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a b s t r a c t

Sensitivity of linear continuous-time SISO feedback systems, subject to control and measurement noise,
is analyzed by deriving the lower bounds of Bode-like integrals via an information-theoretic approach.
Bode integrals of four different sensitivity-like functions are employed to gauge the performance
limitations of feedback systems. When the signals of the control system are stationary Gaussian, these
four different Bode-like integrals can be represented as the differences between mutual information
rates. These mutual information rates and hence the corresponding Bode-like integrals are proven to
be bounded below by the unstable poles and zeros of the plant model, if the signals of the control
system are wide-sense stationary.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Stabilization of systems subject to external disturbances and
achieving desired level of performance have been the objective
of feedback synthesis since its inception [1–6]. With the visible
progress of information technologies and their applications to
feedback control systems over the last two decades, a great deal
of attention has been given to understanding the fundamental
limitations of closed-loop systems in the presence of communi-
cation channels, [7–11]. The main contribution of these papers
was to explore the performance limitations of stochastic systems
in the presence of limited information. While [7–9,12] investi-
gated the Bode-like integrals for discrete-time systems by using
Kolmogorov’s entropy-rate equality [13], the results in [10] put
forward an approach to explore the continuous-time systems
by resorting to mutual information rates. In [8–10], sensitivity-
like functions were introduced to define the Bode-like integrals,
which can be regarded as a generalization of the classical Bode
integrals from the deterministic LTI systems to stochastic non-
linear systems. Previous results based on complex analysis for
deterministic LTI systems have shown that the lower bounds of
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the Bode integrals are determined by the unstable poles and zeros
of plant models [1,14–17]. Seminal results on this topic were also
reported in [18–22].

Performance limitations of stochastic systems in the presence
of limited information were analyzed through the sensitivity-like
functions [8–10,23–25], which are defined by the power spec-
tral densities (PSDs) of signals. Taking an information-theoretic
approach was the key to get the Bode integrals extended to
stochastic nonlinear systems. Unlike the frequency-domain ap-
proach, which explicitly depends on the input–output relation-
ship of the feedback system (transfer function), the focus of
the information-theoretic approach is on the signals. The lower
bound for sensitivity Bode-like integral in stochastic continuous-
time systems was first reported in [10]. This result can be applied
to systems with nonlinear controllers, which is an improve-
ment upon the prior results based on the frequency-domain
approaches [1,3,14–17,19,26]. Nevertheless, to the best of au-
thors’ knowledge, the lower bounds for complementary sensitiv-
ity, load disturbance sensitivity, and noise sensitivity Bode-like
integrals have rarely been investigated in stochastic continuous-
time single-input-single-output (SISO) systems. While the lower
bounds of these four Bode-like integrals were studied in [9]
for discrete-time feedback systems, it is still challenging to de-
rive their counterpart results for continuous-time systems. The
unboundedness of continuous-time sensitivity-like functions in
high frequencies [26] as well as the challenges in information-
theoretic representations of weighted Bode-like integrals have
been the main obstacles on this path.
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Fig. 1. A SISO feedback system.

In this paper, a comprehensive sensitivity analysis of stochas-
tic continuous-time SISO feedback systems subject to control and
measurement noise is investigated by deriving the lower bounds
for four different Bode-like integral via an information-theoretic
approach. Among these Bode-like integrals, load disturbance sen-
sitivity and noise sensitivity Bode-like integrals have seldom been
studied for continuous-time systems, and more detailed results
and interpretations on complementary sensitivity Bode-like inte-
gral are presented in this paper compared with [27]. In order to
constrain the values of noise sensitivity-like and complementary
sensitivity-like functions in high frequencies, the corresponding
Bode-like integrals are defined with a weight function, 1/ω2. A
frequency transformation and the lower bound for sensitivity
Bode-like integral derived in [10] are utilized to derive the lower
bounds for these weighted Bode-like integrals. Meanwhile, when
seeking the lower bounds of Bode-like integrals for continuous-
time systems, since Kolmogorov’s entropy-rate equality, which
was widely employed for discrete-time systems [8,9,24], is no
longer applicable, we resort to a seminal lemma on mutual infor-
mation rates [28, p. 181]. With this lemma, we prove that when
signals are stationary Gaussian, the lower bounds of Bode-like
integrals can be represented as the differences between mutual
information rates. Furthermore, when signals are only wide-sense
stationary, we show that the lower bounds of these mutual in-
formation rates and hence the lower bounds of Bode-like in-
tegrals are determined by the unstable poles and zeros of the
plant model. We also give the relationship between Bode inte-
grals and Bode-like integrals for stochastic linear continuous-time
SISO systems, which complements previous investigations for
discrete-time systems [8,9].

The paper is organized as follows: Section 2 introduces prelim-
inary results and defines the Bode-like integrals for continuous-
time systems; Section 3 derives the lower bounds for these
Bode-like integrals in terms of mutual information rates;
Section 4 shows that these lower bounds are further bounded
below by the unstable poles and zeros of the plant model; and
Section 5 concludes the paper.

Notations. The notations used throughout this paper are de-
fined as follows. x(t) represents a continuous-time stochastic
process with xt2t1 indicating a sample path on an interval [t1, t2] ⊂

R+ and xt := xt0. x(k) denotes a discrete-time stochastic process
with xnm indicating the segment {x(k)}nk=m, m < n ∈ N and xn0 :=

xn. x(δ) denotes the discrete-time process obtained from sampling
of x(t) with an interval δ > 0 with x(δ)i = x(δ)(i) := x(t0+iδ), i ∈ N.
We also use the notations E[·] for expectation, h(x) for Shannon
differential entropy, I(·; ·) for mutual information, and I∞(·; ·) for
mutual information rate. The logarithmic function log(·) in this
paper assumes the basis e by default. For a matrix M , |M| denotes
its determinant. Complex variable s = jω.

