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Abstract

The paper is concerned with the derivation and analysis of the optimized Schwarz type
method for heterogeneous, anisotropic diffusion problems discretized by the finite element
cell-centered (FECC) scheme. Differently from the standard finite element method (FEM),
the FECC method involves only cell unknowns and satisfies local conservation of fluxes by
using a technique of dual mesh and multipoint flux approximations to construct the discrete
gradient operator. Consequently, if the domain is decomposed into nonoverlapping subdo-
mains, the transmission conditions (on the interfaces between subdomains) associated with
the FECC scheme are different from those of the standard FEM. We derive discrete Robin-
type transmission conditions in the framework of FECC discretization, which include both
weak and strong forms of the Robin terms due to the construction of the FECC’s discrete
gradient operator. Convergence of the associated iterative algorithm for a decomposition
into strip-shaped subdomains is rigorously proved. Two dimensional numerical results for
both isotropic and anisotropic diffusion tensors with large jumps in the coefficients are
presented to illustrate the performance of the proposed methods with optimized Robin
parameters.
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1. Introduction

Heterogeneous anisotropic diffusion problems are important mathematical models used
in various areas of science and engineering such as petroleum engineering, image processing
or plasma physics. There exist two main difficulties in finding approximate solutions of
these problems: firstly, for general problems with a heterogeneous and anisotropic (possi-
bly with large discontinuities) tensor, it is hardly possible for numerical methods to obtain
an approximate solution which converges to the weak solution of the problem; secondly,
it is challenging to design numerical methods which can handle general two or three di-
mensional meshes. The finite element cell-centered (FECC) method is a numerical scheme
which has been recently introduced and analyzed in [1, 2] for two- and three-dimensional
diffusion problems. Unlike the standard FEM method which fails to give accurate approx-
imations to problems with discontinuous coefficients, the FECC method can be applied to
heterogeneous, anisotropic diffusion problems. Based on the construction of a dual mesh
and a dual sub-mesh, and the use of multipoint flux approximations [3], the FECC scheme
is cell-centered, satisfies local continuity of fluxes and can be applied on general (possi-
bly distorted) meshes. Note that the finite volume element (FVE) method [4, 5, 6] also
uses a dual mesh, but it is not a cell-centered scheme and only works on a triangular or
quadrilateral primal mesh. In addition, in the FECC scheme the fluxes are enforced to
be continuous across the primal edges while in the FVE method the fluxes are contin-
uous across the dual edges. In [1], rigorous convergence analysis of the FECC method
was carried out and numerical results indicate that on the same primal mesh, the FECC
scheme gives more accurate solutions than those by the FEM [7], the finite volume method
(FVM) [8, 9], the mixed finite volume method (MFV) [10], the mimetic finite difference
method (MFD) [11], the compact-stencil MPFA method [12], the discrete duality finite
volume method (DDFV) [13] and the SUSHI method [14]. An extension of the FECC
scheme, namely the staggered cell-centered finite element method (SC-FEM), to two- and
three-dimensional compressible and nearly-incompressible linear elasticity problems has
been studied in [15, 16]. The SC-FEM is based on a mixed pressure-displacement formula-
tion and is shown, by using the macroelement technique, to be stable and convergent with
low-order (P0-P1) approximations for the pressure and the displacement.

For large-scale and heterogeneous problems, domain decomposition (DD) methods
have become a powerful tool to perform parallel numerical simulations on multiproces-
sor supercomputers. There is a large amount of research and numerical algorithms using
DD techniques for different types of linear and nonlinear partial differential equations
(see [17, 18, 19] and the references therein). There are basically two types of DD methods
with nonoverlapping subdomains: the formulation based on the Steklov-Poincaré opera-
tor [20, 21, 22], and Schwarz iterations with Robin transmission conditions [23] or with
optimized transmission conditions [24, 25, 26, 27, 28]. The latter, known as the optimized
Schwarz method, has attracted great attention of researchers during the last two decades
as the use of general transmission conditions with optimized parameters significantly en-
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hances the convergence rate of the associated iterative algorithms as well as efficiently
handles the discontinuous coefficients [29, 30, 31, 32]. The idea of optimized transmission
conditions has also been applied to improve the performance of Schwarz Waveform Relax-
ation methods for time-dependent problems with discontinuous coefficients, for instance
in [33, 34, 35, 36, 37, 38].

The aim of this work is to develop and analyze the nonoverlapping optimized Schwarz
methods for the FECC discretization of the diffusion problems with discontinuous, anistropic
coefficients. Due to the specific construction of the FECC’s discrete gradient operator, the
transmission conditions associated with the FECC method are essentially different from
those of the FEM. In particular, in addition to the continuity of the nodal unknowns and
weak fluxes on the interfaces between subdomains, extra transmission conditions represent-
ing the continuity of fluxes in strong form are introduced. These conditions are required to
obtain the equivalence between the discrete multidomain problem and the discrete mon-
odomain problem. Furthermore, instead of using the physical transmission conditions on
the interfaces, we derive equivalent Robin-type transmission conditions in the framework
of the FECC scheme which include both weak and strong forms of the Robin terms. The
new transmission conditions involve optimized parameters to enhance the information ex-
change between subdomains and handle the discontinuous coefficients. We reformulate
the problems in the subdomains with discrete Robin-type transmission conditions as an
interface problem which is solved iteratively by either Jacobi iteration or GMRES. The for-
mer leads to an iterative algorithm, namely the Robin-to-Robin algorithm, and we prove
that it is convergent, for a decomposition into strips, as the number of iterations goes to
infinity. Numerical experiments for two subdomains are carried out to investigate the per-
formance of the proposed domain decomposition-based FECC method on heterogenenous,
anisotropic diffusion problems. For multiple subdomains with cross points, the method can
be generalized using auxiliary variables at the cross points [39, 40] together with a coarse
problem to remove subdomain singularities as well as to enhance the scalability when the
number of subdomains increases. However, this subject is beyond the scope of this paper
and will be discussed elsewhere.

For an open, bounded domain Ω in Rd with Lipschitz boundary ∂Ω, we consider the
second order elliptic problem:

−div (Λ(xxx)∇u(xxx)) = f(xxx) in Ω,
u = 0 on ∂Ω,

(1.1)

where Λ : Ω → Rd×d is a symmetric, positive definite tensor such that Λ is piecewise
Lipschitz-continuous on Ω and its eigenvalues are bounded in

[
λ, λ

]
, with λ, λ > 0. The

function f is the source term and belongs to L2(Ω). For simplicity, homogeneous Dirichlet
boundary conditions are imposed. The analysis given below can be extended to other types
of boundary conditions as in [17, Chapter 1, Section 1.4].
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The weak form of problem (1.1) is given by:

Find u ∈ H1
0 (Ω) such that∫

Ω
(Λ(xxx)∇u(xxx)) · ∇v(xxx) dxxx =

∫
Ω
f(xxx)v(xxx) dxxx, ∀v ∈ H1

0 (Ω). (1.2)

It is well-known (see, for instance, [41, Chapter 1]) that under the assumptions made above,
problem (1.2) has a unique solution u ∈ H1

0 (Ω).
In the next section, we introduce the FECC scheme for the discretization of prob-

lem (1.2). Then in Section 3, we derive the discrete multidomain problem using conforming
decomposition, and formulate the discrete interface problem with Robin-type transmission
conditions; from that we propose the Robin-to-Robin iterative algorithm and demonstrate
its convergence. Finally, numerical results confirming theoretical analysis are presented in
Section 4.

2. The FECC framework

In this section, we present the derivation of the FECC scheme [1] for problem (1.2) with
heterogeneous, anisotropic coefficients: we first describe the construction of the meshes,
then we define the discrete gradient which satisfies local conservation of fluxes; finally we
derive a linear algebraic system associated with (1.2).

2.1. The meshes

For completeness, we recall the construction of the meshes in the FECC scheme as
presented in [1, 2, 15]. In this work, we consider the two-dimensional case and derive the
corresponding multidomain formulations (note that the FECC scheme has been studied
for three-dimensional problems in [2, Chapter 3]).

For a polygonal domain Ω ⊂ R2, we consider a general partition Th of Ω:

Ω =
⋃
K∈Th

K.

We assume that each element K ∈ Th is a star-shaped polygon in which we choose a point
CK ∈ int(K) and call it the mesh point of K. Throughout the paper, we refer to Th as
the primal mesh. Next, we define the dual mesh T ∗h and the dual sub-mesh T ∗∗h . For this
purpose, we assume that the line joining two mesh points of any two neighboring elements
is inside Ω and it intersects the common edge of the two elements. The latter assumption
is necessary to define the scheme for heterogeneous problems (see [1]).

The dual mesh T ∗h is constructed from the primal mesh in such a way that each dual
control volume of T ∗h corresponds to a vertex of Th. Denote by N the set of all nodes or
vertices of Th:

N := {I : I is a vertex of element K, for all K ∈ Th} .
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For each I ∈ N , denote by

KI := {K ∈ Th : K shares the vertex I} ,

the set of primal elements that have I as their vertex. We consider two cases (see Figure 1):

(a) If I is an interior vertex, we obtain the dual control volume MI associated with the
vertex I by connecting the mesh points of neighboring elements in KI.

(b) If I is on the boundary ∂Ω and assume that KE and KF are two (same or different)
elements in KI. Denote by E ⊂ ∂KE and F ⊂ ∂KF the two edges on the boundary
that have I as their vertex. The dual control volume MI is defined by joining mesh
points of neighboring elements in KI and the mesh point of KE (and KF ) with a
chosen interior point (e.g. the midpoint) of E (and F respectively). Note that in this
case MI has I as its vertex as well.

