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In this article, we present a preliminary motion planning framework for a cyber-physical system consisting
of a human and a flying robot in vicinity. The motion planning of the flying robot takes into account the
human’s safety perception. We aim to determine a parametric model for the human’s safety perception based
on test data. We use virtual reality as a safe testing environment to collect safety perception data reflected
on galvanic skin response (GSR) from the test subjects experiencing a flying robot in their vicinity. The GSR
signal contains both meaningful information driven by the interaction with the robot and also disturbances
from unknown factors. To address the issue, we use two parametric models to approximate the GSR data: (1) a
function of the robot’s position and velocity and (2) a random distribution. Intuitively, we need to choose the
more likely model given the data. When GSR is statistically independent of the flying robot, then the random
distribution should be selected instead of the function of the robot’s position and velocity. We implement the
intuitive idea under the framework of hidden Markov model (HMM) estimation. As a result, the proposed
HMM-based model improves the likelihood compared to the Gaussian noise model, which does not make a
distinction between relevant and irrelevant samples due to unknown factors. We also present a numerical
optimal path planning method that considers the safety perception model while ensuring spatial separation
from the obstacle despite the time discretization. Optimal paths generated using the proposed model result in
a reasonably safe distance from the human. In contrast, the trajectories generated by the standard regression
model with the Gaussian noise assumption, without consideration of unknown factors, have undesirable
shapes.
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1 INTRODUCTION

Multirotor copters have become popular as commercial, industrial, and educational platforms. The
mechanical simplicity and agile maneuverability appeal to the applications in the urban environ-
ment, such as media production, inspection, and precision agriculture. Having these micro un-
manned aerial vehicles (UAVs) in our everyday lives can be beneficial. For example, by deploying
fast UAVs, e-commerce retailers like Amazon and Walmart can reduce logistics costs. In addition,
by leveraging their agility and reliability, applications in elderly care and mobile surveillance are
being developed. In all these examples, it is necessary to fly near people and navigate in densely
populated areas. In contrast to the current mobile robots that autonomously operate without con-
sidering humans, these flying robots should be developed to interact and cooperate with people.
Traditionally, robot control and motion planning have focused on the robot’s actual safety, i.e., the
ability to generate safe paths that avoid collisions with obstacles. However, it is also important for
humans to feel safe when flying robots operate around them. Studies of human perception have
shown that there is a sharp distinction between human perceived safety and actual safety. This
article presents a path planning framework, which (i) approximates a safety perception model as
a function of the robot’s position and velocity and (ii) generates collision-free trajectories taking
account of the safety perception model.

The system consisting of flying robots and humans in an urban environment is a cyber-physical
system (CPS). However, the CPS inherently has hidden states due to human involvement. The
incomplete observation of the state of the human makes it challenging to learn the safety per-
ception model. The human’s response to psychological experiments sometimes shows unexpected
behavior, e.g., the change of the focus of attention can make the response independent of the
test variable. Typically, we attribute possible causes of unexpected behaviors to unknown factors.
Naively assuming the unknown factor to be an independent identically distributed (i.i.d.) Gauss-
ian noise model would not be suitable for the data, where only partial observation of the state of
the system is provided. However, the i.i.d. Gaussian noise assumption is popularly used for regres-
sion tasks, since maximizing the likelihood conveniently reduces to the mean-squared error (MSE)
minimization problem. For example, a recurrent neural network (RNN) was trained to predict the
music mood (valence) by minimizing mean-squared error (Weninger et al. 2014). The data fitting
resulted in a low coeflicient of determination at most 50%. The undesired goodness of fit despite
the complex model with a lot of parameters in the RNN suggests that there are other factors not
contained in the data that may influence the outcome. To address this issue in a general case,
we propose to use a model where the focus of the attention is modeled as a hidden variable in a
hidden Markov model (HMM). The HMM divides the data samples into two clusters: (i) relevant
samples where the target variable (arousal) can be predicted as a function of the feature (robot’s
position/velocity); (ii) irrelevant samples where it is better predicted by a random source than a
function of the feature.

The data-driven model of human’s response to the flying robots can be used under the opti-
mal control framework. However, the optimal trajectory generation in complex environments is
a challenging problem. The problem is more complicated when the environment is inhabited by
humans, whose safety perception needs to be accounted for as well. To name a few existing meth-
ods, Kinodynamic RRT* was proposed in Webb and van den Berg (2013) to deal with arbitrary
cost functions. The pseudospectral (PS) method (Elnagar et al. 1995) discretizes trajectories into
the polynomial functions with finite order, and then the optimal trajectory generation problem
becomes a finite-dimensional optimization problem. The PS method has been applied successfully
for solving trajectory optimization problems (Bollino and Lewis 2008). As a result of discretization,
the PS method can verify the constraints, including collision avoidance, only at the discretized time
nodes. As collision avoidance is a critical requirement, a very dense discretization mesh would be
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needed. The computation of optimal trajectories can become intractable and expensive for imple-
mentation in CPSs. Using Bézier curve representation', convex hulls that contain the trajectory
can be used for collision verification along the entire trajectory without increasing the number of
nodes (Choe et al. 2013). In Cichella et al. (2018), it was shown that using Bernstein polynomials
the optimal control solution can be approximated sufficiently closely as the number of time-nodes
increases, while at the same time ensuring spatial separation from obstacles. In this article, we
represent the trajectories by both Bézier curves and polynomials with Legendre-Gauss-Lobatto
(LGL) time nodes. Such representation helps to avoid collisions while considering the human’s
safety perception model.

