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Abstract
In this paper, we study the option pricing problem for the conditional Asian option that
appears as a recentmarket product, offering a cheaper and new alternative to the regular Asian
option. We develop the new characteristics of short-maturity asymptotic for the prices of the
conditional Asian option provided that the underlying asset follows a local volatility model.
The asymptotics for out-of-the-money and at-the-money using fixed strike conditional Asian
options are presented, respectively, which provide the linear approximation description of
call/put option price. Moreover, the approximating solution for the corresponding variational
problem under the well-known Black–Scholes model is also given. The theoretical results
derived in the paper are practically relevant and numerical experiments are shown to validate
the theoretical outcomes of the paper.
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1 Introduction

An Asian option is a particular type of option contract, for which the payoff is determined by
the average of underlying price over some preset period of time. Different from European or
American options, Asian option not only involves its relative cost but also reduces the risk
of market manipulation of the underlying instrument at maturity due to its averaging feature.

For the short maturity European option, due to its practical importance, there have been
extensive studies on asymptotics of the option prices as well as the resultant volatility in the
literature; see, e.g., [8,12,19] for the local volatility models and [6,16,24] for the stochastic
volatility models. Unlike the European option, the Asian option is typically less analytically
tractable, including its corresponding Black–Scholes model. This explains why in the finan-
cial industry, Asian option is often quoted by price rather than by implied volatility. Recently,
there are some study appeared to address the short maturity (regular) Asian option problem
in literature in order to effectively capture the characteristics of the option price [25,27,29].

To further reduce the volatility in the payoffs, in recent years, a financial company, Banque
Nationale de Paris (BNP) and Paribas introduced a variation of regular Asian option, called
conditional Asian option, under which the average of asset prices is only based on prices that
are above certain threshold [14]. Mathematically, the payoff for call option and put option
from the continuous conditional Asian option can be described by the following quantities
respectively (∫ T

0 St1{St>b}dt∫ T
0 1{St>b}dt

− K

)+
and

(
K −

∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

)+
, (1)

where (x)+ = max{x, 0}, K is the strike, the threshold level is denoted by a given constant
b > 0, and 1A represents an indicator function which equals 1 if A is true and 0 otherwise.

In this paper, we assume that the stock price follows a local volatility model dynamics:

dSt = (r − q)Stdt + σ(St )StdWt , S0 > 0, (2)

where Wt is a standard Brownian motion, r ≥ 0 stands for the risk-free rate, q ≥ 0 is the
continuous dividend yield, σ(·) describes the local volatility, and the log-stock price process
Xt = log St is characterized by

dXt =
(
r − q − 1

2
σ 2
(
eXt
))

dt + σ
(
eXt
)
dWt .

Technically, we assume that the local volatility function σ(·) satisfies
0 < σ ≤ σ(·) ≤ σ̄ < ∞, (3)

|σ(ex ) − σ(ey)| ≤ M |x − y|α, (4)

with some fixed M, α > 0 for any x, y, and 0 < σ < σ̄ < ∞ are some given constants.
The price of the conditional Asian call and put options with maturity T and strike K are

given, respectively, by

C(T ) := e−rT
E

⎡
⎣(∫ T0 St1{St>b}dt∫ T

0 1{St>b}dt
− K

)+⎤⎦ , (5)

P(T ) := e−rT
E

⎡
⎣
(
K −

∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

)+⎤⎦ , (6)
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where C(T ) and P(T ) indicate the dependence on the maturity T .
For regular Asian option, there are some studies appeared in the mathematical finance

community, and two main approaches exist in current literature for determining the call/put
option price. The first one is to use the relationship between the distributional property of
the time-integral resulted from the geometric Brownian motion and Bessel processes, and
it is consistent with the pricing under the corresponding Black–Scholes model (see, e.g.,
[7,23,26]). The exact closed-form solutions usually are not available. Geman and Yor [20]
first introduce the Laplace transform of the corresponding arithmetic Asian option price
in terms of Kummer confluent hypergeometric function. Along with the approach based
on Laplace transform, some recent development is to characterize the Laplace transforms
of Asian option prices as solutions to a related functional equation, see [4,10], in order to
gain computational improvement. Other effort is to utilize the Markov chain approximation
in pricing and hedging path-dependent options, see [5,9,21,22] etc., aiming at a further
improvement of the estimation. The second approach is to use PDE modelling, e.g., see
[33,34]. The resultant PDE either can be solved numerically or can be used to derive analytic
approximation by using asymptotic expansion methods and the implicit numerical solutions
are known to be unconditionally stable, which requires quite extensive effort. There are many
representative works including but not limited to [2,17,35,36]. Particularly the last paper by
Vecer gives the Black–Scholes representation for all price evolution models.

For the more complicated conditional Asian option, there is little study available except
for a recent work by Feng and Volkmer [14], in which they propose the analytic approach
to compute the price and delta of conditional Asian options by using inverse Laplace trans-
form for the corresponding Black–Scholes model. However, practitioners have to price these
products by numerical simulations under the proposed framework. It is expected that the
corresponding numerical approach will be challenging, since the inherent problem appears
to be harder than the one in regular Asian option. Different from their framework, in this
paper, we develop a new approach by using large deviation theory to characterize the short
maturity estimation for the conditional Asian option, which provides an alternative approach
to the study of conditional Asian option and offers some new mathematical insight for this
problem, which to the best of our knowledge, it is not available in current literature.

Large deviation theory (see Sect. 3.1) is a quite effective tool for asymptotic analysis and
has been widely used in various applications. It provides a natural framework for estimation,
such as for approximating the exponentially small probabilities associated with the behaviour
of a diffusion process over a short period of time, as shown in this paper. In the study
of financial mathematics, it is often used in the computation of small-maturity, out-of-the-
money (OTM) call/put option prices or the probability of reaching a default level in a short
period of time. In addition, it also has been applied to the study of local and stochastic
volatility models [1,3]. Recently, Pirjol and Zhu [27] study the short maturity (regular) Asian
option problem by using large deviation approach. The advantage for using large deviation
approach results from the fact that it allows us to use the contraction technique for small
time arithmetic average of the diffusion process, and hence one can rigorously obtain the
asymptotic behavior for the out-of-the-money regular Asian call/put options. The asymptotic
exponent can be given as the rate function (see Sect. 3.1) from the large deviation principle,
which itself can be formulated as a variational problem but appears to be not straightforward.
Recently, Pirjol and Zhu [28] derive the asymptotics for the price of regular Asian options
with discrete-time averaging for its Black–Scholes model, with both fixed and floating strike.
Most recently, researches appeared in [25,29] study regular Asian option for the CEV model
as well as forward start regular Asian option in local volatility model respectively.
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When S0 < K , the call option is out-of-the-money and C(T ) → 0 as the maturity time T
is becoming shorter andwhen S0 > K , the put option is said to be out-of-the-money and P(T )

