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A Path Planning Framework for a Flying Robot in Close Proximity of
Humans
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Abstract— We present a path planning framework that takes
into account the human’s safety perception in the presence
of a flying robot. The framework addresses two objectives:
(i) estimation of the uncertain parameters of the proposed
safety perception model based on test data collected using
Virtual Reality (VR) testbed, and (ii) offline optimal control
computation using the estimated safety perception model. Due
to the unknown factors in the human tests data, it is not
suitable to use standard regression techniques that minimize
the mean squared error (MSE). We propose to use a Hidden
Markov model (HMM) approach where human’s attention
is considered as a hidden state to infer whether the data
samples are relevant to learn the safety perception model.
The HMM approach improved log-likelihood over the standard
least squares solution. For path planning, we use Bernstein
polynomials for discretization, as the resulting path remains
within the convex hull of the control points, providing guar-
antees for deconfliction with obstacles at low computational
cost. An example of optimal trajectory generation using the
learned human model is presented. The optimal trajectory
generated using the proposed model results in reasonable safety
distance from the human. In contrast, the paths generated
using the standard regression model have undesirable shapes
due to overfitting. The example demonstrates that the HMM
approach has robustness to the unknown factors compared to
the standard MSE model.

I. INTRODUCTION

In the last decade, multi-rotor copters have seen immense
growth in popularity, not only as a research platform, but also
as a commercial and industrial device. By 2020, the market
for these devices is expected to attain a value of $11.2 billion
with an annual growth of over 30% [1]. The mechanical sim-
plicity, the ability to hover and the maneuverability of these
flying robots justify their use in civilian applications such as
media production, inspection, and precision agriculture. The
inclusion of these micro unmanned aerial vehicles (UAVs)
in our day-to-day lives brings immediate benefits to society.
As an example, by using fast and cheap UAVs, delivery
from major retailers like Amazon and Walmart, can keep
a reduced inventory resulting in cost-effective warehouse
management. Additionally, by exploring their small and
lightweight form factor and substantially leveraging their
agility and reliability, applications in elderly care, medicine,
transportation and mobile surveillance are being developed.
In all these examples, it is important to fly safely near people
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and navigate in densely populated areas. Unlike current
mobile robots that autonomously operate without considering
humans, these flying collocated and cooperative robots (co-
robots) are intended to interact and cooperate with people in
a shared and constrained environment.

It is a long tradition in robot control and motion planning
to focus on the robot’s actual safety, i.e., the ability to gener-
ate safe paths that avoid collisions with obstacles. However,
this is insufficient for robots operating in human congested
areas. Studies of human perception have shown that there is
a sharp distinction between human perceived safety and the
actual safety. This paper presents a path planning framework
that takes into account the human’s safety perception in
the presence of a flying robot. Human’s safety perception
is predicted based on data collected from physiological
experiments in a virtual reality (VR) environment. In the
VR experiment, the participants experience a robot flying in
the proximity, and the physiological signals and the position
coordinates of the flying robot are recorded simultaneously.

There are a number of unknown factors present in the
data collected from these experiments. Naively assuming the
unknown factor to be an independent identically distributed
(i.i.d.) Gaussian noise model would not be suitable for the
data where only partial observation of the state of the system
is provided. However, the i.i.d. Gaussian noise assumption
is popularly used for regression tasks, since maximizing the
likelihood for estimation task conveniently reduces to the
mean squared error (MSE) minimization problem. In [2], a
recurrent neural network (RNN) is applied to predict music
mood (valence), where the coefficient of determination' with
a recurrent neural network (RNN) is at most 50% [2]. The
undesired goodness of fit despite the highly complex models
used in the previous papers suggests that the other factors
not contained in the data may influence the outcome of the
human test. To overcome the issue, we propose to use a
Hidden Markov Model [3] approach, which divides the data
samples into two clusters: (i) relevant samples where the
target variable (physiological arousal) can be predicted as a
function of the feature (robot’s position and velocity); (ii)
irrelevant samples where it is better predicted by a random
source than a function of the feature. The prediction model
estimated with the help of the relevant samples is incorpo-
rated in the optimal path planning framework to take into
account the human’s safety perception. In the optimal path
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planning, the flight path is parameterized using Bernstein
polynomials, which ensures that the path remains inside the
convex hull of its control points [4]. This feature helps to
have collision avoidance guarantees at low computational
cost.

