and electronic
attacks.

not possible in software-only environments. Moreover, these
countermeasures are unavailable to environments where a
single state transition machine is run in a distributed fashion,
with the transition function executed across different machines.
In these environments, which include private smart contract
systems [31] and “serverless” cloud step-function environ-
ments [9], [28], state protections cannot be enforced locally by
hardware. Similarly, hardware countermeasures cannot solve
the problem of enforcing a secure channel to a public data
network.

A hypothetical solution to these problems is to delegate
statekeeping and network connectivity to a remote, trusted
server or small cluster of peers, as discussed in [44]. These
could keep state on behalf of the enclave and would act as
conduit to the public network. However, this approach simply
shifts the root of trust to a different physical location, failing
to solve our problem because this new system is vulnerable
to the same attacks. Moreover, provisioning and maintaining
the availability of an appropriate server can be a challenge for
many applications, including IoT deployments that frequently
outlive the manufacturer.

Combining TEEs with Ledgers. In this work we consider
an alternative approach to ensuring the statefulness and con-
nectivity of trusted computing devices. Unlike the strawman
proposals above, our approach does not require the TEE to
include secure internal non-volatile storage, nor does it require
a protocol-aware external server to keep state. Instead, we
propose a model in which parties have access to an append-
only public ledger, or bulletin board with certain properties.
Namely, upon publishing a string S on the ledger, a party
receives a copy of the resulting ledger — or a portion of it
— as well as a proof (e.g. a signature) to establish that the
publication occurred. Any party, including a trusted device,
can verify this proof to confirm that the received ledger data
is authentic. The main security requirement we require from
the ledger is that its contents cannot be modified or erased
and proofs of publication cannot be (efficiently) forged. This
model has been previously investigated independently in a
more limited fashion by other works, notably in the context of
fair multiparty computation [22], [29]. In this work we propose
a broader paradigm for secure computation.

Our contributions. In this work we propose a new general
protocol, which we refer to as an Enclave-Ledger Interaction
(ELI). This proposal divides any multi-step interactive com-
putation into a protocol run between three parties: a stateless
client-side TEE, which we refer to as an enclave (for the rest
of this work, we use these two terms interchangeably) that
contains a secret key; a ledger that logs posted strings and
returns a proof of publication; and a (possibly adversarial) host
application that facilitates all communications between the two
preceding parties. Users may provide inputs to the computation
via the host, or through the ledger itself. We illustrate our
model in Figure 1.

We assume that the enclave is a trustworthy computing
environment, such as a tamper-resistant hardware co-processor,
SGX enclave, or a cryptographically obfuscated circuit [48],
[42]. Most notably, the enclave need not store persistent state
or possess a secure random number generator; we only require
that the enclave possesses a single secret key K that is not
known to any other party. We similarly require that the host

application can publish strings to the ledger; access the ledger
contents; and receive proofs of publication.

As a first contribution, we show how this paradigm can
facilitate secure state management for randomized multi-step
computations run by the enclave, even when the enclave has
no persistent non-volatile storage or access to trustworthy ran-
domness. Building such a protocol is non-trivial, as it requires
simultaneously that the computation cannot be rewound or
forked, even by an adversarial host application that controls
all state and interaction with the ledger.

As a second contribution, we show that the combination
of enclave plus ledger can achieve properties that may not
be achievable even when the enclave uses stateful trusted
hardware. In particular, we show how the enclave-ledger
interaction allows us to condition program execution on the
publication of particular messages to the ledger, or the receipt
of messages from third parties. For example, an application can
require that devlopers be alerted on the ledger that user activity
is anomolous, perhaps even dangerous, before it continues
execution.

As a third contribution, we describe several practical appli-
cations that leverage this paradigm. These include private smart
contracts, limited-attempt password checking (which is known
to be difficult to enforce without persistent state [57]), enforced
file access logging, and new forms of encryption that ensure
all parties receive the plaintext, or that none do. As a practical
matter, we demonstrate that on appropriate ledger systems
that support payments, execution can be conditioned on other
actions, such as monetary payments made to the ledger. In
malicious hands, this raises the specter of autonomous ran-
somware that operates verifiably and without any need for a
command-and-control or secret distribution center.

Previous and concurrent work. A manuscript of this work
was initially published in February 2017 [37]. Several pre-
vious and concurrent works haved focused on similar goals,
specifically preventing rollback attacks on trusted execution
environments and private computation on the ledger.

In previous work, Memoir [50] leverages hashchains,
NVRAM, and monotonic counters to efficiently prevent state
rollback in the presence of a malicious host. While Memoir’s
protocol has many similarities to our ELI protocols, the system
design is quite different. In Memoir, each TEE device uses its
internal NVRAM to checkpoint state, while our systems rely
on a public ledger and communication through an untrustwor-
thy host. A second proposal, ROTE [44], uses a consensus
between a cluster of distributed enclaves to in order to address
the rollback problem. Neither Memoir nor ROTE deals with the
problem of conditioning execution on data publication, which
is a second contribution of our work. Several early works have
focused on the problem of preventing reset attacks via de-
randomization, i.e., by deriving (pseudo)random coins from
the computation input [20]. Unfortunately this approach does
not generalize to multi-step calculations where the adversary
can adaptively select the input prior to each step.

Two concurrent research efforts have considered the use
of ledgers to achieve secure computation. In late 2017, Goyal
and Goyal proposed the use of blockchains for implement-
ing one time programs [29] using cryptographic obfuscation

(@)

Program
inputs/outputs

Enclave

K Ledger

Fig. 1.

Enclave M- ! :

. t
a3 | -
Enclavek (e—! Host :<—> Ledger [e¢—» ‘
] | 3

3 Program

L inputs/outputs
Enclave , 1 :
k| 1 H

Two example ELI deployments. In the basic scenario (a) a single TEE (with a hard-coded secret key K) interacts with a ledger functionality via a

(possibly adversarial) host application. Program inputs are provided by a user via the host machine. In scenario (b) multiple copies of the same enclave running
on different host machines interact with the ledger (e.g., as in a private smart contract system), which allows them to synchronize a multi-step execution across
many different machines without the need for direct communication. Program inputs and outputs may be provided via the ledger.

techniques. While our work has a similar focus, we aim
for a broader class of functionalities and a more practical
set of applications. Also in 2017, the authors of the present
work, along with others, proposed to use ledgers to obtain
fairness for MPC protocols, an application that is discussed
in later sections of this work [22]. Bowman et al. of Intel
Corporation [19] independently proposed “Private Data Ob-
jects” for smart contract systems that use ideas related to
this work, and have begun to implement them in production
smart contract systems that support private computation. We
believe Bowman’s effort strongly motivates the formal analysis
we include in this work. There have also been a number of
attempts to combine trusted execution environments and public
ledgers, but aimed at slightly different goals [39], [35], [65].
Finally, the Ekiden system [21], proposed in April 2018, builds
on the ideas proposed in this work and [22] to achieve goals
similar to those of Intel’s Private Data Objects.

A. Intuition

We now briefly present the intuition behind our construc-
tion. Our goal is to securely execute a multi-step interactive,
probabilistic program P, which we will define as having the
following interface:

P(1;,Si57:) — (04, Siy1)

At each step of the program execution, the program takes a
user input |;, an (optional) state S; from the previous execution
step, along with some random coins 7;. It produces an output
O; as well as an updated state S;;;1 for subsequent steps.
(Looking forward, we will add public ledger inputs and outputs
to this interface as well, but we now omit these for purposes
of exposition.) For this initial exposition, we will assume a
simple ledger that, subsequent to each publication, returns the
full ledger contents L along with a proof of publication o.> We
also require a stateless enclave with no native random number
generator, that stores a single, hardcoded, secret key K.

Figure 1 illustrates the way the user, host, ledger and enclave
can interact. We now discuss several candidate approaches,
beginning with obviously insecure ideas, and building on them
to describe a first version of our main construction.

’In later sections we will discuss improvements that make this Ledger
response succinct.

Attempt #1: Encrypt program state. An obvious first step
is for the enclave to simply encrypt each output state using
its internal secret key, and to send the resulting ciphertext to
the host for persistent storage. Assuming that we use a proper
authenticated encryption scheme (and pad appropriately), this
approach should guard both the confidentiality and authenticity
of state values even when they are held by a malicious host.?

It is easy to see that while this prevents tampering with the
contents of stored state, it does not prevent a malicious host
from replaying old state ciphertexts to the enclave along with
new inputs. In practice, such an attacker can rewind and fork
execution of the program.

Attempt #2: Use the ledger to store state. A superficially
appealing idea is to use the ledger itself to store an encrypted
copy of the program state. As we will show, this does not
mitigate rewinding attacks.

For example, consider the following strawman protocol:
after the enclave executes the program P on some input, the
enclave sends the resulting encrypted state to the ledger (via
the host). The enclave can then condition future execution of
P on receiving valid ledger contents L, as well as a proof of
publication o, and extracting the encrypted state from L.

Unfortunately this does nothing to solve the problem of
adversarial replays. Because the enclave has no trusted source
of time and relies on the host to communicate with the ledger,
a malicious host can simply replay old versions of L (including
the associated proofs-of-publication) to the enclave, while
specifying different program inputs. As before, this allows the
host to fork the execution of the program.

Attempt #3: Bind program inputs on the ledger. To address
the replay problem, we require a different approach. As in our
first attempt, we will have the enclave send encrypted state to
the host (and not the ledger) for persistent storage. As a further
modification, we will add to this encrypted state an iteration
counter ¢ which identifies the next step of the program to be
executed.

To execute the i*" invocation of the program, the host first
commits its next program input |; to the ledger. This can be

3For the moment we will ignore the challenge of preventing re-use of nonces
in the encryption scheme; these issues will need to be addressed in our main
construction, however.

done in plaintext, although for privacy we will use a secure
commitment scheme. It labels the resulting commitment C
with a unique identifier CID that identifies the enclave, and
sends the pair (C, CID) to the ledger.