becomes small when the time variable T is small. When S0 = K , i.e., at-the-money (ATM),
bothC(T ) and P(T ) tend to be small as T → 0. In practice, it is desirable to estimate (5) and
(6) in order to determine the call/put option price for a givenmaturity T . T usually is typically
e.g. 3 months, or 6 months, or a year, which is much shorter comparing to the underlying
economic cycle. For Black–Scholes models it remains to be true for the corresponding σ 2T .
In the context of local volatility models, the rate function involved in the large deviation
estimates is given in terms of a distance function, which in general cannot be calculated by
a closed form, hence a suitable approximation is practically desirable [13,15]. Due to the
complexity of (5) and (6), it would be very difficult, if it is not impossible, to compute C(T )

and P(T ) directly. For the short maturity case, the study of first-order approximation ofC(T )

and P(T ) becomes necessary, and such a study will not only provide a meaningful approach
but also a practical first-order estimation of the call/put option price.

In this paper, we focus on the option pricing problem for conditional Asian option by
applying the large deviation theory, which appears to be a new development. We first use
large deviation technique to derive the short maturity asymptotics for the conditional Asian
call/put option price, provided that the underlying asset follows a local volatility model. In
particular, we present asymptotics for the cases of out-of-the-money by considering the fixed
strike conditional Asian options. It is worthy of mentioning here that the proposed approach
given in [27] for regular Asian option is not directly applicable here in terms of resolving the
corresponding variational problem due to the complexity of conditional Asian option. Thus
we use different analytic approach to deal with the Black–Scholes model. In addition, the
asymptotics for ATM short maturity conditional Asian option are also presented.
The main contributions of this paper can be illustrated as follows:

1. We establish the short maturity asymptotics for conditional Asian call/put option price
(Theorem 1), which does not exist in current literature. The key is to derive a corre-
sponding large deviation principle for the ratio:

∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

by the contraction principle (see Sect. 3.1) as well as mollifier function approximation.
2. We extend the Black–Scholes model for conditional Asian options studied in [14] to

the local volatility model.
3. We generalize the regular Asian option case appeared in [27] to the conditional Asian

option case under thewell-knownBlack–Scholesmodel by a new approach, and provide
the explicit expression of the corresponding rate function that serves as a dominating
term for the short maturity case.

The paper is organized as follows. In Sect. 2, we present asymptotic behaviors for out-of-
the-money and ATM conditional Asian options in a local volatility model for short maturity.
Some numerical experiments are conducted to show the consistency with the obtained the-
oretical outcomes. The complete solution of the corresponding variation problem for the
Black–Scholes model is given. All detailed proofs of the main results are given in Sect. 3.
The paper ends with concluding remarks in Sect. 4.
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2 Statement of main results

Recall that the stock price follows a local volatility model:

dSt = (r − q)Stdt + σ(St )StdWt , S0 > 0, (7)

where Wt is a standard Brownian motion, r ≥ 0 is the risk-free rate, q ≥ 0 is the continuous
dividend yield, and σ(·) is the local volatility satisfying (3) and (4). We are interested in the
short maturity case, i.e., the characteristics of C(T ) and P(T ) when T is small.

2.1 Out-of-the-money conditional Asian options

Following the standard setting, see, e.g. [27], we denote the expectation of the averaged asset
price in the risk-neutral measure as

A(T ) := E

[∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

]
. (8)

When K > A(T ), the call Asian option is out-of-the-money and C(T ) → 0 as T → 0.
When A(T ) > K , the put conditional Asian option is out-of-the-money and P(T ) → 0 as
T → 0.

One can easily see that

E

[
min

0≤t≤T
St

]
≤ A(T ) = E

[∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

]
≤ E

[
max
0≤t≤T

St

]
,

thus as T → 0, A(T ) → S0. Therefore, for the small maturity regime, the conditional Asian
call option is out-of-the-money if and only if K > S0, etc. And for the rest of the paper, the
conditional Asian call option is said to be out-of-the-money (resp., in-the-money) if K > S0
(resp., K < S0), and the conditional Asian put option is said to be out-of-the-money (resp.,
in-the-money) if K < S0 (resp., K > S0), and it is referred to be ATM if K = S0.

2.2 Short maturity out-of-the-money conditional Asian options

We will use large deviations theory to compute the leading-order approximation at T → 0
for the price of the out-of-the-money conditional Asian options.

Theorem 1 Assume that (3) and (4) both hold.

(i) For the out-of-the-money case of conditional Asian call options, i.e., K > S0, we have

C(T ) = e
− 1

T inf
x≥K

Ib(x,S0)+o( 1
T )

as T → 0. (9)

(ii) For the out-of-the-money case of conditional Asian put options, i.e., K < S0, we have

P(T ) = e
− 1

T inf
x≤K

Ib(x,S0)+o( 1
T )

as T → 0. (10)
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Here o(·) represents infinitesimal of the higher order of its variable, and for any S0, K > 0,
the function Ib(·, ·) is defined as

Ib(K , S0) := inf∫ 1
0 eg(t)1 {g(t)>log b}dt∫ 1

0 1 {g(t)>log b}dt
=K

g(0)=log S0,g(t)∈AC[0,1]

1

2

∫ 1

0

(
g′(t)

σ
(
eg(t)

)
)2

dt, (11)

where AC[0, 1] is the space of absolutely continuous functions defined on [0, 1].

Remark 1 When σ(·) is a constant, i.e., σ(·) = σ , then we have inf
x≥K

Ib(x, S0) = Ib(K , S0)

because of the fact that Ib(K , S0) is increasing in K for K > S0 and decreasing in K for
K < S0; see Proposition 2 for more details.

2.3 At-the-money conditional Asian options

When K = S0, the conditional Asian call and put options are ATM. We have the following
result.

Theorem 2 Assume that (3) and (4) both hold.

(i) When K = S0 > b, as T → 0, the conditional Asian call option is characterized by

C(T ) = σ(S0)S0

√
T√
6π

+ O(T ). (12)

(ii) When K = S0 < b, as T → 0, the conditional Asian put option is characterized by

P(T ) = σ(S0)S0

√
T√
6π

+ O(T ). (13)

Here O(·) represents infinitesimal of the same order of its variable.

