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Abstract— We present a direct method for the solution
of nonlinear optimal control problems based on Bernstein
polynomial approximations. We show, using a rigorous setting,
that the proposed method yields consistent approximations of
time continuous optimal control problems. We demonstrate that
the method can also be used for the estimation of optimal
control problems costates. This result leads to the formulation
of the Covector Mapping Theorem for Bernstein polynomial
approximation. Finally, we exploit the numerical and geometric
properties of Bernstein polynomials, and illustrate the advan-
tages of the method through numerical examples.

I. INTRODUCTION

Optimal control problems that arise in most engineering
applications are in general very complex. Finding a closed-
form solution to these problems can be difficult or even
impossible, and therefore they must be solved numerically.
Direct methods, for example, are based on transcribing
optimal control problems into nonlinear programming prob-
lems (NLPs) using some discretization scheme [1]–[4], and
solving the latter by using ready-to-use NLP solvers (e.g.
MATLAB, SNOPT, etc.). Pioneering work on direct methods
includes that of Polak on the consistency of approximation
theory [5], which provides a theoretical framework to assess
the convergence properties of direct methods. Motivated
by [5], a wide range of direct methods that use different
discretization schemes have been developed, including Euler
[5], Runge-Kutta [6], and Pseudospectral (PS) [7] methods.

Pseudospectral methods are the most popular direct meth-
ods nowadays, mainly due to their spectral (exponential) rate
of convergence and their successful application to solve a
wide range of optimization problems, e.g. [7]–[9]. However,
as pointed out in [10]–[12], there is one salient disadvan-
tage associated with these methods. When discretizing the
state and/or the input, the constraints are enforced at the
discretization nodes and satisfaction of constraints cannot
be guaranteed in between the nodes. To mitigate this draw-
back, the order of approximation (number of nodes) can
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be increased; however, this leads to larger NLPs, which
may become computationally expensive and too inefficient
to solve. This problem does not limit itself to PS methods,
but it is common to methods that are based on discretization.
Pseudospectral methods also suffer from a drawback when
dealing with non-smooth optimal control problems. This is
mainly related to the Gibbs phenomenon [13], common to
approximation methods based on orthogonal polynomials.
This phenomenon, visible in the form of oscillations, reduces
the accuracy of the approximation to first order away from
discontinuities and to O(1) in the neighborhoods of jumps
[14]. Several extensions of PS methods have been developed
to deal with this disadvantage and lessen the effect of the
Gibbs phenomenon (e.g. [15]–[17]). Some methods require
the location of the discontinuities to be known a priori, which
is often impractical or difficult. Other methods estimate
these locations, which could result in inefficiency or ill
conditioning of the discretized problem, especially when the
number of discontinuities is large and unknown.

We propose a direct method based on Bernstein approx-
imations. The latter have several nice properties. First, the
approximants converge uniformly to the functions that they
approximate, and so do their derivatives [18]. Moreover,
Bernstein polynomials behave well even when the functions
being approximated are non-smooth. As demonstrated in
[19], the Gibbs phenomenon does not occur when approxi-
mating piecewise smooth, monotone functions with left and
right derivatives at every point by Bernstein polynomials.
Thus, the proposed method based on Bernstein approxima-
tion lends itself to problems that have discontinuous states
and/or controls, e.g. bang-bang optimal control problems
(see also [20]). Finally, due to their geometric properties,
Bernstein polynomials yield computationally efficient algo-
rithms for the computation of constraints for the whole
time interval where optimization takes place, and not only
at discretization points (see [18], [21], [22]). Hence, with
the proposed approach the solutions can be guaranteed to
be feasible and satisfy the constraints for all times, while
retaining the computational efficiency of direct methods.