Following publication, the host can obtain a copy of the
full ledger L as well as the proof of publication o. It sends all
of the above values (including the commitment randomness
R) to the enclave, along with the most recent value of the
encrypted state (or ¢ if this is the first step of the program).
The enclave decrypts the encrypted state internally to obtain
the program state and counter (S, 7).* It verifies the following
conditions:

1) o is a valid proof of publication for L.

2) The ledger L contains exactly i tuples (-, CID).

3) The most recent tuple embeds (C, CID).

4) Cis a valid commitment to the input | using random-
ness R.

If all conditions are met, the enclave can now execute
the program on state and input (S,). Following execution, it
encrypts the new output state and updated counter (S;41,i+1)
and sends the resulting ciphertext to the host for storage.

Remark. Like our previous attempts, the protocol described
above does not prevent the host from replaying old versions
of L (along with the corresponding encrypted state). Indeed,
such replays will still cause the enclave to execute P and
produce an output. Rather, our purpose is to prevent the host
from replaying old state with different inputs. By forcing
the host to commit to its input on the ledger before L is
obtained, we prevent a malicious host from changing its
program input during a replay, ensuring that the host gains no
new information from such attacks. However, there remains
a single vulnerability in the above construction that we must
still address.

Attempt #4: Deriving randomness. While the protocol above
prevents the attacker from changing the inputs provided to the
program, there still remains a vector by which the malicious
host could fork program execution. Specifically, even if the
program input is fixed for a given execution step, the program
execution may fork if the random coins provided to P change
between replays. This might prove catastrophic for certain
programs.’

To solve this problem, we make one final change to the
construction of the enclave code. Specifically, we require that
at each invocation of P, the enclave will derive the random
coins used by the program in a deterministic manner from the
inputs, using a pseudorandom function (similar to the classical
approach of Canetti et al. [20]). This approach fixes the random
coins used at each computation step and effectively binds them
to the ledger and the host’s chosen input.

Limitations of our pedagogical construction. The construction
above is intended to provide an intuition, but is not the final
protocol we describe in this work. An astute reader will note

#If no encrypted state is provided, then 4 is implicitly set to 0 and S = €.

SFor example, many interactive identification and oblivious RAM protocols
become insecure if the program can be rewound and executed different
randomness.

that this pedagogical example has many limitations, which
must be addressed in order to derive a practical ELI protocol.
We discuss several extensions below.

Extension #1: Reducing ledger bandwidth. The pedagogical
protocol above requires the host and enclave to parse the entire
ledger L on each execution step. This is quite impractical,
especially for public ledgers that may contain millions of
transactions. A key contribution of this work is to show that the
enclave need not receive the entire ledger contents, provided
that the ledger can be given only modest additional capabilities:
namely (1) the ability to organize posted data into sequences
(or chains), where each posted string contains a unique pointer
to the preceding post, and (2) the ability for the Ledger to
calculate a collision-resistant hash chain over these sequences.
As we discuss in §II-B and §V-B, these capabilities are already
present in many candidate ledger systems such as public (and
private) blockchain networks.

Extension #2: Adding public input and output. A key goal
of our protocol is to allow P to condition its execution on
inputs and outputs drawn from (resp. sent to) the ledger. This
can be achieved due to the fact that the enclave receives an
authenticated copy of L. Thus the enclave (and P) can be
designed to condition its operation on e.g., messages or public
payment data found on the ledger.

To enforce public output, we modify the interface of P to
produce a “public output string” as part of its output to the
host, and we record this string with the program’s encrypted
state. By structuring the enclave code (or P) appropriately, the
program can require the host to post this string to the ledger
as a condition of further program execution. Of course, this is
not an absolute guarantee that the host will publish the output
string. That is, the enclave cannot force the host to post such
messages. Rather, we achieve a best-possible guarantee in this
setting: the enclave can simply disallow further execution if
the host does not comply with the protocol.

Extension #3: Specifying the program. In the pedagogical
presentation above, the program P is assumed to be fixed
within the enclave. As a final extension, we note that the en-
clave can be configured to provide an environment for running
arbitrary programs P, which can be provided as a separate
input at each call. Achieving this involves recording (a hash) of
P within the encrypted state, although the actual construction
requires some additional checks to allow for a security proof.
We include this capability in our main construction.

Modeling the ledger Several recent works have also used
ledgers (or bulletin boards) to provide various security prop-
erties [29], [22]. In these works, the ledger is treated as
possessing an unforgeable proof of publication. The protocols
in this work can operate under this assumption, however
our construction is also motivated by real-world decentralized
ledgers, many of which do not have possess such a property.
Instead, many “proof-of-work™ blockchains provide a weaker
security property, in that it is merely expensive to forge a
proof that a message has been posted to the blockchain. This
notion may provide sufficient security in many real-world
applications, and we provide a detailed analysis of the costs
in §V-B

B. Applications

To motivate our techniques, we describe a number of
practical applications that can be implemented using the ELI
paradigm, including both constructive and potentially destruc-
tive techniques. Here we provide several example applications,
and provide a more complete discussion in §IV.

Synchronizing private smart contracts and step functions.
Smart contract systems and cloud “step functions” [24], [31]
each employ a distributed network of compute nodes that
perform a multi-step interactive computation. To enable private
computation, some production smart contract systems [31]
have recently proposed incorporating TEEs. Such distributed
systems struggle to synchronize state as the computation
migrates across nodes. Motivated by an independent effort of
Bowman et al. [19] we show that our ELI paradigm achieves
the necessary guarantees for security in this setting.

Mandatory logging for local file access. Corporate and
enterprise settings often require users to log access to sensitive
files, usually on some online system. We propose to use the
ELI protocol to mandate logging of each file access before the
necessary keys for an encrypted file can be accessed by the
user.

Limiting password guessing. Cryptographic access control
systems often employ passwords to control access to encrypted
filesystems [12], [52] and cloud backup images (e.g., Apple’s
iCloud Keychain [40]). This creates a tension between the
requirement to support easily memorable passwords (such as
device PINs) while simultaneously preventing attackers from
simply guessing users’ relatively weak passwords [18], [61].6
Attempts to address this with tamper-resistant hardware [12],
[52], [14], [40] lead to expensive systems that provide no
security against rewind attacks. 7 We show that ELI can
safely enforce passcode guessing limits using only inexpensive
hardware without immutable state [57].

Autonomous ransomware. Modern ransomware, malware
that encrypts a victim’s files, is tightly integrated with cryp-
tocurrencies such as Bitcoin, which act as both the ransom
currency and a communication channel to the attacker [56].
Affected users must transmit an encrypted key package along
with a ransom payment to the attacker, who responds with the
necessary decryption keys. The ELI paradigm could potentially
enable the creation of ransomware that operates autonomously
— from infection to decryption — with no need for remote
parties to deliver secret keys. This ransomware employs local
trusted hardware or obfuscation to store a decryption key for
a user’s data, and conditions decryption of a user’s software
on payments made on a public consensus network.

II. DEFINITIONS

Protocol Parties: A Enclave-Ledger Interaction is a proto-
col between three parties: the enclave £, the ledger £, and a

This is made more challenging due to the fact that manufacturers have
begun to design systems that do not include a trusted party — due to concerns
that trusted escrow parties may be compelled to unlock devices [13].

7See [57] for an example of how such systems can be defeated when state
is recorded in standard NAND hardware, rather than full tamper-resistant
hardware.

host application H. We now describe the operation of these
components:

The ledger L. The ledger functionality provides a public
append-only ledger for storing certain public data. Our main
requirement is that the ledger is capable of producing a
publicly-verifiable authentication tag o; over the entire ledger
contents, or a portion of the ledger.

The enclave €. The trusted enclave models a cryptographic
obfuscation system or a trusted hardware co-processor config-
ured with an internal secret key /. The enclave may contain
the program P, or this program may be provided to it by the
host application. Each time the enclave is invoked by the host
application ‘H on some input, it calculates and returns data to
the host.

The host application 7{. The host application is a (possibly
adversarial) party that invokes both the enclave and the ledger
functionalities. The host determines the inputs to each round
of computation — perhaps after interacting with a user — and
receives the outputs of the computation from the enclave.

A. The Program Model

Our goal in an ELI is to execute a multi-step interactive
computation that runs on inputs that may be chosen adaptively
by an adversary. Expanding on our initial description, we
define this program P:Z xS x R — O x P x § as having
the following input/output interface:

P(IZ,Sl,ﬂ) — (Ol, Pubi,SiH).

When a user inputs |;, the current program state S;, and random
coins 7, this algorithm produces a program output O;, as well
as an optional public broadcast message Pub,; and new state
Si+ 1-

In our main construction, we will allow the host application to
provide the program P that the enclave will run. This is useful
in settings such as smart contract execution, where a given
enclave may execute multiple distinct smart contract programs.
As a result of this change, we will assume that P is passed as
input to each invocation of the enclave.

Maximum program state size and runtime. We assume in
this work that the runtime of each P can be upper bounded
by a polynomial function of the security parameter. We also
require that for any program P used in our system there exists
an efficiently-computable function Max(-) such that Max(P)
indicates the maximum length in bits of any output state S;
produced by P, and that Max(P) is polynomial in the security
parameter.

One-Time vs. Multi-Use Programs. In this work we consider
two different classes of program. While all of our programs
may involve multiple execution steps, one-time programs can
be initiated only once by a given enclave. Once such a program
has begun its first step of execution, it can never be restarted.
By contrast, multi-use programs can be executed as many times
as the user wishes, and different executions may be interwoven.
However each execution of the program is independent of
the others, receives different random coins and holds different
state. In our model, an execution of a program will be uniquely
identified by a session identifier, which we denote by CID.
Thus, the main difference between a one-time and many-time

program is whether the enclave will permit the re-initiation of
a given program P under a different identifier CID.

We note that it is possible to convert any multi-time
program to a one-time program by having the enclave generate
the value CID deterministically from its internal key K and
the program P (e.g., by calculating a pseudorandom function
on these values), and then to enforce that each execution of
the program P is associated with the generated CID. This
enforcement algorithm can be instantiated as a “meta-program”
P’ that takes as input a second program P and is executed
using our unmodified ELI protocol.