A. BACKGROUND

Human’s perception of a flying robot dependent upon its
spatial and temporal variables (e.g. distance and speed) has
been studied using virtual reality testbed, and as well using
a real flying robot. A comfortable distance for a flying robot
to approach a human was studied in [5], where the authors
tested the effects of the size of the robot on the comfort levels
of the human subjects using behavioral, physiological, and
survey measures. Distancing with the robot and interaction
preference between two differently behaving robots were
investigated for speed and repeating behavior (cyclicity)
using VR experiments, [6].

On the other hand, various design approaches to the
human-aerial-robot system have been explored again for the
purpose of ensuring comfort for humans. Laban effort [7] is
employed to design affective locomotion for a flying robot
in [8], and the effect on arousal and valence due to the
design parameter of the locomotion is tested. Emotional
encoding in a flight path of a robot was investigated in [9],
where the encoding is derived from characterizing stereo-
types of personality and motion parameters using interaction
vocabulary. In [10], the authors propose a flight path design
approach, which improves the ease of human’s perception of
the robot’s motion, and the proposed design is tested using
survey measures.

In the papers cited above, the focus is on either discovering
a general model in human-aerial-robot interaction based on
the empirical data or devising a heuristic method to improve
the acceptability of the robot for humans. However, the
sparse and qualitative model stated in the form of null hy-
pothesis testing is not straightforward to apply for engineers,
who intend to use it with an optimal design technique. In the
proposed framework, we estimate the uncertain parameters
of a human’s physiological signal model, then the estimated
parametric model is considered as a cost to minimize in the
optimal path planning task.

The remainder of the paper is organized as follows. In
Section II, the VR experiment set-up is described, and the
preliminary finding that relates the physiological arousal to
the perceived safety is introduced. In Section III, we propose
a model to address the influence of unknown factors and
validate it against the VR experimental data. In Section
IV, the optimal path planning that takes into account the
human arousal model is presented. Section V summarizes
and discusses future directions.

II. VR EXPERIMENT AND DATASET

Virtual Reality offers a safe, low-cost, and time efficient
method to collect data [6]. For example, the precise coordi-
nates of the human and robot can easily be recorded in real-
time, which is useful for studying spatial-temporal variables

Fig. 1: Flying robot observed in the
VR environment (an illustration video at
https://youtu.be/XnaXzdH1xUA).

—20
15

Fig. 2: Flight paths.

in human behavior. To this end, we have developed a VR
test environment to explore human-aerial-robot interactions
in a variety of experimental scenarios [11], [12]. Concurrent
psychophysiological reactions of participants are recorded in
terms of head motion kinematics and electrodermal activ-
ity (EDA), and time-aligned with attributes of the robot’s
flight path, e.g. velocity, altitude, and audio profile. During
the experiment, participants were introduced to the virtual
environment (VE) and told that they would experience a
simulation of an urban scene lasting approximately ten
minutes. Participants were seated at the junction of a three-
way intersection with unoccluded paths in the forward, left,
and right direction. Three arbitrary trajectories conforming to
the shape of the intersection were chosen and reversed, for a
total of six unique trajectories (1.6 m altitude) (see Figure 2).
We collected the data from 56 participants (20 males / 36
females) recruited from our university.

The skin conductance signal is preprocessed by EDA
analysis package, Ledalab, to generate the phasic activation
signal [13]. The EDA toolbox decomposes the skin conduc-
tance signal into phasic and tonic signal as shown in Figure 3.
The phasic signal is then deconvolved to determine phasic ac-
tivation; phasic activation represents an instantaneous arousal
response.

To our knowledge, there has been no standard index of
perceived safety in the literature. Although physiological
measurements of arousal (e.g., EDA) alone are not neces-
sarily equivalent to people’s perceived safety, several pieces
of evidence suggest that the EDA measure of physiological
arousal in our study is closely related to people’s anxiety
induced by the approaching drone. For example, in a follow-
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Fig. 3: EDA analysis result (phasic/tonic decomposition and
deconvolution to determine phasic activation).

up experiment examining the effects of path height on
people’s EDA responses, we found that the EDA phasic
response was significantly stronger for a drone approaching
at eye-height, where a potential collision was possible, than
when the drone was flying at a height beyond the observer’s
head, where there is no danger of collision, even though all
other characteristics of the drone movement were the same.
These results suggest that such arousal was most likely due
to people’s anxiety in response to approaching danger rather
than general excitement caused by watching flying robots.
Thus, in the following sections we consider the EDA signal
as an operational approximation of the human’s perceived
safety for the optimal path generation algorithm.