Bernstein approximations converge slower than other in-
terpolation or approximation techniques. In fact, the ap-
proach proposed in the present paper is outperformed by, for
example, PS methods in terms of convergence rate. This is
not surprising, since the choice of nodes and the interpolating
polynomials in the PS methods are dictated by approximation
accuracy and convergence speed, while sacrificing satisfac-
tion of constraints in between the nodes. On the other hand,
our approach prioritizes constraint satisfaction at the expense
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of a slower convergence rate.
The paper is structured as follows: Section II presents

preliminary mathematical results. Section III introduces the
optimal control problem of interest and the proposed dis-
cretization method. Section IV demonstrates that the method
yields consistent approximations to the optimal solution. Sec-
tion V derives the Karush–Kuhn–Tucker (KKT) conditions
associated with the NLP, and compares these conditions with
the first order optimality conditions for the original optimal
control problem. Numerical examples are discussed in Sec-
tion VI. The paper ends with conclusions in Section VII.

II. MATHEMATICAL BACKGROUND

The N th order Bernstein polynomial xN : [0, 1]→ Rn is
given by

xN (t) =
N∑
j=0

x̄j,Nbj,N (t) , t ∈ [0, 1] , (1)

where x̄0,N , . . . , x̄N,N are Bernstein coefficients, and
bj,N (t) =

(
N
j

)
tj(1− t)N−j , j ∈ {0, . . . , N} is the Bernstein

basis of degree N with
(
N
j

)
= N !

j!(N−j)! . The derivative and
integral of xN (t) are computed as

ẋN (t) = N
N−1∑
j=0

(x̄j+1,N − x̄j,N )bj,N−1(t) ,

∫ 1

0

xN (t)dt = w
N∑
j=0

x̄j,N , w =
1

N + 1
. (2)

A vector valued function x : [0, 1] → Rn can be
approximated by the N th order Bernstein polynomial xN (t)
computed as in (1) with x̄j,N = x(tj) and tj = j

N , i.e.

xN (t) =
N∑
j=0

x(tj)bj,N (t) , tj =
j

N
. (3)

Lemma 1 ([23], [24]): Let x(t) ∈ C0n on [0, 1]. Then,
xN (t) given by (3) satisfies

||xN (t)− x(t)|| ≤ C0Wx(N−
1
2 ) , ∀t ∈ [0, 1],

where C0 is a positive constant satisfying C0 < 5n/4, and
Wx(·) is the modulus of continuity of x(t) in [0, 1]. If x(t) ∈
C1n, then

‖ẋN (t)− ẋ(t)‖ ≤ C1Wx′(N
− 1

2 ) , ∀t ∈ [0, 1],

where C1 is a positive constant satisfying C1 < 9n/4 and
Wx′(·) is the modulus of continuity of ẋ(t) in [0, 1].

Lemma 2 ([25]): Assume x(t) ∈ Cr+2
n , r ≥ 0. Then,

xN (t) computed as in (3) satisfies

||xN (t)− x(t)|| ≤ C0

N
, . . . , ||x(r)

N (t)− x(r)(t)|| ≤ Cr
N

,

∀t ∈ [0, 1], where x(r)(t) denotes the rth derivative of x(t),
and C0, . . . , Cr are positive constants independent of N .

Lemma 3: If x(t) ∈ C0n on [0, 1], then we have∥∥∥∥∥∥
∫ 1

0

x(t)dt− w
N∑
j=0

x

(
j

N

)∥∥∥∥∥∥ ≤ CIWx(N−
1
2 ) ,

with w = 1
N+1 , where CI > 0 is independent of N .

Moreover, if x(t) ∈ C2n, then∥∥∥∥∥∥
∫ 1

0

x(t)dt− w
N∑
j=0

x

(
j

N

)∥∥∥∥∥∥ ≤ CI
N

.

The Lemma above follows directly from Lemmas 1 and 2
and Equation (2).