Remark 2 Comparing to Theorem 2 with Theorem 1, one can see that the out-of-the-money
conditional Asian option with short maturity is governed by the rare events (due to large
deviations), while the ATM conditional Asian option with short maturity is fluctuated by
typical events (Gaussian fluctuations), which is consistent with the results appeared in [27]
for the regular Asian option case. It is not clear to us, at this point, if K = S0 ≤ b in case (i)
[or K = S0 ≥ b in case (ii)] of Theorem 2 belongs to the ATM regime.

2.4 Variational problem for Black–Scholes model

We present in this section the solution of the variational problem for the short-time asymp-
totics of the out-of-the-money conditional Asian options given by Theorem 1. In the
Black–Scholes model the volatility is constant σ(·) = σ . The expression for the rate function
Ib(K , S0) is obtained explicitly.
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Proposition 1 For Black–Scholes model, the rate function Ib(K , S0) appearing in Theorem 1
is given by

Ib(K , S0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
log b

S0
+
√

G+( f1)F+( f1)
)2

2σ 2 , S0 < b < K and S0 < K < b.(
log b

S0
−
√

G+( f1)F+( f1)
)2

2σ 2 , b < S0 < K .(
log b

S0
−
√

G−(g1)F−(g1)
)2

2σ 2 , K < b < S0 and b < K < S0.(
log b

S0
+
√

G−(g1)F−(g1)
)2

2σ 2 , K < S0 < b.

(14)

The details of above expression are further given below:

(i) For S0 < b < K. The value f1(≥ log K
S0

) is the solution of the following algebraic
equation

e f1 − K

S0
= G+( f1)/F

+( f1) (15)

where

G+( f1) =
∫ f1

log b
S0

√
e f1 − eydy, F+( f1) =

∫ f1

log b
S0

1√
e f1 − ey

dy.

(ii) For K < b < S0. The value g1(≤ log K
S0

) is the solution of the following algebraic
equation

K

S0
− eg1 = G−(g1)/F

−(g1) (16)

where

G−(g1) =
∫ log b

S0

g1

√
ey − eg1dy, F−(g1) =

∫ log b
S0

g1

1√
ey − eg1

dy.

(iii) For S0 < K < b. The value f1(≥ log b
S0

) is the solution of (15).

(iv) For K < S0 < b. The value g1(≤ log K
S0

) is the solution of (16).

(v) For b < S0 < K. The value f1(≥ log K
S0

) is the solution of (15).

(vi) For b < K < S0. The value g1(≤ log b
S0

) is the solution of (16).

Here a further study reveals more detailed properties of the rate function Ib(K , S0).
In particular, we will show that for Black–Scholes model, the rate function Ib(K , S0) is
continuous in K and it is increasing in K for K > S0 and decreasing in K for K < S0, which
is based on an alternative representation of the rate function. Also, it is not difficult to see
from the proof (given in next section) that Proposition 1 remains to be true either b = S0 or
b = K but not these three variables are identical.
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Proposition 2 The rate function Ib(K , S0) can be expressed as

Ib(K , S0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝log b

S0
+

√√√√√ inf
ϕ<K/S0

(∫ b/S0
ϕ

√
z−ϕ
z dz

)2
K
S0

−ϕ

⎞
⎟⎟⎠

2

2σ 2 , K < S0 < b.⎛
⎜⎜⎝log b

S0
−

√√√√√ inf
ϕ<b/S0

(∫ b/S0
ϕ

√
z−ϕ
z dz

)2
K
S0

−ϕ

⎞
⎟⎟⎠

2

2σ 2 , b < K < S0.⎛
⎜⎜⎝log b

S0
−

√√√√√ inf
ϕ<K/S0

(∫ b/S0
ϕ

√
z−ϕ
z dz

)2
K
S0

−ϕ

⎞
⎟⎟⎠

2

2σ 2 , K < b < S0.⎛
⎜⎜⎝log b

S0
+

√√√√√ inf
ϕ>K/S0

(∫ ϕ
b/S0

√
ϕ−z
z dz

)2
ϕ− K

S0

⎞
⎟⎟⎠

2

2σ 2 , S0 < b < K .⎛
⎜⎜⎝log b

S0
+

√√√√√ inf
ϕ>b/S0

(∫ ϕ
b/S0

√
ϕ−z
z dz

)2
ϕ− K

S0

⎞
⎟⎟⎠

2

2σ 2 , S0 < K < b.⎛
⎜⎜⎝log b

S0
−

√√√√√ inf
ϕ>K/S0

(∫ ϕ
b/S0

√
ϕ−z
z dz

)2
ϕ− K

S0

⎞
⎟⎟⎠

2

2σ 2 , b < S0 < K .

(17)

Remark 3 In practice, the trading volume of out-of-the-money usually is much higher than
the one of in-the-money. Hence this renders us to focus on out-of-the-money and at-the-
money cases. It is not clear at this point if the asymptotics for short maturity in-the-money
conditional Asian call/put options can be obtained under the Black–Scholes model. Again,
Proposition 2 holds for either b = S0 or b = K but not b = S0 = K .

2.5 Implied volatility and numerical tests

The Black–Scholes implied volatility is defined as the σimplied that uniquely solves

C(K , S0, T ) = CBS(K , S0, σimplied , T ), (18)

where C(K , S0, T ) = e−rT
E

[(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

− K

)+]
. Equivalently, it is the σimplied that

uniquely solves
P(K , S0, T ) = PBS(K , S0, σimplied , T ), (19)

Here we write C(K , S0, T ) and P(K , S0, T ) instead of C(T ) and P(T ) to highlight the
dependence on K and S0.

One can define an equivalent Black–Scholes volatiality of a conditional Asian option as
that value of the volatility for which the Black–Scholes price of a European(Vanilla) option
with maturity T and underlying value A(T ) reproduces the price of the conditional Asian
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option with the same maturity T . We will denote this volatility as ΣLN (K , S0, T ). And we
know that

CBS(K , S0, σ, T ) := B0(F0Φ(d+) − KΦ(d−)), d± = −k

σ
√
T

± σ
√
T

2
,

and

PBS(K , S0, σ, T ) := B0(KΦ(−d−) − F0Φ(−d+)).

and Φ is the normal cumulative distribution function.
We have thus

C(K , S0, T ) = CBS(K , S0,ΣLN (K , S0, T ), T ) = e−rT [A(T )Φ(d+) − KΦ(d−)
]
,

P(K , S0, T ) = PBS(K , S0,ΣLN (K , S0, T ), T ) = e−rT [KΦ(−d−) − A(T )Φ(−d+)
]
,

(20)

where A(T ) is given in (8).
The short maturity asymptotics for out-of-the-money conditional Asian options given in

Theorem 1 gives the following short-time asymptotics for the equivalent volatilities of the
conditional Asian options in the local volatility model (2). For simplicity, we prove only the
r = q = 0 case. We expect the same result holds for general r and q .