While our pedagogical example in the introduction dis-
cussed one-time programs, in the remainder of this work
we will focus on multi-use programs, as these are generally
sufficient for our proposed applications in §IV.

B. Modeling the Ledger

The ledger models a public append-only bulletin board that
allows parties to publish arbitrary strings. On publishing a
string S to the ledger, all parties obtain the published string
(and perhaps the full ledger contents) as well as a publicly-
verifiable authentication tag to establish the string was indeed
published.

The pedagogical examples examined thus far have been
very bandwidth-intensive, potentially transmitting the entire
contents of the ledger with each authentication tag. Such
implementations would be be impractical, especially as the
ledger may incorporate posts from many different users. In
our main constructions we will assume a ledger with some
enhanced capabilities, including the ability to reference specific
chains of posts made as part of a related execution, and
to compute a collision-resistant hash chain over the posted
strings. (Later in this section we will demonstrate that this
interface can be constructed locally given access to a naive
ledger that returns the full ledger contents. As such we are not
truly adding new requirements.)

The Ledger Interface. Our ideal ledger posts an arbitrary
string S as part of specific a chain of posted values. As
an abstraction, we will require each post to identify a chain
identifier CID. While the host may generate many such iden-
tifiers (and thus create an arbitrary number of distinct chains),
our abstraction assumes that other parties (e.g., other host
machines) will not be allowed to post under the same identifier.
The exact nature of the identifier CID depends on the specific
Ledger instantiation, which we discuss in detail in §V-B.

The advantage of our interface is that similar checks
and chaining are natural properties to achieve when using
blockchain-based consensus systems to instantiate the ledger,
since many consensus systems perform the necessary checks as
part of their consensus logic. Indeed, we can significantly re-
duce the cost of deploying our system by using existing ledger
systems, including Bitcoin and Ethereum, as they provide these
capabilities already, as we discuss in §V-B.

We now define our ledger abstraction, which has the following
interface.® Let H_ be a collision-resistant hash function:

8We omit the ledger setup algorithm for this description, although many
practical instantiations will include some form of setup or key generation.

e Ledger.Post(Data, CID) — (post, o).
When a party wishes to post a string Data onto the
chain identified by CID, the ledger constructs a data
structure post by performing the following steps:

1) It finds the most recent post,,., on the Ledger
that is associated with CID (if one exists).

2) If posty,, was found, it sets
post.PrevHash < post,.,.Hash. Otherwise
it sets post.PrevHash < (Root: CID), where
this labeling uniquely identifies it as first post
associated with CID.

3) It sets post.Data < Data.

4) It sets post.Hash <«
post.PrevHash).

5) It records (post, CID) on the public ledger.

The ledger computes an authentication tag o over the
entire structure post and returns (post o).

Hy (post.Datal|

e Ledger.Verify(post,o) — {0,1}.
The verify algorithm is a public algorithm that will
return 1 only if the authenticator o was authentically
generated by the ledger over that specific post. In gen-
eral, this can be viewed as analogous to the verification
algorithm of a digital signature scheme.

For some applications it may also be desirable for third
parties to possess an interface to read data from the ledger.
We omit this interface for simplicity of exposition, although we
stress that the ledger is public and hence such a functionality
is implicit.

Remark. We note that the functionality of the above ledger can
be simulated locally by an enclave that receives the full ledger
contents L. Specifically, on receiving the full contents of a
ledger L can construct our abstraction by e.g., setting CID to be
the public key of a digital signature scheme, and signing each
message; it can then scan the full ledger to compute Hash;_1
and Hash; locally.

Security and finality of the Ledger. Informally, we require
that it is difficult to construct a new pair (S,0) such that
Ledger.Verify(S,0) = 1 except as the result of a call to
Ledger.Post, even after the adversary has received many au-
thenticator values on chosen strings. We refer to this definition
as SUF-AUTH, and it is analogous to the SUF-CMA definition
used for signatures. We note that in our proofs we will
assume an oracle that produces authentication tags, optionally
without actually posting strings to a real ledger. For example,
in a ledger based on signatures, our proofs might assume
the existence of a signing oracle that produces signatures on
chosen messages. When using “proof of work” ledgers, the
authenticators have economic security instead of cryptographic
security; we discuss this further in §V-B.

C. Enclave-Ledger Interaction

An ELI scheme consists of a tuple of possibly probabilistic
algorithms (Setup, ExecuteEnclave, ExecuteApplication). The
interface for these algorithms is given in Figure 2.

Setup(1*) — (K, pp). This trusted setup algorithm is executed
once to configure the enclave. On input a security parameter J, it
samples a long-term secret K which is stored securely within the
enclave, and the (non-secret) parameters pp which are provided
to the enclave and the host.

ExecuteApplication(pp, P). This algorithm is run on the host.
It proceeds in an infinite loop, invoking the ledger operations
and enclave operations. In each iteration of the loop, the user
selects a step input, commits to it and posts it to the ledger. It
then sends that input and the Ledger’s output into the enclave
to actually execute the next step.

ExecuteEnclaveg pp((P, 4, Si, i, ri, 04, post;)) —
(Si+1,04,Pub;). This algorithm is run by the enclave,
which is configured with K, pp. At the 3" computation step it
takes as input a program P, an encrypted previous state S;, a
program input |;, commitment randomness r;, a ledger output
post, and a ledger authentication tag o;. The enclave invokes
P and produces a public output O;, as well as a new encrypted
state S;+1 and a public output Pub;.

Fig. 2. Definition of an Enclave Ledger Interaction (ELI) scheme.

D. Correctness and Security

Correctness. Correctness for an ELI scheme is defined in
terms of the program P. Intuitively, at each step of execution,
an honest enclave (operating in combination with the an honest
host and ledger) should correctly evaluate the program P on
the given inputs.

Simulation Security. Intuitively, our definition specifies two
experiments: a Real experiment in which an adversarial host
application runs the real ELI protocol with oracles that im-
plement honest enclave and ledger functionalities respectively,
and an Ideal experiment that models the correct and stateful
execution of the underlying program P by a trusted party.
Our security definition requires that for every p.p.t. adversary
H that runs the Real experiment, there must exist an ideal
adversary H that runs the Ideal experiment such that the output
of H is computationally indistinguishable from that of H.

As we discuss in later sections, this intuitive definition
may not be strong enough for real deployments. Because in
some instantiations (such as proof-of-work blockchains) our
ledger may provide only economic security: that is, the cost
of forgeries may be impractical. Despite the high cost, in this
setting an attacker may be able to forge a small number of
ledger proofs. We wish to show that the advantage afforded
such an attacker is minimized. In the appendix we strengthen
our definition to allow the attacker to forge a limited number
of ledger authentication tags.

III. OUR CONSTRUCTION

In this section we present a specific construction of an
Enclave-Ledger Interaction scheme. Our construction makes
black box use of commitment schemes, authenticated sym-
metric encryption, collision-resistant hash functions and pseu-
dorandom functions.

Notation. Let A\ be a security parameter. Let ¢ be a non-
negative integer where ¢ = poly()\). In our constructions we
define Verify(-) as a primitive that verifies a statement, and

aborts the program (with output L) if the statement evaluates
to false. Let (Pad,Unpad) be a padding algorithm that, on
input a program P, pads a series of inputs to the maximum
length of the provided data.

Commitment schemes. Let ¥, = (CSetup, Commit) be a
commitment scheme where CSetup generates public parame-
ters pp. The algorithm Commit(pp, M;r) takes in the public
parameters, a message M, along with random coins 7, and
outputs a commitment C' # & which can be verified by re-
computing the commitment on the same message and coins.

Deterministic authenticated encryption. We require a sym-
metric authenticated encryption scheme consisting of the algo-
rithms (Encrypt, Decrypt) where each accepts a key uniformly
sampled from {0,1}". It is critical that both algorithms are
deterministic. This does not require strong assumptions, as
we will use Encrypt at most once for any given key; hence
standard AE modes can be used if they are configured with a
fixed nonce. For simdplicity we further define the specialized
algorithm Encrypt™® as one that pads the plaintext to (a
maximum state size) n bits prior to encrypting it, and define
Decrypt“"P? as removing this padding.

Pseudorandom Functions. Our construction uses a pseudo-
random function family PRF : {0,1} x {0,1}* — {0,1}2
that on input an /¢-bit key and a string of arbitrary length,
outputs a 2¢-bit pseudorandom string.

Collision-resistant hashing. Our schemes rely on two
collision-resistant hash functions Hy : {0,1}* — {0,1}* and
H:{0,1}* — {0,1}¢ where ¢ is polynomial in the scheme’s
security parameter. For simplicity we do not specify a key for
these functions, and we will instead assume that any attack
on the scheme implicitly results in the extraction of a hash
collision (see e.g., [55]).

A. Main Construction

We now present our main construction for a Enclave-
Ledger Interaction scheme and address its security. Recall
that an ELI consists of the three algorithms with the inter-
face described in Figure 2. We present pseudocode for our
construction in Algorithms 1, 2 and 3 below.

Discussion. The scheme we present in this section differs
somewhat from the pedagogical scheme we discussed in the
introduction. Many of these differences address minor details
that affect efficiency or simplify our security analysis: for
example we do not encrypt state directly using the fixed key
K, but instead derive a unique per-execution key k using a
pseudorandom function (PRF). This simplifies our analysis by
allowing us to instantiate with a single-message authenticated
encryption scheme (e.g., an AE scheme with a hard-coded
nonce) without concerns about how to deal with encrypting
multiple messages on a single key.

A second modification from our pedagogical construction
is that we evaluate a pseudorandom function on the hash of the
structure returned by the ledger. By the nature of our ledger
abstraction, this data structure enforces a hash chain over all
previous transactions; as a result this ensures that all random
coins and keys are themselves a function of the full execution
history of the program. This ensures that an attacker — even

Algorithm 1: Setup

Data: Input: 1*

Result: Secret K for the enclave and public
commitment parameters pp

K & {01

pp + CSetup(1?)

