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Abstract

Single mutations frequently alter several aspects of cell behavior but it is often not clear
whether a particular statistically significant change is biologically significant. To
determine which behavioral changes are most important for multicellular
self-organization, we devised a new methodology using Myxococcus xanthus as a model
system. During development, myxobacteria coordinate their movement to aggregate
into spore-filled fruiting bodies. We investigate how aggregation is restored in two
mutants, csgA and pilC, that cannot aggregate unless mixed with wild type (WT) cells.
To this end, we use cell tracking to follow movement of fluorescently labeled cells in
combination with data-driven agent-based modeling. The results indicate that just like
WT cells, both mutants bias their movement toward aggregates and reduce motility
inside aggregates. However, several aspects of mutant behavior remain uncorrected by
WT demonstrating that perfect recreation of WT behavior is unnecessary. In fact,
synergies between errant behaviors can make aggregation robust.

Introduction 1

Development is one example of multiscale emergent behavior in which molecular 2

interactions between cells allow self-organization into multicellular patterns. One of the 3

most remarkable features of all types of development is how robust it is in the face of 4

genetic and environmental perturbations, suggesting that backup systems are in 5

place [27]. While molecular genetics has identified mutations that impede multicellular 6

development, even single mutations create downstream effects that influence multiple 7

aspects of cell behavior and physiology. It is frequently difficult to ascertain which of 8

the behavioral changes are deleterious to development and which can be tolerated. Here 9

we develop a new approach that leverages data-driven modeling to determine whether a 10

statistically significant trend in cell behavior results in biologically significant alteration 11

of the multicellular program. We demonstrate this approach by focusing on full or 12

partial rescue of the mutants during multicellular development of Myxococcus xanthus 13

biofilms. 14

Myxococcus xanthus is a rod-shaped member of the delta-Protobacteria with a 15

lifecycle centered around surface motility of cells in a biofilm. M. xanthus has evolved 16
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multiple social mechanisms such as S-motility [11] and C-signaling [5, 17,26] to achieve 17

coordinated group behaviors such as predation [25], rippling [3, 12,28] and 18

development [28,35]. Upon amino acid limitation, M. xanthus cells move into 19

three-dimensional aggregates called fruiting bodies where they sporulate [14,18,23]. 20

Recent studies based on cell tracking have provided unprecedented detail of cell 21

movement during development [7]. In combination with mathematical modeling, these 22

datasets unambiguously identified individual cell behaviors that are essential for 23

aggregation [7, 34]. These behaviors include reduced movement inside the aggregate and 24

a bias in directed movement toward the aggregation centers, likely via chemotaxis [34]. 25

This methodology provides an unprecedented window into developmental behavior that 26

is presently difficult to realize in larger organisms with thicker tissues or longer cell 27

migration routes, such as the vertebrate neural crest or in disease states such as tumor 28

metastases. 29

In this work we examined reciprocal interactions between WT cells mixed with 30

non-developing mutants. More so than other bacteria, M. xanthus cell growth and 31

development depends on neighboring cells, diffusing molecules, and the surrounding 32

biotic and abiotic environment. To determine the factors that contribute to 33

developmental robustness we employed conditional mutants that were unable to develop 34

on their own, but will develop when mixed with WT cells. It is expected that the 35

mutants respond to at least some of the conditions established by WT cells in the field 36

of developing cells. The extent of the response is expected to reveal signaling and 37

sensory transduction pathways that are essential for WT development and are defective 38

in the mutants. 39

The extent of WT rescue of two mutants is examined in this work. The first of these, 40

a mutation in the pilC gene, interrupt pilus expression [30] which eliminates S-motility, 41

one of the two motility systems in M. xanthus [20, 22].Aggregation can occur with the 42

help of A-motility system that uses a novel molecular motor and focal adhesion 43

complexes [9, 21]. However, most S-system mutants fail to develop because they cannot 44

produce an extracellular matrix (ECM) that is both essential for S-motility and vital for 45

development. The ECM is required for some types of chemotaxis [15,16] as well as for 46

cell cohesion, which could play a role in the inhibition of motility inside the 47

aggregate [1,2]. As shown in this work, pilC mutants cannot aggregate on their own but 48

improve when mixed with wild-type cells. The second mutation is the deletion of the 49

csgA gene. Deletion of csgA inhibits production of one or more intercellular signals that 50

are required for aggregation and sporulation [10]. While csgA cells do not form fruiting 51

bodies on their own [28], they respond much more completely to a WT cell 52

developmental field than pilC [19]. Although much is known about M. xanthus 53

aggregation [19,28,29,33], few quantitative data sets describe mutant cell movement 54

during aggregation and the mechanism of their rescue. 55

To identify motility behaviors affecting mutant cell aggregation, we extended our 56

previously developed approach that combines individual cell tracking with simulations 57

driven by the accumulated cell behavior data [7]. Directly applying experimental cell 58

data to simulations allowed us to fully investigate the effect of each change in the 59

mutant motility behavior on their aggregation. The results demonstrate that the WT 60

developmental field is robust enough to nearly completely restore csgA development. By 61

comparison, the pilC mutant has two striking sensory deficits that diminish its ability 62

to accumulate inside the fruiting bodies. By exchanging particular aspects of cell 63

behavior between WT and mutant cells, our agent-based modeling was able to pinpoint 64

specific differences in cell behavior that are most biologically significant. 65
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1 Results 66

1.1 Quantifying aggregation dynamics in mixtures of wild-type 67

and mutant strains 68

Fluorescence microscopy was used to quantify the behavior of mutant cells at both 69

single cell and population levels. A small fraction of cells expressing the fluorescent 70

protein tdTomato were mixed with cells expressing eYFP. Each cell expressing 71

tdTomato is bright enough to be segmented and tracked, allowing quantification of their 72

behaviors, whereas the weaker eYFP signal was used to quantify cell density during 73

aggregate growth [7]. 74

When either pilC or csgA cells are mixed with differentially labeled cells of their 75

own genotype, no aggregates were observed and the distribution of cells is nearly 76

uniform at the final time-point, i.e. at T=5h (Figure 1AB). Application of the 2-D 77

Kolmogorov-Smirnov test [24] to cell positions shows that the null-hypothesis of the 78

uniform distribution of labeled cells cannot be rejected (p-value¿0.95). Conversely, when 79

tdTomato labeled csgA cells are mixed with eYFP labeled wild-type (WT) cells, csgA 80

cells are overrepresented in the aggregates (Figure 1D). The distribution of the cells is 81

clearly non-uniform (p-value¡0.05). For pilC cells mixed with WT cells, the rescue is less 82

pronounced (Figure 1C) and there is not sufficient evidence to reject the null-hypothesis 83

of uniform distribution of labeled cells (p-value=0.64). Below we describe a more 84

sensitive metric to quantify aggregation rescue of mutant cells. 85

Figure 1. Cell distribution at the final frame of the experimental movies. Cells are
segmented and shown as blue circles at the centroids of labeled cells. Red ellipsoids
indicate the boundaries of aggregates segmented from the image after were cells filtered.
(A) pilC cells alone. (B) csgA cells alone. (C) pilC mixed with WT cells. (D) csgA cells
mixed with WT cells.