Proposition 3 Assume r = q = 0 and (3) and (4) both hold. The short-time limit T → 0
of the Black–Scholes equivalent volatility of an out-of-the money conditional Asian option is
given by

lim
T→0

Σ2
LN (K , S0, T ) = 1

2

log2
(

K
S0

)
Ib(K , S0)

(21)

where Ib(K , S0) is given in Proposition 2.

Proof The proof is similar with Proposition 17 in [27], so we omit here. 	


2.6 Numerical experiments

Next we present some numerical tests for the short-maturity asymptotic results of conditional
Asian options obtained in this paper. Using (17)–(21) one can obtain the predicted value of
out-of-money call conditional Asian option price directly. We consider next a few numerical
tests of the asymptotic pricing formulas, on the example of the conditional Asian options in
the Black–Scholes model. One first test assumes the model parameters

r = q = 0, S0 = 100, σ = 30%. (22)

In Table 1 we show the prices of out-of-money call conditional Asian options with matu-
rities T = 0.1, 0.25, 0.5 years and condition b = 120, comparing with the results of a Monte
Carlo calculation versus the asymptotic resultsCas given in (20). TheMonte Carlo simulation
was performed with N = 105 paths, and the time line was discretized with n = 800 time
steps.

In Table 2 we show the prices of out-of-money call conditional Asian options with matu-
rities T = 0.1, 0.25, 0.5 years and condition b = 50, comparing with the results of a Monte
Carlo calculation versus the asymptotic resultsCas given in (20). TheMonte Carlo simulation
was performed with N = 105 paths, and the time line was discretized with n = 800 time
steps.
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Table 1 When K < S0 < b

K T = 0.1 T = 0.25 T = 0.5

MC (n = 800) Cas (K) MC (n = 800) Cas (K) MC (n = 800) Cas (K)

75 26.0482 26.0482 29.7356 29.7356 34.0873 34.0873

80 21.0474 21.0474 24.6857 24.6857 29.0158 29.0158

85 16.0444 16.0444 19.7675 19.7675 24.0777 24.0777

90 11.0380 11.0380 14.7427 14.7427 19.7140 19.1740

95 6.0479 6.0479 9.7380 9.7380 14.0966 14.0966

Numerical results for call conditional Asian options with maturity T = 0.1, 0.25, 0.5 and condition b = 120
and parameters (22) obtain byMonte Carlo simulation in Black–Scholes model, compared with the asymptotic
results Cas (K) given by (20)

Table 2 When b < K < S0

K T = 0.1 T = 0.25 T = 0.5

MC (n = 800) Cas (K) MC (n = 800) Cas (K) MC (n = 800) Cas (K)

55 44.9880 44.9880 44.9913 44.9913 45.0523 45.0542

60 39.9923 39.9923 39.9954 39.9954 40.0218 40.0235

65 34.9744 34.9744 35.0046 35.0046 35.0312 35.0327

70 30.0057 30.0057 29.9732 29.9732 30.0149 30.0149

75 25.0072 25.0072 25.0029 25.0024 25.0528 25.0539

Numerical results for call conditional Asian options with maturity T = 0.1, 0.25, 0.5 and condition b = 50
and parameters (22) obtain byMonte Carlo simulation in Black–Scholes model, compared with the asymptotic
results Cas (K) given by (20)

Table 3 When K < b < S0

K T = 0.1 T = 0.25 T = 0.5

MC (n = 800) Cas (K) MC (n = 800) Cas (K) MC (n = 800) Cas (K)

60 40.5456 40.5456 41.8220 41.8220 43.5552 43.5552

65 35.5251 35.5251 36.8597 36.8597 38.5359 38.5365

70 30.5653 30.5653 31.8197 31.8189 33.5222 33.5295

75 25.5524 25.5524 26.8048 26.8079 28.5319 28.6435

80 20.5279 20.5285 21.8170 21.8584 23.5878 23.8386

Numerical results for call conditionalAsian optionswithmaturity T = 0.1, 0.25, 0.5 and condition b = 90 and
parameters (22) obtain by Monte Carlo simulation in Black–Scholes model, compared against the asymptotic
results Cas (K) given by (20)

In Table 3 we show the prices of out-of-money call conditional Asian options with matu-
rities T = 0.1, 0.25, 0.5 years and condition b = 90, comparing the results of a Monte Carlo
calculation against the asymptotic resultsCas given in (20). TheMonte Carlo simulation was
performed with N = 105 paths, and the time line was discretized with n = 800 time steps.

Remark 4 The numerical tests presented show that the short maturity asymptotic results of
this paper appear to provide a quite accurate approximation for conditional Asian options
prices with maturities in those cases.
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3 Proofs of themain results

3.1 Preliminary

Before we proceed, recall that a sequence (Pε)ε∈R+ of probability measures on a topological
space X satisfies the large deviation principle (LDP in short) with rate function I : X → R

if I is non-negative, lower semi-continuous and for any measurable set A, we have

lim inf
ε→0

ε log Pε(A) ≥ − inf
x∈A◦ I (x),

lim sup
ε→0

ε log Pε(A) ≤ − inf
x∈ Ā

I (x). (23)

Here, A◦ is the interior of A and Ā is its closure. More details about large deviations and its
applications can be found in classical literature, e.g., [11,31,32].

The contraction principle plays a key role in our approach. The existence and uniqueness
of strong solutions for local volatility model is also important in our estimate. For the purpose
of completeness, we present these results below.

Theorem 3 (Contraction principle in [11]). If Pε satisfies a large deviation principle on X
with rate function I (x) and F : X �→ Y is a continuous map, then the probability measures
Qε := PεF−1 satisfies a large deviation principle on Y with rate function

J (y) = inf
x :F(x)=y

I (x). (24)

Remark 5 Compared to the standard comparing method, there is an extension of contraction
principle (see Prop 4.1 in Chapter 4 in [37]), F : X �→ Y being a continuous map can be
extended to being an a.e. continuous map.

Theorem 4 (Existence and uniqueness) Assume that the function σ(s)s and σ(s) are uni-
formly Lipschitz, i.e., there exist α, β > 0, such that for any x, y ≥ 0,

|σ(x)x − σ(y)y| ≤ α|x − y|, |σ(x) − σ(y)| ≤ β|x − y|. (25)

Then there exists a unique solution St of the SDE (2) under assumption (3). St has continuous
paths, moreover for any p ≥ 2,

E

[
sup

0≤t≤T
S p
t

]
≤ C(1 + S p

0 ) (26)

where C is a constant depending only on p and some positive power of T .