2. Preliminaries and problem formulation

Consider a stochastic continuous-time SISO feedback system
shown in Fig. 1,
where P is the plant model, K denotes the causal feedback control
mapping, and d ∈ R and w ∈ R respectively represent the

noise over measurement and control channels. In classical control
theory, with zero initial condition, the linear plant P can be
described by the following transfer function

G(s) = c ·

∏m
i=1(s − zi)∏n
i=1(s − pi)

, (1)

where c ∈ R, m ≤ n so that the system is causal, and zi and
pi denote the zeros and poles of plant P , respectively. When the
control mapping K is linear, we use C(s) to denote its transfer
function, which has a similar form as (1). In this scenario, the four
important transfer functions for sensitivity analysis are

Tuw(jω) =
1

1 + G(s)C(s)
, Tyw(jω) =

G(s)
1 + G(s)C(s)

,

Tud(jω) =
C(s)

1 + G(s)C(s)
, Tyd(jω) =

G(s)C(s)
1 + G(s)C(s)

,

(2)

where Tuw, Tyw, Tud and Tyd respectively denote the sensitivity,
load disturbance sensitivity, noise sensitivity, and complementary
sensitivity functions and are referred to as Gang of Four in [29].
For brevity, we also use the notation L(s) = G(s)C(s) in the
following context. The integral of sensitivity function Tuw(jω)
over all frequencies, 1

2π

∫
∞

−∞
log |Tuw(jω)| dω, is known as the

Bode’s integral [1,19], which is a critical index characterizing the
performance limitations of feedback systems subject to noise.
However, simply replacing the Tuw(jω) in preceding integral with
the other three sensitivity functions will not give us a new index
as significant as the Bode’s integral, due to the unboundedness
of their logarithmic functions when s → ∞ and the absence
of a trade-off equality, similar to Tuw(s) + Tyd(s) = 1, between
Tyw(jω) and Tud(jω). A compromised solution dealing with these
difficulties is to multiply the logarithmic integrands by a weight
function, such as 1/ω2 [17] or a Poisson-type kernel function [19].

In stochastic setting, the linear plant model P in Fig. 1 can be
described by the following state-space model{
ẋ = Ax + Bu,
y = Cx,

(3)

where x is the state vector, u ∈ R and y ∈ R are the input
and output of P . Throughout this paper, we assume that the
initial states x0 of stochastic systems are unknown but have finite
entropy. The initial state x0, measurement noise d, and control
noise w in Fig. 1 are assumed to be mutually independent and
zero-mean Gaussian. A specific discussion on different initial con-
ditions for deterministic systems and stochastic systems is given
in [9]. Derived from the sensitivity functions (2), the sensitivity-
like functions in terms of signals’ PSDs were adopted by later
researchers to analyze the sensitivity properties of stochastic
nonlinear systems via information-theoretic methods [9,10,23]:

Tuw(ω) =

√
φu(ω)
φw(ω)

, Tyw(ω) =

√
φy(ω)
φw(ω)

,

Tud(ω) =

√
φu(ω)
φd(ω)

, Tyd(ω) =

√
φy(ω)
φd(ω)

,

(4)

where each pair of signals is stationary and stationary correlated,
φu(ω) denotes the PSD of stationary signal u(t) with

φu(ω) =

∫
∞

−∞

ru(τ ) · e−jωτdτ . (5)

ru(τ ) = ruu(t + τ , t) is the auto-covariance of signal u. ruw(τ ) =

ruw(t+τ , t) = Cov[u(t+τ ), w(t)] denotes the covariance between
signals u and w, and φuw is defined by replacing ru(τ ) with
ruw(τ ) in (5). In order to differentiate the sensitivity functions and
sensitivity-like functions, the former were defined with argument
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jω in (2), while the latter were defined with argument ω in (4).
Inspired by the weight function adopted in [17] when defining
the complementary sensitivity Bode integral, in this paper we are
interested in seeking the lower bounds for the Bode-like integrals
defined as follows
1
2π

∫
∞

−∞

log Tuw(ω) dω,
1
2π

∫
∞

−∞

log Tyw(ω) dω,

1
2π

∫
∞

−∞

log Tud(ω)
dω
ω2 ,

1
2π

∫
∞

−∞

log Tyd(ω)
dω
ω2 .

(6)

Remark 1. In this paper, the integrals of logarithmic sensi-
tivity functions defined in (2) are referred to as Bode integrals,
while the integrals of logarithmic sensitivity-like functions de-
fined in (4) are named as Bode-like integrals. As Lemma 2 in
this paper will reveal, the Bode integrals and the Bode-like in-
tegrals are equal when signals are stationary Gaussian. Hence,
according to [17] on complementary sensitivity Bode integral,
the weight function 1/ω2 should also refine the boundedness of
the complementary sensitivity Bode-like integral defined in (6).
Meanwhile, the definitions of load disturbance sensitivity and
noise sensitivity Bode-like integrals are respectively inherited
from the definitions of sensitivity and complementary sensitivity
Bode-like integrals, which preserves some nice properties when
deriving the lower bounds. Nonetheless, the absence of a trade-
off identity, similar to Tuw + Tyd = 1, between Tyw and Tud
and the involvement of weight function 1/ω2 generate additional
challenges and constraints.

Before we proceed to discuss the lower bounds of Bode-like in-
tegrals, some basic definitions, properties, and lemmas are given
in the remaining part of this section. Motivated by the frequency
inversion adopted in [17], consider the following frequency trans-
formation

s̃ = jω̃ = (jω)−1
= s−1, (7)

where the frequencies satisfy ω̃ = −(ω)−1. Applying (7) to the
plant model G(s) in (1), we refer to the resulting system as the
auxiliary system and write its transfer function as

G̃(s̃) = c · s̃n−m
·

∏m
i=1(1 − zi · s̃)∏n
i=1(1 − pi · s̃)

= G(s̃ −1) = G(s). (8)

The Laplace transforms of signal u in the original system and sig-
nal ũ in the auxiliary system satisfy U(s) = U(s̃ −1) =

∫
∞

−∞
u(τ ) ·

e−τ ·s̃ −1
dτ = Ũ(s̃), where signal u can be replaced by other

signals shown in Fig. 1. When the control mapping K is linear, we
use the notation L̃(s̃) = G̃(s̃)C̃(s̃), with C̃(s̃) being the frequency
inversion of C(s). Compared with the frequency domain of s,
it is more convenient to represent and compute the Bode-like
integrals weighted by 1/ω2 in the domain of s̃. However, since
the auxiliary system (8) is not realizable when n − m > 0 or
some pi = 0, we consider the inverse system (P̃−1, K̃−1) in (9)
obtained by swapping the input and output of auxiliary system.

G̃−1(s̃) =
1
c

·

∏n
i=1(1 − s̃ · pi)

s̃n−m ·
∏m

i=1(1 − s̃ · zi)

=

∏n
i=1(−pi)

c ·
∏m

i=1(−zi)
·

∏n
i=1(s̃ − p−1

i )

s̃n−m ·
∏m

i=1(s̃ − z−1
i )

.

(9)

When pi = 0, the corresponding (s̃− p−1
i ) term vanishes, and the

plant model (9) should always be proper with respect to s̃. The
signals and models of inverse system satisfy Ẽ(s̃) = G̃−1(s̃)Ṽ (s̃)
and Ũ(s̃) = C̃−1(s̃)Ỹ (s̃), where C̃−1(s̃) is obtained by following the
same steps as G̃−1(s̃) in (8) and (9). A minimal realization of G̃−1(s̃)
is described by{

˙̃x = Ãx̃ + B̃ṽ,

ẽ = C̃ x̃.
(10)

Fig. 2. Inverse system.