1.1 Related Results and Statement of Contributions

Human’s perception of a flying robot dependent upon its spatial and temporal variables (e.g., dis-
tance and speed) has been studied using virtual reality testbed, and as well using a real flying
robot. A comfortable approach distance for a flying robot was studied in (Duncan and Murphy
2013), where the authors tested the effects of the size of the robot on the comfort levels of the hu-
man subjects using behavioral, physiological and survey measures. Distancing with the robot and
the interaction preference between two differently behaving robots were investigated for speed
and repeating behavior (cyclicity) using VR experiments (Duncan and Murphy 2017). A compar-
ison of comfort with a small UAV versus a ground vehicle was studied through tests measuring
comfort distance (Acharya et al. 2017).

On the other hand, various design approaches to the human-aerial-robot system have been ex-
plored again to ensure comfort for humans. Laban effort? was employed to design flight paths for
a flying robot in Pakrasi et al. (2018) and Sharma et al. (2013), and the effect on arousal and valence
due to the design parameter of the flight path was tested. Emotional encoding in a flight path of a
robot was investigated in Cauchard et al. (2016), where the encoding was derived from character-
izing stereotypes of personality and motion parameters using interaction vocabulary. In Szafir et al.
(2015), the authors proposed a flight path design approach, which improves the ease of human’s
perception of the robot’s motion, and the proposed design is tested using survey measures. A sig-
naling device that resembles the turn signals of a car was proposed to communicate the robot’s
intent to humans (Szafir et al. 2014). Using gestures to communicate the user’s intent to the robot
was investigated in Cauchard et al. (2015).

Socially aware navigation for ground robots has been more extensively studied in the last decade
compared to UAVs (see Charalampous et al. (2017) and Kruse et al. (2013) for review). Although
human-aware navigation is a broad concept, most papers focus on improving the robot’s behavior
in the aspects defined as follows (Kruse et al. 2013):

e Comfort is the absence of annoyance and stress for humans in interaction with robots.
e Naturalness is the similarity between robots and humans in low-level behavior patterns.
e Sociability is the adherence to explicit high-level cultural conventions.

This article focuses on improving the comfort of the user who interacts with flying robots.
Human’s perception of safety is different from objective safety. Even when a robot is designed to
ensure safe operation, a human user may still feel that the robot’s motion is not safe due to a lack of
trust in the technology. Proxemics theory (Hall 1966) has been extensively accepted by roboticists

IBézier curve is a curve determined by a polynomial trajectory, where the polynomial is written in the form of Bernstein
polynomial (Lorentz 2012). The coefficients of the Bernstein polynomials are also called control points of the Bézier curve.
The convex hull of the control points contains the Bézier curve.

2 A method to interpret human motion used in choreography (Laban and Ullmann 1971).
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and led to various ways of modeling human space in the context of socially aware robotics. In Vega
et al. (2019), using the Gaussian kernel as a spatial model to consider personal space, the human-
occupied space is probabilistically constrained following the proxemics theory. In Kostavelis et al.
(2017), a Gaussian mixture model was used to consider the constraint space for groups of people
where each Gaussian kernel presents a person’s space. Furthermore, Papadakis et al. (2014) and
Sisbot et al. (2007) used semantic labeling of the 3D maps or camera images following the human
space modeling theory. In Sisbot et al. (2007), a human-aware motion planner regulates the distance
between robots and humans by applying a social mapping that considers human’s states such as
sitting and standing. In Papadakis et al. (2014), the authors proposed an algorithm that addresses
social mapping as density estimation. The estimated density indicates the constraint space for
robot navigation.

Conforming spatial constraints that follow social conventions might not be enough to ensure the
comfort of the humans. In Butler and Agah (2001), the experiment showed that the human’s feel-
ing of discomfort also depends on the speed of the robots. Also, there are cultural differences that
need to be considered in social navigation (Joosse et al. 2014). Beyond the proxemics theory-based
social navigation, there exist learning-based approaches (Luber et al. 2012; Vasquez et al. 2014) that
consider the complex nature of the socially aware robot navigation. In Luber et al. (2012), using
surveillance camera images on pedestrians, the authors estimate a pedestrian model to be used
with a motion planner. In Vasquez et al. (2014), the authors proposed to use inverse-reinforcement
learning to identify the social norm in human’s navigation in terms of cost to minimize in opti-
mal control. In Chen et al. (2017), reinforcement learning was applied for navigation control of a
nonlinear cost function that is congruent to a social norm.