Proof According toTheorem1.1 ofChapter 5 [18],we only need to verify that our assumption
meets the requirement of this theorem. First it is not difficult to see that

St = S0 +
∫ t

0
(r − q)Sudu +

∫ t

0
σ(Su)SudWu . (27)

From (27) one can obtain the following estimate:

sup
0≤t≤T

S p
t ≤ 2p−1

[(
S0 +

∫ T

0
|r − q|Sudu

)p

+ sup
0≤t≤T

∣∣∣∣
∫ T

0
σ SudWu

∣∣∣∣
p
]

≤ 22(p−1)S p
0 + 22(p−1)

[∫ T

0
|r − q|Sudu

]p
+ 2p−1 sup

0≤t≤T

∣∣∣∣
∫ t

0
σ(Su)SudWu

∣∣∣∣
p

.

(28)
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Under assumption (3), by Burkholder–Davis–Gundy inequality and Jensen’s inequality, for
any p ≥ 2, we have

E

{
sup

0≤t≤T

∣∣∣∣
∫ t

0
σ(Su)SudWu

∣∣∣∣
p
}

≤ CpE

∣∣∣∣
∫ T

0
σ 2(Su)S

2
udu

∣∣∣∣
p
2

≤ C̄ p

∫ T

0
E[S p

u ]du.

With the same approach in Theorem 1.1 of Ch5 in [18], we can get the following E[S p
t ] ≤

C(1 + S p
0 )eCt , where C is constant depending on p. By taking the expectation on both side

of (28), we then have E
[

sup
0≤t≤T

S p
t

]
≤ C(1+ S p

0 ), where C depends on p and some positive

power of T . 	


3.2 Proofs of themain results

Proof of Theorem 1 For the purpose of clarity, the proof will be shown by subsequent steps
below:

Step 1 (i) Let us first claim the following the relation between C(T ) and St as shown
below:

lim
T→0

T logC(T ) = lim
T→0

T logP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≥ K

)
. (29)

By Hölder inequality, for any 1
p + 1

s = 1, p, s > 1, we have

C(T ) ≤ e−rT
E

⎡
⎣
∣∣∣∣∣
∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

− K

∣∣∣∣∣1{ ∫ T0 St1 {St>b}dt∫ T
0 1 {St>b}dt

≥K

}
⎤
⎦

≤ e−rT
E

[∣∣∣∣∣
∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

− K

∣∣∣∣∣
p] 1

p

P

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≥ K

) 1
s

Assume that p ≥ 2. Note that for p ≥ 2, x �→ x p is a convex function for x ≥ 0, and by
Jensen’s inequality,

( x+y
2

)p ≤ x p+y p

2 for any x, y ≥ 0, we thus have

E

[∣∣∣∣∣
∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

− K

∣∣∣∣∣
p]

≤ E

[(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

+ K

)p]

≤ 2p−1

[
E

[(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

)p]
+ K p

]

≤ 2p−1
[
E

[
max
0≤t≤T

S p
t

]
+ K p

]
(by Theorem 4)

≤ 2p−1 [C(1 + S p
0 ) + K p] ,

which yields

lim sup
T→0

T logC(T ) ≤ lim sup
T→0

T

s
logP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≥ K

)
. (30)

Notice that above estimate holds for any 1 < s < 2, we have the upper bound.
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On the other hand, for any ε > 0,

C(T ) ≥ e−rT
E

⎡
⎣(∫ T0 St1{St>b}dt∫ T

0 1{St>b}dt
− K

)
1{ ∫ T

0 St1 {St>b}dt∫ T
0 1 {St>b}dt

≥K+ε

}
⎤
⎦ (31)

≥ e−rT εP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≥ K + ε

)
, (32)

which implies that

lim inf
T→0

T logC(T ) ≥ lim inf
T→0

T logP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≥ K + ε

)
. (33)

Since it holds for any ε > 0, we thus obtain the lower bound.
(ii) We conclude by proving the analogous relation to (29) for conditional Asian put

options, that is, for out-of-the-money put options, S0 > K , we will show that

lim
T→0

T log P(T ) = lim
T→0

T logP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≤ K

)
.

By Hölder inequality, for any 1
p + 1

s = 1, p, s > 1, we have

P(T ) ≤ e−rT
E

⎡
⎣(K −

∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

)+
1{ ∫ T

0 St1 {St>b}dt∫ T
0 1 {St>b}dt

≤K

}
⎤
⎦

≤ e−rT
E

⎡
⎣
⎛
⎝(K −

∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

)+⎞⎠
p⎤
⎦

1
p

P

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≤ K

) 1
s

≤ e−rT KP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≤ K

) 1
s

.

Thus, lim sup
T→0

T log P(T ) ≤ lim sup
T→0

T
s logP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≤ K
)
. Since it holds for any

s > 1, we proved the upper bound. For the lower bound, for any sufficiently small ε > 0,

P(T ) ≥ e−rT
E

⎡
⎣(K −

∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

)
1{ ∫ T

0 St1 {St>b}dt∫ T
0 1 {St>b}dt

+ε≤K

}
⎤
⎦

≥ e−rT εP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

+ ε ≤ K

)
,

which implies that lim inf
T→0

T log P(T ) ≥ lim sup
T→0

T logP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

+ ε ≤ K

)
. By let-

ting ε ↓ 0, we proved the lower bound.
Step 2 Next we compute the following limit:

lim
T→0

T logP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≥ K

)
.
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Let two mollifier functions h̄ε
b(x) and hε

b(x) such that they satisfy hε
b(Xt ) ≤ 1{Xt>log b} ≤

h̄ε
b(Xt ), and lim

ε→0
h̄ε
b(x) = lim

ε→0
hε
b(x) = 1{x>log b}, respectively, then we have

P

(∫ 1
0 eXtT hε

b(XtT )dt∫ 1
0 h̄ε

b(XtT )dt
≥ K

)
= P

(∫ T
0 eXt hε

b(Xt )dt∫ T
0 h̄ε

b(Xt )dt
≥ K

)

≤ P

(∫ T
0 eXt 1{Xt>log b}dt∫ T
0 1{Xt>log b}dt

≥ K

)
≤ P

(∫ T
0 eXt h̄ε

b(Xt )dt∫ T
0 hε

b(Xt )dt
≥ K

)