Figure 1: Left: The primal mesh Th (solid lines) and its nodes (black); Right: The dual mesh T ∗h (blue
dashed lines) and its nodes (blue). Examples of two dual control volumes (green and yellow polygons)

corresponding to an internal node I and a boundary node Ib of the primal mesh Th, respectively.

The collection of all MI defines a dual mesh T ∗h such that

Ω =
⋃
I∈N

MI.

As for Th, we denote by CMI
the mesh point of MI ∈ T ∗h which is chosen to be the

corresponding vertex I of the primal mesh:

CMI
≡ I, for all MI ∈ T ∗h . (2.1)

In what follows, we may drop the subscript I to simplify the notation. We finally construct
the dual sub-mesh T ∗∗h as a triangular subgrid of the dual grid as follows: for a dual control
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volume M ∈ T ∗h , we construct elements T of T ∗∗h by connecting the mesh point CM to all
vertices of M (see Figure 2):

Ω =
⋃

T∈T ∗∗h

T .

Let N ∗∗ be the set of nodes of elements of T ∗∗h . We have the following remark.

Remark 2.1. By construction, we have that:

(a) for all interior triangular elements T ∈ T ∗∗h (i.e. ∂T ∩ ∂Ω = ∅), there exits two
primal elements K and L ∈ Th such that T ∩K 6= ∅ and T ∩ L 6= ∅.

(b) N ∗∗ consists of three sets C, C∗ and N ∗∗∂Ω containing mesh points of primal elements,
mesh points of dual control volumes and points lying on the boundary respectively:

N ∗∗ = C ∪ C∗ ∪ N ∗∗∂Ω, (2.2)

where C := {CK , ∀K ∈ Th}, C∗ := {CM , ∀M ∈ T ∗h },
and N ∗∗∂Ω := {P ∈ N ∗∗ such that P ∈ ∂Ω}.

Figure 2: Left: Examples of two triangular elements (green and yellow triangles) of the dual sub-mesh
created from the associated dual control volumes, note that the mesh point CMI (respectively, CMIb

) is
chosen to be the associated primal vertex I (respectively, Ib) (see (2.1)); Right: The primal mesh Th

(black solid lines) and the dual sub-mesh T ∗∗h (red dashed lines).

On each primal element K ∈ Th, we denote the average of tensor Λ on K by:

ΛK =
1

|K|

∫
K

Λ(xxx)dxxx.

We aim to handle the heterogeneous, anisotropic case where Λ is discontinuous across the
primal elements, i.e.:

ΛK 6= ΛL for any K,L ∈ Th, K 6= L. (2.3)
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The FECC scheme follows the idea of the standard finite element method applying on
the dual sub-mesh and we seek for an approximate solution of problem (1.2) by finding its
values at all nodes of the dual sub-mesh, P ∈ N ∗∗. Thus we define by Xh the set of all
vectors uh := (uP )P∈N ∗∗ where uP is regarded as the approximate value of the solution u
at the node P ∈ N ∗∗:

Xh =
{
uh = (uP )P∈N ∗∗ , uP ∈ R

}
.

Due to Remark 2.1(b), we have that

uh = (uP )P∈N ∗∗ =
(

(uCK )K∈Th , (uCM )M∈T ∗h , (uP )P∈N ∗∗∂Ω

)
,

or simply, for the sake of exposition:

uh = (uP )P∈N ∗∗ =
(

(uK)K∈Th , (uM )M∈T ∗h , (uP )P∈N ∗∗∂Ω

)
, (2.4)

with uK and uM the approximate values of u at the node CK and CM respectively. Recall
that CK is the mesh point of the primal element K ∈ Th while CM is the mesh point of
the dual control volume M ∈ T ∗h which is chosen as in (2.1).

In addition, to handle Dirichlet boundary conditions, we need to define a subset of Xh,
X0
h, as follows:

X0
h = {uh ∈ Xh : uP = 0, ∀P ∈ N ∗∗∂Ω} .

In order to obtain the discrete variational formulation associated with problem (1.2), we
shall define a projection operator Φ(uh) and the discrete gradient ∇Λuh for uh ∈ Xh.

2.2. The projection operator and the discrete gradient

The two operators are defined by their restrictions to each triangular element T of T ∗∗h .
In particular, the projection operator Φ(uh) is a function in L2(Ω) and it is continuous
piecewise linear on each element T ∈ T ∗∗h , while the discrete gradient is defined in a way to
enforce mass conservation in each element T ∈ T ∗∗h when the coefficient Λ is discontinuous
(cf. (2.3) and Remark 2.1(a)).

We consider a triangle T = (CMCKCL) ∈ T ∗∗h where K,L are two primal elements,
K,L ∈ Th, and M a dual control volume, M ∈ T ∗h (see Figure 3). Denote by σ the common
edge of K and L and Cσ ∈ σ the intersecting point between the segment CKCL and σ. For
any uh ∈ Xh, the restriction of Φ(uh) to T , denoted by ΦT (uh), is a continuous function
on T and it is linear on each of the two sub-triangles (CMCσCK) and (CMCσCL).

Let uMσ , a temporary unknown to be defined later, be an approximation of uh at Cσ
seeing from M .

In addition, denote by nnnKCMCσ , nnnCMCK and nnnCKCσ the outward normal vectors of
the triangle (CMCσCK) such that the lengths of these vectors are equal to the segments
CMCσ, CMCK and CKCσ respectively (see Figure 3). We also denote by m(CMCσCK) the

measure of triangle (CMCσCK). Remark that nnnKCMCσ +nnnLCMCσ = 0.
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Figure 3: Left: An element (green) of the dual sub-grid T = (CMCKCL); Right: Outward normal vectors
of the sub-triangle T.

For any vector uh ∈ Xh, the projection operator Φ(uh) and the discrete gradient ∇Λuh
restricted to T are defined as follows:

(i) On the triangle (CMCσCK), we have

ΦT (uh)|(CMCσCK)(xxx) =


uM if xxx = xxxCM ,
uK if xxx = xxxCK ,

uMσ if xxx = xxxCσ .

Now using multi-point flux approximations, we define the restriction of ∇Λuh on
(CMCσCK) as

∇Λuh|(CMCσCK) =
−uKnnnKCMCσ − u

M
σ nnnCMCK − uMnnnCKCσ

2m(CMCσCK)
. (2.5)

Similarly, the restrictions of uh and ∇Λuh on triangle (CMCσCL) are respectively

ΦT (uh)|(CMCσCL)(xxx) =


uM if xxx = xxxCM ,
uL if xxx = xxxCL ,

uMσ if xxx = xxxCσ ,

and

∇Λuh|(CMCσCL) =
−uLnnnLCMCσ − u

M
σ nnnCMCL − uMnnnCLCσ

2m(CMCσCL)
. (2.6)

(ii) Next, uMσ is determined to strongly satisfy the continuity of the flux across CMCσ:

ΛK ∇Λuh|(CMCσCK) ·nnnKCMCσ + ΛL∇Λuh|(CMCσCL) ·nnnLCMCσ = 0. (2.7)
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Assume that

∆ := βM1,σ + βM2,σ = −

(
nnnKCMCσ

)t
ΛKnnnCMCK

2m(CMCσCK)
−

(
nnnLCMCσ

)t
ΛLnnnCMCL

2m(CMCσCL)
6= 0, (2.8)

where nnnt is the transpose of vector nnn, then after performing some calculations on
Equation (2.7) we deduce that

uMσ = βMuM + βKuK + βLuL, (2.9)

where

βK =
1

∆
·

(
nnnKCMCσ

)t
ΛKnnn

K
CMCσ

2m(CMCσCK)
, βL =

1

∆
·

(
nnnLCMCσ

)t
ΛLnnn

L
CMCσ

2m(CMCσCL)
,

βM = 1− βK − βL.

Remark 2.2. For each internal edge σ ≡ CMCM̂ of the primal elements, there are

two values of u at Cσ, one seeing from M , uMσ and another from M̂ , uM̂σ . As for uMσ ,

we have that uM̂σ can be expressed as a linear combination of u
M̂
, uK and uL. The

triangles (CM , CK , CL) and (C
M̂
, CK , CL) are distinct, thus the two values of u at Cσ

are different: uMσ 6= uM̂σ . Note that for homogeneous Dirichlet boundary conditions,
uMσ = 0 if Cσ ∈ ∂Ω.

Substituting (2.9) into (2.5) and (2.6), we conclude that the discrete gradient ∇Λuh
restricted to the triangle T = (CMCKCL) ∈ T ∗∗h linearly depends on the three nodal
values uM , uK and uL:

∇Λuh|(CMCσCK) =
−uKñnnK(CM ,Cσ ,CK) − uLñnn

L
(CM ,Cσ ,CK) − uMñnn

M
(CM ,Cσ ,CK)

2m(CMCσCK)
, (2.10)

∇Λuh|(CMCσCL) =
−uKñnnK(CM ,Cσ ,CL) − uLñnn

L
(CM ,Cσ ,CL) − uMñnn

M
(CM ,Cσ ,CL)

2m(CMCσCL)
, (2.11)

with

ñnnK(CM ,Cσ ,CK) = nnnKCMCσ + βKnnnCMCK , ñnnL(CM ,Cσ ,CK) = βLnnnCMCK ,

ñnnM(CM ,Cσ ,CK) = nnnCKCσ + βMnnnCMCK , ñnnK(CM ,Cσ ,CL) = βKnnnCMCL ,

ñnnL(CM ,Cσ ,CL) = nnnLCMCσ + βLnnnCMCL , ñnnM(CM ,Cσ ,CL) = nnnCLCσ + βMnnnCMCL .