Contribution. In the papers cited above, the focus is on either discovering a general model
in human-aerial-robot interaction based on the empirical data or devising a heuristic method to
improve the acceptability of the robot for humans. Many social navigation methods for ground
robots aim to avoid constraint space that is determined based on proxemics theory. Nevertheless,
it is not clear whether avoiding intimate space around a human is ultimately the desired behavior
of social robots. There are learning-based methods for social navigation that do not rely on the
proxemics theory. However, the learning-based approaches in Luber et al. (2012) and Vasquez et al.
(2014) focus on how to predict human’s motion instead of predicting how humans would feel when
the robot is operating around them.

The contributions of this article are listed as follows:

(1) We conduct experiments to study human’s safety perception in the presence of a flying
robot in proximity using the physiological sensor signal (Galvanic skin conductance) mea-
sured in virtual reality (VR) as a safe testing environment.

(2) We devise a hidden Markov model (HMM) approach to obtain a data-driven model of
the safety perception model, which is a map from the robot’s position and velocity to
Galvanic skin response (GSR). The estimated function is more suitable for engineering
optimization than the sparse hypothesis testing used in previous results of human-robot
interaction (HRI).

(3) We propose to use Bernstein polynomials to discretize the trajectories of a robot. The Bern-
stein polynomials ensure collision avoidance between time nodes despite the discretiza-
tion while optimizing the nonlinear cost function that considers the estimated safety per-
ception model.

The remainder of the article is organized as follows. In Section 2, the VR experiment set-up is
described, and the preliminary finding that relates the physiological arousal to the perceived safety
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Fig. 1. Flying robot observed in the VR environment (an illustration video at https://youtu.be/XnaXzdHIxUA).
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Fig. 2. Data acquisition using ROS (Quigley et al. 2009) and Unity (Team 2010).

is introduced. In Section 3, we propose a model to address the influence of unknown factors and
validate it against the VR experimental data. In Section 4, the optimal path planning that takes
the human arousal model into account is presented. Section 5 summarizes and discusses future
directions.

2 VR EXPERIMENT AND DATASET GENERATION

Virtual Reality offers a safe, low-cost, and time-efficient method to collect data (Duncan and
Murphy 2017). For example, the precise coordinates of the human and robot can easily be recorded
in real-time, which is useful for studying spatial-temporal variables in human behavior. To this end,
we developed a VR test environment to explore human-aerial vehicle interactions in a variety of
experimental scenarios (Marinho et al. 2016; Widdowson et al. 2017). Concurrent psychophysio-
logical reactions of participants are recorded in terms of head motion kinematics and electrodermal
activity (EDA) and are time-aligned with attributes of the robot’s flight path, e.g., velocity, altitude,
and audio profile. We developed a data acquisition system, where the robot operating system (ROS)
assigns time stamps to data packets from the sensors, as shown in Figure 2 (Quigley et al. 2009).
The virtual environment (VE) was developed with the Unity game engine (Unity 5.4.1f1) and
presented on an HTC Vive VR headset connected to a Windows 10 desktop computer (i7-5820K,
3.3GHz CPU; 32GB RAM; NVIDIA GeForce GTX 980 Ti graphics card). The head-mounted dis-
play consists of two low-persistence AMOLED displays (90Hz) with a combined resolution of
2,160 X 1,200 (1,080 x 1,200 per eye) and approximately 110° horizontal field of view. Fully spa-
tialized audio was implemented for all sound sources including UAV flight and ambient noises.
Across three experiments, participants passively observed UAV trajectories in a simulated VR
environment. UAV flight paths were manipulated in terms of velocity, altitude, and acoustic profile
to examine their effect on physiological arousal and head motion kinematics. During the simula-
tion, participants were seated at the junction of a three-way intersection in a simulated urban
environment. Three trajectories and their mirror reversals were fit to the environment for a total
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Fig. 3. Designed UAV trajectories.

of six unique trajectories; average path length, 208 [m]; altitude, 1.6 [m] as shown in Figure 3. The
simulation started with a 90s baseline period without any UAV flight, allowing time for the GSR
signal to plateau. The first UAV then appeared and completed its trajectory past the subject. After
a brief pause, the next UAV flew past, and so on for all six trajectories. The entire experiment lasted
approximately 30min. Figure 4 shows the position and velocity profiles of all these flying robots.
We collected the data from 56 participants (20 males, 36 females) recruited from our university. A
detailed report of the virtual environment (VE) system used for human subject testing with small
UAVs can be found in Widdowson et al. (2017).