To quantify aggregate positions, densities and sizes, we filtered out the tdTomato 86

signal then used the eYFP intensity to estimate cell density. This data was used to 87

segment the aggregates and detect their boundaries and positions. For segmentation of 88

the images in which aggregation was observed (mutant strains mixed with a majority of 89

WT cells), we determined a threshold intensity that separates aggregates from the 90

background using K-means clustering on the light intensity of each pixel in the final 91

frame of the experimental movies. Dividing the light intensity of pixels into two clusters 92

gives the threshold of light intensity for aggregates. Applying the same threshold 93

throughout the sequence of time-lapse imaging, we can compare aggregate growth for 94

different experiments. To compare the aggregation rate across different sets of 95

experiments, we use the average aggregate size fraction, Fagg(t), i.e. the total area of 96

aggregates in each frame corresponding to time (t) divided by the field of view area. 97

The results (Figure 2A) indicate that aggregation of WT mixed with pilC cells is 98

slightly slower than WT aggregation (dataset from [7]. On the other hand, WT cells 99

mixed with csgA show faster aggregation. However, at the final time point, datasets 100

lead to approximately the same area covered by aggregates, Fagg(tfinal). Given that WT 101

cells represent the overwhelming majority (¿99.9% ) of the cells it is unlikely the 102
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observed differences are directly attributable to the presence of mutant cells. Instead, 103

these differences are likely due to slight variation of experimental conditions. Indeed, 104

different biological repeats of the mixture experiments show differences in the 105

aggregation dynamics (Figure 2BC). Therefore, previously used metrics to characterize 106

aggregation such as the fraction of cells within the current area of aggregates could be 107

overly sensitive to this variability. 108

Figure 2. (A): WT cell aggregation rates vary between experiments. Y axis is the
aggregates area divided by total area of the field of view. Red line is the average
aggregation rate in experiments mixing csgA with WT cells. Blue line is the average
aggregation rate of WT cells only [7] . Black line is average aggregation rate in
experiments mixing pilC with WT cells. (B,C): Aggregate numbers (B) and each
aggregate area (C) in experiments. Red is csgA, blue is WT, and black is pilC. Horizontal
lines inside the boxes indicate distribution median. Tops and bottoms of each box indicate
75th (q3) and 25th (q1) percentiles, respectively. Dots in (B) are aggregate number in
each experiment and dots in (C) are each aggregate area in experiments

In order to quantify the distribution of the tracked cells relative to the aggregates in 109

a way that is robust to the variability of aggregation rate, we decided to focus on the 110

fraction of cells accumulated inside the final-frame boundaries of the aggregates. If the 111

tracked cells were uniformly distributed, we would expect that fraction to be equal to 112

the fraction of area covered by aggregates, i.e. Fagg(tfinal). Therefore, to see if labeled 113

cells are overrepresented we focus on: 114

P (t) =
Nin(t)

Ntot
− Fagg(tfinal) (1)

Figure 3. Comparison of aggregation rates
(Eq. 1) between experiment (A) and simula-
tion (B). Solid line is the average value and
shaded area is a standard deviation for each
time point. Red, blue and black colors corre-
spond to WT,csgA mixed with WT and pilC
mixed with WT respectively.

Here Nin is the number of 115

tracked cells inside the final aggregate 116

area and Ntot is the total number of 117

tracked cells over the total field of view 118

area. We do this calculation for each 119

frame (at time t) and use it to quantify 120

the aggregation rate of labeled cells. 121

The results for P (t) quantification 122

for aggregation of csgA mixed with WT 123

(red) and pilC mixed with WT (black) 124

cells are shown Figure 3A. To compare 125

it with WT only aggregation, we use 126

a dataset of [7] to compute the same 127

quantity (Figure 3A, blue line). The 128

result shows that csgA has a similar 129

aggregation rate to WT cells. In the 130

final frame, the number of cells inside 131

4/20

.CC-BY-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted February 10, 2020. . https://doi.org/10.1101/2020.02.08.939462doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.08.939462
http://creativecommons.org/licenses/by-nd/4.0/


aggregates is larger by 50% compared 132

with the total cell number, P (tfinal) ∼ 0.5 . In contrast, pilC cells show much weaker 133

aggregation P (tfinal) ∼ 0.1 . To test if overrepresentation of pilC mutants inside the 134

aggregate is statistically significant, we performed a z-test. The null hypothesis is that 135

the pilC cells are randomly distributed, therefore the mean of P (tfinal) is 0. The 136

p-value for accepting the null hypothesis is 0.002, indicating that the pilC mutant is 137

partially rescued by WT cells. 138

1.2 Motility behaviors of rescued pilC and csgA cells differ 139

from WT cells 140

To quantify single-cell behaviors, the cell trajectories were discretized into segments 141

using the same method as in [7]. The resulting segmented trajectories were then 142

quantified as either persistent or non-persistent run vectors. Persistent runs are 143

interpreted as cells moving along their major axis using one or both motility systems 144

whereas as non-persistent runs correspond to “stops” (or pauses) in progressive 145

movements, during which cells can perhaps be pushed around by other cells. A run 146

vector begins at a change of state (persistent to either non-persistent or reversal) and 147

ends at the next change of state. The properties of the resulting run vectors, such as 148

duration (time between state changes) and speed (Euclidean distance over time) were 149

used to quantify single cell behavior during aggregation. The run vectors were also 150

labeled with the distance to the nearest aggregate boundary and moving direction 151

relative to the nearest aggregate center. Previous work has shown that WT cells have 152

longer run durations when running towards an aggregate (bias effect) and cells decrease 153

their motility inside aggregates (”traffic-jam” effect) [7, 13]. These effects have been 154

shown to be important for aggregation [7, 29,34]. To quantify traffic jam and bias 155

effects, we focus on the relationship between run vector properties and their distance 156

and direction relative to aggregates. 157

To study the relationship between run vector properties and distance to aggregates, 158

we divided the run vectors into 2 groups: those inside aggregates and those outside. 159