Output (K, pp)

Algorithm 2: ExecuteApplication

Data: Input: pp, P
// Set counter to 0 and state to ¢
SO — €
140
Pubo — €
// Loop and run the program
while true do
Obtain |; from the user
if I, = 1 then
L Terminate

T g {07 1}€
C’i — Commlt(pp7 (7’5 IlaSHP)a Ti)
(04, post;) < Ledger.Post ((Pub;, C;))

04, post;)
Output (O;, Pub;) to the user
11+ 1

(Si+1; 0;, Publ) — ExecuteEncIave(P, 1, S, i, 75,

Algorithm 3: ExecuteEnclave

Data: Input: (P,1,S;,l;,7;, 04, post;)
Internal values: K, pp

Result: (81;+1, O,L', Publ) or L

// Verify and parse the inputs

Assert (Ledger.Verify(post;, 0;))

Assert(post;.Hash = H (post,.Datal|post;.PrevHash))

Parse (Pub;_1,C;) < post.Data
Assert(C; = Commit(pp, (i, l;, Si, P);73))

// Compute the " state encryption key

(k;,) < PRF g (post;.PrevHash)
if S; = ¢ then

Assert(i = 0)

L Si=¢

else
(S:, Hp) < Decrypt™™ (k;, S,)
Assert((S;, Hp) # 1)

| Assert(Hp = H(P||¢||Pub;_1))

// Compute randomness and 7+
encryption key

(kJiJrl,fi) — PRFK(pOSti.HaSh)

// Run the program and abort if it
fails

(Sit1,Pub;, 0;) <= P(Si, 1i;7%)

Assert((S;+1,Pub;, 0;) # 1)

// Encrypt the resulting state

Sit1 4 Encrypt® (ki i1, (Si1, H(P|li + 1]|Pub;))

Output (Si+1, Pubi, Ol)

1th

// First execution step, no state.

a powerful one that can forge some ledger outputs — cannot
use the state resulting from those forgeries to continue normal
execution via the real ledger, since the execution history on
the real ledger will not contain these forgeries.

We remark again that this more powerful ledger abstraction
does not truly represent a stronger assumption when compared
to our pedagogical construction, since the more powerful
ledger can be “simulated” by enclave itself, provided the
enclave has access to the full contents of a simple ledger.

Security. We now present our main security theorem.

Theorem 1: Assuming a secure commitment scheme, a
secure authenticated encryption scheme (in the sense of [54]);
that H and Hi are collision resistant; PRF is pseudorandom;
and that ledger authentication tags are unforgeable, then
the scheme T1 = (Setup, ExecuteEnclave, ExecuteApplication)
presented in Algorithms 1, 2 and 3 satisfies Definition 1
(supplied explicitly in the appendix).

We present a proof sketch of Theorem 1 in the appendix. We
are limited to a proof sketch because of space constraints. We
provide a full proof in the full version of this work.

IV. APPLICATIONS

We now describe several applications that use Enclave-
Ledger Interaction and present the relevant implementations
for each. Each application employs the main construction we
presented in §III to implement a specific functionality. Except
where explicitly noted, these applications are implemented as
many-time execution programs: this means the host can re-
launch the same program P many times, but each execution
thread is independent and threads do not share state.

A. Private Smart Contracts

Smart contract systems comprise a network of volunteer
nodes that work together to execute multi-step interactive
programs called contracts. These systems, which are exem-
plified by Ethereum and the Hyperledger platforms [6], [31]
as well as research systems like Ekiden [21] maintain a shared
ledger that records both the previous and updated state of
the contract following each execution of a contract program.
These platforms are designed for flexibility: they are capable
of executing many different contracts on a single network.
Smart contract systems come in two varieties: public contract
networks (exemplified by Ethereum [6]), where all state and
program code is known to the world; and private contract
systems where some portion of this data is held secret. In both
settings the computation (and verification) is conducted by a
set of nodes who are not assumed to always be trustworthy.
In the public setting (e.g., [6]) a single node performs each
contract execution, and the remaining nodes simply verify the
(deterministic) output of this calculation. This approach does
not work in the private setting, where some of the program
inputs are unknown to the full network.

Platforms such as Hyperledger Sawtooth [33] have sought
to address this concern by employing trusted execution tech-
nology [31]. In these systems, contract code executes within a
trusted enclave on a single node, and the TEE system generate
public attestation signatures proving the correctness of the
resulting output. The network then verifies the attestation to

ensure that the execution was correct. A challenge in these
systems is to ensure that a smart contract remains synchro-
nized, despite the fact that execution migrates from one host
to another between steps. A secondary challenge is to ensure
that the enclave only executes contract code on valid inputs
from the ledger, and cannot be forced to run on arbitrary input
or perform additional steps by a malicious host.

Bowman et al. of Intel corporation [19] independently pro-
posed a solution reminiscent of an ELI for securing contracts
in this setting. (Figure 1 presents an illustration of this model.)
This setting is also a natural solution for our ELI system, given
that the contract system — with many distinct enclave copies
— can be viewed as merely being a special case of our main
construction.

To instantiate an ELI in this setting, we require the contract
author to pre-position a key K within each enclave.’ Encrypted
state outputs can now be written to the ledger as a means
to distribute them. Given these modifications, each enclave
can simply read the current state from the ledger in order
to obtain the most recent encrypted state and commitment to
the next contract input (which may be transmitted by users to
the network).!” Other enclaves can verify the correctness of
the resulting output state by either (1) verifying an attestation
signature, or (2) deterministically re-computing the new state
and comparing it to the encrypted state on the ledger.

B. Logging and Reporting

Algorithm 4: File Access Logging P,gging

Data: Input: |I; ,S;; Constants: pk,giior
Parse (phase, sk, CT, filename) < S;
if S; = ¢ then // Generate master keypair
(pk, sk) < PKKeyGen(1*)
Si+1 = (PUBLISH, sk, -, -)
| (Pubjy1,0i41) < (e, pk)
Ise if phase = PUBLISH then // Send filename
Parse filename « I;
CThuditor < PKENC(pk ,ygitor, filename)
Si+1 < (DECRYPT, sk,CT, ;)
| (Pubit1,0441) « (CT, post)
else // Decrypt a given file
Parse C + |;
(filename’, M) < PKDec(sk, C)
if filename = filename’ then
L S;+1 = (PUBLISH, sk, -, -)
(Pubjy1|0i41) = (e]| M)
else
| Abort and output L.

(-]

output (S;y1,Pubii1,0i41)

Several cryptographic access control systems require par-
ticipants to actively log file access patterns to a remote and

9This can be accomplished using a broadcast encryption scheme or peer-
to-peer key sharing mechanism.

10We assume that the ledger is authenticated using signatures. Systems such
as Hyperledger propose to use TEE enclaves to construct the ledger as well as
execute contracts; in these systems the ledger blocks are authenticated using
digital signatures that can be publicly verified.

immutable network location [25]. A popular approach to
solving this problem in cryptographic access control systems,
leveraged by systems like Hadoop [25], is to assign a unique
decryption key to each file and to require that clients individu-
ally request each key from an online server, which in turn logs
each request. This approach requires a trusted online server
that holds decryption keys and cannot be implemented using
a public ledger.

In place of a trusted server, we propose to use ELI to imple-
ment mandatory logging for protected files. In this application,
a local enclave is initialized (in the first step of a program)
and stores (or generates) a master key for some collection of
files, e.g., a set of files stored on a device.!' The enclave then
employs the public output field of the ELI scheme to ensure
that prior to each file access the user must post a statement
signaling that the file is to be accessed.'?> The logging program
is presented as Algorithm 4 and consists of three phases. When
the program is launched, the enclave generates a keypair for
a public-key encryption scheme (PKKeyGen, PKEnc, PKDec)
and outputs the public key.'? Next the user provides a filename
they wish to decrypt, and the program encrypts this filename
using a hard-coded public key for an auditor. When the user
posts this key to the ledger, the program decrypts the given
file.

C. Limited-attempt Password Guessing

Device manufacturers have widely deployed end-to-end
file encryption for devices such as mobile phones and cloud
backup data [12], [11]. These systems require users to manage
their own secrets rather than trusting them to the manufacturer.

Encryption requires high-entropy cryptographic keys,
but users are prone to lose or forget high-entropy pass-
words. To address this dilemma, manufacturers are turn-
ing to trusted hardware, including on-device cryptographic
co-processors [12]. trusted enclaves [14], and cloud-based
HSMs [41], [40] for backup data. A user authenticates with a
relatively weak passcode such as a PIN and the hardware will
release a strong encryption key. To prevent brute force attacks,
this stateful hardware must throttle or limit the number of login
attempts.'*

Enclave-Ledger Interaction provides an alternative mech-
anism for limiting the number of guessing attempts on
password-based encryption systems. A manufacturer can em-
ploy an inexpensive stateless hardware token to host a simple
enclave, with an internal (possible hard-wired) secret key K.
In the initial step, the enclave takes in a password uses the
random coins to produce a master encryption key ke, that
it outputs to the user. The Enclave is constructed to release
kene only when it is given the proper passcode and the step

1f the Enclave is implemented using cryptographic techniques such as
FWE, a unique Enclave can be shipped along with the files themselves. If the
user employs a hardware token, the necessary key material can be delivered
to the user’s Enclave when the files are created or provisioned onto the user’s
device.

12To provide confidentiality of file accesses, the enclave may encrypt the
log entry under the public key of some auditing party.

3Here we require the encryption scheme to be CCA-secure.

14This approach led to the famous showdown between Apple and the FBI
in the Spring of 2016. The device in question used a 4-character PIN, and
was defeated in a laboratory using a state rewinding attack, and in practice
using an estimated $1 million software vulnerability[49], [63].

counter is below some limit. Note that if the host restarts
the execution, this simply re-runs the setup step which will
generate a new key unrelated to the original. Rate limiting
can be accomplished if the ledger has some approximation
of a clock, like number of blocks between login attempts in
Bitcoin. In practice the decryption process in such a system
can be fairly time consuming if the ledger has significant lag.
This system may be useful for low frequency applications
such as recovering encrypted backups or emergency password
recovery.