The skin conductance signal is preprocessed by EDA analysis package, Ledalab, to generate the
phasic activation signal (Benedek and Kaernbach 2010). The EDA toolbox decomposes the skin
conductance signal into the phasic and tonic signal, as shown in Figure 5. The phasic signal is then
deconvolved to determine phasic activation; phasic response represents changes in sympathetic
arousal due to event-related activation.

To the best of our knowledge, there has been no standard index of perceived safety in the lit-
erature. Although physiological measurements of arousal (e.g., EDA) alone are not necessarily
equivalent to people’s perceived safety, several pieces of evidence suggest that the EDA measure
of physiological arousal in our study is closely related to people’s anxiety induced by the approach-
ing drone. For example, in a follow-up experiment examining the effects of path height on people’s
EDA responses, we found that the EDA phasic response was significantly stronger for a drone ap-
proaching at eye-height where a potential collision was possible than when the drone was flying
at a height beyond the observer’s head where there is no danger of collision. These results suggest
that such arousal was most likely due to human’s anxiety in response to approaching danger rather
than general excitement caused by watching flying robots. Moreover, analysis of the simultaneous
head motion showed that as the EDA signal increased with the approaching drone, people made
characteristic collision-avoidance movements by jerking their heads away from the drone. These
findings again suggest that the physiological arousal signals observed in our study are most likely
aresult of people’s anxiety to avoid impending danger rather than general excitement. Thus, in the
following sections, we consider the EDA signal as an operational approximation of the human’s
perceived safety for the optimal path generation algorithm.
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Fig. 4. Human-aerial robot interaction events. Test events and flight paths, x, y, z, denote position coordi-
nates, and d denotes the distance between the robot and the human. Also, x, 7, z denote velocity coordinates,

and d denotes the rate of change of the distance.
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Fig. 5. EDA analysis result (phasic/tonic decomposition and deconvolution to determine phasic activation).

3 PROPOSED MODEL

We aim to develop a data-driven model that predicts the phasic activation (arousal), given the ro-
bot’s position and velocity. Let y, € R denote the phasic activation, where n is the time index. The
input (feature) variable denoted by x,, € R? is the vector that contains the distance to the robot, the
rate of change of the distance, the Cartesian position coordinates and the velocity coordinates.
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Fig. 6. Phasic activation signal induced by the flying robot. The shaded box indicates the response when the
robot is in the far distance (greater than 60 [m]).

The challenge to be considered in the model is the uncertainties due to unknown factors. De-
spite the high-fidelity test environment, it is impossible to measure every stimulus on the subject,
i.e., there are unknown factors in the data. As an example, one of our collected datasets, shown
in Figure 6, illustrates the unknown factors present in the data. One can notice an increase of the
phasic activation in the shaded area, although the flying robot is far away and virtually invisible
to the subject.

To consider the unknown factors in the data, we would like to think that the unexpected spike
of the phasic activation in Figure 6 is due to the change of the participant’s focus of attention, i.e.,
the participant is distracted by some other stimulus. Inspired by the work in Mozer et al. (2007),
we model the sequential dependence of human’s focus of attention using a hidden Markov model
(HMM). The HMM has two states represented by a latent variable, z,, € {1, 2}, which represents
the human’s attention state, i.e.,

|1, if the human is attentive to the robot,
Zn = 2, otherwise.

Then z, is modeled by a homogeneous Markov chain with the following probability transition
equation:
Tn+1 = TnA. (1)

The vector 7z := [p(zn = 1), p(zn = 2)] is the stochastic row vector for the distribution over the
state z,, and A € R?*? denotes the transition probability matrix of the Markov chain.® The initial
distribution 7; and A are the parameters of the Markov chain.

The attention state latent variable z, assigns one of the two output emission models fg(x,) + €
or an independent random source ¢ as follows:

Yn = ]l{zn=1|(fﬁ(xn) +€)+ ]l{zn:215, (2)
where 14 denotes the indicator function, and fp : R?® — R is a linear function fp(x) = BT (x)
with parameter f and basis* ¢(x), € ~ N(0,0?), and § denotes the random source. As seen in
Equation (2), y, depends on x, when z, = 1; however, y, = § when z, = 2, i.e, it is modeled as
an independent random signal. In Equation (2), it can be seen that two regression functions of

the model y, = fz(x,) and y, = § compete with each other to be chosen as the describer for the
corresponding observation (x,, Yy ).