= P

(∫ 1
0 eXtT h̄ε

b(XtT )dt∫ 1
0 hε

b(XtT )dt
≥ K

)

If St = eXt is governed by (2), then according to the large deviations theory for small time
diffusion processes [30], with assumptions (3) and (4), P(X .T ∈ ·) satisfies a sample path
large deviation principle on L∞[0, 1] and the corresponding rate function is given by

I (g) = 1

2

∫ 1

0

(
g′(t)

σ
(
eg(t)

)
)2

dt . (34)

Notice that the map g �→
∫ 1
0 eg h̄ε

b(g)dt∫ 1
0 hε

b(g)dt
is a.e. continuous and g �→

∫ 1
0 eghε

b(g)dt∫ 1
0 h̄ε

b(g)dt
is continuous

from L∞[0, 1] to R+, hence, the extension of contraction principle (Theorem 3) implies

that both P

(∫ 1
0 eXtT h̄ε

b(XtT )dt∫ 1
0 hε

b(XtT )dt
∈ ·
)

and P

(∫ 1
0 eXtT hε

b(XtT )dt∫ 1
0 h̄ε

b(XtT )dt
∈ ·
)

satisfy the large deviation

principles with the rate functions, respectively,

Īε
b (x, S0) := inf∫ 1

0 eg h̄ε
b(g)dt∫ 1

0 hε
b(g)dt

=x

g(0)=log S0,g∈AC[0,1]

1

2

∫ 1

0

(
g′(t)

σ
(
eg(t)

)
)2

dt,

Iε
b(x, S0) := inf∫ 1

0 eghε
b(g)dt∫ 1

0 h̄ε
b(g)dt

=x

g(0)=log S0,g∈AC[0,1]

1

2

∫ 1

0

(
g′(t)

σ
(
eg(t)

)
)2

dt,

Hence, one can obtain

lim sup
T→0

T logP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≥ K

)
≤ − inf

x≥K
Īε
b (x, S0),

lim inf
T→0

T logP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≥ K

)
≥ − inf

x≥K
Iε
b(x, S0).

Thus as ε → 0, for out-of-the money call and put options, i.e., S0 < K , we have

lim
T→0

T logP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≥ K

)
= − inf

x≥K
Ib(x, S0), (35)

and

lim
T→0

T logP

(∫ T
0 St1{St>b}dt∫ T
0 1{St>b}dt

≤ K

)
= − inf

x≤K
Ib(x, S0), (36)
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where

Ib(x, S0) = inf∫ 1
0 eg(t)1 {g(t)>log b}dt∫ 1

0 1 {g(t)>log b}dt
=x

g(0)=log S0,g∈AC[0,1]

1

2

∫ 1

0

(
g′(t)

σ
(
eg(t)

)
)2

dt, (37)

which completes the proof. 	


Proof of Theorem 2 (i) For the ATM call option, namely, K = S0, we have

C(T ) = e−rT
E

⎡
⎣(∫ T0 e(r−q)t Yt1{Yt>e−(r−q)t b}dt∫ T

0 1{Yt>e−(r−q)t b}dt
− S0

)+⎤⎦ (38)

where Yt := St
e(r−q)t is a martingale and satisfies the the following SDE

dYt = σ(Yte
(r−q)t )YtdWt , Y0 = S0.

Step 1 First, let at = e−(r−q)t b, we will show that as T → 0, we have the following
estimate:∣∣∣∣∣∣E
⎡
⎣(∫ T0 e(r−q)t Yt1{Yt>at }dt∫ T

0 1{Yt>at }dt
− S0

)+⎤⎦− E

⎡
⎣(∫ T0 Yt1{Yt>at }dt∫ T

0 1{Yt>at }dt
− S0

)+⎤⎦
∣∣∣∣∣∣ = O(T ).

(39)
A direct estimation yields∣∣∣∣∣∣E

⎡
⎣
(∫ T

0 e(r−q)t Yt1{Yt>at }dt∫ T
0 1{Yt>at }dt

− S0

)+⎤⎦− E

⎡
⎣
(∫ T

0 Yt1{Yt>at }dt∫ T
0 1{Yt>at }dt

− S0

)+⎤⎦
∣∣∣∣∣∣

≤ E

⎡
⎣
∣∣∣∣∣∣
(∫ T

0 e(r−q)t Yt1{Yt>at }dt∫ T
0 1{Yt>at }dt

− S0

)+
−
(∫ T

0 Yt1{Yt>at }dt∫ T
0 1{Yt>at }dt

− S0

)+∣∣∣∣∣∣
⎤
⎦

≤ E

[∫ T
0 |e(r−q)t − 1|Yt1{Yt>at }dt∫ T

0 1{Yt>at }dt

]
≤ E

[
max
0≤t≤T

(
|e(r−q)t − 1|Yt

)]

≤ max
0≤t≤T

|e(r−q)t − 1| · E
[
max
0≤t≤T

Yt

]
(by Davis’ inequality)

≤ C |e(r−q)T − 1|E
[√〈Y , Y 〉(T )

]

= C |e(r−q)T − 1|E
⎡
⎣
√∫ T

0
σ 2(Yte(r−q)t )Y 2

t dt

⎤
⎦ (by Jensen’s inequality)

≤ C |e(r−q)T − 1|
√

σ̄ 2TE

[
max
0≤t≤T

Y 2
t

]
(by Theorem 4)

≤ C1|e(r−q)T − 1|σ̄√
T
√
1 + S20 ,

where C is constant and C1 depends only on a positive power of T . Hence, we proved
(39).
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Next, let us define Ŷt , which satisfies the SDE

dŶt = σ(S0)S0dWt , Ŷ0 = S0.