Then we calculated the mean duration and speed for the persistent and non-persistent 160

state in each group (Figure 4). We find that both WT and mutant cells mixed with WT 161

cells display a traffic-jam effect since they all have shorter persistent run durations and 162

longer non-persistent run durations inside aggregates (Figure 4BD). To quantify the 163

bias in run duration, we divided the run vectors into 2 groups: those running towards 164

aggregates and those running away. Then we define the bias ratio by 165

B =
dto − daway

dall
, (2)

where dto is the average run duration of cells going towards aggregates, daway is the 166

average run duration of cells going away from aggregates, and dall is the average run 167

duration of all cells. Figure 4C shows that each mutant mixed with WT cells has a bias 168

ratio greater than 0, though both are less than WT. 169

To compare the traffic jam effect of pilC cells mixed with WT cells, we compared 170

the speed and state durations of pilC and WT cells. Unlike WT cells, pilC cells show 171

less than a 5% speed reduction inside aggregates during the persistent state (Figure 4A) 172

and only show 7% shorter persistent run durations (Figure 4B). Furthermore, pilC show 173

less bias in their run duration (Figure 4C). On the other hand, pilC cells show a longer 174

non-persistent duration and higher probability of transitioning to the non-persistent 175

state. However, the difference of the transitioning probability between inside and 176

outside aggregates is smaller (Figure 4D, E). In general, pilC cells exhibit longer stop 177

durations, more frequent stops, and slower speeds suggesting that loss of S-motility has 178
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Figure 4. Experimental results of pilC and csgA cell behavior when mixed with WT
cells compared with data from WT cells alone. Error bars represent bootstrapped 95%
confidence interval of the means. (A): Persistent state speed of cells inside and outside
aggregates. (B): Persistent state duration of cells inside and outside aggregates. (C)
Bias ratio as defined in Eq.2 shows the tendency of cells to extend their runs when
approaching the aggregates. (D): Non-persistent duration of cells inside and outside of
aggregates. (E): Probability of transitioning into a non-persistent state after a persistent
run for cells inside and outside aggregates.

compromised their overall mobility. However, as compared with WT and csgA, smaller 179

differences between cell behaviors inside and outside aggregates makes pilC cells less 180

likely to reduce their motility inside the aggregates. These diminished differences may 181

reduce the traffic jam effect on pilC cells, thereby impeding aggregation of pilC cells. 182

Similarly, we compared traffic-jam and bias effects of a csgA-WT mixture with WT 183

cells. While csgA speed is ∼ 20% faster than WT cells inside aggregates, csgA cells show 184

proportional speed reduction inside aggregates (Figure 4A). Similar to WT cells, csgA 185

cells also have shorter persistent durations inside aggregates (Figure 4B), and longer 186

non-persistent durations (Figure 4D). Moreover, csgA cells increase their probability of 187

transitioning to the non-persistent state when inside the aggregates. However, the 188

difference of this probability between inside and outside the aggregates of csgA cells is 189

smaller than that of WT cells (Figure 4E). All of the above behaviors reduce motility of 190

csgA cells inside the aggregates, likely creating a WT-like traffic-jam effect. 191

In comparison with pilC cells (Figure 4), csgA cells likely have a stronger traffic jam 192

effect due to a more pronounced reduction in speed and persistent run duration inside 193

the aggregates. On the other hand, their traffic-jam effect is expected to be weaker than 194

WT due to reduced differences in non-persistent duration and probability between inside 195

and outside. The csgA cells also have a stronger bias than pilC, but weaker than WT 196

cells (Figure 4C). It remains to be seen what the biological significance of the difference 197

in traffic-jam effect is and why, despite a somewhat weaker bias and traffic jam effect, 198

about the same proportion of csgA cells accumulate in the aggregate (Figure 3). 199
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1.3 Data-driven models can match the aggregation dynamics 200

of pilC and csgA cells based on the quantified motility 201

parameters and their correlations. 202

To more stringently test the effect of cell behaviors on aggregation, we extended the 203

data-driven model approach used in our previous work [7] to model experiments with 204

mixtures of two strains. To this end, we introduce a population of two agents 205

corresponding to WT and mutant (either pilC or csgA) cells. Agent behaviors are 206

chosen from the experimental data using K-nearest neighbor (KNN) sampling based on 207

simulation time and the agent’s distance and moving direction relative to the nearest 208

aggregate. Given that the overwhelming majority of cells in the experiments are WT, 209

we only use WT agent density to detect aggregates. This way, WT agents affect the 210

behavior of mutant agents but not vice versa. At each time step, the WT density profile 211

is estimated from the WT agent positions by kernel density estimation (KDE) [4] and 212

the aggregates were then detected from the density profile. Thereafter, we pick agent 213

behaviors and move agents accordingly. Each simulation was run for 5 hours, after 214

which we calculated the aggregation rate P (t) as we did for the experiment. Simulations 215

containing csgA agents mixed with WT agents display an aggregation rate similar to 216

that of WT agents, whereas simulations with pilC agents exhibit much weaker 217

aggregation (Figure 3B). Comparing the results of these simulations to the experimental 218

measurements (Figure 3A), we concluded that the model can reproduce the aggregation 219

dynamics for WT and each mutant cell mixture with WT. In other words, dependences 220