A block diagram of the inverse system is given in Fig. 2.
Some definitions and properties employed in this paper are

stated below, while more information on these topics can be
found in [10,11,13,30–32].

Definition 1 (Wide Sense Stationary). A second order random
process x(t) is called wide sense stationary, if E[x(t)] = E[x(t+v)]
and Cov[x(t), x(t + τ )] = Cov[x(v), x(v + τ )].

Definition 2 (Mean-Square Stability). A closed loop system is said
to be mean-square stable, if the state x(t) satisfies
supt≥0 E

[
xT(t)x(t)

]
< ∞.

Definition 3 (Class F Function: See[10] or [28, p. 182]). We define
class F function in the following way: F = {l : l(ω) = p(ω)(1 −

ϕ(ω)), l(ω) ∈ C, ω ∈ R}, where p(·) is rational and ϕ(·) is a
measurable function, such that 0 ≤ φ ≤ 1 for all ω ∈ R and∫
R |log(1 − ϕ(ω))|dω < ∞.

Definition 4 (Shannon Differential Entropy: See [13]). For a contin-
uous random variable x with density f (x), its Shannon differential
entropy is defined as h(x) = −

∫
S f (x) log f (x)dx, where S is the

support set of the random variable.

Definition 5 (Mutual Information & Mutual Information Rate:
See [31]). The mutual information between two random vari-
ables x and y is defined as I(x; y) =

∫
log[dµ(x, y)/d(µ(x) ×

µ(y))]dµ(x, y), where dµ(x, y)/d(µ(x) × µ(y)) is the
Radon–Nikodym derivative of the joint probability measure
µ(x, y) with respect to the product probability measure
µ(x)× µ(y). The mutual information rate is defined as I∞(x; y) =

limt→∞ I(xt; yt )/t .

Property 1 (See [10]). For two continuous-time random processes
xt and yt , the mutual information between xt2t1 and yt2t1 , 0 ≤ t1 <

t2 < ∞, can be obtained as I(xt2t1; y
t2
t1 ) = limk→∞ I(x(δ(k))0 , . . . , x(δ(k))k ;

y(δ(k))0 , . . . , y(δ(k))k ) for any fixed t1 and t2 with x(δ(k))i = x(t1 + iδ(k))
and δ(k) = (t2 − t1)/(k + 1).

Property 2 (See [11,13,31]). For a pair of random variables
x and y, we have h(x|y) = h(x+g(y)|y) and I(x; y) = h(x)−h(x|y) =

h(y) − h(y|x) = I(y; x), where g(·) is a measurable function.

Property 3 (See [30, p. 660]). For continuous random variables,
x1, . . . , xn, if the transformation yi = gi(x1, . . . , xn) has a unique
inverse, then h(y1, . . . , yn|z1, z2, . . . , zm) = h(x1, . . . , xn|z1, z2, . . . ,
zm) + E [log |J(x1, . . . , xn)|], where J(x1, . . . , xn) is the Jacobian
matrix of the transformation and expectation is taken with respect
to the conditional distribution.

Property 4 (Maximum Entropy: See [10,31]). For a random vector
x ∈ Rn with covariance matrix Σx, we have h(x) ≤ h(xG) = 1/2 ·

log((2πe)n · |Σx|), where xG is Gaussian with the same covariance
as x.



4 N. Wan, D. Li and N. Hovakimyan / Systems & Control Letters 133 (2019) 104548

Property 5 (See [10] or [28, p. 181]). Suppose that two one-
dimensional continuous-time random processes x(t) and y(t) form a
stationary Gaussian process (x, y), and φx and φy belong to class F.
Then, I∞(x; y) = −(4π )−1

∫
∞

−∞
log{1− |φxy(ω)|2/[φx(ω)φy(ω)]}dω.

The following lemmas present a preliminary result on the
sensitivity Bode-like integral and the relationship between Bode
integrals and Bode-like integrals for linear continuous-time sys-
tems.

Lemma 1 (See Theorem 4.8 in [10]). When a continuous-time SISO
feedback system, shown as Fig. 1, is mean-square stable, we have
I∞(u; v)− I∞(w; v) ≥

∑
pi∈UP pi, where UP denotes the set of un-

stable poles in plant P . If (u, v) and (w, v) form stationary Gaussian
processes, we then have 1

2π

∫
∞

−∞
log |Tuw(ω)|dω ≥

∑
λ∈UP pi.

Lemma 2. When the plant model P and the controller K are
linear, and the control noise w(t) is wide sense stationary, the Bode
integrals and the Bode-like integrals satisfy
1
2π

∫
∞

−∞

log Tuw(ω)dω =
1
2π

∫
∞

−∞

log |Tuw(jω)|dω, (11a)

1
2π

∫
∞

−∞

log Tyw(ω)dω =
1
2π

∫
∞

−∞

log |Tyw(jω)|dω. (11b)

When the measurement noise d(t) is wide sense stationary, the Bode
integrals and the Bode-like integrals satisfy
1
2π

∫
∞

−∞

log Tud(ω)
dω
ω2 =

1
2π

∫
∞

−∞

log |Tud(jω)|
dω
ω2 , (11c)

1
2π

∫
∞

−∞

log Tyd(ω)
dω
ω2 =

1
2π

∫
∞

−∞

log |Tyd(jω)|
dω
ω2 . (11d)

Proof. The proof of Lemma 2 is given in Appendix A. □

Remark 2. Since Lemma 2 implies that the magnitudes of Bode
integrals equal the magnitudes of the corresponding Bode-like
integrals when disturbances are wide sense stationary, it is rea-
sonable to infer that the lower bounds of Bode-like integrals
defined in (6) should be identical to the lower bounds of Bode
integrals, despite the difference of initial conditions, [9], and
some of these lower bounds for Bode integrals have been derived
in [1,17,19]. Moreover, when signals are not stationary and the
Bode-like integrals are not defined, we can still resort to mu-
tual information rates to describe the performance limitations of
stochastic continuous-time systems as in [10,23].

In the following sections, we first discuss the information-
theoretic representations of the Bode-like integrals defined in (6),
and then we derive the lower bounds for these performance
limitations.

3. Information-theoretic representations of Bode-like inte-
grals

When signals in feedback systems are stationary Gaussian,
we show that the Bode-like integrals (6) can be bounded below
by the difference between two mutual information rates. This
information-theoretic representation of Bode-like integrals not
only enables to derive the lower bounds of Bode-like integrals
with tools from information theory, but provides with an alterna-
tive metric to measure the performance limitations of stochastic
continuous-time systems when Bode-like integrals are undefined,
i.e. the stationary assumption fails to hold. An assumption on the
sample path of stochastic system (3) is stated before we show
the information-theoretic representation for sensitivity and load
disturbance sensitivity Bode-like integrals in Theorem 1.