3We used p(-) for both probability and probability density; its distinction easily follows from the context.
“The third-order polynomial basis functions were chosen for the ¢(-).
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ALGORITHM 1: EM Algorithm for MLE of 0 given the data (x,y)

Initialize the parameter, 6°ld with 6°.
repeat
1. Determine the posterior, p(z, w|x,y, 9”1”]).
2. Calculate Q(0, 6°19):
Q(0,6°') := " p(z, wix,y, 0°') log p(y. 2, wlx, 0),
Z,W

which is the expectation of log p(y, z, w|x, ) with respect to the posterior.
3. Find the maximizer, 0*
0" = argmax Q(0, g°ld)y,
0

4. Update 0°/4 with 6*.
until convergence;

Selecting a model for § with appropriate complexity is desired, otherwise only y, = f5(x)
would be active most of the time. We employ a mixture of Gaussians to model §. The Gauss-
ian mixture model (GMM) allows multi-modal and skewed distributions in contrast to the Gauss-
ian distributions. The density of the mixture model for § is defined by another latent variable
wp € {1,...,K} as follows:

P(Slwn = k) = N (Slpk, o), p(wn = k) = ¢k, 3)

where ¢ are mixing coefficients such that ZIk(:l ¢r =1, N(S|p, o) denotes a Gaussian density
function of § with the mean y and the variance 0. We assume that wy, is independent and identi-
cally distributed. Also, it is assumed that w, and z, are independent, and furthermore, w, and z,
are conditionally independent, given the observation (x,, Yy ).

3.1 Model Parameter Estimation

The model defined by Equations (1)-(3) has a set of parameters denoted by 8 := {f, u, 0, 71, A,
{¢i,ﬂi,0i}£1}~ Given the dataset x := {x1,...,xn} and y := {y1,...,yn}, the parameter of the
model is estimated by the maximum likelihood estimation (MLE) through the following condi-
tional likelihood equation:

argmax p(y|x, 0) = argmax Z Zp(y, z, wlx, 0), (4)

6 6 Z W
where the summation takes place over all possible sequences, z:={zy,...,zy} and w:=
{wi, ..., wn}. The number of terms for the summation is 2V KN, which makes the optimization

intractable for a large number of samples. Due to this challenge, Expectation-Maximization (EM)
algorithm (Dempster et al. 1977) is widely used to obtain the MLE for HMM.

EM Algorithm: Let (x,y, z, w) denote the complete data. Using the independence assumption
on wp, z, and the Markov chain property as defined in Equation (1), the conditional likelihood for
the complete data is calculated as follows:

N N
p(y, 2, Wi, 0) = p(z1|m) [ﬂ pGalza-1, A)| | | pOwnl0)pWnlzn, Was %2, 0), (5)
n=2 n=1
where z := {z1,...,zy} and w := {wy, ..., wn}. The EM algorithm iteratively maximizes the like-

lihood in Equation (5) using only (x, y) as summarized in Algorithm 1.
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3.2 The Calculation of the EM Algorithm for the Proposed Model
The EM algorithm for the proposed model is calculated by the following three subsequent steps:

Step 1. Determine the Posterior, p(z, w|x,y, HOld). Using the conditional independence as-
sumption of the latent variables, the posterior is factorized as

p(z, wIx,y, 0°9) = p(zlx,y, 0°'¥)p(wlx, y, 0°'%). (6)

First, we calculate p(z|x, y, 0°'¢) using the Forward-Backward Algorithm (Baum et al. 1970). Define
a(zn,;) and b(z,,;) as follows:

a(zﬂ,i) = P(yl, ceey yn» Zn,i)v
b(zn,i) = p(Ynt1s- - - YNI2Zn, i, %),
where z,, ; denotes the event {z,, = i}. To calculate the posterior, the following recursive equations

are used:
2

a(zn1) = p(Unlzn,1:%,0°") D a(zn1 k)p(znlzn-1,6. A7),
k=1

2
b(zni) = D b(zner )P Unsilznin ko X 07 )p(zn i klzn i A7),
k=1

where p(yn|zn, i, x, 0°'¢) is calculated using Equation (2) as

N (yn — fp(xn)10, 02), if i = 1
nl4n,i» 56 = o
Plnlznx.0) {ZIk(:l N Ynlpx, 0f), if i = 2.

The boundary values a(z;) and b(zy) are determined as a(z;) = p(z;|m;)p(y1]x, 6°/9) and b(zy) =
1. After calculating a(z,) recursively and b(z,), the posterior is determined as follows:

a(zn)b(zy)

) ’Qold = e 7
a(Zn—l )P(ynlzn ks Xn, QOId)A'kb(zn k)
—-1,js 4n. ) ,HOZd = -/ - . - ’ 3
P(zn-1,j> ZnkIX, y ) p(ylx, gold) ®)
where the likelihood is calculated as
2
plylx 6°%) = 3" alzw ). )

k=1

We calculate the posterior p(w|x,y, #°/¢) independently from p(z,|x,y,8°'¢) due to the condi-
tional independence assumption of w, and z,:

$iN (Ynlpi, 07)
YR BN Ynlpe. 0f)