III. PROBLEM FORMULATION

Consider the following optimal control problem:
Problem 1 (Problem P ): Determine x : [0, 1]→ Rnx and

u : [0, 1]→ Rnu that minimize

I(x(t),u(t)) = E(x(0),x(1)) +

∫ 1

0

F (x(t),u(t))dt , (4)

subject to: ẋ = f(x(t),u(t)) , ∀t ∈ [0, 1], (5)
e(x(0),x(1)) = 0 , (6)
h(x(t),u(t)) ≤ 0 , ∀t ∈ [0, 1] , (7)

where E : Rnx×Rnx → R and F : Rnx×Rnu → R are the
terminal and running costs, respectively, f : Rnx × Rnu →
Rnx describes the system dynamics, e : Rnx × Rnx → Rne

is the vector of boundary conditions, and h : Rnx ×Rnu →
Rnh is the vector of state and input constraints.

The following assumptions hold:
Assumption 1: E, F , f , e, and h are Lipschitz continuous

with respect to their arguments.
Assumption 2: Problem P admits optimal solutions x∗(t)

and u∗(t) that satisfy x∗(t) ∈ C1nx
and u∗(t) ∈ C0nu

.
In what follows we formulate a discretized version of

Problem P , hereafter referred to as Problem PN , where N
denotes the order of approximation. First, consider the N th
order vectors of Bernstein polynomials

xN (t) =

N∑
j=0

x̄j,Nbj,N (t), uN (t) =

N∑
j=0

ūj,Nbj,N (t), (8)

with xN : [0, 1] → Rnx , uN : [0, 1] → Rnu , x̄j,N ∈
Rnx and ūj,N ∈ Rnu . Let x̄N ∈ Rnx×(N+1) and ūN ∈
Rnu×(N+1) be defined as x̄N = [x̄0,N , . . . , x̄N,N ], ūN =
[ū0,N , . . . , ūN,N ]. Let tj = j

N , j ∈ {0, . . . , N}. Then,
Problem PN can be stated as follows:

Problem 2 (Problem PN ): Determine x̄N and ūN that
minimize
IN (x̄N , ūN ) =

E(xN (0),xN (tN )) + w
N∑
j=0

F (xN (tj),uN (tj)) , (9)

subject to ‖ẋN (tj)− f(xN (tj),uN (tj))‖ ≤ δNP , (10)
e(xN (0),xN (tN )) = 0 , (11)

h(xN (tj),uN (tj)) ≤ δNP 1 , (12)

4293

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2020 at 18:18:44 UTC from IEEE Xplore.  Restrictions apply. 



∀j = 0, . . . , N , where w = 1
N+1 , and δNP is a small positive

number that depends on N and satisfies limN→∞ δNP = 0.
Remark 1: The relaxation bound δNP is introduced to

guarantee that Problem PN has a feasible solution. It can
be made arbitrarily small by choosing a sufficiently large
order of approximation N .

IV. FEASIBILITY AND CONSISTENCY OF PROBLEM PN

The outcome of Problem PN is a set of optimal Bern-
stein coefficients x̄∗N and ū∗N that determine the vectors of
Bernstein polynomials x∗N (t) and u∗N (t), i.e.

x∗N (t) =
N∑
j=0

x̄∗j,Nbj,N (t), u∗N (t) =
N∑
j=0

ū∗j,Nbj,N (t) . (13)

We now address the following: (i) existence of a feasible
solution to Problem PN , and (ii) convergence of the pair
(x∗N (t),u∗N (t)) to the optimal solution of Problem P , given
by (x∗(t),u∗(t)). The main results of this section are
summarized in Theorems 1 and 2 below.

Theorem 1 (Feasibility): Let

δNP = CP max{Wx′(N
− 1

2 ) , Wx(N−
1
2 ) , Wu(N−

1
2 )} ,

(14)
where CP is a positive constant independent of N , and
Wx′(·), Wx(·) and Wu(·) are the moduli of continuity of
ẋ(t), x(t) and u(t), respectively. Then, Problem PN is
feasible for any arbitrary order of approximation N ∈ Z+.