With the above defined operators, we obtain the discrete variational formulation
associated with problem (1.2) as follows:

Find uh ∈ X0
h such that∫

Ω
(Λ(xxx)∇Λuh(xxx)) · ∇Λvh(xxx) dxxx =

∫
Ω
f(xxx)Φ(vh)(xxx) dxxx, ∀vh ∈ X0

h. (2.12)
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2.3. The linear algebraic system

To derive the linear algebraic system associated with (2.12), for each Q ∈ (N ∗∗ \ N ∗∗∂Ω)

(Q does not lie on the boundary), we choose vh = vQh =
(
vQP

)
P∈N ∗∗

∈ X0
h such that

vQP =

{
1 if P ≡ Q,
0 if P 6= Q,

(2.13)

and obtain∫
Ω

(Λ(xxx)∇Λuh(xxx)) · ∇Λv
Q
h (xxx) dxxx =

∫
Ω
f(xxx)Φ(vQh )(xxx) dxxx, ∀Q ∈ (N ∗∗ \ N ∗∗∂Ω) , (2.14)

in which the discrete gradient depends only on the nodal values uP , P ∈ N ∗∗ (cf. formu-
las (2.10) and (2.11)).

To derive a matrix form of (2.14), notice that the set (N ∗∗ \ N ∗∗∂Ω) consists of all mesh
points CK of the primal elements and all mesh points CM of the dual control volumes (see
Remark 2.1(b)). Thus we proceed as in [1, pp. 12-14] by first choosing vh = vCMh for each
M ∈ T ∗h in (2.14) and obtain the linear system:

DDDuh|T ∗h +EEEuh|Th = FFF ∗, (2.15)

where uh|T ∗h := (uM )M∈T ∗h and uh|Th := (uK)K∈Th , DDD is a diagonal matrix with positive

entries (see [1]) and FFF ∗ a column matrix depending on f . Next, we take vh = vCKh for each
K ∈ Th:

MMMuh|T ∗h +NNNuh|Th = FFF , (2.16)

where NNN is a symmetric, square matrix, FFF a column matrix depending on f and MMM is the
transpose matrix of EEE.

Hence, the matrix system associated with (2.14) is(
DDD EEE
MMM NNN

) (
uh|T ∗h
uh|Th

)
=

(
FFF ∗

FFF

)
. (2.17)

Since DDD is diagonal, one can compute UUU∗ from the first equation of (2.17):

uh|T ∗h = DDD−1(FFF ∗ −EEEuh|Th).

Substituting this into the second equation of (2.17), we obtain the following linear system
involving only primal cell unknowns (uK)K∈Th :(

NNN −MMMDDD−1EEE
)
uh|Th = FFF −MMMDDD−1FFF ∗,

The matrix AAA := NNN−MMMDDD−1EEE is a variant of the stiffness matrix. Under assumption (2.8),
AAA is symmetric and positive definite on general meshes [1].

We also recall Corollary 5.4 in [1] that the FECC scheme is convergent, that is to say,
Φ(uh) converges to the exact solution uexact the problem and ∇Λuh tends to ∇uexact as
h→ 0, with h = sup{hT , the diameter of the triangle T , T ∈ T ∗∗h }.

10



3. Nonoverlapping, optimized Schwarz algorithm

We present the derivation and convergence analysis of the optimized Schwarz algorithm
based on the FECC discretization and nonoverlapping subdomains. In Subsection 3.1, we
first introduce the setting for domain decomposition, and construct the discrete physi-
cal transmission conditions associated with the FECC scheme. Then, in Subsection 3.2,
more general transmission conditions of Robin-type are derived and an associated interface
problem is introduced. Finally in Subsection 3.3, we present the Robin-to-Robin iterative
algorithm resulting from solving the interface problem by Jacobi iteration and prove its
convergence for strip-shaped subdomains.

3.1. Conforming domain decomposition and discrete transmission conditions

We consider a partition Th of Ω and a conforming decomposition of Ω into nonoverlap-
ping subdomains. For simplicity of presentation, we consider the case of two subdomains Ω1

and Ω2. The analysis can be extended to many subdomain case with strip substructures (see
Subsection 3.3). Denote by Γ the interface between the two subdomains: Γ = ∂Ω1∩∂Ω2∩Ω.

Let Th,i, i = 1, 2, be the partition of Ωi such that Th,i is a subset of Th. We shall
construct the dual mesh T ∗h,i and the dual sub-mesh T ∗∗h,i of the subdomains from those of
the monodomain, T ∗h and T ∗∗h . Since each dual control volume corresponds to a vertex of
the primal mesh, we distinguish two cases (see Figure 4):

(a) If the vertex I of an element of Th,i does not belong to Γ, then its control volume
M i

I ∈ T ∗h,i coincides with the control volume MI of T ∗h . Hence, the triangular elements

of T ∗∗h,i associated with M i
I are those of T ∗∗h associated with MI.

(b) Otherwise if I ∈ Γ (note that Γ now is a part of the boundary of Ωi), its control
volume M i

I ∈ T ∗h,i is the intersection of the control volume MI ∈ T ∗h and Ωi. The

triangular elements of T ∗∗h,i associated with M i
I is then defined as in Subsection 2.1.

Figure 4: Conforming discretizations in the subdomains.

The dual sub-meshes T ∗∗h,1 and T ∗∗h,2 are matching on the interface Γ and they are not
subsets of T ∗∗h . Denote by N ∗∗i , i = 1, 2, the set of all vertices of elements of T ∗∗h,i . Note
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that N ∗∗1 and N ∗∗2 are not subsets of N ∗∗ (recall that N ∗∗ is the set of all vertices of T ∗∗h ).
As for the monodomain case (cf. Remark 2.1(b) and (2.2)), we can decompose N ∗∗h,i into
three sets Ci, C∗i and N ∗∗i,∂Ωi

as follows:

N ∗∗i = Ci ∪ C∗i ∪ N ∗∗i,∂Ωi
, (3.1)

where Ci := {CK , ∀K ∈ Th,i}, C∗i :=
{
CM , ∀M ∈ T ∗h,i

}
,

and N ∗∗i,∂Ωi
:= {P ∈ N ∗∗i such that P ∈ ∂Ωi}.

We denote by N ∗∗Γ the set of vertices of elements of T ∗∗h,i , i = 1, 2, that belong to Γ
and by E∗∗Γ the set of edges of elements of T ∗∗h,i that lie on Γ. Let N ∗∗Γ,◦ be a subset of
N ∗∗Γ consisting of the nodes of the primal mesh Th,i lying on Γ (magenta circled points in
Figure 4), and define N ∗∗Γ,� := N ∗∗Γ \ N ∗∗Γ,◦. The points in N ∗∗Γ,� (purple squared points in
Figure 4) result from case (b) above and they play the same role as Cσ in the construction
of the discrete gradient (Subsection 2.2). Note that N ∗∗Γ,� ∩N ∗∗ = ∅.

To derive the formulation for the subdomain problems, we introduce the sets:

Xh,i :=
{
uh,i = (ui,P )P∈N ∗∗i

, ui,P ∈ R
}
,

X0,∂Ωi∩∂Ω
h,i :=

{
uh,i ∈ Xh,i : ui,P = 0, ∀P ∈

(
N ∗∗i,∂Ωi

\ N ∗∗Γ

)}
,

for i = 1, 2, and the space

Gh :=
{

Φ(vh)|Γ, ∀vh ∈ X0
h

}
⊂ L2(Γ). (3.2)

By the construction of the discrete gradient (cf. Subsection 2.2), we have that functions
in Gh are discontinuous on Γ and piecewise linear on the interface edges e ∈ E∗∗Γ . We
also define the set of vectors uh,Γ containing the nodal unknowns on the interface: Gh :={
uh,Γ = (uP )P∈N ∗∗Γ

, uP ∈ R
}
. Finally, we define the projection Φi, the discrete gradient

∇Λ,i and the right-hand side data fi for i = 1, 2, as the restrictions of Φ, ∇Λ and f to Ωi

respectively.
With such notation, the discrete multidomain problem equivalent to the monodomain

problem (2.14) consists of:

1. solving in the subdomains the following problems:

Find uh,i ∈ X0,∂Ωi∩∂Ω
h,i such that∫

Ωi

(Λi∇Λ,iuh,i) · ∇Λ,ivh,i dxxx−
∫

Γ
(Λi∇Λ,iuh,i) ·nnniΦi(vh,i)dγ =

∫
Ωi

fiΦi(vh,i) dxxx,

∀vh,i ∈ X0,∂Ωi∩∂Ω
h,i , for i = 1, 2, (3.3)

2. together with three transmission conditions on Γ expressing respectively:
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(a) the continuity of the solution on Γ:
Φ1(uh,1) |Γ= Φ2(uh,2) |Γ, (3.4)

or equivalently, with M, M̂ ∈ T ∗h such that Cσ ∈ CMCM̂ ,
uM1,σ = uM2,σ, uM̂1,σ = uM̂2,σ, ∀Cσ ∈ N ∗∗Γ,�, (3.5)

u1,P = u2,P , ∀P ∈ N ∗∗Γ,◦, (3.6)

(b) the continuity (in strong form) of the flux in each element of T ∗∗h that intersects
the interface Γ: ∫

e

2∑
i=1

(Λi∇Λ,iuh,i ·nnni) dγ = 0, ∀e ∈ E∗∗Γ , (3.7)

(c) and the continuity of the flux across Γ:∫
Γ

(
2∑
i=1

Λi∇Λ,iuh,i ·nnni

)
γh dγ = 0, ∀γh ∈ Gh. (3.8)

The first and third transmission conditions (cf. (3.4) and (3.8) respectively) are standard,
while the second transmission condition (3.7) results from the construction of the discrete
gradient in the FECC scheme and it is used to determine the values of the solution at
points Cσ ∈ N ∗∗Γ,�.