P(Wn,ilxna Yn, 6Dld) = (10)

where wy, ; denotes the event {w,, = i}.
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Step 2. Calculate Q(6, 6°'?). Using the posterior calculated in Equations (7) and (10) and the
likelihood in Equation (5), Q(6, 0°!¢), defined in Algorithm 1, is calculated by expanding the log
term:

Q(60.6°'%)
=) p(zwlx,y, 07 log p(y, z, wlx, 0)

z,w
2
i=

P(zl,i|X, y’ 901d) log ﬂl,i
(11)

+

P(zZn-1,i»zn j1X, Y, g°ldy log A;,j

M
M-

j=1

+

M= 1=
i
i

D(zn,is Wn k1%, Y, 0°19) 1og p(Wn|d1)p(Ynl2n, i» Wn ks Xns 0),

MN
M=

I
—

n i

I
—_
e

1

-+

where z, ; denotes the event {z, = i}, wy x denotes the event {w, = k}, A; ; is the (i, j) element of
the matrix A, and p(yn|zn,i, Wk, Xn, 6) is calculated using the model Equation (2) as follows:

PYnlzn,is Wn, k> Xn, 0)

_ [N@n = fplxn)lp, 0%),  ifi=1 (12)
" \Nnlps, o}), ifi = 2.

Step 3. Find Maximizer 6. As seen in Equation (11), each term has a distinct set of parame-
ters. Hence, we can determine the maximizer for each term independently from the other terms.
Using the constraints® of the probability distribution r; ; and the probability matrix A; ;, the KKT
(Karush-Kuhn-Tucker) condition (Bertsekas 1999, pp. 315) determines the maximizer as follows:

. _ p(zilxy, 09)
Li ™ 2 old\’ (13)
Zj:lp(zl,j|x’y’9 )
* Zjnvzzp(znfl,j’ Zn,k|X, Y7 GOId) (14)

ik = 2 N :
/ Zl:l anzp(zn—l,j’zn,lb(s y, QOId)

The maximizer for the last term in Equation (11) is calculated using the model Equation (2). Let
L denote the last term in Equation (11). Using Equation (12), L is written as follows:

L(B, 0, ¢, pti» 0i ) )

Zp(zn,i, Wn,kl)(? y» eold) logp(wn|¢k)p(yn|zn,i7 Wn,k»xn, 6)
k=1

M= iD=
D= 1

p(wn k|, v, 0°%) log ¢

S
Il
—
o~

Il

1

4 0 (yn — f; (xn))?
+;p(zn,1|x,y,9 ld)log(am exp (— 2(/;2 ))

e 905 b sl 0 log [ n i)
Zn.2> Wn kX, Y, o exp | ————||.

n=1 k=1

>The sum of the probability distribution equals to one and the probability matrix’s row-wise sums equal to one.
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The variable f* := argmaxzQ(f, 6°'?) is calculated as

N
pr= argming Zp(zn,ﬂx, Y, 901d)(yn - fﬂ(xn))z. (15)

n=1

The ¢7, pi7, o}, and o are determined using KKT (Karush-Kuhn-Tucker) condition as follows:

YN p(wn,ilx,y, 0°1)
jr:I:l Zf:l p(Wn,klx’ y’ GOld) ’

. 2N p(zna whilx,y, 0°1) y,
SN (s Wil y, 6°1)
o I (zn 2 Wh il%,y, 0°1) (yn — pi})?
L SN Pz Wailx,y, 0°1)
o il PG %y, 0°!) (G = fip (k)
SN p(znilx,y, 6°1)

Remark 1. In contrast to the mean-squared error minimization, the latent variable model (HMM)
determines the parameter of fz(x) as the weighted least squared error solution with the weight of

the posterior p(z,,1/x,y, 9°ld) as follows:

i =

>

N
pr = argming ZP(Zn,ﬂX, Y, QOId)(yn - fﬁ(xn))za

n=1

where p(z,,1|%,y, GOId) denotes p(z, = 1|x,y, GOId). Unlike the Gaussian noise model, the proposed
method puts greater weight on the samples, which are more relevant to the input based on the
posterior of the attention state.

3.3 Result

We choose the following initial parameter 0°:

(1) B°:=argming 3N (yn — fp(xn))% and ¢° = 0.5,
(2) A%:=[})3 /5], and x0 = [1/2,1/2],
3) ¢2 =1/K, G]S =1, and py are randomly chosen from the interval [-1, 1],

where K is the number of the Gaussian basis of the GMM. For the linear function fz(x) := 7 $(x),
we choose the basis functions @(x) as polynomials with degree 3.