Proof: Let x(t) and u(t) be a solution for Problem P ,
which exists by Assumption 2. Define

x̄k,N = x(tk), ūk,N = u(tk), ∀k ∈ {0, . . . , N} . (15)

Next we show that the above polynomials satisfy the con-
straints in (10), (11) and (12), with δNP defined in (14).
Lemma 1 and Assumption 2 imply that

||xN (t)− x(t)|| ≤ CxWx(N−
1
2 ) ,

||uN (t)− u(t)|| ≤ CuWu(N−
1
2 ) ,

||ẋN (t)− ẋ(t)|| ≤ Cx′Wx′(N
− 1

2 ) ,

(16)

for all t ∈ [0, 1], where xN (t) and uN (t) are computed as in
Equation (8) with Bernstein coefficients given by Equation
(15), Cx < 5nx/4, Cu < 5nu/4, and Cx′ < 9nx/4.
Subtracting ẋ(tk)− f(x(tk),u(tk)) = 0 from the left hand
side of Equation (10) yields

||ẋN (tk)− f(xN (tk),uN (tk))|| ≤ ||ẋN (tk)− ẋ(tk)||
+ ||f(xN (tk),uN (tk))− f(x(tk),u(tk))|| .

Using Equation (16) and the fact that f is Lipschitz (see
Assumption 1) with Lipschitz constant Lf , we obtain

||ẋN (tk)− f(xN (tk),uN (tk))|| ≤
(Cx′ + Lf (Cx + Cu))Wmax ,

with Wmax = max{Wx′(N
− 1

2 ),Wx(N−
1
2 ),Wu(N−

1
2 )}.

Thus, the dynamic constraint in Equation (10) is satisfied
with δNP given by Equation (14). The satisfaction of con-
straints (11) and (12) follows similarly from Assumption 1.

Corollary 1: From the proof of Theorem 1 it follows that
if x∗(t) ∈ C3nx

and u∗(t) ∈ C2nu
, then Theorem 1 holds with

δNP = CPN
−1 , where CP > 0 is independent of N .

Theorem 2 (Consistency): Let {(x̄∗N , ū∗N )}∞N=N1
be a

sequence of optimal solutions to Problem PN , and
{(x∗N (t),u∗N (t))}∞N=N1

a sequence of Bernstein polynomi-
als, given by (13). Assume {(x∗N (t),u∗N (t))}∞N=N1

has a
uniform accumulation point, i.e.

lim
N→∞

(x∗N (t),u∗N (t)) = (x∞(t),u∞(t)) , ∀t ∈ [0, 1],

(17)
and assume ẋ∞(t) and u∞(t) are continuous on [0, 1]. Then,
(x∞(t),u∞(t)) is an optimal solution for Problem P .

Proof: The proof is divided into three steps: (1) we prove
that (x∞(t),u∞(t)) is a feasible solution to Problem P ; (2)
we show that limN→∞ IN (x̄∗N , ū

∗
N ) = I(x∞(t),u∞(t)) ;

(3) we prove that (x∞(t),u∞(t)) is an optimal solution of
Problem P , i.e. I(x∞(t),u∞(t)) = I(x∗(t),u∗(t)) .

Step (1). First, we show by contradiction that
(x∞(t),u∞(t)) satisfies the dynamic constraint of Problem
P , ẋ∞(t)− f(x∞(t),u∞(t)) = 0 . Assume that the above
equality does not hold. Then, there exists t′, such that

||ẋ∞(t′)− f(x∞(t′),u∞(t′))|| > 0 . (18)

Since the nodes {tk}Nk=0, tk = k
N are dense in [0, 1],

there exists a sequence of indices {kN}∞N=0 such that
limN→∞ tkN = t′. Then, from continuity of ẋ∞(t), x∞(t)
and u∞(t), the left hand side of Equation (18) satisfies

||ẋ∞(t′)− f(x∞(t′),u∞(t′))|| =
lim
N→∞

||ẋ∗N (tkN )− f(x∗N (tkN ),u∗N (tkN ))||.