D. Paid Decryption and Ransomware

ELI can also be used to condition program execution
on payments made on an appropriate payment ledger such
as Bitcoin or Ethereum. Because in these systems payment
transactions are essentially just transactions written to a public
ledger, the program P can take as input a public payment
transaction and condition program execution on existence of
this transaction. This feature enables pay-per-use software
with no central payment server. Not all of the applications

Algorithm 5: Ransomware P,y somware

Data: Input: |; ,S;; Randomness r;;

Parse (K, R, pk) <+ S;

if S, = ¢ then // Generate Key,
Parse (R, pk) < I;
K « KDF(r;)

| output S;11 < (K, R, pk)

else // Release Key on Payment

Parse (t,0) + |;

if (BlockchainVerify(¢,0) = 1) then

L if (t.amount > R and t.target = pk) then

Set Ransom

| output O; = K
| output O; = L

of this primitive are constructive. The ability to condition
software execution on payments may enable new types of
destructive application such as ransomware [64]. In current
ransomware, the centralized system that deliver keys represent
a weak point in the ransomware ecosystem. Those systems
exposes ransomware operators to tracing [59]. As a result,
some operators have fled without delivering key material, as
in the famous WannaCry outbreak [36].

In the remainder of this section we consider a potential
destructive application of the ELI paradigm: the development
of autonomous ransomware that guarantees decryption without
the need for online C&C. We refer to this malware as au-
tonomous because once an infection has occurred it requires no
further interaction with the malware operators, who can simply
collect payments issued to a Bitcoin (or other cryptocurrency)
address.

In this application, the malware portion of the ransomware
samples an encryption key K € {0, 1} and installs this value
along with the attackers public address within a Enclave. The
Enclave will only release this encryption key if it is fed a
validating blockchain fragment containing a transaction paying
sufficient currency to the attacker’s address. Algorithm 5
presents a simple example of the functionality.

10

We note that the Enclave may be implemented using trusted
execution technology that is becoming available in commercial
devices, e.g., an Intel SGX enclave, or an ARM TrustZone
trustlet. Thus, autonomous ransomware should be considered
a threat today — and should be considered in the threat
modeling of trusted execution systems. Even if the methods
employed for securing these trusted execution technologies are
robust, autonomous ransomware can be realized with software-
only cryptographic obfuscation techniques, if such technology
becomes practical[42].

This application can be extended by allowing a ransomware
instance to prove to a skeptical victim that it contains the true
decryption key without allowing the victim to regain all their
files. The victim and the ransomware can together select a
random file on the disk to decrypt, showing the proper key
is embedded. Additionally, the number of such files that can
be decrypted can be limited using similar methodology as in
§IV-B.

V. REALIZING THE ENCLAVE AND LEDGER
A. Realizing the Enclave

Trusted cryptographic co-processors. The simplest approach
to implement the enclave is using a secure hardware or
trusted execution environment such as Intel’s SGX[5], ARM
Trustzone [14], or AMD SEV [8]. When implemented using
these platforms, our techniques can be used immediately for
applications such as logging, fair encryption and ransomware.

While these environments provide some degree of
hardware-supported immutable statekeeping, this support is
surprisingly limited. For example, Intel SGX-enabled proces-
sors provide approximately 200 monotonic counters to be
shared across all enclaves. On shared systems these counters
could be maliciously reserved by enclaves such that they are
no longer available to new software. Finally, these counters do
not operate across enclaves operating on different machines,
as in the smart contract setting.

Many simpler computing devices such as smart cards
lack any secure means of keeping state. In our model, even
extremely lightweight ASICs and FPGAs could be used to
implement the enclave for stateful applications using our ELI
constructions. Along these lines, Nayak er al. [48] recently
showed how to build trusted non-interactive Turing Machines
from minimal stateless trusted hardware. Such techniques open
the way for the construction of arbitrary enclave functionalities
on relatively inexpensive hardware.

Remark. Several recent attacks against trusted co-processors,
particularly Intel SGX [62] highlight the possibility that an
enclave breach could reveal the key K. These attacks would
have catastrophic implications for our protocol. We note that
there are several potential mitigations for these attacks. For
example, we recommend that an enclave should not directly
expose the key K to a given program, but should instead
derive a separate key for each program P in case the program
contains a vulnerability. Similarly, we emphasize that even
in the event of key leakage, industrial systems may be able
to renew security through e.g., a microcode update, which
will allow the system to derive a new key K from some
well-protected internal secret (as Intel did in response to the
Foreshadow attack on SGX). Finally, to ensure that a processor

is using the most recent microcode, the microcode maintainer
can list the most recent microcode hash on the ledger and an
ELI “bootloader” could use ELI to enforce that the current
microcode is up to date. We leave exploration of these ideas
to future work.

Software-Only Options. A natural software-only equivalent
of the enclave is to use pure-software techniques such as vir-
tualization, or cryptographic program obfuscation [16]. While
software techniques may be capable of hiding secrets from
an adversarial user during execution, interactive multi-step
obfuscated functionalities are implicitly vulnerable to being run
on old state. Unfortunately, there are many negative results in
the area of program obfuscation [16], and current primitives
are not yet practical enough for real-world use [42]. However,
for specific functionalities this option may be feasible: for
example, Choudhuri et al. [22] and Jager et al. [43] describe
protocols based on the related Witness Encryption primitive.

B. Realizing the Ledger

There are many different systems that may be used to
instantiate the ledger. In principle, any stateful centralized
server capable of producing SUF-CMA signatures can be used
for this purpose. There are a number properties we require
of our ledgers: (1) the unforgeability of the authentication
tags, (2) public verifiability of authenticators, and (3) in our
more efficient instantiations, the ability to compute and return
transaction hashes.

Certificate Transparency. A number of browsers have begun
to mandate Certificate Transparency (CT) proofs for TLS
certificates [3]. In these systems, every CA-issued certificate
is included in a public log, which is published and maintained
by a central authority such as Google. Every certificate in the
log is included as a leaf in a Merkle tree, and the signed root
and associated membership proofs are distributed by the log
maintainer.

Provided that the log maintainer is trustworthy, this system
forms a public append-only ledger with strong cryptographic
security. The inclusion of a certificate can be verified by any
party who has the maintainer’s public key, while the tree
location can be viewed as a unique identifier of the posted
certificate. Because many certificate authorities support CT, the
ability to programmatically submit certificate signing requests,
using services like LetsEncrypt, allows us to use CT as a log
for any arbitrary data that can be incorporated into an X.509
certificate. In our presentation we implicitly assume that the
Enclave can verify CT inclusion proofs from a specific log i.e.,
that it has been provisioned with a copy of the log maintainer’s
public verification key.

A limitation of the CT realization is that, to implement our
Ledger functionality of §II-B, we require a way to ensure that
the PrevHash field of each record truly does identify the pre-
vious entry in the log. Unfortunately, the current instantiation
of CT does not guarantee this; instead, the enclave must read
the entire certificate log to verify that no interceding entries
exist. This makes CT less bandwidth-efficient than the other
realizations.

Bitcoin and Proof-of-work Blockchains. Public blockchains,
embodied most prominently by Bitcoin, are designed to fa-
cilitate distributed consensus as to the contents of a ledger.

11

In these systems, new blocks of transactions are added to the
ledger each time a participant solves a costly proof of work
(PoW), which typically involves solving a hash puzzle over the
block contents. These PoW solutions are publicly verifiable,
and can be used as a form of “economic” authentication tag
over the block contents: that is, while these tags can be forged,
the financial cost of doing so is extremely high. Moreover,
because blocks are computed in sequence, a sub-chain of n
blocks (which we refer to as a “fragment”) will include n
chained proofs-of-work, resulting in a linear increase in the
cost of forging the first block in the fragment.

The remaining properties of our ledger are provided as
follows: in Bitcoin, transactions are already uniquely identified
by their hash, and each transaction (by consensus rules) must
identify a previous transaction hashes as an input. Similarly,
due to double spending protections in the consensus rules,
there cannot be two transactions that share a previous input.
Finally, we can encode arbitrary data into the transaction using
the OP_RETURN script [2].

Analyzing the cost of forging blockchain fragments. Proof-
of-work blockchains do not provide a cryptographic guarantee
of unforgeability. To provide some understanding of the cost
of forging in these systems, we can examine the economics of
real proof-of-work blockchains. We propose argue that the cost
of forging an authenticator can can be determined based on
from block reward offered by a proof-of-work cryptocurrency,
assuming that the market is liquid and reasonably efficient.

In currencies such as Bitcoin, the reward for producing a
valid proof-of-work block is denominated in the blockchain
currency, which has a floating value with respect to currencies
such as the dollar. Critically, because each instance of a PoW
puzzle in the real blockchain is based on the preceding block,
an adversarial miner must choose at mining time if they want
to mine on the blockchain or attempt to forge a block for use
in the ELI scheme; their work cannot do double duty. Thus we
can calculate the opportunity cost of forgoing normal mining
in order to attack an ELI system: the real cost of forging a
block is at least the value of a block reward. Similarly, the
cost of forging a blockchain fragments of length n is at least
n times the block reward. At present, the cost of forging a
fragment of length 7 would be 87.5 BTC.

Remark. This simple analysis ignores that a single blockchain
fragment may be used by multiple instances of a given enclave.
This admits the possibility that an attacker with significant
capital might amortize this cost by spreading it across many
instances. Indeed, if amortized over a sufficient number of
forged ledger posts, this fixed cost could be reduced. For
scenarios where we expect sufficient instances for this attack to
be practical, it is necessary to rate limit the number of ledger
posts included in a given block that the enclave will accept
results from.

Ethereum and Smart Contract Systems. A very natural
realization of our ledger system is a smart contract systems
such as Ethereum [47], [6]. Smart contract systems enable
distributed public computation on the blockchain. Typically, a
program is posted to some specific address on the blockchain.
When a user submits a transaction to the associated address,
the code is executed and appropriate state is updated. As noted

Computation Section || Running Time | Percentage

Bitcoin Operations 7764 s 100 %
Proof Preparation 7094 us 92.8%
Proof Verification 550 ps 7.2%

Protocol Operations 2006 us 100 %

Ciphertext Decryption 4 s 0.2%

Javascript Invocation 1920 ps 95.7%

Ciphertext Encryption 82 us 4.0%

SGX Overhead 1153348 us 100%

Enclave Initialization 1153308 us 100.0%

Ecall Entry and Exit 40 us 0.0%

Fig. 3. Measured computation overhead for different elements of our ELI
experiment using a simple string concatenation program P. Because SGX does
not support internal time calls, these times were measured by the application
code. The table above shows averaged results over 100 runs on a local Bitcoin
regtest network

previously, our system allows for smart contracts with private
data, which is impossible on current implementations of smart
contract system.