Fig. 3. General feedback system with control noise.

Assumption 1. In the limit of k → ∞ or δ(k) → 0, the
input sequence [u(δ(k))

]
i converges to a continuous-time stochastic

process u(t), and the output y(δ(k))i of stochastic system (3) at time
iδ(k) is an injective function of control inputs [u(δ(k))

]
i and initial

condition x0, i.e. limk→∞ y(δ(k))i = limk→∞ gi([u(δ(k))
]
i, x0).

Remark 3. This assumption creates a condition such that Prop-
erty 3 can be applied to continuous-time stochastic processes
after proper discretizations. The premise of convergent input
sequence casts a constraint on the discretization in Property 1 and
was previously adopted in [33]. Some accurate approximations of
y(δ(k))i from [u(δ(k))

]
i and x0 as δ(k) → 0 have been investigated

in [34].

Theorem 1. For a stochastic linear continuous-time SISO feedback
system subject to control noise w, when (u, v) and (w, v) form
stationary processes, φu, φv, and φw ∈ F, and w is a stationary
Gaussian process, the sensitivity Bode-like integral satisfies
1
2π

∫
∞

−∞

log Tuw(ω)dω ≥ I∞(u; v) − I∞(w; v), (12)

and the load disturbance sensitivity Bode-like integral satisfies
1
2π

∫
∞

−∞

log Tyw(ω)dω ≥ I∞(y; v) − I∞(w; v)

+
1
2π

∫
∞

−∞

log |G(jω)|dω.

(13)

Proof. The block diagram of a continuous-time SISO feedback
system subject to control noise w(t) is illustrated in Fig. 3.

The first inequality in Theorem 1 has been proved as Theo-
rem 4.8 in [10]. Thus, only the proof of inequality (13) is provided
here. When yG, uG, and vG respectively denote the Gaussian pro-
cesses with the same covariances as the random processes y, u,
and v, the following inequality holds

I(yt; vt ) − I(wt
; vt )

(a)
= lim

k→∞

{
I([y(δ(k))]k; [v(δ(k))

]
k) − I([w(δ(k))

]
k
; [v(δ(k))

]
k)

}
(b)
= lim

k→∞

{
h([y(δ(k))]k) − h([u(δ(k))

]
k
|[v(δ(k))

]
k)

− E[log |J[u(δ(k))]k ([y
(δ(k))

]
k)|]

− h([w(δ(k))
]
k) + h([w(δ(k))

]
k
|[v(δ(k))

]
k)

}
(14)

(c)
≤ lim

k→∞

{
h([y(δ(k))G ]

k) − h([w(δ(k))
]
k) − E[log |J[u(δ(k))]k ([y

(δ(k))
]
k)|]

}
(d)
= lim

k→∞

{
h([y(δ(k))G ]

k) − h([u(δ(k))
G ]

k
|[v

(δ(k))
G ]

k)

− E[log |J
[u(δ(k))G ]k

([y(δ(k))G ]
k)|]

− h([w(δ(k))
]
k) + h([w(δ(k))

]
k
|[v

(δ(k))
G ]

k)
}

(e)
= I(ytG; vt

G) − I(wt
; vt

G).

(a) follows from Property 1; (b) is ensured by Properties 2, 3,
and Assumption 1, with J[u(δ(k))]k ([y(δ(k))]k) being the Jacobian ma-
trix of [y(δ(k))]k with respect to [u(δ(k))

]
k, and the one-step de-

lay is omitted here for brevity [8,10]; (c) employs Property 4
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and identity h([u(δ(k))
]
k
|[v(δ(k))

]
k) = h([w(δ(k))

− v(δ(k))
]
k
|[v(δ(k))

]
k) =

h([w(δ(k))
]
k
|[v(δ(k))

]
k) derived by Property 2; (d) uses the identities

h([u(δ(k))
G ]

k
|[v

(δ(k))
G ]

k) = h([w(δ(k))
]
k
|[v

(δ(k))
G ]

k) derived by Property 2
and |J[u(δ(k))]k ([y(δ(k))]k)| = |J

[u(δ(k))G ]k
([y(δ(k))G ]

k)|; and (e) follows the
same arguments in steps (a) and (b). Dividing both sides of (14)
by t and letting t go to infinity, when the limits exist, we have
the following relationship on mutual information rates: I∞(y; v)−
I∞(w; v) ≤ I∞(yG; vG)−I∞(w; vG), where equality holds when y(t)
is Gaussian. Since (yG, vG) and (w, vG) form stationary Gaussian
processes, when φyG , φvG , and φw ∈ F, subject to Property 5,
we have the following inequality on load disturbance sensitivity
Bode-like integral:

I∞(y; v) − I∞(w; v)
≤ I∞(yG; vG) − I∞(w; vG)
(a)
= −

1
4π

∫
∞

−∞

log
(
1 −

φyGvG (ω)φvGyG (ω)
φyG (ω)φvG (ω)

)
dω

+
1
4π

∫
∞

−∞

log
(
1 −

φwvG (ω)φvGw(ω)
φw(ω)φvG (ω)

)
dω

(b)
=

1
2π

∫
∞

−∞

log Tyw(ω) dω

+
1
4π

∫
∞

−∞

log
φuG (ω)φvG (ω) − φuGvG (ω)φvGuG (ω)
φyG (ω)φvG (ω) − φyGvG (ω)φvGyG (ω)

dω (15)

(c)
=

1
2π

∫
∞

−∞

log Tyw(ω) dω −
1
2π

∫
∞

−∞

log |G(jω)|dω.

(a) is obtained by applying Property 5 to I∞(yG, vG) and I∞(w, vG);
(b) employs identities, φw = φvG + φvGuG + φuGvG + φuG , φwvG =

φuGvG + φvG , and φvGw = φvGuG + φvG , which can be derived by
the definition of PSD in (5) and identity w = vG + uG; and (c)
follows from φuG = G−1(s)G−1(−s)φyG , φuGvG = G−1(−s)φyGvG ,
and φvGuG = G−1(s)φvGyG , which can be inferred from the proof of
Lemma 2 in Appendix A. Inequality (15) readily implies inequal-
ity (13) in Theorem 1. This completes the proof. □

Remark 4. According to Definition 3, all rational functions belong
to class F function. A presumption of derivation in (15) is that
φyG , φw , and φvG ∈ F, which requires the Fourier transforms of
auto-covariance ryG , rw and rvG be rational and was formerly pre-
sumed in [10]. Meanwhile, the employment of Property 3 in (14)
requires y = g(u) in Fig. 3 be injective, which simplifies the
technical development while delivering the essential conceptual
message and was previously assumed also in [24,25].