However, the dynamic constraint in Problem PN implies that
limN→∞ ||ẋ∗N (tkN ) − f(x∗N (tkN ),u∗N (tkN ))|| = 0, which
contradicts Equation (18), thus proving that (x∞(t),u∞(t))
satisfies the dynamic constraint in Equation (5). The equality
and inequality constraints in (11) and (12) follow similarly.

Step (2). We need to show that

lim
N→∞

w
N∑
j=0

F (x∗N (tj),u
∗
N (tj)) =

∫ 1

0

F (x∞(t),u∞(t))dt ,

(19)
lim
N→∞

E(x∗N (0),x∗N (tN )) = E(x∞(0),x∞(1)) . (20)

Using Lemma 3, together with the Lipschitz assumption
on F (see Assumption 1) and the continuity of x∞(t)
and u∞(t), we get limN→∞ w

∑N
j=0 F (x∞(tj),u

∞(tj)) =∫ 1

0
F (x∞(t),u∞(t))dt . Finally, applying the convergence

assumption given by Equation (17), the result in Equation
(19) follows. Similarly, using the Lipschitz assumption on
E, one can show that Equation (20) holds.

Step (3). Let ˜̄xk,N = x∗(tk), ˜̄uk,N = u∗(tk),
∀k ∈ {1, . . . , N} and ˜̄xN = [˜̄x0,N , . . . , ˜̄xN,N ], ˜̄uN =
[˜̄u0,N , . . . , ˜̄uN,N ]. One can show that there exists N1 such
that for any N ≥ N1 the pair (˜̄xN , ˜̄uN ) is a feasible solution
of Problem PN , and that

lim
N→∞

IN (˜̄xN , ˜̄uN ) = I(x∗(t),u∗(t)) . (21)
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We note that

I(x∗(t),u∗(t)) ≤ I(x∞(t),u∞(t))

= lim
N→∞

IN (x̄∗N , ū
∗
N ) ≤ lim

N→∞
IN (˜̄xN , ˜̄uN ) ,

(22)

which gives I(x∗(t),u∗(t)) = I(x∞(t),u∞(t)) .

V. COSTATE ESTIMATION FOR PROBLEM P

Let λ(t) : [0, 1] → Rnx be the costate trajectory for
Problem P , and let µ(t) : [0, 1] → Rnh and ν ∈ Rne be
the multipliers. Defining the Lagrangian of the Hamiltonian
as

L(x(t),u(t),λ(t),µ(t)) =

H(x(t),u(t),λ(t)) + µ>(t)h(x(t),u(t)) ,

where H(x(t),u(t),λ(t)) = F (x(t),u(t)) +
λ>(t)f(x(t),u(t)) , the dual of Problem P can be
formulated as follows [26]:

Problem 3 (Problem Pλ): Determine x(t), u(t), λ(t),
µ(t) and ν that satisfy Equations (5), (6), (7) and

µ>(t)h(x(t),u(t)) = 0 , µ(t) ≥ 0 , (23)

λ̇>(t) = −Fx(x(t),u(t))− λ>(t)fx(x(t),u(t)) (24)
− µ>(t)hx(x(t),u(t)) ,

λ>(0) = −ν>ex(0)(x(0),x(1))− Ex(0)(x(0),x(1)) ,
(25)

λ>(1) = ν>ex(1)(x(0),x(1)) + Ex(1)(x(0),x(1)) , (26)

λ>(t)fu(x(t),u(t)) + Fu(x(t),u(t)) (27)
+ µ>(t)hu(x(t),u(t)) = 0 ,

for all t ∈ [0, 1], where subscripts denote partial derivatives.
The following assumptions are imposed on Problem Pλ.
Assumption 3: E,F,f , e and h are continuously differ-

entiable with respect to their arguments, and their gradients
are Lipschitz continuous over their domains of definition.