(correlations) included in the sampling of agent behavior contain sufficient information 221

to recapture observed aggregation dynamics. 222

Figure 5. Identification of key cell behaviors that drive mutant strain aggregation.
Simulation results of pilC (A,D), csgA (B,E) and WT (C,F) based on the experimental
data (quantified as P (t), Eq. 1) on y-axis). Blue line and shaded areas are the simulation
results under normal conditions. Black lines represent simulations where non-persistent
behavior does not depend on distance to aggregates (A-C) or where probability to
non-persistent state does not depend on distance to aggregates (D-F). Shaded areas
show standard deviations.
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As a control for the previous simulations, we performed simulations where we 223

removed all dependences such that agent behavior is randomly chosen from the whole 224

data set. As expected, we did not see any aggregation for mutant mixtures or WT 225

agents (Figure 5 A-C). This result shows that some combination of cell behavior 226

dependence on time, distance and direction to nearest aggregate is essential for 227

aggregation. Since there are many cell behavior dependences in this model, our next 228

step is to find which dependences are more important for aggregation. 229

Previous work on WT aggregation has shown that cell behaviors are different at 230

different times during development and this time-dependence of cell behaviors affects 231

aggregation dynamics [7]. To determine whether time dependence is important for 232

mutant cell aggregation, we performed simulations where agent behavior does not 233

depend on time. Removing time-dependence for WT aggregation causes P (tfinal) to 234

drop from ∼ 0.45 to ∼ 0.35 (Figure 5F), which confirms our previous result [7] that 235

time dependence helps WT aggregation. However, removing time dependence for 236

mutant agents (while keeping it for WT agents), does not affect aggregation dynamics 237

for either pilC (Figure 5D) or csgA (Figure 5E). This shows that the behavior 238

dependence on time is not important for mutant cell aggregation. 239

1.4 Transitioning to and staying in the non-persistent state in 240

aggregates does not help pilC and csgA aggregation 241

Given that the increase of non-persistent state duration increases the time cells spend 242

inside aggregates, we hypothesized that this effect is an essential component of the 243

traffic-jam effect and aids aggregation of mutant cells. To test this hypothesis, we 244

performed simulations where the non-persistent state duration for agents is not 245

conditional on their position relative to the aggregate. Surprisingly, removing this 246

dependence does not have an obvious effect on pilC (Figure 6A) or csgA (Figure 6B) 247

and only leads to a modest decrease in WT aggregation (∼ 0.05 or ∼ 10% drop in 248

P (tfinal) ; Figure 6C). This result shows that longer “stops” inside aggregates is not the 249

main reason for successful aggregation. 250

To assess the effects of a higher probability of “stops” (i.e. non-persistent runs) 251

inside the aggregates, we performed simulations where the probability of transitioning 252

to a non-persistent state is independent of the agent’s position, (i.e. sampled from the 253

same distribution inside and outside an aggregate). We discovered that removing this 254

dependence does not affect aggregation for pilC (Figure 6D) or csgA (Figure 6E) and 255

leads to only a ∼ 0.07 (∼ 15% ) drop in P (tfinal) for WT (Figure 6F). It appears that 256

longer non-persistent state durations and a higher probability of transitioning to the 257

non-persistent state are not the main reasons for cell accumulation in aggregates. In 258

summary, difference in stopping probability and duration between inside and outside 259

the aggregates are not critical for the traffic jam effect or can be compensated by other 260

mechanisms. 261

1.5 Behaviors in the persistent state are critical for the 262

aggregation 263

To test which persistent state behaviors are important for aggregation, we first removed 264

the bias towards aggregates, which is the dependence of run duration on the angle 265

between the moving cell and the closest aggregate. This leads to a ∼ 0.03 drop in 266

P (tfinal) for pilC (Figure 7A). For csgA (Figure 7B) and WT (Figure 7C), P (tfinal) 267

drops 0.15∼ 0.2. This result shows that bias in run duration is essential, more so for 268

csgA and WT aggregation than pilC aggregation. This also agrees with Figure 4C 269

where we showed that csgA and WT have larger bias ratios than pilC. However, given 270
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Figure 6. Comparison of the aggregation rate (quantified as P (t), Eq. 1) on y-axis)
from simulations of pilC (A,D) and csgA (B,E) cells mixed with WT cells, and WT
(C,F) cells alone. Blues line and shaded area is the simulation result under conditions
where agent behavior is chosen from experimental data. Black lines represent simulations
where non-persistent behavior does not depend on distance to aggregates (A-C) or in
which probability to non-persistent state does not depend on distance to aggregates
(D-F). Shaded areas show standard deviations.

the overall poor aggregation of pilC, the decrease associated with lack of bias is still 271

important and in relative terms is just slightly weaker than that of the other strains 272

(30% reduction of final P (tfinal) for pilC vs 40% for csgA and 45% for WT). 273

Next, we attempt to make the cells behave the same way inside and outside the 274

aggregate to remove the traffic jam effect but maintain the bias. First, we removed 275

persistent state speed and duration dependence on agents’ distance to the nearest 276

aggregate while keeping the dependence of run duration on the angle between the 277

moving cell and the closest aggregate. The results show that removing distance 278

dependence decreases aggregation for all types of cells: P (tfinal) drops ∼ 0.03 for pilC 279

(Figure 7D) and drops ∼ 0.25 for csgA (Figure 7E) and WT (Figure 7F) cells. 280

Therefore, the reduction of speed and duration inside aggregates is important for 281

aggregation. Interestingly, the reduction of speed and duration can also be considered a 282

traffic-jam effect. Comparing the traffic-jam effects in non-persistent state, i.e., longer 283

duration and higher probability of non-persistent state inside aggregates, traffic-jam 284

effects in persistent state appear to be more important. Notably, removing persistent 285

speed and duration dependence on distance decreases aggregation more in csgA and 286

WT cells than in pilC cells. Even considering the poor aggregation of pilC, the relative 287

decrease in aggregation is still weaker for pilC (30% reduction of final P (tfinal) for pilC 288

vs 55% for csgA and 55% for WT). This shows that csgA and WT cells have a stronger 289

traffic-jam effect than pilC, in agreement with Figure 4A and 4B. 290

1.6 Different motility behaviors of pilC and csgA cells 291

explains the partial rescue of pilC and full rescue of csgA 292

The results thus far match the observed behaviors of mutant cells with their observed 293

aggregation dynamics. Next we try to determine which mutant cells behaviors are 294
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Figure 7. Comparison of the aggregation rate (quantified as P (t), Eq. 1) on y-axis)
of simulated of pilC (A,D) and csgA (B,E) cells mixed with WT cells, and WT (C,F)
cells alone. Blues line and shaded area are simulation results under normal conditions.
Black lines represent simulations where persistent behavior does not depend on run
direction, i.e., without bias (A-C) or in which run duration does not depend on distance
to aggregates, i.e., without traffic jam (D-F). Shaded areas show standard deviations.

responsible for the different aggregation rates as compared with WT. To this end we 295

introduce a new “hybrid” simulation technique in which certain aspects of mutant and 296