The following theorem gives the information-theoretic rep-
resentations of noise sensitivity and complementary sensitivity
Bode-like integrals in the presence of measurement noise d.

Theorem 1′. For the general continuous-time feedback control sys-
tem, when (ỹ, ẽ) and (d̃, ẽ) form stationary processes, φỹ, φẽ, and
φd̃ ∈ F, and d̃ is a stationary Gaussian process, the complementary
sensitivity and noise sensitivity Bode-like integrals satisfy

1
2π

∫
∞

−∞

log Tyd(ω)
dω
ω2 ≥ I∞(ỹ; ẽ) − I∞(d̃; ẽ), (16)

1
2π

∫
∞

−∞

log Tud(ω)
dω
ω2 ≥ I∞(ũ; ẽ) − I∞(d̃; ẽ)

−
1
2π

∫
∞

−∞

log |G(jω)|
dω
ω2 .

(17)

Proof. The inverse system subject to measurement noise is
shown in Fig. 4.

Fig. 4. Inverse system with measurement noise.

First, we consider the complementary sensitivity Bode-like
integral. When ỹG and ẽG respectively denote the Gaussian pro-
cesses with the same covariance as the random processes ỹ and
ẽ, the following inequality can be established:

I(ỹt; ẽt ) − I(d̃t; ẽt )
(a)
= lim

k→∞

{
h([ỹ(δ(k))]k) − h([ỹ(δ(k))]k|[ẽ(δ(k))]k)

− h([d̃(δ(k))]k) + h([d̃(δ(k))]k|[ẽ(δ(k))]k)
}

(b)
≤ lim

k→∞

{
h([ỹ(δ(k))G ]

k) − h([ỹ(δ(k))G ]
k
|[ẽ(δ(k))G ]

k) − h([d̃(δ(k))]k)
}

+ h([d̃(δ(k))]k|[ẽ(δ(k))G ]
k)

}
(18)

(c)
= I(ỹtG; ẽ

t
G) − I(d̃t; ẽtG).

(a) is obtained by Properties 1 and 2; (b) employs Property 4,
identities h([ỹ(δ(k))]k|[ẽ(δ(k))]k) = h([d̃(δ(k))]k − [ẽ(δ(k))]k|[ẽ(δ(k))]k) =

h([d̃(δ(k))]k|[ẽ(δ(k))]k) and h([ỹ(δ(k))G ]
k
|[ẽ(δ(k))G ]

k) = h([d̃(δ(k))]k|[ẽ(δ(k))G ]
k)

derived by Property 2, and equality in (b) holds when (ỹ, ẽ)
and (d̃, ẽ) are Gaussian; and (c) follows from Properties 1 and
2. Dividing both sides of (18) by t and letting t go to infinity,
when the limits exist, we readily have I∞(ỹ; ẽ) − I∞(d̃; ẽ) ≤

I∞(ỹG; ẽG) − I∞(d̃; ẽG). When (ỹG, ẽG) and (d̃, ẽG) are stationary
Gaussian processes with φỹG , φẽG , and φd̃ ∈ F, by Property 5, an
inequality between mutual information rates and complementary
sensitivity Bode-like integral can be established:

I∞(ỹ; ẽ) − I∞(d̃; ẽ)

≤ I∞(ỹG; ẽG) − I∞(d̃; ẽG)
(a)
= −

1
4π

∫
∞

−∞

log
(
1 −

φỹG ẽG (ω̃)φẽG ỹG (ω̃)
φỹG (ω̃)φẽG (ω̃)

)
dω̃

+
1
4π

∫
∞

−∞

log
(
1 −

φd̃ẽG
(ω̃)φẽG d̃

(ω̃)

φd̃(ω̃)φẽG (ω̃)

)
dω̃

(b)
=

1
2π

∫
∞

−∞

log Tỹd̃(ω̃) dω̃

+
1
4π

∫
∞

−∞

log
φỹG (ω̃)φẽG (ω̃) − φỹG ẽG (ω̃)φẽG ỹG (ω̃)
φỹG (ω̃)φẽG (ω̃) − φỹG ẽG (ω̃)φẽG ỹG (ω̃)

dω̃ (19)

(c)
=

1
2π

∫
∞

−∞

log Tyd(ω)
dω
ω2 .

(a) is the application of Property 5; (b) follows from identity
d̃ = ỹG + ẽG, which implies φd̃ = φỹG + φỹG ẽG + φẽG ỹG + φẽG ,
φd̃ẽG

= φỹG ẽG + φẽG , and φẽG d̃
= φẽG ỹG + φẽG ; and (c) can be

implied by the frequency transformation (7). Inequality (16) in
Theorem 1′ can then be readily implied from (19).

Next, we consider the noise sensitivity Bode-like integral.
Since the steps for deriving inequality (17) can be inferred from
the preceding proofs, only some critical steps are presented. Sim-
ilar to the derivations in (14), for noise sensitivity Bode-like inte-
gral, we have I∞(ũG; ẽG)−I∞(d̃; ẽG) ≥ I∞(ũ; ẽ)−I∞(d̃; ẽ), where ũG

and ẽG denote the Gaussian processes with the same covariances
as ũ and ẽ, respectively. With the facts that (ũG, ẽG) and (d̃, ẽG)
are stationary Gaussian processes, when φũG , φẽG , and φd̃ ∈ F,
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we have:

I∞(ũ; ẽ) − I∞(d̃; ẽ)

≤ I∞(ũG; ẽG) − I∞(d̃; ẽG)
(a)
=

1
2π

∫
∞

−∞

log Tũd̃(ω̃) dω̃

+
1
4π

∫
∞

−∞

log
φỹG (ω̃)φẽG (ω̃) − φỹG ẽG (ω̃)φẽG ỹG (ω̃)
φũG (ω̃)φẽG (ω̃) − φũG ẽG (ω̃)φẽGũG (ω̃)

dω̃ (20)

(b)
=

1
2π

∫
∞

−∞

log Tud(ω)
dω
ω2 +

1
2π

∫
∞

−∞

log |G(jω)|
dω
ω2

(a) employs Property 5 and identity d̃ = ỹG + ẽG; and (b) follows
from (7), (8), and the identities, φũG = G̃−1(s̃)G̃−1(−s̃)φỹG , φũG ẽG =

G̃−1(−s̃)φỹG ẽG , and φẽGũG = G̃−1(s̃)φẽG ỹG , which can be inferred
from the proof of Lemma 2 in Appendix A. Inequality (17) can
then be readily implied from (20). This completes the proof. □

Remark 5. The terms (2π )−1
∫

∞

−∞
log |G(jω)|dω in (13) and

(2π )−1
∫

∞

−∞
log |G(jω)|/ω2 dω in (17) are constants once a linear

plant model G(jω) is given, thus the lower bounds in Theorems 1
and 1′ are invariant of the choice of control mapping. Neverthe-
less, these two integrals are not always bounded for arbitrary
G(jω). Some numerical examples are presented in Appendix B,
and heuristic analysis on the boundedness of these types of
integrals is available in [35,36].