Assumption 4: Solutions x∗(t), u∗(t), λ∗(t), µ∗(t) and
ν∗ of Problem Pλ exist and satisfy x∗(t) ∈ C1nx

, u∗(t) ∈
C0nu

, λ∗(t) ∈ C1nx
and µ∗(t) ∈ C0nh

in [0, 1].
Remark 2: Problem Pλ implicitly assumes the absence

of pure state constraints in Problem P . If the inequality
constraint in Equation (7) is independent of u(t), then the
costate λ(t) must also satisfy the jump condition λ(t−e ) =
λ(t+e ) + h>x(te)η , where te is the entry or exit time into a
constrained arc in which the inequality constraint is active,
t−e and t+e denote the left-hand side and right-hand side limits
of the trajectory, respectively, and η is a covector [26].

Define the following N th order Bernstein polynomials:

λN (t) =
N∑
j=0

λ̄j,Nbj,N (t), µN (t) =
N∑
j=0

µ̄j,Nbj,N (t), (28)

with λN : [0, 1] → Rnx , µN : [0, 1] → Rnh , λ̄j,N ∈ Rnx

and µ̄j,N ∈ Rnh , and the vector ν̄ ∈ Rne . Finally, let
λ̄N = [λ̄0,N , . . . , λ̄N,N ] , µ̄N = [µ̄0,N , . . . , µ̄N,N ]. With

the above notation, the Lagrangian for Problem PN can be
written as

LN = E(xN (0),xN (tN )) + w
N∑
j=0

F (xN (tj),uN (tj))

+
N∑
j=0

λ>N (tj)(−ẋN (tj) + f(xN (tj),uN (tj)))

+
N∑
j=0

µ>N (tj)h(xN (tj),uN (tj)) + ν̄>e(xN (0),xN (tN )) .

The dual of Problem PN can now be stated as follows:
Problem 4 (Problem PNλ): Determine x̄N , ūN , λ̄N , µ̄N

and ν̄ that satisfy the primal feasibility conditions, namely
Equations (10), (11) and (12), the complementary slackness
and dual feasibility conditions∥∥µ>N (tk)h(xN (tk),uN (tk))

∥∥ ≤ N−1δND ,

µN (tk) ≥ −N−1δND1 , ∀k = 0, . . . , N ,
(29)

and the stationarity conditions∥∥∥∥ ∂LN∂x̄k,N

∥∥∥∥ ≤ δND ,

∥∥∥∥ ∂LN∂ūk,N

∥∥∥∥ ≤ δND , (30)

∀k = 0, . . . , N , where δND is a small positive number that
depends on N and satisfies limN→∞ δND = 0.

At this point one might expect results similar to the ones
in Section IV, i.e. feasibility (Theorem 1) and consistency
(Theorem 2). Nevertheless, similarly to most results on
costate estimation [7], [27], [28], this is not the case, and
additional conditions must be added to Equations (10)-(12),
(29) and (30) in order to obtain consistent approximations of
the solutions of Problem Pλ. These conditions, often referred
to as closure conditions in the literature, are given as follows:∥∥∥∥λ>N (0)

w
+ ν̄>ex(0)(xN (0),xN (tN )) (31)

+Ex(0)(xN (0),xN (tN ))
∥∥ ≤ δND∥∥∥∥λ>N (tN )

w
− ν̄>ex(1)(xN (0),xN (tN )) (32)

−Ex(1)(xN (0),xN (tN ))
∥∥ ≤ δND .