WT agent behaviors are swapped with one another or scaled to match the mean of 297

another. For example, experimental data shows that pilC mutants switch to the 298

non-persistent state more frequently and stay in the non-persistent state longer (Figure 299

4D,E). To determine whether these behaviors contribute to weaker aggregation, we 300

performed simulations where we swap some of the pilC motility behaviors with WT 301

behaviors (Figure 8). When agents using the pilC probability of transitioning to the 302

non-persistent state and WT data for other behaviors, aggregation drops ( P (tfinal) 303

drops ∼ 0.2) (Figure 8A), but agents using WT probability of transitioning to the 304

non-persistent state with pilC data for other behaviors does not improve pilC 305

aggregation (Figure 8B). To further confirm that the decrease in aggregation is due to 306

the longer stop or higher stopping frequency rather than some other feature of the pilC 307

data, we performed simulations of WT cells where we only increased the non-persistent 308

duration or non-persistent probability to match the average data of pilC cells (Figure 9). 309

As expected, the aggregation rate is slowed compared to normal WT aggregation. We 310

can conclude that frequent stops is one of the major impediments to pilC aggregation. 311

To learn how pilC persistent behaviors affect aggregation, we performed simulations 312

where agents use WT persistent duration data combined with other pilC cell data and 313

vice versa (Figure 8C). Agents using pilC persistent duration combined with other WT 314

data have reduced aggregation compared with WT ( P (tfinal) drops ∼ 0.25). Agents 315

using WT persistent duration combined with other pilC data show improved 316

aggregation over pilC ( P (tfinal) increases ∼ 0.02). This is not surprising since WT 317

cells have a much stronger persistent duration bias and stronger bias leads to more 318

complete aggregation. Finally, agents using pilC persistent speed combined with other 319

WT data have reduced aggregation compared with WT ( P (tfinal) drops ∼ 0.2) 320

whereas WT persistent speed combined with other pilC data improves pilC aggregation 321

( P (tfinal) increases ∼ 0.02) (Figure 8D). This is because pilC cells have similar speeds 322
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Figure 8. Simulations swapping WT data and pilC cell data demonstrate which mutant
cell behaviors are sufficiently different from wild-type to affect the aggregation rate
(quantified as P (t), Eq. 1) on y-axis). Blue lines are simulation results of agents using
pilC cell data. Red lines are simulation results of agents using WT cell data. Green
lines are simulations of agents using pilC data with partial WT cell data. Black lines
are simulations of agents using WT data with partial pilC cell data. (A): Green is
agents using WT cell probability to non-persistent state and other pilC data. Black is
agents using pilC probability to non-persistent state and other WT data. (B): Green is
agents using WT cell non-persistent state duration and other pilC data. Black is agents
using pilC cell non-persistent state duration and other WT data. (C): Green is agents
using WT cell persistent state duration and other pilC data. Black is agents using pilC
cell persistent state duration and other WT data. (D): Green is agents using WT cell
persistent state speed and other pilC data. Black is agents using pilC cell persistent
state speed and other WT data. Only mean values are plotted for clarity.

inside and outside aggregates whereas WT cells have slower speeds inside aggregates 323

and this slowdown improves aggregation. Overall our results show that weak 324

aggregation of pilC is due to slow speed, longer non-persistent durations, and a higher 325

probability of transitioning to the non-persistent state. 326

Figure 9. Simulation of WT agents with
longer non-persistent duration (red) or higher
non-persistent probability (black) impede ag-
gregation rate (Eq. 1) as compared to sim-
ulations with unperturbed behaviors(blue).
Shaded areas show standard deviations.

For csgA mutants, 327

Figure 4E shows that the difference 328

for stopping probabilities and durations 329

inside and outside aggregates is less 330

pronounced than WT. To test whether 331

these behaviors decrease aggregation, 332

we performed a simulation where 333

agents use WT data for probability 334

of transitioning into the non-persistent 335

state and csgA data for other behaviors. 336

This simulation does not improve csgA 337

aggregation (Figure 10A). But agents 338

using csgA probability to transition 339

to the non-persistent state and WT 340

data for other behaviors cause P (tfinal) 341

to drop ∼ 0.05 compared with WT 342

aggregation. Moreover, agents using 343

csgA non-persistent duration and WT 344

data for other behaviors show a slight 345

decrease in aggregation compared with 346

WT aggregation ( P (tfinal) drops ∼ 347

0.05). On the other hand, agents using 348

WT non-persistent duration and csgA 349

data for other behaviors show a slight 350

increase in aggregation compared with csgA aggregation ( P (tfinal) increases ∼ 0.02). 351
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These results show that the differences in non-persistent state switching and duration 352

between WT and csgA do not affect aggregation much. 353

Figure 10. Simulations swapping WT data and csgA cell data demonstrate which
mutant cell behaviors are sufficiently different from wild-type to affect the aggregation
rate (quantified as P (t), Eq. 1) on y-axis). Blue lines are simulation results of agents
using csgA cell data. Red lines are simulation results of agents using WT cell data.
Green lines are simulations of agents using csgA data with partial WT cell data. Black
lines are simulations of agents using WT data with partial csgA cell data. (A): Green is
agents using WT cell probability to non-persistent state and other csgA data. Black is
agents using csgA probability to non-persistent state and other WT data. (B): Green is
agents using WT cell non-persistent state duration and other csgA data. Black is agents
using csgA cell non-persistent state duration and other WT data. (C): Green is agents
using WT cell persistent state duration and other csgA data. Black is agents using csgA
cell persistent state duration and other WT data. (D): Green is gents using WT cell
persistent state speed and other csgA data. Black is agents using csgA cell persistent
state speed and other WT data. Only mean values are plotted for clarity.

Figure 11. Model demonstrate that longer
persistent run duration help csgA. Scaling per-
sistent of csgA agents to WT persistent du-
ration (black line) impedes their aggregation
as compared to simulations using unscaled
data(blue line). Shaded areas show standard
deviations.