We now examine in more detail the third transmission condition (3.8) in the context
of the FECC scheme. We first determine vectors vh ∈ X0

h such that Φ(vh)|Γ 6= 0. One can
easily see that

Φ
(
vQh

)
|Γ 6= 0, ∀Q ∈ N ∗∗Γ,◦ ⊂ N ∗∗.

Recall that the test vector vQh ∈ X
0
h is defined as in (2.13). Furthermore, because of the

construction of the discrete gradient, we also have

Φ
(
vQh

)
|Γ 6= 0, ∀Q ∈ CΓ

i , i = 1, 2, (3.9)

where CΓ
i is the set of mesh points of primal elements of Ωi that have edges lying on Γ:

CΓ
i := {CK , K ∈ Th,i, ∂K ∩ Γ 6= ∅} , i = 1, 2.

In other words, the space Gh (3.2) consists of linear combinations of functions Φ
(
vQh

)
|Γ,

for all Q ∈ N ∗∗Γ,◦ ∪ CΓ
1 ∪ CΓ

2 . As a consequence, the condition of flux continuity (3.8) can be
replaced equivalently by∫

Γ

(
2∑
i=1

Λi∇Λ,iuh,i ·nnni

)
Φ
(
vQh

)
dγ = 0, ∀Q ∈ N ∗∗Γ,◦, (3.10)∫

Γ
(Λ1∇Λ,1uh,1 ·nnn1) Φ

(
vQ1

h

)
dγ =

∫
Γ

(Λ2∇Λ,2uh,2 ·nnn1) Φ
(
vQ1

h

)
dγ, ∀Q1 ∈ CΓ

1 , (3.11)∫
Γ

(Λ2∇Λ,2uh,2 ·nnn2) Φ
(
vQ2

h

)
dγ =

∫
Γ

(Λ1∇Λ,1uh,1 ·nnn2) Φ
(
vQ2

h

)
dγ, ∀Q2 ∈ CΓ

2 . (3.12)
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Note that the projection Φ is global (i.e. defined on the whole domain Ω). Next, we will
transform these equations into a form that involves only local projections Φi, i = 1, 2.

For Q ∈ N ∗∗Γ,◦ ⊂ Γ (in Equation (3.10)): by definition of the projection Φ, it is clear
that

Φ
(
vQh

)
|Γ= Φ1

(
vQh,1

)
|Γ= Φ2

(
vQh,2

)
|Γ, (3.13)

where vQh,i =
(
vQi,P

)
P∈N ∗∗i

∈ X0,∂Ωi∩∂Ω
h,i , for Q ∈ N ∗∗i and i = 1, 2, is defined by

vQi,P =

{
1 if P ≡ Q,
0 if P 6= Q, P /∈ N ∗∗Γ,�.

(3.14)

For Qi ∈ CΓ
i ⊂ Ωi (in Equations (3.11) and (3.12)) with i ∈ 1, 2 fixed and j = (3 − i):

we have that
Φ
(
vQih

)
|Γ= Φi

(
vQih,i

)
|Γ .

Since Qi ∈ Ωi, there does not exist a vector vQih,j ∈ X
0,∂Ωj∩∂Ω
h,j . Consequently, we can not

proceed as in the former case for Φj . Instead, we define Eh,j as an extension operator from

Gh to X
0,∂Ωj∩∂Ω
h,j as follows: for vΓ = (vP )P∈N ∗∗Γ

∈ Gh, we have

Eh,j (vΓ) = vh,j :=

{
vP if P ∈ N ∗∗Γ ,
0 if P ∈

(
N ∗∗j \ N ∗∗Γ

)
.

(3.15)

Then
Φ
(
vQih

)
|Γ= Φi

(
vQih,i

)
|Γ= Φj

(
Eh,j(v

Qi
i,Γ)
)
|Γ, (3.16)

where vQii,Γ :=
(
vQii,P

)
P∈N ∗∗Γ

∈ Gh.

Using the relations established in (3.13) and (3.16) we can rewrite the transmission
conditions (3.10)-(3.12) as follows:∫
Γ

2∑
i=1

(Λi∇Λ,iuh,i ·nnni) Φi

(
vQh,i

)
dγ = 0, ∀Q ∈ N ∗∗Γ,◦, (3.17)∫

Γ
(Λ1∇Λ,1uh,1 ·nnn1) Φ1

(
vQ1

h,1

)
dγ =

∫
Γ

(Λ2∇Λ,2uh,2 ·nnn1) Φ2

(
Eh,2(vQ1

1,Γ)
)
dγ, ∀Q1 ∈ CΓ

1 ,

(3.18)∫
Γ

(Λ2∇Λ,2uh,2 ·nnn2) Φ2

(
vQ2

h,2

)
dγ =

∫
Γ

(Λ1∇Λ,1uh,1 ·nnn2) Φ1

(
Eh,1(vQ2

2,Γ)
)
dγ, ∀Q2 ∈ CΓ

2 .

(3.19)

The last two equations are introduced due to the properties of the discrete gradient of the
FECC scheme. Such equations are not present in the domain decomposition formulation
with finite element discretizations (see [17, Chapter 2]).
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3.2. Equivalent Robin-type transmission conditions and interface problem

With the aim of using more general transmission conditions to accelerate the conver-
gence speed of the associated iterative algorithm, we extend the optimized Schwarz method
with Robin transmission conditions to the FECC scheme. We first rewrite the transmission
conditions (3.5)-(3.8) as follows:∫

e=CMCσ

uM1,σ dγ =

∫
e
uM2,σ dγ,

∫
e=C

M̂
Cσ

uM̂1,σ dγ =

∫
e
uM̂2,σ dγ, ∀Cσ ∈ N ∗∗Γ,�, (3.20)

where M, M̂ ∈ T ∗h,i such that Cσ ∈ CMCM̂ ,∫
e

Λ1∇Λ,1uh,1 ·nnn1 dγ = −
∫
e

Λ2∇Λ,2uh,2 ·nnn2 dγ, ∀e ∈ E∗∗Γ , (3.21)∫
Γ

[Λ1∇Λ,1uh,1 ·nnn1 + α12Φ1(uh,1)] γhdγ

=

∫
Γ

[Λ2∇Λ,2uh,2 ·nnn1 + α12Φ2(uh,2)] γhdγ, ∀γh ∈ Gh, (3.22)∫
Γ

[Λ2∇Λ,2uh,2 ·nnn2 + α21Φ2(uh,2)] γhdγ

=

∫
Γ

[Λ1∇Λ,1uh,1 ·nnn2 + α21Φ1(uh,1)] γhdγ, ∀γh ∈ Gh, (3.23)

in which α12 and α21 are two positive parameters which are chosen to accelerate the con-
vergence of the associated iterative algorithm. For precise details of how the optimization
is carried out, see [26, 42]. Obviously, (3.20)-(3.23) can be deduced from (3.5)-(3.8). To
prove the opposite, we subtract (3.23) from (3.22) and obtain:

(α12 + α21)

∫
Γ

[Φ1(uh,1)− Φ2(uh,2)] γh = 0, ∀γh ∈ Gh. (3.24)

Since α12 and α21 are positive, (3.24) is equivalent to∫
Γ

(Φ1(uh,1)− Φ2(uh,2)) γh = 0, ∀γh ∈ Gh. (3.25)

By definition, the restrictions of Φ1(uh,1), Φ2(uh,2) to Γ and γh are piecewise linear on Γ.

We choose γh = Φ(vQh ) with Q ∈ N ∗∗Γ,◦ and use the trapezoidal quadrature rule to deduce
from (3.25) and (3.20) that

u1,Q = u2,Q, ∀Q ∈ N ∗∗Γ,◦.

Consequently,
Φ1(uh,1) = Φ2(uh,2) on Γ. (3.26)

Substituting this into either (3.22) or (3.23), we obtain continuity of flux across Γ (in the
weak sense).
Next we rewrite the equation (3.22) using local projections as in (3.17)-(3.18):
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∫
Γ

[Λ1∇Λ,1uh,1 ·nnn1 + α12Φ1(uh,1)] Φ1(vQh,1)dγ

=

∫
Γ

[Λ2∇Λ,2uh,2 ·nnn1 + α12Φ2(uh,2)] Φ2(vQh,2)dγ, ∀Q ∈ N ∗∗Γ,◦, (3.27a)∫
Γ

[Λ1∇Λ,1uh,1 ·nnn1 + α12Φ1(uh,1)] Φ1(vQ1

h,1)dγ

=

∫
Γ

[Λ2∇Λ,2uh,2 ·nnn1 + α12Φ2(uh,2)] Φ2

(
Eh,2(vQ1

1,Γ)
)
dγ, ∀Q1 ∈ CΓ

1 , (3.27b)

and similarly for (3.23),∫
Γ

[Λ2∇Λ,2uh,2 ·nnn2 + α21Φ2(uh,2)] Φ2(vQh,2)dγ

=

∫
Γ

[Λ1∇Λ,1uh,1 ·nnn2 + α21Φ1(uh,1)] Φ1(vQh,1)dγ, ∀Q ∈ N ∗∗Γ,◦, (3.28a)∫
Γ

[Λ2∇Λ,2uh,2 ·nnn2 + α21Φ2(uh,2)] Φ2(vQ2

h,2)dγ

=

∫
Γ

[Λ1∇Λ,1uh,1 ·nnn2 + α21Φ1(uh,1)] Φ1

(
Eh,1(vQ2

2,Γ)
)
dγ, ∀Q2 ∈ CΓ

2 . (3.28b)

Finally, we combine linearly the two equations (3.20) and (3.21) using the parameters α12

and α21:∫
e

(
Λ1∇Λ,1uh,1 ·nnn1 + α12u

M
1,σ

)
dγ =

∫
e

(
Λ2∇Λ,2uh,2 ·nnn1 + α12u

M
2,σ

)
dγ, (3.29a)∫

e

(
Λ2∇Λ,2uh,2 ·nnn2 + α21u

M
2,σ

)
dγ =

∫
e

(
Λ1∇Λ,1uh,1 ·nnn2 + α21u

M
1,σ

)
dγ, (3.29b)

for all e = CMCσ ∈ E∗∗Γ , CM ∈ N ∗∗Γ,◦, Cσ ∈ N ∗∗Γ,�. One can easily prove that the equations
(3.29a)-(3.29b) are equivalent to (3.20)-(3.21).