Private Blockchains. Many recent systems such as Hyper-
ledger [31] implement private smart contracts by constructing
a shared blockchain among a set of dedicated nodes. In some
instantiations, the parties forgo the use of proof-of-work in fa-
vor of using digital signatures and trusted hardware to identify
the party who writes the next block [33]. Private blockchains
represent a compromise between centralized systems such
as CT and proof-of-work blockchains. They are able to use
digital signatures to produce ledger authentication tags so the
security is not economic in nature. Moreover, the ledger can be
constructed to provide efficient rules for ledger state updates,
which enables an efficient realization of our model of §II-B.

VI. PROTOTYPE IMPLEMENTATION

To validate our approach we implemented our ELI con-
struction using Intel SGX [5], [45], [34], [10], [15], [53],
[32]to implement the enclave and the Bitcoin blockchain to
implement the ledger. We embedded a lightweight Javascript
engine called Duktape [4] into our enclave, as similar projects
have done in the past [46]. Source code can be found at
https://github.com/JHU-ARC/state_for_the_stateless/.

The host application communicates with a local Bitcoin
node via RPC to receive blockchain (ledger) fragments for de-
livery to the enclave, and to sends transaction when requested
by the enclave. The enclave requires an independent (partial)
Bitcoin implementation to verify proof-of-work tags used as
ledger authenticators. We based this on the C++ SGX-Bitcoin
implementation in the Obscuro project [60].

At startup, the host application loads the Javascript program
from a file, initializes the protocol values as in Algorithms 1,
2 and 3. and launches the SGX enclave. At first initialization
the enclave generates a random, long term, master key K,
which can be sealed to the processor using SGX’s data
sealing interface, protecting the key from power fluctuations.
In each iteration of the protocol, the untrusted application code
prompts the user for the next desired input. It then generates
a transaction 7" using bitcoin-tx RPC. The first “input”
T.vin[0] is set to be an unspent transaction in the local wallet.
The first “output” T.vout[0] spends the majority of the input

12

transaction to a new address belonging to the local wallet. The
second output T.vout[1] embeds SHA256(i||l;||S;||P||CID||r;)
in an OP_RETURN script. The third output T.vout[2] embeds
the public output Pub emitted by the previous step. This
transaction is signed by a secret key in the local wallet and
submitted for confirmation.

The host application now monitors the blockchain until
T has been confirmed by 6 blocks.'> The host then sets (1)
post;.Data < T.vout, (2) post;.PrevHash < T.vin[0]. Hash,
(3) post;.CID < chain of transactions from 7' back to the
transaction with hash posty.PrevHash, (4) post;.Hash <«
T.Hash, and (5) o; < 6 blocks confirming 7T'.

The host then submits (post;, ;) to the enclave which then
performs the following checks: (1) verifies that o; is valid and
has sufficiently high block difficulty (2) the blocks in o; are
consecutive (3) T.vout[0], T.vout[1] embed the correct data
and (4) the transactions in post;.CID are well formatted.

If 7 = 0 and there is no input state, the enclave generates
a zero initial state. Otherwise it generates the decryption key
as described in the protocol using C-MAC to implement the
PRF. The state along with the inputs and random coins are
passed to the Javascript interpreter. All hashes computed in
the enclave are computed using SHA256. One note is that
instead of hashing all of CID into the ciphertext, we include
only posty.PrevHash, which keeps CID constant throughout
the rounds.

Implementation Limitations. We chose to use Intel SGX to
implement our enclave because it is a widely accepted, secure
execution environment. However, SGX is significantly more
powerful than the enclaves we model, including access to
trusted time and monotonic counters. Although we use SGX,
we do not leverage any of these additional features to make
sure our implementation matches our model. Our Bitcoin
implementation of the ledger is slow and would likely not
be suitable for production release. Finally, we implement our
applications in Javascript so the Javascript virtual machine will
insulate the enclave code from host tampering.

Measurements. To avoid spending significant money on the
Bitcoin main network, we tested our implementation on a
private regression regtest. This also allows us to control the
rate at which blocks are mined. The most time-consuming
portion of an implementation using the mainnet or testnet
is waiting for blocks to be confirmed; blocks on the main
bitcoin network take an average of 10 minutes to be mined, or
an average of 70 minutes to mine a block and its 6 confirmation
blocks. If an application requires faster execution, alternative
blockchains can be used, such as Litecoin (2.5 minutes per
block) or Ethereum (approximately 10-19 seconds).

Our experiments used a simple string concatenation pro-
gram P. For our experiments we measured three specific
operations: (1) the execution time of the Bitcoin operations
(on the host, enclave and regtest network, (2) ELI protocol
execution time, (3) the time overhead imposed by Intel SGX
operations. Figure 3 shows the running times of these parts
of our implementation. It is worth noting that SGX does not

3Tn general, six blocks is considered sufficiently safe for normal Bitcoin
payment operations; however the number of confirmations blocks can be
tweaked as an implementation parameter.

https://github.com/JHU-ARC/state_for_the_stateless/

provide access to a time interface, and there is no way for
an SGX enclave to get trustworthy time from the operating
system. The times in Figure 3 were measured from the
application code.

Discussion. Note that initializing an SGX enclave is a one-
time cost that must be paid when the enclave is first loaded into
memory. It is a comparatively expensive operation because the
SGX driver must verify the code integrity and perform other
bookkeeping operations. An additional computationally expen-
sive operation is obtaining the proof-of-publication to be deliv-
ered to the enclave. This process relies on bitcoin—-cli to
retrieve the proper blocks, which can be slow depending on the
status of the bitcoind daemon. We note that these tests were
run using the regression blockchain regtest, and retrieving
blocks from testnet or mainnet may produce different results.

VII. CONCLUSION

In this work we considered the problem of constructing
secure stateful computation from limited computing devices.
This work leaves several open questions. First, while we
discussed the possibility of using cryptographic obfuscation
schemes to construct the enclave, we did not evaluate the
specific assumptions and capabilities of such a system. Addi-
tionally, there may be other capabilities that the enclave-ledger
combination can provide that are not realized by this work.
Finally, while we discussed a number of applications of the
ELI primitive, we believe that there may be many other uses

for these systems. A cxkNOWLEDGMENTS

This work was supported in part by: the National Science
Foundation under awards CNS-1653110 and CNS-1801479.

REFERENCES

November 2016.

[1]

“Namecoin,” https://namecoin.org/,
Available: https://namecoin.org/

[Online].

[2] “Bitcoin wiki: Script,” Available at https://en.bitcoin.it/wiki/Script,
2018.

“Certificate transparency,”’
certificate-transparency.org, 2018.
“Duktape.org,” Available at http://duktape.org, 2018.

“Intel Software Guard Extensions (Intel SGX),” https://software.intel.
com/en-us/sgx, 2018.

[3] Available at https://www.

[4]
[5]

[6]
[7]

“The Ethereum Project,” https://www.ethereum.org/, 2018.

“TPM Reset Attack,” Available at http://www.cs.dartmouth.edu/
~pkilab/sparks/, 2018.

Advanced Microchip Devices, Available at https://developer.amd.com/
sev/, 2018.

Amazon, “AWS Step Functions,” Available at https://aws.amazon.com/
step-functions/, 2018.

[8]
[9]
[10] 1. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for CPU based Attestation and Sealing,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, vol. 13, 2013.
[11] Android Project, “File-based encryption for android,” Available at https:
//source.android.com/security/encryption/file-based, 2017.
[12] Apple Computer, “iOS Security: iOS 9.3 or later,” Available at https:
/Iwww.apple.com/business/docs/iOS_Security_Guide.pdf, May 2016.
[13] ——, “Answers to your questions about Apple and security,” Available
at http://www.apple.com/customer-letter/answers/, 2017.
ARM Consortium, “ARM Trustzone,” Available at https://www.arm.
com/products/security-on-arm/trustzone, 2017.
A. B, “Introduction to Intel SGX Sealing,” Available at https://software.

intel.com/en-us/blogs/2016/05/04/introduction-to-intel-sgx-sealing,
2016.

[14]

[15]

13

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vad-
han, and K. Yang, “On the (im)possibility of obfuscating programs,”
Cryptology ePrint Archive, Report 2001/069, 2001, http://eprint.iacr.
org/2001/069.

M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali, “Identification
protocols secure against reset attacks,” in EUROCRYPT ’01l,
B. Pfitzmann, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 495-511. [Online]. Available: https://doi.org/10.1007/
3-540-44987-6_30

J. Bonneau, “The science of guessing: Analyzing an anonymized
corpus of 70 million passwords,” in IEEE S&P (Oakland) 12, ser.
SP ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.
538-552. [Online]. Available: http://dx.doi.org/10.1109/SP.2012.49

M. Bowman, A. Miele, M. Steiner, and B. Vavala, “Private Data
Objects: an Overview,” ArXiv e-prints, Jul. 2018.

R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali, “Resettable
zero-knowledge (extended abstract),” in Proceedings of the Thirty-
second Annual ACM Symposium on Theory of Computing, ser. STOC
’00. New York, NY, USA: ACM, 2000, pp. 235-244. [Online].
Available: http://doi.acm.org/10.1145/335305.335334

R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. M. Johnson,
A. Juels, A. Miller, and D. Song, “Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart contract
execution,” CoRR, vol. abs/1804.05141, 2018. [Online]. Available:
http://arxiv.org/abs/1804.05141

A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers,
“Fairness in an unfair world: Fair multiparty computation from public
bulletin boards,” in CCS ’17, 2017, https://eprint.iacr.org/2017/1091.