The Gaussian i.i.d. noise model (which minimizes MSE) is contained in the proposed model
structure as a special case, p(z, = 1) = 1, i.e,, the arousal is always better explained by fs(x) than
the random source §. Since HMM is non-identifiable, in general, the likelihood-ratio model com-
parison test with the training dataset does not apply. To determine which model is more suitable,
we calculate the likelihood with test dataset by employing the approach in Uria et al. (2016). We
randomly partition the data from 56 subjects into a training set with 38 subjects and a test set
with the other 18 subjects. Figure 7 shows the log-likelihood with test data set for the models:
(i) the Gaussian i.i.d. noise model, (ii) the proposed HMM model with a different number of basis
K for the GMM. The significant increase in likelihood using the proposed model as compared to the
Gaussian i.i.d. noise model suggests that the proposed model is more suitable for the experimental
data at hand than the Gaussian i.i.d. noise model.
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Gaussian Noise Proposed Model
o Model
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Fig. 7. Log-likelihood with test data. Gaussian noise model refers to yn = fg(xn) + € with e ~ N (0, o2) and
K denotes the number of Gaussian basis in the Equation (3).

Remark 2. The improvement of the log-likelihood by using the proposed model suggests that
the null hypothesis® is not true. By rejecting the null hypothesis, we show that the proposed model
is more suitable than the Gaussian noise model. Consider the following log-likelihood ratio test
(see 11.7.4 in Wasserman (2013)):

Hy:p€e®, versus H;:¢ € 0Oy,

where ¢ denotes the true parameter, ©, denotes the set of parameters for the Gaussian noise model,
and ©; denotes the set of parameters for the proposed model. Note that the Gaussian noise model is
a special case of the proposed model, i.e., ®y C ©;. The likelihood ratio statistics A is calculated as

su L6
A=2 Iog (M) s
SUPgep, L(0)
where £(0) = p(y, z, w|x, ) denotes the likelihood for 6 in Equation (5). Figure 7 shows that
A > 4,000. The relative degree is r = 10, as the proposed model has 10 more parameters than the

Gaussian noise model. The likelihood ratio test is: reject Hy, when A > xZ .. We reject Hy : ¢ € ©,
with p-value at 0.01.

We fix the proposed model with K = 2, since a greater number of basis does not result in sig-
nificant improvement in likelihood as shown in Figure 7. The function fz with the fixed model
is used to predict the phasic activation (arousal) as shown in Figure 8. Figure 9 shows that the
MSE minimization model (the Gaussian noise model) has few signs of over-fitting (oscillation and
spiky shape). In the following section, optimal path planning with the two prediction models is
analyzed.

4 OPTIMAL PATH PLANNING

In this section, we formulate the optimal path planning as an optimal control problem. The as-
sumptions on the vehicle’s dynamics, constraints on acceleration, and velocity are introduced.
Subsequently, we present the collision avoidance requirements and an optimal control formula-
tion. We assume the co-robot navigates on the 2D plane. The vehicle is assumed to be a double
integrator with dynamics:

dz

Wp(t) =u(1),

P(0) = pi,  P(0) = Vin,

(16)

The null hypothesis assumes that the true parameter ¢ is in the set of parameters @, which corresponds to the Gaussian
ii.d. noise model.
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Fig. 9. Closer look of the prediction on an event.

where p(t) := [x(t), y(¢)] " is the planar position vector, p;,, denotes initial position, and vi, denotes
initial velocity.

The proposed cost function must account for the relative positions and velocities with respect
to the human in the environment. The human is modeled as a stationary object. The associated
cost function takes the following form:

J= fo 7 1p(1). p(o). bydr, (17)
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where [(-) denotes a running cost function, h denotes the position of the human, and t¢ is the total
flight time.

Remark 3. In the previous section, we estimated the function that maps the robot’s position and
velocity to the phasic activation of EDA in the form of the parametric function fz(-) that can be
found in Equation (2). We will consider f3(-) in the cost function J as a constraint using the penalty
method as in Equation (28) for the optimal path planning described in Section 4.3.

The collision avoidance constraint is defined with a lower bound on the spatial separation from
the human as

lp(t) =hll, > ds, Vte[0,¢r], (18)

where the human is modeled as a disk with centers at h, and d; is the safe distance from the center
of human to the robot. The safe distance is a design parameter that depends on how close the robot
is allowed to approach the humans, regardless of the velocity.

As previously mentioned, our goal is not only to optimize for the perceived safety of individuals
but to generate trajectories that the co-robots can follow. Therefore, these trajectories must not
only satisfy the dynamics in Equation (16) but also respect the physical limitations of the vehicles.
Thus, we define the bound b,, on the velocity and b, on the acceleration of the flying robot:

X0 < by, @) < by, %) < ba,  [§(1)] < ba, Vi€ [0, 8f]. (19)

When generating trajectories for autonomous vehicles, we desire to achieve a certain final po-
sition (with a chosen final velocity) that is predetermined by a higher level task. Additionally, the
maximum allowable time must be prespecified to ensure that the task is executed in a realistic time
frame. These boundary conditions are

P(tf) = Pterm> p(tf) = Vierm>  Imin < tf < tmaxs (20)

where p,.,.,, denotes the terminal position at the target, vierm denotes the terminal velocity, and
tmins Imax are the bounds on the flight time.