According to the proof of Theorem 6 in [27], one can have

E

[
max
0≤t≤T

|Yt − Ŷt |
]

= O(T ) as T → 0. (40)

Step 2 Next we show that when T → 0, we have∣∣∣∣∣∣E
⎡
⎣
(∫ T

0 Yt1{Yt>a}dt∫ T
0 1{Yt>a}dt

− S0

)+⎤⎦− E

⎡
⎣
⎛
⎝
∫ T
0 Ŷt1{Ŷt>a}dt∫ T
0 1{Ŷt>a}dt

− S0

⎞
⎠

+⎤
⎦
∣∣∣∣∣∣ = O(T ). (41)

Let us write μ(dt) = 1{Yt>a}dt∫ T
0 1{Yt>a}dt

and μ̂(dt) = 1{Ŷt>a}dt∫ T
0 1{Ŷt>a}dt

, one can easily see that

∣∣∣∣∣∣E
⎡
⎣(∫ T0 Yt1{Yt>a}dt∫ T

0 1{Yt>a}dt
− S0

)+⎤⎦− E

⎡
⎣
⎛
⎝
∫ T
0 Ŷt1{Ŷt>a}dt∫ T
0 1{Ŷt>a}dt

− S0

⎞
⎠

+⎤
⎦
∣∣∣∣∣∣

≤ E

[∣∣∣∣
∫ T

0
Ytμ(dt) −

∫ T

0
Ŷt μ̂(dt)

∣∣∣∣
]

≤ E

[∣∣∣∣
∫ T

0
Ytμ(dt) − 1

T

∫ T

0
Ytdt

∣∣∣∣
]

+ E

[∣∣∣∣ 1T
∫ T

0
Ytdt − 1

T

∫ T

0
Ŷt dt

∣∣∣∣
]

+ E

[∣∣∣∣ 1T
∫ T

0
Ŷt dt −

∫ T

0
Ŷt μ̂(dt)

∣∣∣∣
]

= (E1) + (E2) + (E3).

For (E1), since we know that when S0 > b,
1{Yt>a}∫ T

0 1{Yt>a}dt
− 1

T ∼ O(T ) a.e. as T → 0,

(E1) ≤ E

[∫ T

0
Yt

∣∣∣∣∣ 1{Yt>a}∫ T
0 1{Yt>a}dt

− 1

T

∣∣∣∣∣ dt
]

≤ E

[
max
0≤t≤T

Yt ·
∫ T

0

∣∣∣∣∣ 1{Yt>a}∫ T
0 1{Yt>a}dt

− 1

T

∣∣∣∣∣ dt
]

≤
√
E

[
max
0≤t≤T

Y 2
t

]
·

√√√√√E

⎡
⎣(∫ T

0

∣∣∣∣∣ 1{Yt>a}∫ T
0 1{Yt>a}dt

− 1

T

∣∣∣∣∣ dt
)2
⎤
⎦

≤ C
√
1 + S20 ·

√√√√√∫ T

0
E

⎡
⎣
(

1{Yt>a}∫ T
0 1{Yt>a}dt

− 1

T

)2
⎤
⎦ dt

√
T ∼ O(T ).

The second square root in the last line can be controled by dominated convergence
theory. The estimate of (E3) is the similar.
For (E2), it is not difficult to see that

(E2) ≤ E

[
max
0≤t≤T

|Yt − Ŷt |
]

.
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Hence, the estimate (41) holds.

Step 3 Finally, we need to compute E
[(∫ T

0 Ŷt1{Ŷt>a}dt∫ T
0 1{Ŷt>a}dt

− S0
)+]

. Note that Ŷt = S0 +
σ(S0)S0Wt . Thus one can write dt = e−(r−q)t b−S0

σ(S0)S0
, when S0 > b, we obtain

E

⎡
⎣
⎛
⎝
∫ T
0 Ŷt1{Ŷt>at }dt∫ T
0 1{Ŷt>at }dt

− S0

⎞
⎠

+⎤
⎦ = σ(S0)S0E

⎡
⎣
(∫ T

0 Wt1{Wt>dt }dt∫ T
0 1{Wt>dt }dt

)+⎤⎦

= σ(S0)S0
1

T
E

⎡
⎣
(∫ T

0
Wtdt

)+⎤⎦+ O(T ) (as T → 0)

= σ(S0)S0

√
T√
6π

+ O(T ) (42)

Therefore, from (39),(41), (42), we can conclude that C(T ) = σ(S0)S0
√
T√
6π

+ O(T ).
(ii) For the ATM put option, the proof is similar to (i) and is omitted here.

	

Proof of Proposition 1 Letσ(S) = σ . For any given g in the domain of the variational problem
(11), we denote c = sup{x : x ∈ (0, 1) and g(x) = log b}. Let g(t) = f (t) + log S0. It is
straightforward to see f (0) = 0 and f (c) = log b

S0
. Actually c has been defined as the latest

time function f hits the value log b
S0
. Since in the variation problem (11), we would like to

minimizing the quantity
∫ 1
0 ( f ′(t))2dt , without of generality, we may assume that f is either

increasing or decreasing in (c, 1). For simplicity, we just prove the (i) and (ii) case, another
four cases are similar.

(i) When S0 < b < K , the variation problem (11) is equivalent to minimizing the quantity∫ 1

0
( f ′(t))2dt (43)

subjected to the following constraints

f (0) = 0, f (c) = log
b

S0
> 0,

∫ 1

c
e f (t)dt = K

S0
(1 − c).

We shall characterize inf f
∫ 1
0 ( f ′(t))2dt by the following two terms:∫ c

0
( f ′(t))2dt and

∫ 1

c
( f ′(t))2dt,

respectively.
Step1First,we analyze the term

∫ c
0 ( f ′(t))2dt where f satisfies the condition f (0) = 0,

f (c) = log b
S0

. If f minimizes the quantity
∫ c
0 ( f ′(t))2dt , then for any function h which

vanishes at 0 and c we have∫ c

0
(( f + h)′(t))2dt ≥

∫ c

0
f ′(t)2dt,

which implies that for any h, we should arrive at
∫ c
0 f ′(t)h′(t)dt = 0. By using

integration by parts and the fact that h vanishes on the boundary 0 and c, we get
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∫ c
0 f ′′(t)h(t)dt = 0, which implies that f is linear in (0, c). Therefore

f = log b
S0

c
x in (0, c).

Step 2 In this step we focus on
∫ 1
c ( f ′(t))2dt subject to the conditions

f (c) = log
b

S0
,

∫ 1

c
e f (t)dt = K

S0
(1 − c).

one can see that given the optimal function f subjected to the above constraints, it
requires that

1

2

∫ 1

c
(( f + sh)′(t))2dt − λ

(∫ 1

c
e( f +sh)(t)dt − K

S0
(1 − c)

)

has a critical point at s = 0, where λ is the Lagrangian multiplier. It implies that f
verifies the following two-point boundary value problem:{

f ′′(t) + λe f (t) = 0,

f (c) = log b
S0

, f ′(1) = 0.
(44)

Multiplying the above equation (44) by f ′ and integrating by parts, one can see

1

2
f ′(t)2 + λe f (t) = constant = λe f (1),

which implies that

1

2

∫ 1

c
f ′(t)2dt = λ

(
e f (1) − K

S0

)
(1 − c).

On the other hand, it is not difficult to see that

f ′(x) =
√
2λ(e f (1) − e f (x)), x ∈ (c, 1).