With the information-theoretic representations of Bode-like
integrals given in Theorems 1 and 1′, we can now establish
the lower bounds of Bode-like integrals by deriving the lower
bounds of their information-theoretic representations with tools
and preliminary results from information theory.

4. Lower bounds of performance limitations

Compared with the definitions of Bode-like integrals, which
require the stationary Gaussian condition, the existence of their
information-theoretic representations is less restrictive, as it only
requires the stationary condition. In this section, we derive the
lower bounds for these information-theoretic representations,
and hence the lower bounds for the corresponding Bode-like
integrals in a stochastic continuous-time setting. For systems
subject to control noise, we have the following result.

Theorem 2. When the linear continuous-time SISO system shown
in Fig. 3 is mean-square stable, and the control noise w(t) is station-
ary Gaussian, we have

I∞(u; v) − I∞(w; v) ≥

∑
pi∈UP

pi, (21)

I∞(y; v) − I∞(w; v) ≥

∑
pi∈UP

pi, (22)

where UP denotes the set of unstable poles in plant P .

Proof. The first inequality (21) in Theorem 2 can be readily
implied from Lemma 1. In order to derive the lower bound in
inequality (22), consider the feedback configuration illustrated
in Fig. 3 and the following equality

I(ut
; vt )

(a)
= lim

k→∞

{
h([u(δ(k))

]
k) − h([u(δ(k))

]
k
|[v(δ(k))

]
k)

}
(b)
= lim

k→∞

{
h([y(δ(k))]k) − E[log |J[u(δ(k))]k ([y

(δ(k))
]
k)|]

− h([y(δ(k))]k|[v(δ(k))
]
k) (23)

+ E[log |J[u(δ(k))]k ([y
(δ(k))

]
k)|]

}
(c)
= I(yt; vt ).

(a) follows from Properties 1 and 2; (b) follows from the identities
h([u(δ(k))

]
k) = h([y(δ(k))]k) − E[log |J[u(δ(k))]k ([y(δ(k))]k)|] and

h([u(δ(k))
]
k
|[v(δ(k))

]
k)=h([y(δ(k))]k|[v(δ(k))

]
k)−E[log |J[u(δ(k))]k ([y(δ(k))]k)|]

derived by Assumption 1 and Property 3; and (c) follows from
Properties 1 and 2. The derivation in (23) can also be verified
by data-processing inequality [13]. Dividing both sides of (23)
by t and letting t go to infinity gives I∞(u; v) = I∞(y; v), which
combining with (21) gives (22) in Theorem 2. This completes the
proof. □

The following theorem derives the lower bounds of the
information-theoretic representations for the feedback systems
subject to measurement noise described in Fig. 4.

Theorem 2′. When the continuous-time SISO feedback system
shown in Fig. 4 is mean-square stable and the inverse frequency
measurement noise d̃(t) is stationary Gaussian, we have

I∞(ỹ; ẽ) − I∞(d̃; ẽ) ≥

∑
zi∈UZ

1
zi

, (24)

I∞(ũ; ẽ) − I∞(d̃; ẽ) ≥

∑
zi∈UZ

1
zi

, (25)

where UZ denotes the set of nonminimum phase zeros of plant P .

Proof. Consider the inverse system shown in Fig. 4. Applying
Lemma 1 and noticing that the poles of inverse plant model P̃−1

defined in (9) are relocated at s = 1/zi, the first inequality (24)
can be implied. In order to derive inequality (25), consider the
following equality

I(ỹt; ẽt )
(a)
= lim

k→∞

{
h([ỹ(δ(k))]k) − h([ỹ(δ(k))]k|[ẽ(δ(k))]k)

}
(b)
= lim

k→∞

{
h([ũ(δ(k))

]
k) − E[|J[ỹ(δ(k))]k ([ũ

(δ(k))
]
k)|]

− h([ũ(δ(k))
]
k
|[ẽ(δ(k))]k)

+ E[|J[ỹ(δ(k))]k ([ũ
(δ(k))

]
k)|]

}
(c)
= I(ũ; ẽ).

(26)

(a) follows from Properties 1 and 2; (b) adopts the assump-
tion that ũ = g̃−1(ỹ) in Fig. 4 is injective and Property 3,
which imply h([ỹ(δ(k))]k) = h([ũ(δ(k))

]
k)−E[|J[ỹ(δ(k))]k ([ũ(δ(k))

]
k)|] and

h([ỹ(δ(k))]k|[ẽ(δ(k))]k) = h([ũ(δ(k))
]
k
|[ẽ(δ(k))]k) − E[|J[ỹ(δ(k))]k ([ũ(δ(k))

]
k)|],

where J[ỹ(δ(k))]k ([ũ(δ(k))
]
k) is the Jacobian matrix of vector [ũ(δ(k))

]
k

with respect to vector [ỹ(δ(k))]k; and (c) follows from Properties 1
and 2. Dividing both sides of (26) by t and letting t go to infinity,
we have I∞(ỹ; ẽ) = I∞(ũ; ẽ), which combining with (24) gives
inequality (25). This completes the proof. □

With all the preceding theorems, the following corollary gives
the lower bounds of the Bode-like integrals in stochastic
continuous-time systems.

Corollary 3. For a stochastic continuous-time SISO feedback control
system that is mean-square stable, when (u, v) and (w, v) form
stationary processes, φu, φv, and φw ∈ F, and w is a stationary
Gaussian process, the sensitivity and the load disturbance sensitivity
Bode-like integrals satisfy
1
2π

∫
∞

−∞

log Tuw(ω)dω ≥

∑
pi∈UP

pi, (27)

1
2π

∫
∞

−∞

log Tyw(ω)dω ≥

∑
pi∈UP

pi +
1
2π

∫
∞

−∞

log |G(jω)|dω. (28)



N. Wan, D. Li and N. Hovakimyan / Systems & Control Letters 133 (2019) 104548 7

When (ỹ, ẽ) and (d̃, ẽ) form stationary processes, φỹ, φẽ, and φd̃ ∈ F,
and d̃ is a stationary Gaussian process, the complementary sensitivity
and noise sensitivity Bode-like integrals satisfy

1
2π

∫
∞

−∞

log Tyd(ω)
dω
ω2 ≥

∑
zi∈UZ

1
zi

, (29)

1
2π

∫
∞

−∞

log Tud(ω)
dω
ω2 ≥

∑
zi∈UZ

1
zi

−
1
2π

∫
∞

−∞

log |G(jω)|
dω
ω2 . (30)

Proof. Corollary 3 can be implied by applying Theorems 2 and 2′

to Theorems 1 and 1′, respectively. □

Numerical examples are presented in Appendix B to show
the validness as well as some limitations of the lower bounds
presented in Corollary 3.