III. THE PROPOSED MODEL

We aim to develop a data-driven model that predicts the
phasic activation (arousal), given the robot’s position and
velocity. Let y, € R denote the phasic activation, where n
is the time index. The input (feature) variable, denoted by
x, € R8, is the vector that contains the distance to the robot,
the rate of change of the distance, the Cartesian position
coordinates, and the velocity coordinates. Despite the high-
fidelity test environment, it is impossible to measure every
stimulus on the subject, i.e. there are unknown factors in the
data. As an example, one of our collected datasets, shown
in Figure 4, illustrates the unknown factors’ presence in the
data. One can notice an increase in the phasic activation in
the shaded area, although the flying robot is far away and

virtually invisible to the subject.

To account for the unknown factors in the data, we
hypothesize that the unexpected spike of the phasic activation
in Figure 4 is due to the change of the participant’s focus of
attention, i.e. the participant is distracted by some other stim-
ulus. Inspired by the work in [14], we model the sequential
dependence of the (hidden) human’s focus of attention using
a Hidden Markov Model (HMM). The HMM has two states
represented by the latent variable that models the human’s
attention state, which we denote by

1,
Zn — 2

if the human is attentive to the robot,
otherwise.

Phasic activation [uS]
©

T T T T T T
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— 100 4
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o
=
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Fig. 4: Phasic activation signal induced by the flying robot.
The shaded box indicates the response, where the robot is in
far distance (greater than 60 [m]).

Then z, is modeled by a homogeneous Markov chain with
the following probability transition equation:

Tuy1 = TRA. (N

The vector m; := [p(z, = 1),p(zn = 2)] is the stochastic
row vector for the distribution over the state z,, and A €
R?*2 denotes the transition probability matrix of the Markov
chain’. The initial distributions 7 and A are the parameters

of the Markov chain.
The attention state variable z, assigns one of the two
output emission models fg(x,)+ € or an independent random

source & as follows
yn =1, —1y(fp(xn) +€) + 1, —0,0, 2

where 14 denotes the indicator function, and fﬁ ‘R 5 Ris
a function fg(x) := B ¢(x), which is linearly parameterized
with B and basis ¢(x), € ~ .#(0,06%), and § denotes the
random source. As seen in (2), y, depends on x, when
z, = 1; however, y, = 6 when z, =2, i.e. it is modeled as an
independent random signal. In (2), it can be seen that one
of the two regression functions of the models y, = fg(xx)
and y, = & is chosen based on the likelihood given the
observation (x,,yn).

In addition to the hypothetical binary HMM that models
the change of human’s attention, we further hypothesize
that the unexpected spike of the activation signal follows a
multimodal distribution. We employ a mixture of Gaussians
to model & for the multimodal distribution. The Gaussian
mixture model (GMM) allows a multi-modal and skewed
distribution in contrast to the Gaussian distribution. The
density of the mixture model for § is defined by another
latent variable w, € {1,...,K} as follows:

p(8lwn =k) = A (8|, 0F), pwn=k)=cr, (3)

where ¢; are the mixing coefficients such that Z,’le =1,
A (8|1, o) denotes a Gaussian density function of § with

2We used p(-) for both probability and probability density; its distinction
easily follows from the context.
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the mean pu and the variance o>. We assume that w, is
independent and identically distributed. Also, it is assumed
that w,, and z, are independent, and furthermore, w, and z,
are conditionally independent, given the observation (x,,yn).

A. Model Parameter Estimation

The model defined by (1) - (3) has a set of parameters
denoted by 6 := {B,u,0,m,A,{ci,li,0:}X | }. Given the
dataset x:= {xp,...,xy} and y := {y1,...,yn}, the parameter
of the model is estimated by the maximum likelihood esti-
mation (MLE) through the following conditional likelihood
equation:

argmax p(y|x,0) = argmaxZ’Zp(y,z,w|x7 0), ()
6 0 Z W

where the summation takes place over all possible
sequences Zz := {z1,...,zv} and w:= {wy,...,wy}. The
number of terms for the summation is 2VKY, which makes
the optimization intractable for large number of samples.
Due to this challenge, Expectation-Maximization (EM)
algorithm [15] is widely used to obtain the MLE for HMM.