In other words, the closure conditions are constraints that
must be added to Problem PNλ so that the solution of this
problem approximates the solution of Problem Pλ. We notice
that the conditions given above are discrete approximations
of the conditions given by Equations (25) and (26). With this
setup, we define the following problem:

Problem 5 (Problem P closNλ ): Determine x̄N , ūN , λ̄N ,
µ̄N and ν̄ that satisfy the primal feasibility conditions,
namely Equations (10), (11) and (12), the complementary
slackness and dual feasibility conditions (29), the stationarity
conditions (30), and the closure conditions (31) and (32).

The solution of Problem P closNλ presents a set of optimal
Bernstein coefficients x̄∗N , ū∗N , λ̄∗N , µ̄∗N (which determine
the Bernstein polynomials x∗N (t), u∗N (t), λ∗N (t) and µ∗N (t))
and a vector ν̄∗.

In what follows we investigate the ability of the solutions
of Problem P closNλ to approximate the solutions of Problem
Pλ. The main results of this section are summarized below.
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Theorem 3 (Feasibility): Let

δND = CD max{δNP , Wλ′(N
− 1

2 ) , Wλ(N−
1
2 ) , Wµ(N−

1
2 )} ,
(33)

where CD is a positive constant independent of N , δNP
was defined in Equation (14), and Wλ′(·), Wλ(·), and
Wµ(·) are the moduli of continuity of λ̇(t), λ(t) and µ(t),
respectively. Then, Problem P closNλ is feasible for arbitrary
order of approximation N ∈ Z+.

Corollary 2: If solutions x∗(t), u∗(t), λ∗(t), µ∗(t) and
ν∗ of Problem Pλ exist and satisfy ẋ∗(t) ∈ C2nx

, u∗(t) ∈
C2nu

, λ̇∗(t) ∈ C2nx
, and µ∗(t) ∈ C2nh

in [0, 1], then Theorem 3
holds with δNP = CPN

−1 and δND = CDN
−1 , where CP

and CD are positive constants independent of N .
Theorem 4 (Consistency): Let

{(x̄∗N , ū∗u, λ̄∗N , µ̄∗N , ν̄∗)}∞N=N1
be a sequence of solutions

of Problem P clos
Nλ . Consider the sequence of transformed

solutions {(x̄∗N , ū∗N ,
˜̄λ
∗
N , ˜̄µ

∗
N , ν̄

∗)}∞N=N1
, with ˜̄λ

∗
j,N =

λ̄∗j,N
w , ˜̄µ

∗
j,N =

λ̄∗j,N
w , and the corresponding polynomial

approximation {(x∗N (t),u∗N (t), λ̃∗N (t), µ̃∗N (t), ν̄∗)}∞N=N1
.

Assume that

lim
N→∞

(x∗N (t),u∗N (t), λ̃∗N (t), µ̃∗N (t), ν̄∗) =

(x∞(t),u∞(t), λ̃∞(t), µ̃∞(t), ν̄∞) , ∀t ∈ [0, 1],

and assume ẋ∞(t), u∞(t), ˙̃
λ∞(t) and µ̃∞(t) are continuous

on [0, 1]. Then, (x∞(t),u∞(t), λ̃∞(t), µ̃∞(t), ν̄∞) is a
solution of Problem Pλ.

Proof: The proofs of Theorems 3 and 4 and Corollary 2
can be found in [29].

Theorem 5 (Covector Mapping Theorem): Under the
same assumptions of Theorems 3 and 4, when N →∞, the
covector mapping

x∗N (t) 7→ x∗(t) , u∗N (t) 7→ u∗(t) ,

λ∗N
w
7→ λ∗(t) ,

µ∗N (t)

w
7→ µ∗(t) , ν̄∗ 7→ ν∗

is a bijective mapping between the solution of Problem P clos
Nλ

and the solution of Problem Pλ.
Proof: The result follows directly from Theorems 3 and 4.

VI. NUMERICAL EXAMPLES

The numerical results presented in this section are obtained
using MATLAB’s built in fmincon function.