Remark 6. From the proof of Lemma 2 given in Appendix A,
identities Tyw(ω) = G(s)Tuw(ω) and Tyd(ω) = G(s)Tud(ω) can be
inferred. Once we admit the inequalities given in (27) and (29),
we can also retrieve inequalities (28) and (30) by substituting the
two aforementioned identities into (27) and (29), respectively.
Meanwhile, since a nice property similar to Tuw + Tyd = 1
does not exist between Tyw and Tud, the boundedness of right-
hand side terms in (28) and (30) is more difficult to guarantee,
which is explained with a few examples in Appendix B. Lastly,
the relaxations of injective assumptions adopted in (14), (23)
and (26), the discretization requirements in Assumption 1, and
the stationary Gaussian condition on the inverse frequency sig-
nals when studying the weighted Bode-like integrals are still
some interesting problems that deserve further investigations.

We notice that since the pioneering papers [8,23], information-
theoretic approaches have been widely employed to seek the
lower bounds for Bode-like integrals. Among these papers, the
lower bounds for sensitivity Bode-like integral and complemen-
tary sensitivity Bode-like integral have been investigated in [8,
23,25] for discrete-time SISO systems. Lower bounds for load
disturbance sensitivity Bode-like integral and noise sensitivity
Bode-like integral have been studied in [9] with discrete-time
MIMO systems. For continuous-time systems, [10] has defined the
lower bound for sensitivity Bode-like integral, and lower bounds
for continuous-time complementary sensitivity, load disturbance
sensitivity, and noise sensitivity Bode-like integrals have been
discussed in this paper. Bode-like integrals for continuous-time
systems with non-Gaussian disturbance, non-LTI models, MIMO
configuration, switching logics, or distributed agents are some
open topics for future investigation, which may benefit from
this paper and also the preliminary results on discrete-time
systems [11,20,21,24].

5. Conclusion

In this paper, we investigated the performance limitations of
linear continuous-time SISO control systems subject to control
and measurement noise via an information-theoretic approach.
Bode integrals of four different sensitivity-like functions were
defined, and the relationship between Bode integrals and Bode-
like integrals were established for stochastic continuous-time
systems. The information-theoretic representations of Bode-like
integrals were derived, and the lower bounds of these repre-
sentations and hence the Bode-like integrals were established in
terms of the unstable zeros and poles of plant model. Some open
problems and challenges are discussed towards the end, and the
hope is that more innovative results can be put forward to expand
the frontier in this direction.
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Appendix A. Proof of Lemma 2

Proof of Lemma 2. Part of the proof in this appendix relies
on the results given in [32]. We first consider the scenario in the
presence of control noise w(t) and start with Bode-like integrals.
When both the plant model P and control mapping K in Fig. 1 are
linear, using v(t) = (c∗(g∗u))(t) =

∫
∞

0 c(θ )
[∫

∞

0 g(η)u(t − θ − η)
dη] dθ , we define L(s) = G(s)C(s) =

∫
∞

0 (g ∗ c)(t) · e−jωtdt =∫
∞

0 l(t) · e−jωtdt . Since w(t) = u(t)+ v(t), the PSD function φw(ω)
defined as (5) satisfies

φw(ω) = φu(ω) + φuv(ω) + φvu(ω) + φv(ω). (31)

When w(t), v(t), and u(t) are wide sense stationary, with v(t) =∫
∞

0 l(σ ′)·u(t−σ ′)dσ ′ and τ = σ−t , the covariances ru, ruv, rvu and
rv in (31) respectively satisfy ru(σ , t) = Cov[u(t+τ ), u(t)] = ru(τ ),
ruv(σ , t) =

∫
∞

0 l(σ ′) · Cov[u(σ ), u(t − σ ′)]dσ ′
=

∫
∞

0 l(σ ′) · ru(σ ′
+

τ )dσ ′
= ruv(τ ), rvu(σ , t) =

∫
∞

0 l(σ ′) · Cov[u(σ − σ ′), u(t)]dσ ′
=∫

∞

0 l(σ ′) · ru(−σ ′
+ τ )dσ ′

= rvu(τ ), and rv(σ , t) =
∫

∞

0

∫
∞

0 l(σ ′) ·

l(t ′)·Cov[u(σ −σ ′), u(t−t ′)]dσ ′dt ′ =
∫

∞

0

∫
∞

0 l(σ ′)·l(t ′)·ru(τ −σ ′
+

t ′)dσ ′dt ′ = rv(τ ). Hence, the spectral density functions φuv, φvu,
and φv in (31) respectively satisfy

φuv(ω) =
1
2π

∫
∞

−∞

ruv(τ ) · e−jωτdτ

=
1
2π

∫
∞

0
ejωσ ′

· l(σ ′)
∫

∞

−∞

e−jω(τ+σ ′)
· ru(τ + σ ′)dτdσ ′

= L(−jω) · φu(ω), (32)

φvu(ω) =
1
2π

∫
∞

−∞

rvu(τ ) · e−jωτdτ

=
1
2π

∫
∞

0
e−jωσ ′

· l(σ ′)
∫

∞

−∞

e−jω(τ−σ ′)
· ru(τ − σ ′)dτdσ ′

= L(jω) · φu(ω), (33)

φv(ω) =
1
2π

∫
∞

−∞

rv(τ ) · e−jωτdτ

=
1
2π

∫
∞

0
ejωt ′

· l(t ′)
∫

∞

0
e−jωσ ′

· l(σ ′)
∫

∞

−∞

e−jω(τ−σ ′
+t ′)

· ru(τ − σ ′
+ t ′) dτdσ ′dt ′ (34)

= L(−jω) · L(jω) · φu(ω).

Substituting (31)–(34) into the sensitivity-like function Tuw(ω)
defined in (4), we can rewrite the sensitivity-like function as
Tuw(ω) = [φu(ω)/φw(ω)]1/2 = {φu(ω)/[φu(ω)+ φuv(ω)+ φvu(ω)+
φv(ω)]}1/2 = {φu(ω)/[(1 + L(−jω)) · (1 + L(jω)) · φu(ω)]}1/2.
When φu(ω) ̸≡ 0, with L(s) = G(s) · C(s), we have Tuw(ω) =√
Tuw(−s) · Tuw(s). Since Tuw(−s) = T̄uw(s), where T̄uw(s) is the

complex conjugate of Tuw(s), the equality (11a) in Lemma 2
can be retrieved from (2π )−1

·
∫

∞

−∞
log Tuw(ω) dω = (4π )−1∫

∞

−∞
log

[
T̄uw(jω) · Tuw(jω)

]
dω = (4π )−1

∫
∞

−∞
log |Tuw(jω)|2 dω =

(2π )−1
∫

∞

−∞
log |Tuw(jω)|dω.