We now derive the interface problem corresponding to the new Robin-type transmission
conditions (3.27)-(3.29): for a given function ζh,i ∈ Gh and a given vector θh,i =

(
θeh,i
)
e∈E∗∗Γ

,

we denote by uh,i(ζh,i, θh,i, fi), i = 1, 2, the solution of the subdomain problem with Robin
boundary conditions on the interface:

Find uh,i ∈ X0,∂Ωi∩∂Ω
h,i such that :∫

Ωi

(Λi∇Λ,iuh,i) · ∇Λ,ivh,i dxxx−
∫

Γ
(Λi∇Λ,iuh,i) ·nnniΦi(vh,i)dγ =

∫
Ωi

fiΦi(vh,i) dxxx,

∀vh,i ∈ X0,∂Ωi∩∂Ω
h,i , (3.30)∫

Γ
[Λi∇Λ,iuh,i ·nnni + αijΦi(uh,i)] Φi(v

Q
h,i) dγ =

∫
Γ
ζh,iΦi(v

Q
h,i) dγ, ∀Q ∈ N

∗∗
Γ,◦ ∪ CΓ

i , (3.31)∫
e

(
Λi∇Λ,iuh,i ·nnni + αiju

M
i,σ

)
dγ = θeh,i, ∀e = CMCσ ∈ E∗∗Γ . (3.32)
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Then the interface problem associated with (3.27) -(3.29) is:

∫
Γ
ζh,iΦi(v

Q
h,i) dγ −

∫
Γ

[
Λj∇Λ,juh,j(ζh,j , θh,j , fj) ·nnni+
αijΦj(uh,j(ζh,j , θh,j , fj))

]
Φj(v

Q
h,j) dγ = 0, ∀Q ∈ N ∗∗Γ,◦,∫

Γ
ζh,iΦi(v

Q
h,i) dγ −

∫
Γ

[
Λj∇Λ,juh,j(ζh,j , θh,j , fj) ·nnni+
αijΦj(uh,j(ζh,j , θh,j , fj))

]
Φj

(
Eh,j(v

Q
i,Γ)
)
dγ = 0, ∀Q ∈ CΓ

i ,

θeh,i −
∫
e

(
Λj∇Λ,juh,j(ζh,j , θh,j , fj) ·nnni + αiju

M
j,σ(ζh,j , θh,j , fj)

)
dγ = 0, ∀e = CMCσ ∈ E∗∗Γ .

(3.33)
for i = 1, 2, and j = (3− i).

This problem can be transformed into a system of equations in which the left hand
side depends only on the interface unknowns (ζh,1, θh,1, ζh,2, θh,2). Such a system is then
solved iteratively using Jacobi method or GMRES. The former choice leads to the following
Robin-to-Robin algorithm.

3.3. Robin-to-Robin algorithm and convergence analysis

The derivation of the interface problem (3.33) with Robin transmission conditions can
be extended straightforwardly to the case of many strip-shaped subdomains. In particular,
we decompose the domain Ω into N nonoverlapping subdomains {Ωi}1≤i≤N aligned in
the same direction: Ω = ∪Ni=1Ωi. Let Γij = ∂Ωi ∩ ∂Ωj , i 6= j be the interfaces between
subdomains. Similar notation as introduced in Subsection 3.1 for the interface Γ is used
for the interfaces Γij 6= ∅ between the neighboring strips Ωi and Ωj .

The Robin-to-Robin algorithm reads as follows: For given initial guesses

gij =
(
Λj∇Λ,ju

0
h,j ·nnni + αijΦj(u

0
h,j)
)
|Γij , and ĝij =

(
Λj∇Λ,ju

0
h,j ·nnni + αiju

Q,0
j,σ

)
|e=QCσ∈E∗∗Γij

,

at the (n+ 1)−th iteration, solve in each subdomain the following problem:

Find un+1
h,i ∈ X

0,∂Ωi∩∂Ω
h,i such that :∫

Ωi

(
Λi∇Λ,iu

n+1
h,i

)
· ∇Λ,ivh,i dxxx−

∑
j

Γij 6=∅

∫
Γij

(Λi∇Λ,iu
n+1
h,i ) ·nnniΦi(vh,i)dγ =

∫
Ωi

fiΦi(vh,i) dxxx,

∀vh,i ∈ X0,∂Ωi∩∂Ω
h,i , (3.34)

together with Robin boundary conditions given by the neighboring subdomains at the previ-
ous iteration: for all j that Γij 6= ∅
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∑
e∈E∗∗Γij

∫
e

[
Λi∇Λ,iu

n+1
h,i ·nnni + αijΦi

(
un+1
h,i

)]
Φi

(
vQh,i

)
dγ

=
∑
e∈E∗∗Γij

∫
e

[
Λj∇Λ,ju

n
h,j ·nnni + αijΦj

(
unh,j

)]
Φj

(
vQh,j

)
dγ, ∀Q ∈ N ∗∗Γij ,◦, (3.35)

∑
e∈E∗∗Γij

∫
e

[
Λi∇Λ,iu

n+1
h,i ·nnni + αijΦi

(
un+1
h,i

)]
Φi

(
vQih,i

)
dγ

=
∑
e∈E∗∗Γij

∫
e

[
Λj∇Λ,ju

n
h,j ·nnni + αijΦj(u

n
h,j)
]

Φj

(
Eh,j(v

Qi
i,Γij

)
)
dγ, ∀Qi ∈ C

Γij
i , (3.36)

∫
e

(
Λi∇Λ,iu

n+1
h,i ·nnni + αiju

Q,n+1
i,σ

)
dγ =

∫
e

(
Λj∇Λ,ju

n
h,j ·nnni + αiju

Q,n
j,σ

)
dγ,

∀e = QCσ ∈ E∗∗Γij , with Q ∈ N ∗∗Γij ,◦, Cσ ∈ N
∗∗
Γij ,�. (3.37)

For convergence analysis, we assume that the coefficients of the Robin conditions satisfy:

αij = αji ≥ α > 0 for i, j = 1, ..., N and i 6= j. (3.38)

Numerical results with both equal and different Robin parameters will be discussed in
Section 4. The convergence of the Robin-to-Robin algorithm is guaranteed by the following
theorem.

Theorem 3.1. Under assumption (3.38), the Robin-to-Robin algorithm converges. In
particular, we have:

lim
n→∞

N∑
i=1

∫
Ωi

[
Λi∇Λ,i

(
unh,i − uh,i

)]
· ∇Λ,i

(
unh,i − uh,i

)
dxxx = 0, for i = 1, . . . , N, (3.39)

where uh,i is the restriction of the solution uh to Ωi and N is the number of subdomains.

Proof. Denote by εnh,i = unh,i − uh,i, the error between the iterative solution and the mon-
odomain solution. Then by using the Robin transmission conditions (3.35)-(3.37) and
integration by parts, we obtain:
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∫
Ωi

(
Λi∇Λ,iε

n+1
h,i

)
· ∇Λ,iv

Q
h,i dxxx+

∑
j

Γij 6=∅

∑
e∈E∗∗Γij

∫
e
αijΦi

(
εn+1
h,i

)
Φi(v

Q
h,i) dγ

=
∑
j

Γij 6=∅

∑
e∈E∗∗Γij

∫
e

[
Λj∇Λ,jε

n
h,j ·nnni + αijΦj

(
εnh,j
)]

Φj

(
vQh,j

)
dγ, ∀Q ∈ N ∗∗Γij ,◦, (3.40a)

∫
Ωi

(
Λi∇Λ,iε

n+1
h,i

)
· ∇Λ,iv

Qi
h,i dxxx+

∑
j

Γij 6=∅

∑
e∈E∗∗Γij

∫
e
αijΦi

(
εn+1
h,i

)
Φi(v

Qi
h,i) dγ

=
∑
j

Γij 6=∅

∑
e∈E∗∗Γij

∫
e

[
Λj∇Λ,jε

n
h,j ·nnni + αijΦj

(
εnh,j
)]

Φj

(
Eh,j(v

Qi
i,Γij

)
)
dγ, ∀Qi ∈ C

Γij
i , (3.40b)

∫
Ωi

[
Λi∇Λ,iε

n+1
h,i

]
· ∇Λ,iv

M
h,i dxxx = 0, ∀M ∈ (Ci ∪ C∗i ) \ CΓij

i . (3.40c)