To learn 354

how csgA persistent behaviors affect 355

aggregation, we performed a simulation 356

where agents use persistent duration 357

of WT cells and other behaviors 358

of csgA cells (Figure 10C). This 359

leads to a slightly better aggregation 360

compared with csgA cells ( P (tfinal) 361

increases ∼ 0.05). Agents using 362

csgA persistent duration and other 363

WT cell behavior show a slightly lower 364

aggregation compared with WT cells ( 365

P (tfinal) drops ∼ 0.07). Note that WT 366

persistent duration has a bigger bias 367

but shorter duration. To learn whether 368

a shorter duration will decrease csgA 369

aggregation, we performed a simulation 370

where agents use csgA data but 371

scale the persistent duration to match 372

the average duration of WT cells. 373

This led to a lower aggregation (Figure 374

11). These results show that the csgA 375

weaker bias is partially compensated 376

by the longer persistent duration. 377

Finally, to find whether the faster speed of csgA cells in the persistent state helps 378

aggregation, we performed simulations where agents use csgA persistent speed and other 379

WT behaviors. This leads to faster aggregation, but P (tfinal) remains the same 380
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compared with WT. Moreover, agents using WT persistent speed and other csgA 381

behaviors have a slightly slower aggregation rate compared with csgA. This result shows 382

that csgA cells’ faster speed compensates for the weaker (compared with WT cells) bias 383

in persistent duration and explains why csgA and WT cells show similar aggregation 384

rates. Therefore, rescue of the collective behavior can occur even without complete 385

rescue of the underlying single-cell behaviors. 386

2 Discussion 387

In this work we developed a methodology to assess which aspects of individual cell 388

behavior are responsible for observed trends in collective self-organization. In particular, 389

we were interested in how aggregation is restored when csgA and pilC mutants were 390

mixed with wild type (WT) cells. With comprehensive quantification of mutant cell 391

behaviors, we saw two surprising findings. Despite complete rescue (based on the 392

percentage of cells that ended-up in the aggregate location) when placed in a field of 393

developing wild-type cells, csgA cells show behaviors that are distinctly different from 394

wild type, most notably increased speed and reduced biased random walk. We propose 395

that the former compensates for the latter. On the other hand, pilC is significantly 396

attenuated for all behaviors that are important for wild-type aggregation inside the 397

aggregates. While the observed changes in behavior are statistically significant, the 398

marginal improvements to aggregation in the presence of wild type cells cannot be 399

attributed to one or two specific changes. We extended the data-driven modeling 400

approach for hybrid populations of agents that correspond to wild-type and mutant 401

behaviors and use a swapped-dataset sampling approach (Table 1) to pinpoint cell 402

movement features that are responsible for full or partial rescue of the mutant strains. 403

As with our previous analysis of wild-type aggregation dynamics, we conclude that 404

three features of cell behavior contribute to efficient accumulation in aggregates. First, 405

the cells follow aligned paths that precede appearance of aggregates such that their 406

orientations are correlated with one another and with the direction to the nearest 407

aggregate likely to appear along their path. That essentially reduces the search for 408

aggregates to 1D. Second, due to the bias in persistent run durations, cells move longer 409

when approaching an aggregate than when moving in the opposite direction. This 410

biased random walk results in an increase in cell flux toward the aggregates and 411

accelerates the aggregation dynamics. Finally, once in aggregates the cells are less likely 412

to leave as their speed decreases, their probability to transition non-persistent state 413

increases and the time cells spend in the non-persistent state increases. Notably all 414

three strains displayed these three features, but their contributions to aggregation are 415

different between strains. 416

For csgA cells, our results identified important compensatory mechanisms indicating 417

that restoration of collective behavior is possible without full restoration of each 418

individual cell behavior. With longer persistent run distances resulting from faster 419

speeds and longer durations in the persistent state, cells are more likely to end up in the 420

aggregates. This effect explains why csgA cells show similar aggregation even with a 421

weaker bias compared with WT cells. Genetic studies have shown that csgA cells possess 422

both fully functional motility systems. The mutant fails to develop specifically because 423

it fails to produce one or more essential developmental signals. While the mutant clearly 424

responds to the wild-type signal(s), it would appear that the csgA mutation causes a 425

slight downstream effect in perception or motility regulation that reduces the bias. 426

In marked contrast, pilC aggregation is specifically impeded by the S-motility defect, 427

which involves lack of pilus production and lack of EPS production. S-motile cells use 428

the pilus to attach to EPS on adjacent cells, and retraction of a motor at the base of the 429

pilus pulls the cell forward. pilC cells have significantly decreased bias which our results 430
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suggest is due to reduced speed, reduced run durations, and increased frequency of 431

transiting to the non-persistent state. As the WT cells would be expected to provide 432

normal levels of EPS and other required signals, pilC cells clearly lack the appropriate 433

response. This is a striking finding in view of the observation that S-motility is not 434

required for aggregation. Some S mutants, like pilA (which encodes the pilus structural 435

protein) and pilT (which encodes the pilus retraction motor), can aggregate using only 436

the A-motility system. The results point to a downstream effect, perhaps related to 437

perception of lipid chemoattractants, which has been noted in certain S mutants but not 438

examined specifically in pilC. The pilC mutant also has a diminished traffic jam effect. 439

Similar to WT and csgA, pilC mutants also have longer non-persistent durations inside 440

aggregates, yet pilC cells frequently leave aggregates. While they are overrepresented in 441

the aggregate location, they are about 4-fold less abundant than csgA or labeled WT 442

cells. Again, the as yet unknown signal(s) used to hold cells in aggregates should be in 443

sufficient concentration leading one to suspect that the problem is more specifically due 444

to pilC perception or response to the signal. 445

Notably, there is also a striking difference in the rescue of the two mutants for 446

sporulation by WT cells. As a benchmark, WT cells form 0.14 spores per input cell 447

with the remaining cells undergoing alternate developmental fates such as programmed 448

cell death and formation of peripheral rods. WT cells efficiently rescue the sporulation 449

of csgA mutants. csgA cells alone form 2 x 10-5 spores per input cell which increases to 450

0.15 spores per input cell in the presence of WT cells. In contrast, WT cells do not 451

rescue pilC sporulation. pilC cells alone form 3 x10-3 spores per input cell which 452

increases minimally to 4 x 10-3 spores per input cell in the presence of WT cells. 453

Sporulation is thought to have little bearing on aggregation since it occurs after 454

aggregation is complete. Nevertheless, these results clearly support the ideas developed 455

in this work for aggregation that csgA cells are deficient in producing essential 456

extracellular signals but proficient in responding to them while pilC cells have difficulty 457

perceiving or responding to the signals. 458

Multi-cellular self-organization behaviors are prevalent in biological systems, but 459

have proven challenging to study. There are complex feedback and compensatory 460

mechanisms at the population level as well as pleiotropic effects of single mutations. 461