N. Déttling, T. Mie, J. Miiller-Quade, and T. Nilges, “Basing obfus-
cation on simple tamper-proof hardware assumptions,” in 7CC ’11.
Springer, 2011.

Ethereum White Paper, “Ethereum white paper,” Available at https:/
github.com/ethereum/wiki/wiki/White-Paper, 2017.

A. Foundation, “Hadoop Key Management Server (KMS) - Doc-
umentation Sets,” Available at https://hadoop.apache.org/docs/stable/
hadoop-kms/index.html, 2018.

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,
“Candidate indistinguishability obfuscation and functional encryption
for all circuits,” Cryptology ePrint Archive, Report 2013/451, 2013,
http://eprint.iacr.org/2013/451.

B. Giller, “Implementing Practical Electrical Glitching Attacks,” in
BlackHat 15, 2015.

Google Inc., “Google Cloud Functions,” Available at https://cloud.
google.com/functions/, 2018.

R. Goyal and V. Goyal, “Overcoming cryptographic impossibility
results using blockchains,” Cryptology ePrint Archive, Report 2017/935,
2017, https://eprint.iacr.org/2017/935.

Handshake, “Handshake protocol,” Available at https://handshake.org/,
2018.

Hyperledger, “Hyperledger Architecture, Volume 1,” Available
at https://www.hyperledger.org/wp-content/uploads/2017/08/
Hyperledger_Arch_WG_Paper_1_Consensus.pdf, 2017.

Intel Corporation, “Product Licensing FAQ,” Available at https:/
software.intel.com/en-us/sgx/product-license-faq, 2016.

“Hyperledger Sawtooth,” Available at http://hyperledger.org/
projects/sawtooth, 2018.

S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel
Software Guard Extensions: EPID Provisioning and Attestation Ser-
vices,” 2016.

A. Juels, A. Kosba, and E. Shi, “The Ring of Gyges: Investigating the
future of criminal smart contracts,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’16. New York, NY, USA: ACM, 2016, pp. 283-295. [Online].
Available: http://doi.acm.org/10.1145/2976749.2978362

M. Kan, “Paying the WannaCry ransom will probably
get you nothing. Here’s why” PCWorld, 2017, avail-
able at https://www.pcworld.com/article/3196880/security/

paying-the- wannacry-ransom-will-probably- get- you-nothing-heres- why.
html.

https://namecoin.org/
https://namecoin.org/
https://en.bitcoin.it/wiki/Script
https://www.certificate-transparency.org
https://www.certificate-transparency.org
http://duktape.org
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://www.ethereum.org/
http://www.cs.dartmouth.edu/~pkilab/sparks/
http://www.cs.dartmouth.edu/~pkilab/sparks/
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://source.android.com/security/encryption/file-based
https://source.android.com/security/encryption/file-based
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://www.apple.com/customer-letter/answers/
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://software.intel.com/en-us/blogs/2016/05/04/introduction-to-intel-sgx-sealing
https://software.intel.com/en-us/blogs/2016/05/04/introduction-to-intel-sgx-sealing
http://eprint.iacr.org/2001/069
http://eprint.iacr.org/2001/069
https://doi.org/10.1007/3-540-44987-6_30
https://doi.org/10.1007/3-540-44987-6_30
http://dx.doi.org/10.1109/SP.2012.49
http://doi.acm.org/10.1145/335305.335334
http://arxiv.org/abs/1804.05141
https://eprint.iacr.org/2017/1091
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://hadoop.apache.org/docs/stable/hadoop-kms/index.html
https://hadoop.apache.org/docs/stable/hadoop-kms/index.html
http://eprint.iacr.org/2013/451
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://eprint.iacr.org/2017/935
https://handshake.org/
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://software.intel.com/en-us/sgx/product-license-faq
https://software.intel.com/en-us/sgx/product-license-faq
http://hyperledger.org/projects/sawtooth
http://hyperledger.org/projects/sawtooth
http://doi.acm.org/10.1145/2976749.2978362
https://www.pcworld.com/article/3196880/security/paying-the-wannacry-ransom-will-probably-get-you-nothing-heres-why.html
https://www.pcworld.com/article/3196880/security/paying-the-wannacry-ransom-will-probably-get-you-nothing-heres-why.html
https://www.pcworld.com/article/3196880/security/paying-the-wannacry-ransom-will-probably-get-you-nothing-heres-why.html

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

G. Kaptchuk, I. Miers, and M. Green, “Managing secrets with consensus
networks: Fairness, ransomware and access control,” Cryptology ePrint
Archive, Report 2017/201 (Revision 20170228:194725), 2017, https:
/leprint.iacr.org/2017/201.

B. Kauer, “OSLO: Improving the Security of Trusted Computing,” in
Usenix "07. Berkeley, CA, USA: USENIX Association, 2007. [Online].
Available: http://dl.acm.org/citation.cfm?id=1362903.1362919

A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE Symposium on Security and Privacy (SP),
May 2016, pp. 839-858.

I. Krsti¢, “Behind the Scenes with iOS Security,” In BlackHat. Avail-
able at https://www.blackhat.com/docs/us-16/materials/us- 16-Krstic.
pdf, August 2016.

LastPass, “How is LastPass secure and how does it encrypt/decrypt
my data safely?” Available at https:/lastpass.com/support.php?cmd=
showfaq&id=6926, 2017.

K. Lewi, A. J. Malozemoff, D. Apon, B. Carmer, A. Foltzer,
D. Wagner, D. W. Archer, D. Boneh, J. Katz, and M. Raykova, “5gen:
A framework for prototyping applications using multilinear maps and
matrix branching programs,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS *16.
New York, NY, USA: ACM, 2016, pp. 981-992. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978314

J. Liu, T. Jager, S. A. Kakvi, and B. Warinschi, “How to
build time-lock encryption,” Designs, Codes and Cryptography,
vol. 86, no. 11, pp. 2549-2586, Nov 2018. [Online]. Available:
https://doi.org/10.1007/s10623-018-0461-x

S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: Rollback protection for trusted
execution,” Cryptology ePrint Archive, Report 2017/048, 2017, http:
/feprint.iacr.org/2017/048.

F. McKeen, 1. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” in HASP@ ISCA, 2013, p. 10.

M. Milutinovic, W. He, H. Wu, and M. Kanwal, “Proof of luck: an
efficient blockchain consensus protocol,” Cryptology ePrint Archive,
Report 2017/249, 2017, https://eprint.iacr.org/2017/249.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system, 2008,”
2008. [Online]. Available: http://www.bitcoin.org/bitcoin.pdf

K. Nayak, C. W. Fletcher, L. Ren, N. Chandran, S. Lokam, E. Shi, and
V. Goyal, “HOP: hardware makes obfuscation practical,” in NDSS ’17,
2017.

D. Paletta, “FBI Chief Punches Back on Encryption,” Wall Street
Journal, July 2015. [Online]. Available: http://www.wsj.com/articles/
fbi-chief-punches-back-on-encryption- 1436217665

B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.
McCune, “Memoir: Practical state continuity for protected modules,”
in Proceedings of the 2011 IEEE Symposium on Security and Privacy,
ser. SP ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 379-394. [Online]. Available: https://doi.org/10.1109/SP.2011.38

K. Poulsen, “DirecTV attacks hacked smart cards,” The Reg-
ister, 2001, https://www.theregister.co.uk/2001/01/25/directv_attacks
hacked_smart_cards/.

A. Project, “Full-Disk Encryption,” Available at https://source.android.
com/security/encryption/full-disk.html, 2017.

D. Rao, “Intel SGX Product Licensing,” Available at https://software.
intel.com/en-us/articles/intel-sgx-product-licensing, 2016.

P. Rogaway, “Authenticated encryption with associated data,” in CCS
’02. ACM Press, 2002.

——, “Formalizing human ignorance,” in VIETCRYPT 2006, P. Q.
Nguyen, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 211-228.

D. Sinegubko, “Website Ransomware - CBT-Locker Goes
Blockchain,” Sucuri Blog. Available at https://blog.sucuri.net/2016/04/
website-ransomware-ctb-locker-goes-blockchain.html, April 2016.

S. Skorobogatov, “The bumpy road towards iPhone 5c¢ NAND
mirroring,” CoRR, vol. abs/1609.04327, 2016. [Online]. Available:
http://arxiv.org/abs/1609.04327

[58] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction
attacks,” in CHES ’02, B. S. Kaliski, ¢. K. Kog, and C. Paar,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 2-12.
[Online]. Available: https://doi.org/10.1007/3-540-36400-5_2

[59] Technology.org, “Ransomware authors arrest cases,” Available at http:
/Iwww.technology.org/2016/11/21/ransomware- authors-arrest-cases/,
November 2016.

[60] M. Tran, L. Luu, M. S. Kang, 1. Bentov, and P. Saxena, “Obscuro: A
bitcoin mixer using trusted execution environments,” Cryptology ePrint
Archive, Report 2017/974, 2017, http://eprint.iacr.org/2017/974.

[61] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor,
S. Komanduri, D. Kurilova, M. L. Mazurek, W. Melicher, and
R. Shay, “Measuring real-world accuracies and biases in modeling
password guessability,” in 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, 2015,
pp. 463-481. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 15/technical-sessions/presentation/ur

[62] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-
of-order execution,” in Proceedings of the 27th USENIX Security
Symposium. USENIX Association, August 2018, see also technical
report Foreshadow-NG [?].

[63] N. Weaver, “iPhones, the FBI, and Going Dark,” Lawfare Blog,
August 2015. [Online]. Available: https://www.lawfareblog.com/
iphones- fbi-and- going-dark

[64] K. Zetter, “Why hospitals are the perfect targets for
ransomware,” Available at https://www.wired.com/2016/03/
ransomware- why-hospitals-are- the-perfect-targets/, 2016.

[65] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier:
An authenticated data feed for smart contracts,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS "16. New York, NY, USA: ACM, 2016, pp. 270-
282. [Online]. Available: http://doi.acm.org/10.1145/2976749.2978326

APPENDIX

Proof Sketch. Due to lack of space, we provide a proof sketch
with many of the details omitted. A complete proof of security
is available in the full version of this work.