From which, we deduce, for vh,i ∈ X0,∂Ωi∩∂Ω
h,i , that∫

Ωi

(
Λi∇Λ,iε

n+1
h,i

)
· ∇Λ,ivh,i dxxx+

∑
j

Γij 6=∅

∑
e∈E∗∗Γij

∫
e
αijΦi

(
εn+1
h,i

)
Φi (vh,i) dγ

=
∑
j

Γij 6=∅

∑
e∈E∗∗Γij

∫
e

[
Λj∇Λ,jε

n
h,j ·nnnij + αijΦj

(
εnh,j
)]

Φj

(
Eh,j(vi,Γij )

)
dγ. (3.41)

where vi,Γij = (vi,P )P∈N ∗∗Γij

is a vector consisting of unknowns on the interface Γij , and the

extension operator Eh,j is defined similarly to (3.15). Equation (3.41) can be rewritten
equivalently as:∫

Ωi

(
Λi∇Λ,iε

n+1
h,i

)
· ∇Λ,ivh,i dxxx−

∑
j

Γij 6=∅

∑
e∈E∗∗Γij

∫
e

Λi∇Λ,iε
n+1
h,i ·nnnijΦi (vh,i) dγ

=
∑
j

Γij 6=∅

∑
e∈E∗∗Γij

∫
e

[ (
Λj∇Λ,jε

n
h,j ·nnnij + αijΦj

(
εnh,j
))

Φj

(
Eh,j(vi,Γij )

)
−
(

Λi∇Λ,iε
n+1
h,i ·nnnij + αijΦi

(
εn+1
h,i

))
Φi (vh,i)

]
dγ, ∀vh,i ∈ X0,∂Ωi∩∂Ω

h,i .

(3.42)

Note that on the one hand, by the Robin transmission conditions on the interfaces between
the subdomains, we have:∑
j

Γij 6=∅

∑
e∈E∗∗Γij

∫
e

[ (
Λj∇Λ,ju

n
h,j ·nnnij + αijΦj

(
unh,j

))
Φj

(
Eh,j(vi,Γij )

)
−
(

Λi∇Λ,iu
n+1
h,i ·nnnij + αijΦi

(
un+1
h,i

))
Φi (vh,i)

]
dγ = 0, ∀vh,i ∈ X0,∂Ωi∩∂Ω

h,i .

(3.43)
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On the other hand, by construction (cf. Equations (3.27) and (3.28)), the monodomain
solution satisfies∑
j

Γij 6=∅

∑
e∈E∗∗Γij

∫
e

[
(Λj∇Λ,juh,j ·nnnij + αijΦj (uh,j)) Φj

(
Eh,j(vi,Γij )

)
− (Λi∇Λ,iuh,i ·nnnij + αijΦi (uh,i)) Φi (vh,i)

]
dγ = 0, ∀vh,i ∈ X0,∂Ωi∩∂Ω

h,i .

(3.44)

Therefore, combining (3.43) and (3.44) yields

∑
j

Γij 6=∅

∑
e∈E∗∗Γij

∫
e

[ (
Λj∇Λ,jε

n
h,j ·nnnij + αijΦj

(
εnh,j
))

Φj

(
Eh,j(vi,Γij )

)
−
(

Λi∇Λ,iε
n+1
h,i ·nnnij + αijΦi

(
εn+1
h,i

))
Φi (vh,i)

]
dγ = 0, ∀vh,i ∈ X0,∂Ωi∩∂Ω

h,i .

(3.45)

Substituting this into (3.42), and choosing vh,i = εn+1
h,i , we obtain∫

Ωi

(
Λi∇Λ,iε

n+1
h,i

)
· ∇Λ,iε

n+1
h,i dxxx−

∑
j,Γij 6=∅

∑
e∈E∗∗Γij

∫
e

(
Λi∇Λ,iε

n+1
h,i ·nnnij

)
Φi

(
εn+1
h,i

)
dγ = 0.

(3.46)

Next, we use the identity

(a+ λ1b)
2 − (a− λ2b)

2 = 2(λ1 + λ2)ab+ (λ2
1 − λ2

2)b2,

to write the second term in (3.46) as follows:

−
∑
e∈E∗∗Γij

∫
e

(
Λi∇Λ,iε

n+1
h,i ·nnnij

)
Φi(ε

n+1
h,i )dγ =

1

4αij

∑
e∈E∗∗Γij

∫
e

[
Λi∇Λ,iε

n+1
h,i ·nnnij − αijΦi(ε

n+1
h,i )

]2
dγ

− 1

4αij

∑
e∈E∗∗Γij

∫
e

[
Λi∇Λ,iε

n+1
h,i ·nnnij + αijΦi(ε

n+1
h,i )

]2
dγ,

Substituting this into (3.46), we find that∫
Ωi

(
Λi∇Λ,iε

n+1
h,i

)
· ∇Λ,iε

n+1
h,i dx+

1

4αij

∑
e∈E∗∗Γij

∫
e

[
Λi∇Λ,iε

n+1
h,i ·nnnij − αijΦi(ε

n+1
h,i )

]2
dγ

=
1

4αij

∑
e∈E∗∗Γij

∫
e

[
Λi∇Λ,iε

n+1
h,i ·nnnij + αijΦi(ε

n+1
h,i )

]2
dγ,

(3.47)

or equivalently in a compact form,
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Ai,n+1 +
1

4αij
B

(1)
ij,n+1 =

1

4αij
B

(2)
ij,n+1, for i, j = 1, ..., N, and i 6= j, (3.48)

where

Ai,n+1 =

∫
Ωi

(
Λi∇Λ,iε

n+1
h,i

)
· ∇Λ,iε

n+1
h,i dxxx

B
(1)
ij,n+1 =

∑
e∈E∗∗Γij

∫
e

[
Λi∇Λ,iε

n+1
h,i ·nnnij − αijΦi(ε

n+1
h,i )

]2
dγ

B
(2)
ij,n+1 =

∑
e∈E∗∗Γij

∫
e

[
Λi∇Λ,iε

n+1
h,i ·nnnij + αijΦi(ε

n+1
h,i )

]2
dγ.

We shall show that B
(2)
ij,n+1 = B

(1)
ji,n. For that purpose, we first prove, for all Q ∈ N ∗∗Γij ,◦∪C

Γij
i ,

that:∑
e∈E∗∗Γij

∫
e

(
Λi∇Λ,iε

n+1
h,i ·nnnij + αijε

n+1
i,Q

)
dγ =

∑
e∈E∗∗Γij

∫
e

(
Λj∇Λ,jε

n
h,j ·nnnij + αijε

n
j,Q

)
dγ,

(3.49)

or equivalently∑
e∈E∗∗Γij

∫
e

(
Λi∇Λ,iu

n+1
h,i ·nnnij + αiju

n+1
i,Q

)
dγ =

∑
e∈E∗∗Γij

∫
e

(
Λj∇Λ,ju

n
h,j ·nnnij + αiju

n
j,Q

)
dγ.

(3.50)

We consider two cases as depicted in Figure 5:

Figure 5: Examples of the point Q ∈ N ∗∗Γij ,◦ (Case 1) and Qi ∈ C
Γij
i (Case 2).

(i) Case 1: Q ∈ N ∗∗Γij ,◦. We shall compute the integrals in the Robin transmission
condition (3.35) exactly. Note that by construction, the restriction of(
Λj∇Λ,ju

n
h,j ·nnnij + αijΦj

(
unh,j

))
Φj

(
vQh,j

)
and

(
Λi∇Λ,iu

n+1
h,i ·nnnij + αijΦi

(
un+1
h,i

))
Φi

(
vQh,i

)
,
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to Γij are piecewise continuous polynomials of order 2 and are nonzero only on e = QCσ
and ê = QCσ̂ (see Figure 5). Denote by E∗∗Γij (Q) = {QCσ, QCσ̂}. By using the Simpson’s
rule, the integrals in (3.35) are computed as follows:∑
e∈E∗∗Γij

∫
e

[
Λi∇Λ,iu

n+1
h,i ·nnnij + αijΦi

(
un+1
h,i

)]
Φi

(
vQh,i

)
dγ

=
∑

e∈E∗∗Γij
(Q)

e=QCσ

∫
e

[
Λi∇Λ,iu

n+1
h,i ·nnnij + αijΦi

(
un+1
h,i

)]
Φi

(
vQh,i

)
dγ

=
∑

e∈E∗∗Γij
(Q)

e=QCσ

|e|
6



[
Λi∇Λ,iu

n+1
h,i ·nnnij |e + αijΦi

(
un+1
h,i

)
(xxxQ)

]
Φi

(
vQh,i

)
(xxxQ)+[

Λi∇Λ,iu
n+1
h,i ·nnnij |e + αijΦi

(
un+1
h,i

)
(xxxCσ )

]
Φi

(
vQh,i

)
(xxxCσ )+

4

[
Λi∇Λ,iu

n+1
h,i ·nnnij |e + αijΦi

(
un+1
h,i

)(xxxQ + xxxCσ
2

)]
Φi

(
vQh,i

)(xxxQ + xxxCσ
2

)


.