Given significant heterogeneity of individual cell behaviors, small trends in the behaviors 462

between mutant strains could dissipate over time or in contrast could accumulate 463

leading to differences in the emergent patterns. Our results demonstrate how careful 464

quantification of cell behavior coupled to data-driven modeling approaches can predict 465

these effects and pinpoint important synergies and compensatory mechanisms. 466

3 Materials and Methods 467

3.1 Bacterial Strains, Plasmids, and Growth Conditions. 468

All M. xanthus strains were grown in CYE broth [1% Bacto casitone (Difco), 0.5% yeast 469

extract (Difco), 10 mM 4-morpholinepropanesulfonic acid (MOPS) (pH 7.6), and 0.1% 470

MgSO4] and development was induced on thin (10 ml in 100 mm Petri dish) TPM agar 471

[10 mM Tris· HCl (pH 7.6), 1 mM KH(H2)PO4 (pH 7.6), 10 mM MgSO4, 1.5% agar 472

(Difco)] plates containing 1 mM isopropyl β -D-1-thiogalactopyranoside (IPTG) and 100 473

µM vanillate as described in [7]. Strain LS3910 was constructed by electroporation [31] 474

of pLJS145 [7] into LS2442 [8] Transformants were selected using CYE 1.5% agar plates 475

containing 15 µg mL-1 oxytetracycline. pilC mutant LS3011 was constructed by 476

Magellan mutagenesis of DK1622 as described in [32]. Strain LS4223 was constructed 477

by electroporating the tdTomato plasmid pLJS145 into LS3011 with selection on CYE 478

agar containing 15µg mL-1 oxytetracycline. 479
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3.2 Fluorescence Time-Lapse Microscopy 480

Time-lapse image capture was performed as described in [7]. As in [7], the beginning of 481

aggregation varied between replicates by up to 1 h. To avoid possible bias in movie 482

alignment caused by differences in the aggregation rate of WT and mutant cells, the 483

approach of using the fraction of tdTomato cells within the aggregates used in [7] was 484

replaced with a technique that relied on YFP fluorescence. To quantify aggregation 485

progress using YFP fluorescence, the 2D Fourier transform coefficient magnitudes for 486

wavelengths between 50 and 100 µ m were summed for each frame. Aggregation start 487

was then detected as the point at which the summed magnitude in the movie frames 488

crossed 20% of the maximum value reached in that movie. Movies were then cropped to 489

align the detected beginning of aggregation and equalize their lengths as described in [7]. 490

3.3 Developmental assays 491

The developmental assays were performed by mixing the tdTomato fluorescent strains 492

LS4223, or LS3909 with the YFP fluorescent wild-type strain LS3630 in a 1:10,000 ratio. 493

tdTomato fluorescence indicated positions of the individual cells for strains LS4223, and 494

LS3909, while the YFP fluorescence revealed the territories of the LS3630 cell 495

aggregates. Specifically, 100 L of the tdTomato-expressing strains and 1 mL of the YFP 496

or non-fluorescent strains in the exponential phase were collected by centrifugation at 497

17, 000 × g for 1-2 min and washed with 100 L of ddH2O, respectively. The tdTomato 498

strains were further diluted to 5 × 106 cells mL-1, while the YFP or non-fluorescent 499

strains were concentrated to 5 × 108 cells mL-1 in ddH2O. The diluted tdTomato 500

strains were then mixed with the YFP or non-fluorescent strains in a 1:100 ratio, 501

resulting in a final ratio of 1:10,000 between the tdTomato and the YFP or 502

non-fluorescent cells. 35 L of the cell mixtures in 4-6 replicates were spotted onto a 503

TPM plate and dried out in a 32C incubator for 30-45 min. The plate was sealed with 504

parafilm and incubated in a 28C dark room. With strains or mixtures that developed, 505

development usually started between 7 and 10 hours post incubation and produced 506

stable aggregates in another 5 to 8 hours. For time lapse movies, images were captured 507

at 30 sec intervals beginning about 1 hour prior to the initiation of aggregation and 508

lasting until the formation of stable aggregates. 509

Viable spore data was obtained as noted previously [6]. 510

3.4 Cell Tracking, Cell-State Detection, Run Vector 511

Extraction, and Aggregate Tracking 512

Cell tracking, run vector extraction, and aggregate tracking were performed as described 513

in [7], including the use of the same cell-state detection transition probabilities. Note 514

that the detection of aggregate is based on the light intensity of pixels. The threshold of 515

the aggregate light intensity is calculated using K-means clustering on the pixels in the 516

final frames of experiments. Areas with light intensity higher than the threshold are 517

considered as aggregates. 518

3.5 Data-Driven Agent-Based Model. 519

The agent-based model used here is adapted from our previous work [7]. Given that 520

simulations with the experimental mutant-to-WT ratio will lead to an unfeasible 521

number of agents to simulate, we instead chose to implement the wide excess of WT 522

cells via asymmetry in their interactions. We sample behaviors of both WT and mutant 523

cells conditional only on the WT population distributions (see below). Each simulation 524

consists of 10,000 WT agents and 8,000 mutant agents on a rectangular domain of 986 525
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µm× 740 µm, equal to the microscope field of view, with periodic boundary conditions 526

along each side. Each agent represents a single cell sampled from a biofilm of the same 527

average density as in experiments (1.1 cells/µ m2), similar to sampling cell behaviors in 528

the biofilm using a small number of fluorescently labeled cells. Similar to our previous 529

model [7], each agent’s behaviors such as run speed, run duration and run angle are 530

drawn from the experiment data based on the time since the beginning of the 531

experiment, the angle between the cell orientation and the average bearing angle of 532

neighboring runs, and distance and angle to nearest aggregate. Note that unlike our 533

previous model [7], here we did not use local cell density extracted from the time-lapse 534

microscopy to choose our agent behaviors since the light intensity in the experiment 535

varies too much for reliable density estimates outside the aggregates. We use the same 536

method as in [7] to select run behavior for agents. 537

Since in the experiments the ratio of WT to mutant cells is over 10,000:1, it’s fair to 538

assume that WT cell behavior is not affected by the mutant cells. Therefore, in 539

simulation we usually chose the agent behavior based solely on the population 540

distribution of WT agents. Moreover, the density estimation in simulation uses only 541