Example 1 (see [27]): Determine y : [0, 5] → R and u :
[0, 5]→ R that minimize

I(y(t), u(t)) =
1

2

∫ 5

0

(y(t) + u2(t))dt ,

subject to ẏ(t) = 2y(t) + 2u(t)
√
y(t) , ∀t ∈ [0, 5],

y(0) = 2 , y(5) = 1
The above example was solved using the Bernstein approx-
imation method for orders N = 5, 10, . . . , 55, 60. Similar to
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(a) Error in Bernstein approximation method.
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(b) Solutions using the Bernstein approximation method
for order N = 40.

Fig. 1: Results for Example 1.

[27], we define the following errors

ey = max
k=0,...,N

log10 |y∗N (tk)− y∗(tk))| ,

eu = max
k=0,...,N

log10 |u∗N (tk)− u∗(tk))| ,

eλ = max
k=0,...,N

log10 |λ∗N (tk)− λ∗(tk))| ,

where y∗N (tk), u∗N (tk) and λ∗N (tk) are the state, input and
costate evaluated at the time nodes tk = 5k/N , k =
0, . . . , N , while y∗(tk), u∗(tk) and λ∗(tk) are the exact
solutions. Figure 1a illustrates the convergence of the above
errors to zero as the order of approximation increases. Figure
1b shows the state, input, and costate obtained using the
Bernstein approximation method for order N = 40 alongside
the exact solution.

Example 2 (bang-bang): Determine y : [0, 2] → R and
u : [0, 2]→ R that minimize

I(y(t), u(t)) =

∫ 2

0

(3u(t)− 2y(t))dt , (34)

subject to ẏ(t) = y(t) + u(t) , ∀t ∈ [0, 2], (35)
y(0) = 4 , y(2) = 39.392 (36)
0 ≤ u(t) ≤ 2 ∀t ∈ [0, 2] . (37)

The optimal control for the above example is:

u∗(t) =

{
2 0 ≤ t ≤ 1.096

0 1.096 ≤ t ≤ 2.

Example 2 is solved using the Bernstein approximation
method for orders of approximation N = 10, 15, 30, 55.
To impose the input constraints in Equation (37) we use
the convex hull property of Bernstein polynomials [18].
Namely, letting uN (t) =

∑N
j=0 ūj,Nbj,N (t) be the Bernstein

polynomial approximating the control input, the saturation
constraints are imposed on its Bernstein coefficients, ūj,N ,

4296

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2020 at 18:18:44 UTC from IEEE Xplore.  Restrictions apply. 



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [s]

-0.5

0

0.5

1

1.5

2

2.5

co
nt

ro
l i

np
ut

N=10
N=15
N=30
N=55
exact

Fig. 2: Solution to Example 2.

j = 0, . . . , N . This ensures satisfaction of the constraints
for the whole trajectory uN (t), ∀t ≥ 0. The results are
illustrated in Figure 2. It can be noted that the solutions and
the optimal costs resulting from the Bernstein approximation
method converge to the exact ones, and that the approximated
control inputs behave nicely despite the discontinuity. There
are no jumps in the neighborhood of the discontinuities (the
Gibbs phenomenon does not occur [19]), and the exact value
of the discontinuity (t = 1.096s) is detected with reasonable
accuracy even for low orders of approximation. The reader
is referred to [14]–[17], [30], where the performance of
PS methods when dealing with bang-bang optimal control
problems are discussed.

VII. CONCLUSION

We proposed a numerical method to approximate non-
linear optimal control problems by nonlinear programming
(NLPs) using Bernstein polynomials. A rigorous analysis
was provided that shows convergence of the solution of
the NLP to the solution of the continuous-time problem.
Conditions were derived under which the Karush-Kuhn-
Tucker multipliers of the NLP converge to the costates of the
optimal control problem. This led to the formulation of the
Covector Mapping Theorem for Bernstein approximations,
enabling numerical computation of the costates. The theo-
retical findings were validated through numerical examples,
and the advantages of the method were discussed.
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