Since y(t) = g∗u(t) =
∫

∞

0 g(θ )·u(t−θ )dθ , the auto-covariance
of signal y satisfies ry(σ , t) =

∫
∞

0

∫
∞

0 g(σ ′) · g(t ′) · Cov[u(σ −

σ ′), u(t − t ′)]dσ ′dt ′ =
∫

∞

0

∫
∞

0 g(σ ′) · g(t ′) · ru(τ − σ ′
+ t ′)dσ ′dt ′ =

ry(τ ). Hence, the PSD of the stationary signal y is

φy(ω) =
1
2π

∫
∞

0
ry(τ ) · e−jωτdτ
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=
1
2π

∫
∞

0
ejωt ′

· g(t ′)
∫

∞

0
e−jωσ ′

· g(σ ′)
∫

∞

−∞

e−jω(τ−σ ′
+t ′)

· ru(τ − σ ′
+ t ′)dτdσ ′dt ′ (35)

= G(−jω) · G(jω) · φu(ω).

Substituting (31)–(35) into the load disturbance sensitivity-like
function Tyw(ω) defined in (4), we can rewrite the load distur-
bance sensitivity-like function as follows Tyw(ω) =

[φy(ω)/φw(ω)]1/2 = {φy(ω)/[φu(ω)+φuv(ω)+φvu(ω)+φv(ω)]}1/2 =

{[G(−jω) · G(jω) · φu(ω)]/[(1 + L(−jω)) · (1 + L(jω)) · φu(ω)]}1/2.
When φu(ω) ̸≡ 0, it follows that Tyw(ω) =

√
Tyw(−s) · Tyw(s).

Since Tyw(−jω) = T̄yw(jω), where T̄yw(jω) is the complex con-
jugate of Tyw(jω), the equality (11b) in Lemma 2 can be re-
trieved from (2π )−1

∫
∞

−∞
log Tyw(ω)dω = (4π )−1

∫
∞

−∞
log[T̄yw(jω) ·

Tyw(jω)]dω = (4π )−1
∫

∞

−∞
log |Tyw(jω)|2dω = (2π )−1

∫
∞

−∞
log

|Tyw(jω)|dω. The steps for deriving (11c) and (11d) are similar
to the preceding derivations; hence, only abbreviated steps are
given below.

Next, we consider the scenario in the presence of measure-
ment noise d(t). When both the plant model P and the control
mapping K are linear, we have y(t) = (c ∗ (g ∗ e))(t) =∫

∞

0 c(θ )[
∫

∞

0 g(η) · e(t − θ − η)dη]dθ =
∫

∞

0 l(σ ′) · e(t − σ ′)dσ ′.
Since d(t) = e(t)+y(t), similar to the result presented in (31), we
have φd(ω) = φe(ω)+φey(ω)+φye(ω)+φy(ω). When disturbance
d(t) is zero-mean stationary, with y(t) =

∫
∞

0 l(σ ′) · e(t − σ ′)dσ ′,
u(t) = c∗e(t) =

∫
∞

0 c(θ )·e(t−θ )dθ , and τ = σ−t , the covariances
re, rey, rye, ry, and ru satisfy re(σ , t) = re(σ − t) = re(τ ), rey(σ , t) =∫

∞

0 l(σ ′) · re(σ ′
+ τ )dσ ′

= rey(τ ), rye(σ , t) =
∫

∞

0 l(σ ′) · re(−σ ′
+

τ )dσ ′
= rye(τ ), ry(σ , t) =

∫
∞

0

∫
∞

0 l(σ ′)·l(t ′)·re(τ −σ ′
+t ′)dσ ′dt ′ =

ry(τ ), and ru(σ , t) =
∫

∞

0

∫
∞

0 c(σ ′)·c(t ′)·re(t−σ ′
+t ′)dσ ′dt ′ = ru(τ ).

Hence, similar to (34), the PSDs φu(ω), φy(ω), φey(ω), and φye(ω)
satisfy φu(ω) = C(−jω)·C(jω)·φe(ω), φy(ω) = L(−jω)·L(jω)·φe(ω),
φey(ω) = L(−jω) · φe(ω), and φye(ω) = L(jω) · φe(ω). Then
when φe(ω) ̸≡ 0, we have the following relationship Tud(ω) =

[φu(ω)/φd(ω)]1/2 = {[C(−jω) · C(jω) · φe(ω)]/[(1 + L(−jω)) · (1 +

L(jω)) · φe(ω)]}1/2 = |Tud(jω)|, and Tyd(ω) = [φy(ω)/φd(ω)]1/2 =

{[L(−jω) · L(jω) · φe(ω)]/[(1 + L(−jω)) · (1 + L(jω)) · φe(ω)]}1/2 =

|Tyd(jω)|, which readily imply (11c) and (11d) in Lemma 2. This
completes the proof. □

Appendix B. Numerical examples

Since there exist substantial examples on inequalities (27)
and (29) [10,14,15,17,27,35], only examples verifying (28) and
(30) are presented for brevity. For inequality (28) on load dis-
turbance sensitivity Bode-like integral, consider a plant model
G1(s) = (s + 0.2)/(s − 0.1) with an unstable pole at s = 0.1 and
stabilized by C1(s) = (s+0.1)/[s(s−0.2)(s+1)] and C2(s) = 1/[s ·
(s + 1)]. For both control mappings, the lower bound on the RHS
of (28) is 0.15. While the LHS of (28) with C1(s) is 0.35, the LHS
of (28) with C2(s) is 0.15, which implies that the plant model G1(s)
stabilized by control mapping C2(s) has better property for load
disturbance sensitivity. For inequality (30) on noise sensitivity
Bode-like integral, consider a plant model G2(s) = 1/(s + 1)
stabilized respectively by C3(s) = −1× 10−4

· (s− 1)(s+ 0.05)/s2
with a nonminimum phase zero at s = 1 and C4(s) = −1 ×

10−4
· (s − 2)(s + 0.05)/s2 with a nonminimum phase zero at

s = 2. While for the plant model G2(s) stabilized by C3(s), both the
LHS and RHS values of (30) are 1.5, these values are 1 for system
with C4(s), which indicates that the plant model G2(s) stabilized
by C4(s) has a better noise sensitivity property. However, as we
mentioned in Remarks 1 and 6, the integrals in (28) and (30) are
not guaranteed to be bounded for all systems.
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