(3.51)

As the projection operator Φi is linear, and by the definition of the test function, we have

Φi

(
vQh,i

)(xxxQ + xxxCσ
2

)
=

1

2

[
Φi

(
vQh,i

)
(xxxQ) + Φi

(
vQh,i

)
(xxxCσ)

]
=

1

2

(
1 + vQi,σ

)
,

where vQi,σ = Φi

(
vQh,i

)
(xxxCσ). Substituting this into (3.51), we obtain:∑

e∈E∗∗Γij

∫
e

[
Λi∇Λ,iu

n+1
h,i ·nnnij + αijΦi

(
un+1
h,i

)]
Φi

(
vQh,i

)
dγ

=
∑
e∈E∗∗Γij

(Q)

e=QCσ

|e|
6



[
Λi∇Λ,iu

n+1
h,i ·nnnij |e + αiju

n+1
i,Q

]
+[

Λi∇Λ,iu
n+1
h,i ·nnnij |e + αiju

Q,n+1
i,σ

]
vQi,σ+[

Λi∇Λ,iu
n+1
h,i ·nnnij |e + αiju

n+1
i,Q +

Λi∇Λ,iu
n+1
h,i ·nnnij |e + αiju

Q,n+1
i,σ

](
1 + vQi,σ

)


,

or ∑
e∈E∗∗Γij

∫
e

[
Λi∇Λ,iu

n+1
h,i ·nnnij + αijΦi

(
un+1
h,i

)]
Φi

(
vQh,i

)
dγ

=
∑
e∈E∗∗Γij

(Q)

e=QCσ

1

6


(

2 + vQi,σ

)∫
e

[
Λi∇Λ,iu

n+1
h,i ·nnnij + αiju

n+1
i,Q

]
dγ+(

1 + 2vQi,σ

)∫
e

[
Λi∇Λ,iu

n+1
h,i ·nnnij + αiju

Q,n+1
i,σ

]
dγ

 . (3.52)
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Similar calculations yield:∑
e∈E∗∗Γij

∫
e

[
Λj∇Λ,ju

n
h,j ·nnnij + αijΦj(u

n
h,j)
]

Φj

(
vQh,j

)
dγ

=
∑
e∈E∗∗Γij

(Q)

e=QCσ∈σ

1

6


(

2 + vQi,σ

)∫
e

[
Λj∇Λ,ju

n
h,j ·nnnij + αiju

n
j,Q

]
dγ+(

1 + 2vQi,σ

)∫
e

[
Λj∇Λ,ju

n
h,j ·nnnij + αiju

Q,n
j,σ

]
dγ

 . (3.53)

Thus, by combining (3.35), (3.37), (3.52) and (3.53), we deduce that (3.50) holds for all
Q ∈ N ∗∗Γij ,◦.

(ii) Case 2: Qi ∈ C
Γij
i . The restriction of Φi

(
vQih,i

)
to Γij is a piecewise continuous

polynomial of order 1 and is nonzero only on e = QCσ and ê = Q̂Cσ where Q and Q̂
belong to N ∗∗Γij ,◦ for which (Qi, Q,Cσ) and (Qi, Q̂, Cσ) are elements of T ∗∗h,i (see Figure 5).

Denote by E∗∗,CΓij
(Qi) = {QCσ, Q̂Cσ} then we use again the Simpson’s rule to compute the

integrals in (3.36) exactly:∑
e∈E∗∗Γij

∫
e

(
Λi∇Λ,iu

n+1
h,i ·nnnij + αijΦi(u

n+1
h,i )

)
Φi

(
vQih,i

)
dγ

=
∑

e∈E∗∗,CΓij
(Qi)

|e|
6


[
2Λi∇Λ,iu

n+1
h,i ·nnnij |e + αij(u

n+1
i,Q + uQ,ni,σ )

]
vQi,σ[

Λi∇Λ,iu
n+1
h,i ·nnnij |e + αiju

Q,n+1
i,σ

]
vQi,σ


=

∑
e∈E∗∗,CΓij

(Qi)

vQi,σ
6


∫
e

[
Λi∇Λ,iu

n+1
h,i ·nnnij + αiju

n+1
i,Q

]
dγ+

2

∫
e

[
Λi∇Λ,iu

n+1
h,i ·nnnij + αiju

Q,n+1
i,σ

]
dγ

 . (3.54)

Similarly, we have∑
e∈E∗∗Γij

∫
e

(
Λj∇Λ,ju

n
h,j ·nnnij + αijΦj

(
unh,j

))
Φj

(
Eh,j(v

Qi
i,Γ)
)
dγ

=
∑

e∈E∗∗,CΓij
(Qi)

vQi,σ
6


∫
e

[
Λj∇Λ,ju

n
h,j ·nnnij + αiju

n
j,Q

]
dγ+

2

∫
e

[
Λj∇Λ,ju

n
h,j ·nnnij + αiju

Q,n
j,σ

]
dγ

 . (3.55)

Combining (3.36), (3.37), (3.54) and (3.55), we deduce that (3.50) holds for Qi ∈ C
Γij
i .
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Now, we compute B
(2)
ij,n+1 exactly by using the Simpson’s quadrature rule:

B
(2)
ij,n+1 =

∑
e∈E∗∗Γij

e=QCσ

∫
e

[
Λi∇Λ,iε

n+1
h,i ·nnnij + αijΦi(ε

n+1
h,i )

]2
dγ

=
∑

e∈E∗∗Γij

e=QCσ

|e|
6



[
Λi∇Λ,iε

n+1
h,i ·nnnij |e + αijε

n+1
i,Q

]2
+[

Λi∇Λ,iε
n+1
h,i ·nnnij |e + αijε

n+1,Q
i,σ

]2
+

4

[
Λi∇Λ,iε

n+1
h,i ·nnnij |e + αij

(
εn+1
i,Q + εn+1,Q

i,σ

2

)]2


.

Using Equation (3.49) and the fact that nnnij = −nnnji, we deduce that

B
(2)
ij,n+1 =

∑
e∈E∗∗Γij

e=QCσ

|e|
6


[
Λj∇Λ,jε

n
h,j ·nnnji|e − αijεnj,Q

]2
+
[
Λj∇Λ,jε

n
h,j ·nnnji|e − αijε

n,Q
j,σ

]2
+ (Λj∇Λ,jε

n
h,j ·nnnji|e − αijεnj,Q

)2
+
(

Λj∇Λ,jε
n
h,j ·nnnji|e − αijε

n,Q
j,σ

)2

+

2
(
Λj∇Λ,jε

n
h,j ·nnnji|e − αijεnj,Q

) (
Λj∇Λ,jε

n
h,j ·nnnji|e − αijε

n,Q
j,σ

)



=

∫
Γij

[
Λj∇Λ,jε

n
h,j ·nnnji − αijΦj(ε

n
h,j)
]2
dγ.

As αij = αji (cf. Assumption (3.38)), we obtain:

B
(2)
ij,n+1 = B

(1)
ji,n, for i, j = 1, ..., N and i 6= j.

Thus (3.48) becomes

Ai,n+1 +
1

4αij
B

(1)
ij,n+1 =

1

4αji
B

(1)
ji,n, for i, j = 1, ..., N and i 6= j. (3.56)

We sum over all subdomains and over the iterates n, then let n go to infinity to obtain the
following estimate:

∞∑
n=0

N∑
i=1

Ai,n+1 ≤
N∑

i,j=1
i6=j

1

4αij
B

(1)
ij,0 ≤

(3.38)

1

4α

N∑
i,j=1
i6=j

B
(1)
ij,0, (3.57)

where we have used the fact that

N∑
i,j=1
i6=j

1

4αij
B

(1)
ij,n =

N∑
i,j=1
i6=j

1

4αji
B

(1)
ji,n. The estimate (3.57)

implies that the series

∞∑
n=0

N∑
i=1

Ai,n+1 is convergent and thus

N∑
i=1

Ai,n =

N∑
i=1

∫
Ωi

(
Λi∇Λ,iε

n
h,i

)
· ∇Λ,iε

n
h,idxxx→ 0, when n→∞.
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4. Numerical experiments

We perform numerical experiments with discontinuous, isotropic or anisotropic coef-
ficients to verify our theoretical results and investigate the performance of the optimized
parameters for the case of two subdomains. The many subdomain case with cross points
and coarse grid correction will be studied in our future work.

We consider a unit square Ω = [0, 1]2 and its decomposition into two nonoverlapping
subdomains: Ω1 = [0, 1/2]×[0, 1] and Ω2 = [1/2, 1]×[0, 1]. The diffusion tensors are assumed
to be constant in the subdomains and discontinuous across the interface. Two different
mesh types are considered (see Figure 6): Type 1 is a structured mesh with rectangular
primal elements and Type 2 an unstructured mesh with triangular primal elements. The
associated dual sub-mesh for each type is shown in the same figure. In Table 1, the number
of elements of the primal mesh Th and the number of nodes of the dual sub-mesh T ∗∗h for
different mesh size are presented. Recall that the FECC scheme has the same accuracy
as the standard finite element method on the dual sub-mesh, however the computational
cost is much lower since only primal cell unknowns are involved in the linear algebraic
system [1]. Consequently, the scheme is cell-centered, and the errors presented in this
section are computed in the L2-norm on the primal mesh.

Mesh size h of Th h1 = 1/8 h2 = 1/16 h3 = 1/32 h4 = 1/64 h5 = 1/128

Type 1
#elements of Th 64 256 1024 4096 16384

#nodes of T ∗∗h 177 609 2241 8577 33537

Type 2
#elements of Th 224 896 3584 14336 57344

#nodes of T ∗∗h 385 1441 5569 21889 86785

Table 1: Numbers of elements of the primal mesh Th and numbers of nodes of the dual sub-mesh T ∗∗h for
different mesh sizes.

We first study the error equation with isotropic diffusion tensors in Subsection 4.1.
Convergence of the iterative algorithms with optimized Robin parameters is investigated
with respect to different jumps in the coefficients, different mesh sizes and different iterative
solvers. In Subsection 4.2, we consider a problem with a known analytical solution and
with anisotropic, discontinuous diffusion tensor, and verify the convergence and order of
accuracy of the domain decomposition-based FECC scheme.