To proceed, we introduce two functions

G+( f1) =
∫ f1

log b
S0

√
e f1 − eydy, F+( f1) =

∫ f1

log b
S0

1√
e f1 − ey

dy,

where f1 = f (1). Then we have

1

2

∫ 1

c
( f ′)2dt = 1

2

∫ f1

log b
S0

f ′d f =
√

λ

2

∫ f1

log b
S0

√
e f1 − eydy =

√
λ

2
G+( f1),

and

1 − c =
∫ 1

c
dt =

∫ f1

log b
S0

1

f ′ d f =
√

1

2λ

∫ f1

log b
S0

1√
e f1 − ey

dy =
√

1

2λ
F+( f1).

Combining above two equations, we have

min
f ∈AC[c,1], f (c)=log b

S0
>0,∫ 1

c e f (t)dt= K
S0

(1−c).

∫ 1

c
( f ′)2dt = G+( f1)F

+( f1)/(1 − c), (45)
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where f1 satisfies

e f1 − K

S0
= G+( f1)/F

+( f1). (46)

Step 3 By plugging (45) into the integration formula (43), we have

min
f ∈AC[0,1],∫ 1c e f (t)dt= K

S0
(1−c)

f (0)=0, f (c)=log b
S0

>0.

∫ 1

0
( f ′)2dt =

(
log b

S0

)2
c

+ G+( f1)F+( f1)

1 − c
.

Then we can view it as a function depend on c only, after taking derivative we have

−
(
log b

S0

)2
c2

+ G+( f1)F+( f1)

(1 − c)2
= 0. (47)

The two real roots are given by (47)

c± =
−
(
log b

S0

)2 ±
√(

log b
S0

)2
G+( f1)F+( f1)

G+( f1)F+( f1) −
(
log b

S0

)2 .

And one can easily verify that c+ = log b
S0

log b
S0

+
√

G+( f1)F+( f1)
∈ [0, 1]. Hence, we have

min
f ∈AC[0,1],∫ 1c e f (t)dt= K

S0
(1−c)

f (0)=0, f (c)=log b
S0

>0.

∫ 1

0
( f ′)2dt =

(
log

b

S0
+√G+( f1)F+( f1)

)2

.

(ii) For S0 > b > K , the variation problem (11) is to minimize the quantity∫ 1

0
( f ′(t))2dt (48)

subjected to the following condition

f (0) = 0, f (c) = log
b

S0
< 0,

∫ 1

c
e f (t)dt = K

S0
(1 − c).

Due to f (c) = log b
S0

< 0, use the similar approach for case (i), we have

min
f ∈AC[c,1], f (c)=log b

S0
<0,∫ 1

c e f (t)dt= K
S0

(1−c).

∫ 1

c
( f ′)2dt = G−(g1)F

−(g1)/(1 − c), (49)

where

G−(g1) =
∫ log b

S0

g1

√
ey − eg1dy, F−(g1) =

∫ log b
S0

g1

1√
ey − eg1

dy.

and g1 = f (1) ≤ 0 satisfies

K

S0
− eg1 = G−(g1)/F

−(g1). (50)
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Then we can obtain that optimal c = log b
S0

log b
S0

−
√

G−(g1)F−(g1)
∈ [0, 1] and then

min
f ∈AC[0,1],∫ 1c e f (t)dt= K

S0
(1−c)

f (0)=0, f (c)=log b
S0

<0.

∫ 1

0
( f ′)2dt =

(
log

b

S0
−√G−(g1)F−(g1)

)2

.

Therefore, the proof of is completed. 	

Proof of Proposition 2 From Proposition 1, we know that the rate function Ib(K , S0) is given
by

Ib(K , S0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
log b

S0
+
√

G+( f1)F+( f1)
)2

2σ 2 , S0 < b < K and S0 < K < b.(
log b

S0
−
√

G+( f1)F+( f1)
)2

2σ 2 , b < S0 < K .(
log b

S0
−
√

G−(g1)F−(g1)
)2

2σ 2 , K < b < S0 and b < K < S0.(
log b

S0
+
√

G−(g1)F−(g1)
)2

2σ 2 , K < S0 < b.

(51)

It is straightforward to see that the monotonicity in K of rate function Ib(K , S0) is the same
as
√
G+( f1)F+( f1) and

√
G−(g1)F−(g1) respectively. Using the similar proof given by

Proposition 9 in [27], we know that
Case I When K > S0.

(1) For S0 < b < K .

G+( f1)F
+( f1) = inf

ϕ>K/S0

(∫ ϕ

b/S0

√
ϕ−z
z dz

)2
ϕ − K

S0

. (52)

(2) For S0 < K < b.

G+( f1)F
+( f1) = inf

ϕ>b/S0

(∫ ϕ

b/S0

√
ϕ−z
z dz

)2
ϕ − K

S0

. (53)

(3) For b < S0 < K .

G+( f1)F
+( f1) = inf

ϕ>K/S0

(∫ ϕ

b/S0

√
ϕ−z
z dz

)2
ϕ − K

S0

. (54)

Case II When K < S0.

(1) For b < K < S0.

G−(g1)F
−(g1) = inf

ϕ<b/S0

(∫ b/S0
ϕ

√
z−ϕ

z dz
)2

K
S0

− ϕ
. (55)

(2) For K < b < S0.

G−(g1)F
−(g1) = inf

ϕ<K/S0

(∫ b/S0
ϕ

√
z−ϕ

z dz
)2

K
S0

− ϕ
. (56)
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(3) For K < S0 < b.

G−(g1)F
−(g1) = inf

ϕ<K/S0

(∫ b/S0
ϕ

√
z−ϕ

z dz
)2

K
S0

− ϕ
. (57)

	


4 Concluding remarks

The conditional Asian option is a recent market product, offering a cheaper and new alter-
native to the regular Asian option. But it is more challenging to study than the regular Asian
option. Similar to the shortmaturity European option, the study of shortmaturityAsian option
plays an important role in today’s financial market in terms of risk control. The conditional
Asian option, aiming at reducing the volatility and offering cheaper prices, is more difficult
to be characterized through its price due to its inherent complexity. In this paper, by using
the large deviation theory, we establish the short maturity asymptotics for the conditional
Asian option under a local volatility model, allowing us to approximate the dominated term
directly. Furthermore, we develop a new approach for conditional Asian options under the
Black–Scholes model through the explicit expression of the corresponding rate function.
The obtained theoretical results render us to be able to obtain suitable approximations for the
conditional Asian options instead of relying on Monte Carlo simulations or other numerical
methods, which is one of the main contributions of the paper.
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