EM Algorithm: Assume the complete data (x,y,z,w) is
available. Using the independence assumption on wy, z, and
the Markov chain property as defined in (1), the conditional
likelihood is calculated as follows:

p(y,z,w|x,0) =
N ©)
plzi|m) { P(znlzn—1,A)
n=2

N
HP(WH|9)P(J’n|ZmWn:xm 0),
n=1

where z := {z,...,2v} and w:= {wy,...,wy}. The EM
algorithm iteratively maximizes the likelihood using the pos-
terior p(z,w|x,y,8°) and the likelihood for the supposed
complete data p(y,z,w|x,0), as summarized in Algorithm 1.
Due to the space limitation, we defer the detailed calculation
of EM algorithm for the proposed model to the online full
version [16].

In contrast to standard regressions that minimize the mean
squared error (MSE), the latent variable model (HMM)
determines the parameter of the prediction model fg(x) as
the weighted least squared error solution with the weight of
the posterior P(z,,1]x,y,0°9) as follows:

N
B* = arg;nin Z P(zn,1/X,y, GOId)(yn —/p (xn))z,
n=1
where P(z,1]x,y,0°¢) denotes P(z, = 1|x,y,0°“). The
proposed method puts greater weight on the samples, which
are more relevant to the input based on the posterior of the
attention state.

B. RESULT
We choose the following initial parameter 6°:
1) B0:= argming ZnN:1 (n—1p (xn))?, and 6% = 0.5,

2) A0 = W% }?ﬂ and 79 == [1/2,1/2),

3) cg = 1/K, 0',9 =1, and y; are randomly chosen from the
interval,[—1, 1],
where K is the number of the Gaussian basis of the GMM.
For the linear function f3(x) := BT ¢ (x), we choose the basis
functions ¢(x) as polynomials with degree 3.

Algorithm 1 EM Algorithm for MLE of 0

Initialize the parameter, 6°'4 with 6°.

repeat
1. Determine the posterior, p(z, w|x,y, 8°/¢).
2. Calculate Q(6,0°/4):

Z,W

which is the expectation of log p(y,z, w|x, 8) with respect
to the posterior.
3. Find the maximizer, 6*

0* = argmax Q(6,0°),
0

4. Update 6° with 6*.
until convergence.

Gaussian Noise
Model

o K=1 K=2 K=3
- . .
-1000

-1500

Proposed Model

-2000

-2500

Log-likelihood

-3000
-3500

-4000

Fig. 5: Log-likelihood with test data. K denotes the number
of Gaussian basis in the equation (3).

The i.i.d. Gaussian noise model (MSE minimization ap-
proach) is contained in the proposed model structure as
a special case, p(z, = 1) = 1, i.e. the arousal is always
explained by fg(x) than the random source 8. We would like
to know whether the proposed model is better than the MSE
minimization approach. To determine which model is more
suitable, we calculate the likelihood with fest dataset. We
randomly partition the data from 56 subjects into a training
set with 38 subjects and a test set with the other 18 subjects.
Figure 5 shows the log-likelihood with test data set for the
models: (i) the Gaussian i.i.d. noise model, (ii) the proposed
model with a different basis K of GMM. We see that there
is a significant increase in the likelihood using the proposed
model as compared to the Gaussian i.i.d. noise model (or the
MSE minimization model).

We fix the proposed model with K = 2, since a greater
number of basis does not result in significant improvement
in likelihood, as shown in Figure 5. The function fg with
the fixed model is used to predict the phasic activation
(arousal) as shown in Figure 6. Figure 6 shows that the MSE
minimization approach has signs of over-fitting (oscillation
and spiky shape). In the following section, optimal path
planning with the prediction model is presented.
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Fig. 6: Prediction, § = f(x), where the phasic activation

signals, are normalized for each subject.

IV. OPTIMAL PATH PLANNING

The ability to generate a safe path while considering
human’s safety perception (using the prediction function
/() is necessary for our optimal path planning task. To
meet the requirement, we employ the trajectory generation
method from [4], [17]. To ensure spatial separation of the
robot’s path from obstacles, we use Bernstein polynomials
to discretize trajectories. Bernstein polynomials are useful
for checking collision avoidance, as the convex hull of the
vertices determined from the coefficients of the Bernstein
polynomial contains the flight path. As shown in Figure 7,
splitting the Bernstein polynomial curve with De Casteljau’s
algorithm [18], we can determine the convex hulls that tightly
contain the curve. The convex hull is used to check for
collision between the vehicle and the obstacles.

10 4

T T T T
0 2 4 6
x [m]

Fig. 7: Convex hulls (gray) containing the flight path (blue).