4.1. Test case 1: with isotropic, discontinuous diffusion tensors

The diffusion matrix is defined as Λ(xxx) = Λi for xxx ∈ Ωi, i = 1, 2, where Λi = λiIII,
and III is the 2D identity tensor. We fix λ1 = 1 and vary λ2 ∈ {10, 100, 1000}. Denote by
r := λ2/λ1 the diffusion ratio. We solve the error equation with a zero solution:

−div (Λ(xxx)∇ε(xxx)) = 0 in Ω,
ε = 0 on ∂Ω.
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Primal mesh Th, type 1.
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Primal mesh Th, type 2.
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Dual sub-mesh T ∗∗h , type 1.
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1

Dual sub-mesh T ∗∗h , type 2.

Figure 6: The primal meshes and its dual sub-meshes for Type 1 (left) and Type 2 (right) respectively.
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The problem is reformulated as an interface problem as in Section 3, Equation (3.33), which
is solved iteratively by either Jacobi or GMRES. We start with a random initial guess and
at each iteration, we calculate the normalized error in L2(Ω)− norm, (‖εεε

n
h‖2/‖εεε0

h‖2).
As the problem involves discontinuous coefficients, one should use different optimized

parameters α12 6= α21, namely two-sided Robin parameters, to take into account the differ-
ent physical parameters. Recall that in Subsection 3.3, in order to prove the convergence
of the Robin-to-Robin algorithm (corresponding to solving the interface problem by Jacobi
method), we have assumed that these parameters are equal (cf. Assumption (3.38)), i.e.
one-sided Robin parameters: α12 = α21 = α. However, in practice, this assumption is
usually not required. We refer to [42, Chapter 3] for a detailed calculation of one-sided
and two-sided optimized Robin parameters.

To study the performance of different types of optimized parameters with FECC dis-
cretization, we fix h = h2 and consider the mesh of type 1. In Figure 8, we plot the
L2-error, computed by using one-sided and two-sided optimized Robin parameters, versus
the number of iterations using Jacobi (on the left) and GMRES (on the right), for different
diffusion ratios, r ∈ {10, 100, 1000}. We observe that all algorithms work well. Concern-
ing the one-sided Robin case, the convergence deteriorates as the diffusion ratio increases,
especially when solving by Jacobi method; in addition, we see that GMRES speeds up sig-
nificantly the convergence - the number of GMRES iterations is much smaller than that of
Jacobi iterations, especially for large diffusion ratios. On the contrary, when the two-sided
optimized Robin parameters are used, the larger the diffusion ratio the faster the conver-
gence, and GMRES also improves the convergence speed compared to Jacobi iteration but
not as profoundly as in the case of one-sided Robin parameters. The results confirm that
the use of two-sided optimized Robin parameters is more efficient than one-sided Robin pa-
rameters, especially for large discontinuities in the coefficients. Note that these results are
obtained with optimized parameters which are calculated by numerically minimizing the
continuous convergence factor [26, 42]. To verify the performance of the optimized Robin
parameters in the framework of the FECC scheme, we vary α for the one-sided Robin, or
vary α12 and α21 for the two-sided Robin, and compute the number of Jacobi iterations
required to achieve a relative residual 10−6. The results are shown in Figure 8 where we see
that both one-sided and two-sided optimized Robin parameters (the red stars) are located
close to those giving the smallest number of iterations for the same tolerance.

Next, we study the convergence of the iterative algorithms with respect to different
mesh sizes. In the following, we shall only use two-sided optimized Robin parameters to
efficiently deal with discontinuous coefficients. Tables 2 and 3 show the numbers of Jacobi
and GMRES iterations required to reach an error reduction 10−6 for mesh type 1 and
type 2 respectively. The results are for different diffusion ratios and different mesh sizes.
We observe again that the larger the diffusion ratio the faster the convergence, and for
large diffusion ratios, the convergence is almost independent of the mesh size. This is
obtained because of the optimized parameters which play a role as a preconditioner when
solving iteratively the interface problem. Note that the results agree with the theoretical
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Figure 7: Convergence curves obtained by one-sided and two-sided optimized parameters for different
diffusion ratios: Jacobi iterations (left) and GMRES iterations (right).
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Figure 8: Level curves for the number of Jacobi iterations required to reach a relative residual of 10−6 for
various values of one-sided (left) and two-sided (right) Robin parameters. The red star shows the

optimized parameters.
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asymptotic performance of the optimized Robin transmission conditions proved in [26].
In particular, the convergence factor of Jacobi iterations behaves like 1 − O(h1/2) and
1 − O(h1/4) for the one-sided and two-sided parameters, respectively, while for GMRES
solver, the asymptotic performance is improved by a square root. Additionally, we see that
if the number of Jacobi iterations is large, then GMRES would improve significantly the
convergence; however, if Jacobi converges fast, then GMRES would converge at the same
speed. The results for mesh type 1 and mesh type 2 are quite similar.

Diffusion h1 h2 h3 h4

ratio r Jacobi GMRES Jacobi GMRES Jacobi GMRES Jacobi GMRES

10 15 12 19 13 25 15 35 18

100 8 7 9 8 10 9 11 10

1000 5 6 5 6 7 6 7 8

Table 2: Number of Jacobi iterations and GMRES iterations required to reach an error reduction 10−6 for
mesh type 1 (Test case 1). The results are obtained using two-sided optimized Robin parameters.

Diffusion h1 h2 h3 h4

ratio r Jacobi GMRES Jacobi GMRES Jacobi GMRES Jacobi GMRES

10 16 12 21 14 27 16 41 20

100 8 8 9 9 11 10 13 11

1000 6 6 6 6 7 7 8 8

Table 3: Number of Jacobi iterations and GMRES iterations required to reach an error reduction 10−6 for
mesh type 2 (Test case 1). The results are obtained using two-sided optimized Robin parameters.

4.2. Test case 2: with an anisotropic, discontinuous diffusion tensor

We consider the diffusion problem with an exact solution given by

uexact =

{
cos(πx) sin(πy) if x ≤ 0.5,

10−2 cos(πx) sin(πy) if x > 0.5,
, with Λ =


III if x ≤ 0.5,[

102 0
0 0.01

]
if x > 0.5.

For this case, we solve the interface problem iteratively with a zero initial guess, and stop
the iteration when the relative residual is smaller than 10−6. Then we compute the relative
errors between the “converged” multidomain solution and the exact solution in L2-norm on
the primal mesh. Again, two-sided optimized Robin parameters are considered. We observe
that even for anisotropic, discontinuous coefficients, the proposed domain decomposition-
based FECC method with optimized Robin transmission conditions is very efficient and
requires only a few number of Jacobi/GMRES iterations for convergence no matter how
small the mesh size is. The “converged” multidomain solution is second-order accurate as
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expected. Figure 9 shows that the optimized Robin parameters perform very well either
with zero or random initial guesses (with a fixed mesh size h = h2). In addition, we compute
numerically the total fluxes across the interface edges of the “converged” multidomain
solution and obtain 8.515E-7, which is smaller than the tolerance. This confirms that the
local flux continuity property of the FECC method is preserved with Robin transmission
conditions derived in Section 3.2.

h

Mesh type 1 Mesh type 2

Jacobi GMRES
L2 error [CR]

Jacobi GMRES
L2 error [CR]

iterations iterations iterations iterations

h1 9 5 4.490E-2 9 6 5.007E-3

h2 11 5 1.163E-2 [1.95] 11 7 1.291E-3 [1.96]

h3 11 6 3.007E-3 [1.95] 11 7 3.324E-4 [1.96]

h4 13 7 7.691E-4 [1.97] 13 7 8.477E-5 [1.97]

h5 15 7 1.948E-4 [1.98] 13 7 2.148E-5 [1.98]

Table 4: Number of Jacobi and GMRES iterations required to reach a relative residual of 10−6,
corresponding L2 errors and convergence rates (Test case 2).
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Figure 9: Level curves for the number of Jacobi iterations required to reach a relative residual of 10−6 for
various values of two-sided Robin parameters with zero (left) and random (right) initial guesses. The red

star shows the optimized parameters.

5. Conclusions

We have formulated a nonoverlapping domain decomposition method with Robin-type
transmission conditions for heterogeneous, anisotropic diffusion problems discretized by the
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FECC method. The new transmission conditions consist of both weak and strong forms of
the Robin terms because of the construction of the discrete gradient operator involved in the
FECC method. A discrete interface problem associated with such transmission conditions
is derived. Solving the interface problem iteratively by Jacobi method results in the so-
called Robin-to-Robin iterative algorithm which is proved to be convergent for the case of
multiple strip-shaped subdomains. Numerical results for 2D problems in which optimized
Robin parameters are used and the interface problem is solved by either Jacobi or GMRES
methods are presented. We have analyzed numerically the performance of the proposed
method for both isotropic and anisotropic diffusion tensors with large discontinuities in
the coefficients. We have observed that the two-sided optimized Robin parameters handle
well the heterogeneity and anisotropy, and only a few number of iterations is required to
achieve desired accuracy. Even though the optimized parameters are derived based on
the continuous convergence factor, they still work well for the mixed Robin transmission
conditions in the framework of FECC scheme. They play the role as a preconditioner for
the interface problem, which helps the convergence of the iterations almost independent of
the mesh size, especially for large jumps in the coefficients. Work underway addresses the
multiple subdomain case with cross points as well as three dimensional diffusion problems
with general meshes.
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