WT agents so that mutant agents will not affect WT agent behavior. However, in 542

simulations where we swap some WT data with mutant data, e.g., in Figure 8 and 10, 543

we do this by replacing some mutant data with WT data or vice versa, and feed the 544

combined data to mutant agents. WT agents will always use WT data to provide 545

background information such as neighbor cell alignment and density profile etc. 546

For simulations where agents use both mutant data and WT data (Figure 8 and 10), 547

the simulation process is slightly different from the original [7]. In particular, 548

simulations where agents use WT data for non-persistent probability or non-persistent 549

state behavior and mutant data for other behaviors, agents will choose their behaviors 550

from WT data or mutant data accordingly using nearest-neighbor methods. Similar 551

procedure is applied for simulations where agents use mutant data for non-persistent 552

probability or non-persistent state behavior and WT data for other behaviors. For 553

simulations where agents use WT data for persistent state speed or duration and 554

mutant data for other behaviors, agents will choose their behaviors from mutant data 555

only and then scale the persistent state speed or duration to match the mean of the WT 556

data. This way, we can keep the correlation between the speed and duration in the 557

mutant data. Moreover, to keep the bias in WT data, we split WT data into 2 branches: 558

data of cells moving towards the aggregate and data of cells moving away from the 559

aggregates. To keep the traffic-jam effect in WT data, we further split the 2 data 560

branches into smaller branches based on the distance to aggregate: Each branch now 561

contains data of cells with distance to aggregate within 1 µm window and moving in the 562

same direction. Then we calculate the mean speed or duration of each branch of data. 563

We perform similar calculation for mutant data and use the means to scale the agent 564

behavior to match the WT data using the following equation: 565

B(dir, dis) =
B1(dir, dis)

Bmu(dir, dis)
BWT (dir, dis) (3)

Where B is the final scaled behavior (speed or duration) for the agent, dir is the 566

moving direction (moving towards or away from aggregate) of the agent and dis is the 567

distance to aggregate, B1 is the selected behavior from mutant data, Bmu the mean of 568

the mutant data calculated as above and BWT is the mean of WT data calculated as 569

above. For simulations where agents use mutant data for persistent state speed or 570

duration and WT data for other behaviors, we apply a similar procedure, the equation 571

to scale the agent behavior becomes: 572

B(dir, dis) =
B1(dir, dis)

BWT (dir, dis)
Bmu(dir, dis) (4)
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where B1 here is the selected behavior from WT data. 573

4 Acknowledgements 574

The research reported here was supported by the National Science Foundation 575

DMS-1903275, IOS-1856742 and PHY-1427654 (for Center for Theoretical Biological 576

Physics) and by the Welch Foundation (Grant C-1995). 577

References

1. J. W. Arnold and L. J. Shimkets. Cell surface properties correlated with cohesion
in Myxococcus xanthus. Journal of Bacteriology, 170(12):5771–7, 12 1988.

2. R. M. Behmlander and M. Dworkin. Extracellular fibrils and contact-mediated
cell interactions in Myxococcus xanthus. Journal of Bacteriology,
173(24):7810–7820, 1991.

3. U. Börner, A. Deutsch, H. Reichenbach, and M. Bär. Rippling patterns in
aggregates of myxobacteria arise from cell-cell collisions. Physical Review Letters,
89(7):078101, 2002.

4. Z. I. Botev, J. F. Grotowski, D. P. Kroese, et al. Kernel density estimation via
diffusion. The Annals of Statistics, 38(5):2916–2957, 2010.

5. T. O. Boynton and L. J. Shimkets. Myxococcus csgA, drosophila sniffer, and
human hsd10 are cardiolipin phospholipases. Genes & Development,
29(18):1903–1914, 2015.

6. H. A. Bullock, H. Shen, T. O. Boynton, and L. J. Shimkets. Fatty acid oxidation
is required for Myxococcus xanthus development. Journal of Bacteriology,
200(10):e00572–17, 2018.
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Table 1. Summary of performed simulation and effect of mutant behaviors on aggrega-
tion

Observation Simulation performed Effect on aggregation

pilC mutants switch to
non-persistent state more
frequently

pilC agents use WT data
for the probability of
transitioning to the non-
persistent state and vice
versa

Frequent stops slow-down ag-
gregation (Figure 8A), but the
final aggregation result is sim-
ilar after a longer simulation
time (Figure 9)

pilC mutants stay in non-
persistent state longer

pilC agents use WT
data for the duration
and speed of the non-
persistent state and vice
versa

Longer stops slow-down aggre-
gation (Figure 8B), but the fi-
nal aggregation result is sim-
ilar after a longer simulation
time (Figure 9)

Run duration for pilC
mutants shows lesser de-
pendence on cell density
and smaller bias

pilC agents use WT data
for persistent duration
and vice versa.

Smaller bias and difference be-
tween inside and outside ag-
gregates for run durations im-
pedes aggregation (Figure 8C).

pilC mutants do not show
speed reduction inside
the aggregates.

pilC agents scaled persis-
tent speed to match WT
data for and vice versa.

Lack of speed reduction inside
the aggregates impedes aggre-
gation (Figure 8D).

Stopping probabilities in-
side and outside aggre-
gates is less pronounced
for csgA mutants

csgA agents use WT data
for the probability of
transitioning to the non-
persistent state for and
vice versa

Density-dependence of stop-
ping probability does not have
major effect on aggregation
(Figure 10A).

Stop durations inside and
outside aggregates is less
pronounced for csgA mu-
tants

csgA agents use WT
data for the duration
and speed of the non-
persistent state and vice
versa

Density-dependence of stop-
ping slightly impedes aggrega-
tion (Figure 10B).

csgA mutants have a
weaker bias but longer du-
ration in persistent state
compared with WT

csgA agents use WT data
for the duration of the
persistent state
Scaled the persistent du-
ration of csgA agents to
match mean values of
WT

While longer persistent dura-
tion helps csgA aggregation
(Figure 11), the weaker bias
has an opposite and stronger
effect. Overall, compare with
other behaviors, csgA persis-
tent duration impedes aggre-
gation more (Figure 10C).

csgA mutants have faster
speed in persistent state

csgA agents use WT data
for the persistent speed
and vice versa

Faster speed speeds up aggre-
gation (Figure 10D).
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