Polynomial interpolation of state trajectories has been used
to determine numerical approximate solutions to optimal path
planning. For example, an interpolation polynomial with the
Legendre-Gauss-Lobatto (LGL) time nodes has been used to

solve an optimal control problem in [19]. In [17] it is shown
that using Bernstein polynomials the optimal control solution
can be approximated sufficiently closely as the number of
time-nodes increases, while at the same time ensuring spatial
separation from obstacles. In our path planning framework,
we use the LGL quadrature [19] to approximately calculate
the cost to minimize, and we use Bernstein polynomials to
check for collision avoidance [4].

A. Finite Dimensional Optimization

Both Bernstein polynomial curves and interpolation
polynomial curves with LGL nodes are two equivalent
parametrizations for a polynomial trajectory. Consider a 2D
trajectory time function p(z) := [x(¢),y(t)]" as an n'* order
polynomial in x(¢) and y(¢). We present a brief overview of
both equivalent representations.

1) A degree n Bernstein polynomial is given by:

()= Y BB, C:l0.] = (0.1, £) =",
k=0

where b7({) == (1) (1-¢)" ¢k, £ €[0,1], represents
the polynomial basis, and the coefficients p, are called

control points of the Bernstein polynomial.
2) The interpolation curve is represented as:

p()= Y. (). m:[0.17] = [~1.1], "(t)::%t_l’
r 1

where p, are interpolation points at time nodes #;, and
(M (1)) = To<i<n,izk (%) are the Lagrange
polynomial basis.
The n'" order polynomial trajectories can be parameterized
by either n+ 1 control points p;, or n+ 1 interpolation points
Py and the transformation between the control points and the
interpolation points can be done using matrix multiplication.
The optimal path planning is formulated as the following
finite dimensional optimization:
_argrr_lin J([_)(), cee 71_)n’tf)7
Pos---Ppitf
subject to collision avoidance constraint,

velocity and acceleration constraint,

where  J(Pg,...,P,,tr) is the LGL quadrature of
féf L(p(2),p(¢))dt calculated by the method in [19],
and L(p(z),p(¢)) is the running cost to be minimized in time
average. Constraint equations for collision avoidance and
velocity acceleration can be written as functions of control
points Py, ...,p, by following the methodology in [4].

B. Optimal Path Planning in the Presence of Humans

Define x(¢) in the same way as we defined x, in (2),
where x(¢) € R® contains the distance to the robot, the
rate of change of the distance, the position coordinates and
the velocity coordinates at time f. Notice that with the
polynomial path p(z) and p(¢f) one can directly construct
x(r). For this reason, to simplify the notation we can use
x(t) and (p(¢),p(¢)) interchangeability as arguments of the
functions fg(-), J(-) and L(-).
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Fig. 8: Optimal path generation with two models.

In the optimal path planning, we only consider values of
f[; larger than a threshold b,, where b, > 0 is essentially a
tuning parameter. Intuitively, we ignore arousal levels below
the threshold. To make the optimization problem tractable,
instead of adding a strict constraint to the minimization
problem, the constraint is incorporated in the running cost
as a penalty function [20]:

L(p(1),p(1)) := 1+ ymax(0, f5 (x()) — ba)?, (6)

where 7 is the penalty coefficient. The corresponding cost
function J(py, ..., P,,tr) becomes

tf
JBor - Puoty) =17 +7 /0 max (0, £ (x(1)) —ba)?dr.  (7)

The two arousal prediction functions are used in the
optimal flight trajectory generation, as shown in Figure 8a
and Figure 8b. The smaller value of b, results in a path that
is more safety conscious, as intended by the running cost
function in (6). Flight paths generated with the proposed
model show the desirable behavior, as shown in Figure 6
(decreasing b, results in greater distance from the human).
However, the paths with the MSE minimization model have
unconvincing shapes. It shows that the arousal prediction
model which only minimizes MSE does not generalize in
the optimal path generation task.

V. CONCLUSION

We present a path planning framework that takes into ac-
count human’s safety perception. Psychophysiological reac-
tions for different paths of flying robots in VR were collected
to estimate the arousal prediction model. To consider the
unknown factor in the data, we proposed a hidden Markov
model approach. Compared to the mean squared error (MSE)
minimization approach (due to i.i.d. Gaussian noise model),
the proposed model has improved the likelihood significantly.
When the arousal prediction functions are implemented in
the optimal path planning, the flight paths with the proposed
model show desirable behaviors, in contrast to the uncon-
vincing flight paths with the MSE minimization approach.
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