We give a simulation based definition for ELI, and we use
two basic experiments in our proof. In the Real experiment,
we consider an interaction in which an adversarial host user H
interacts with an honest Ledger Oracle and an honest Enclave
Oracle, as described in §IIL, to execute the ELI protocol. The
Ideal experiment has adversarial ideal host H that interacts
with a trusted, multi-step, computational functionality, exposed
as a Compute Oracle. At each step of the experiment, this
functionality takes as input a program, a program input, and
a “session ID” provided by H, and runs the program using
real random coins and with the most recent program state it
has associated with this session ID. The trusted functionality
stores the resulting state internally, records the public outputs
on a table available to all parties, and returns both outputs to
the user. This ideal model intuitively describes what we wish
to accomplish from a secure multi-step interactive computing
system.

We augment these experiments slightly to account for
ledger authenticator forgability. Particularly when the ledger
authenticator tags are secured economically, we must ensure
that the security degrades gracefully in face of a small number
of forgeries. While we cannot prevent an attack from obtaining
some advantage from successfully forging an authenticator,
we can successfully bound the attacker’s capability in this
setting. To capture this notion in our proof, we give the Real
experiment adversary access to a Forgery Oracle. In the

https://eprint.iacr.org/2017/201
https://eprint.iacr.org/2017/201
http://dl.acm.org/citation.cfm?id=1362903.1362919
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://lastpass.com/support.php?cmd=showfaq&id=6926
https://lastpass.com/support.php?cmd=showfaq&id=6926
http://doi.acm.org/10.1145/2976749.2978314
https://doi.org/10.1007/s10623-018-0461-x
http://eprint.iacr.org/2017/048
http://eprint.iacr.org/2017/048
https://eprint.iacr.org/2017/249
http://www.bitcoin.org/bitcoin.pdf
http://www.wsj.com/articles/fbi-chief-punches-back-on-encryption-1436217665
http://www.wsj.com/articles/fbi-chief-punches-back-on-encryption-1436217665
https://doi.org/10.1109/SP.2011.38
https://www.theregister.co.uk/2001/01/25/directv_attacks_hacked_smart_cards/
https://www.theregister.co.uk/2001/01/25/directv_attacks_hacked_smart_cards/
https://source.android.com/security/encryption/full-disk.html
https://source.android.com/security/encryption/full-disk.html
https://software.intel.com/en-us/articles/intel-sgx-product-licensing
https://software.intel.com/en-us/articles/intel-sgx-product-licensing
https://blog.sucuri.net/2016/04/website-ransomware-ctb-locker-goes-blockchain.html
https://blog.sucuri.net/2016/04/website-ransomware-ctb-locker-goes-blockchain.html
http://arxiv.org/abs/1609.04327
https://doi.org/10.1007/3-540-36400-5_2
http://www.technology.org/2016/11/21/ransomware-authors-arrest-cases/
http://www.technology.org/2016/11/21/ransomware-authors-arrest-cases/
http://eprint.iacr.org/2017/974
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ur
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ur
https://www.lawfareblog.com/iphones-fbi-and-going-dark
https://www.lawfareblog.com/iphones-fbi-and-going-dark
https://www.wired.com/2016/03/ransomware-why-hospitals-are-the-perfect-targets/
https://www.wired.com/2016/03/ransomware-why-hospitals-are-the-perfect-targets/
http://doi.acm.org/10.1145/2976749.2978326

Ideal experiment, we provide a Fork Oracle that allows the
adversary to run a single step of computation using an older
state of their choosing. In each experiment, the adversary can
only make a maximum of gsorge queries to these oracles.

We prove that for every p.p.t. adversarial real-world hosts
‘H, there must exist a p.p.t. ideal-world host A that does “as
well” in the ideal experiment as the real host does in the
real experiment. Note that this would imply that a real-world
adversary with the ability to forge grorge authenticators would
be able to make exactly gforge Single step computations, a very
reasonable bound. Formally:

Definition 1 (Simulation security for ELI): An ELI
scheme 11 (ExecuteApplication, ExecuteEnclave) is
simulation-secure if for every p.p.t. adversary H, sufficiently
large)\, and non-negative Qorge, there exists a p.p.t. H such
that the following holds:

Real(Ha A Qforge) "'Ej Ideal(”;':[, A, Qforge)

Proof Sketch: Given the space concerns, we cannot give the
full description of the ideal-world adversary . Intuitively, H
mediates the communication between H and the oracles. When
H attempts to query the Ledger Oracle, H forwards it to the
real ledger. When H queries Enclave Oracle, H references
its internal records of previous interactions and decides if it is
(1) an invalid query, (2) a previous query, (3) a query with a
forged authenticator, or (4) a fresh query. In case (1), H aborts.
In case (2), H replays the appropriate old output. In case (2),
H forwards the request to the Forgery Oracle. And finally, in
case (3), H forwards the query to the Compute Oracle. The
bulk of the proof is showing that H can distinguish each of
these cases successfully.

Discussion. Let D be a p.p.t. distinguisher that succeeds in
distinguishing H’s output in the Ideal experiment from H’s
output in the Real experiment with non-negligible advantage.
The proof proceeds via a series of hybrids, where in each
hybrid H interacts as in the Real experiment. The first hybrid
(Game 0) is identically distributed to the Real experiment,
and the final hybrid represents H’s simulation above. We enu-
merate the hybrids below but, due to space constraints, omit the
proof that each pair is computationally indistinguishable. The
proof concludes by invoking the hybrid lemma to show that the
Real experiment and Ideal experiment are indistinguishable.
Game 0 is simply the Real experiment. We now sketch the
remaining games:

Game 1 (Abort on [adversary-]forged authenticators.)
If H queries the Enclave oracle on (post,o) such that (1)
Ledger.Verify(post,o) = 1, and yet (2) the pair was not the
input (resp. output) of a previous call to either the Ledger or
Forgery oracles, then abort and output Event¢ege. This event
occurs with at most negligible probability if authenticators are
unforgeable.

Game 2 (Abort on hash collisions.) If 7 causes the
functions H, H|_ to be evaluated on inputs s; # so such that
H(s1) = H(s2) or Hi(s1) = Hi(s2), then abort and output
Eventhasheon- This occurs with at most negligible probability if
the hash is collision resistant.

Game 3 (Abort on commitment collisions.) If
H queries the Enclave oracle at steps 4,5 where C;
C; Commit(pp, (4, 1;,S;, P, post,.CID); r;)

15

Commit(pp, j||1;]|S;||post;.CID;r;) and yet (i,1;,S;, P,
post;.CID) # (4,15, S;, Pj, post;.CID), then abort and output
Eventpinding. This occurs with at most negligible probability
if the commitment is binding.

Game 4 (Duplicate Enclave calls give identical out-
puts.) If H queries the Enclave oracle repeatedly on the same
values (P}, 1, l;,S;, post;) (here we exclude o;) and the oracle
(as implemented in the previous hybrid) does not output L,
replace the response to all repeated queries subsequent to the
first query with the same result as the first query. This does not
change the distribution because the scheme is deterministic.

Game 5 (Abort on colliding ledger hashes.) If H
quries the Enclave oracle on two distinct inputs (P, 1, 1;,S;,
post;, 0;) and (P}, j,1;, S;, post;, o), and if the two inputs do
not represent repeated inputs (according to Game 4), then: if
both (post;, 0;) and (post;, o;) are valid outputs of the Ledger
oracle and yet post,;.Hash = post;.Hash then abort and output
Eventiedgercon- This occurs with at most negligible probability
if the hash is collision resistant.

Game 6 (7 can always uniquely identify CID.) This
hybrid modifies the previous as follows: if at step ¢ the
adversary H calls the Enclave the oracle (as implemented in
the previous hybrid) and (1) the oracle does not return L, (2)
the inputs to the two calls are not identical (this would be
excluded by the earlier hybrids), and (3) the pair (post;,o;)
are in the Ledger table, and (4) post;.Hash matches two
distinct entries in the Ledger table, then abort and output
Eventiedgerrepeat- This event occurs with at most negligible
probability.

Game 7 (Replace the session keys and pseudorandom
coins with random strings.) If Enclave does not abort or
is not called on repeated inputs, then the pair (k;y1,7;) is
sampled uniformly at random and recorded in a table for later
use. The use of a PRF makes this hybrid indistinguishable
from the previous,.

Game 8 (Reject inauthentic ciphertexts.) If 7 queries
the Enclave oracle on an input S; # ¢ such that (1) the oracle
does not reject the input, (2) Decrypt(k;,S;) does not output
1, and yet (3) the pair (S;, k;) was not generated during a
previous query to Enclave, then abort and output Eventgtp.
If the scheme is AE, this event occurs with at most negligible
probability.

Game 9 (Abort if inputs are inconsistent.) On 7{’s the
i'" query to the Enclave oracle, when the input S; # &,
let (post CID, P’,i’, Pub; ;") be the inputs/outputs associated
with the previous Enclave call that produced S;. If (1)
the experiment has not already aborted due to a condition
described in previous hybrids and (2) if the Enclave oracle
as implemented in the previous hybrid does not reject the
input, and (3) any of the provided inputs (post CID, P,i —
1,Pub;_1) # (post CID’, P’,i',Pub; 1) differ from those
associated with the previous call to the Enclave, abort and
output Eventnismatch- This event cannot occur in the current
protocol.

Game 10 (Replace ciphertexts with dummy cipher-
texts.) This hybrid modifies the previous as follows: we modify
the generation of each ciphertext S/, to encrypt the unary
string (1M2x(P) 1€)If the scheme is AE, then this hybrid
cannot be distinguished vrom the previous.

	Introduction
	Intuition
	Applications

	Definitions
	The Program Model
	Modeling the Ledger
	Enclave-Ledger Interaction
	Correctness and Security

	Our Construction
	Main Construction

	Applications
	Private Smart Contracts
	Logging and Reporting
	Limited-attempt Password Guessing
	Paid Decryption and Ransomware

	Realizing the Enclave and Ledger
	Realizing the Enclave
	Realizing the Ledger

	Prototype Implementation
	Conclusion
	References
	Appendix