Given the prior formulation, the proposed trajectory generation method can be cast into a fixed-
end-point optimal control problem, where the desired trajectory is obtained by minimizing the cost
J defined in Equation (17) and satisfying the constraints as follows:

min
x(t),tr ]
subject to collision avoidance constraint in Equation (18),
dynamic constraints of the robot in Equation (19),

boundary conditon in Equation (20).

4.1 Finite-dimensional Approximation for Optimal Trajectory Generation

This section introduces the concurrent parameterizations of the trajectories in a finite-dimensional
space. To leverage the advantages of algorithms for specific polynomial structures, we introduce
two different polynomial basis functions that describe the same curve. This framework can ac-
count for a large class of curves, because a polynomial function can uniformly approximate any
continuous function with an arbitrarily small error (Weierstrass approximation theorem) (Stone
1948). The PS method relies on the discretization of the polynomial to find the optimized trajec-
tory. This results in a drawback for safety-critical systems, because the constraints are only verified
for the finite number of discretized time nodes, as discussed in Choe et al. (2013). This phenom-
ena is illustrated in Figure 10, where none of the discretization points violate the constraints from
Equation (18). The resulting trajectory violates the collision avoidance objective. Furthermore,
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(a) number of nodes: 7 (b) number of nodes: 20

Fig. 10. Trajectories generated by PS method to minimize flight time with different numbers of time nodes.
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Fig. 11. Distance from the centers of circles to the trajectories by PS method.

Figure 11 shows that by increasing the number of nodes, the PS method does not necessarily pro-
vide a collision-free path. To overcome this issue, we propose a Bézier curve (Farin and Hansford
2000) as a second way to represent the flight path.

4.1.1  Two Representations of a Polynomial Trajectory. From this moment forward, we will al-

ways consider the co-robot’s trajectory p(t) := [x(t),y(t)]" as an nth order polynomial in x(¢) and
y(t). We present a brief overview of both equivalent representations.

(1) A degree n Bézier curve is given by

n

p(t) = Zikb,’j(i(t)), ¢:0,te] = [0,1],  0(t) = —, (21)

k=0 tr

where

b(C) = (Z)(l —OrR, a0l
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are the Bernstein polynomial basis, and the coefficients %, € R? are called control points
of the Bézier curve.
(2) The interpolation curve representation is as
. 2t
P(t) = Y xilk(n(), i[04l > [-1,1], () == -1, (22)
k=0 ty
where
n(t) —n(ti)
e (n(t)) := 1_[ (T(;)
o<isn,izk \1VE) TG

are the Lagrange polynomial basis and x; € R? are interpolation points at time nodes f.

4.1.2  Cost Function Calculation with Interpolation Curve and Legendre-Gauss-Lobatto (LGL)
Quadrature. We can use the interpolation curve representation with LGL nodes to calculate the
cost function. First, the interpolation points are determined on the nodes, and then LGL quadra-
ture is applied. The procedure is written in the following steps:

STEP 1. Determine Interpolation Points. The LGL nodes are determined by finding the roots
of the first derivative of the nth order Legendre polynomial P,(7), i.e., the set of LGL nodes {7}
s {=1,1} U {n | P.(n) = 0}. Using the inverse map 5! : [-1,1] — [0, tr], the set of LGL nodes
Nk € [-1,1] is mapped to the time nodes #; € [0, ¢]. Substituting the time nodes t; into the given
trajectory p(t), the interpolation points are determined as p(t;). Now the polynomial trajectory
p(t) is represented as an interpolation curve with LGL nodes.

STEP 2. LGL quadrature (Hunter and Nikolov 2000). Let f(t) denote the integrand of the
cost function in Equation (17), i.e., f(¢) := I[(p(t), p(¢), h) for fixed trajectory x(¢) and parameters
h. The LGL quadrature calculates the value of the cost function J as follows:

(fF) + f(=1)

J= f f(tydt =+ [ "t D) +Zwkftk +Ra, (23)

where the weight wy and the remainder are
2
W =—————————
T aln+ DPa(ne)
_ 2n+1 _
R, = n®(n+1)2 [(n—-1)1* f(Z”)( ), forsomen e (-1,1),

(2n + 1)[2n!]3
and f@"(-) denotes 2nth derivative of the function f(-).

Remark 4. The remainder decays fast as n increases. For example, for 10th order polynomial
trajectory, the LGL quadrature can calculate the cost function J with the error bound |Ry| < 1.5 X

107 sup, ¢y £ ()1

4.1.3  Collision Avoidance Constraint with Bézier Curve Representation. The convex hull con-
tainment property of Bézier curve is used to verify the spatial constraints (Choe et al. 2013). As
illustrated in Figure 12, the convex hulls contain the trajectories in the projected spaces of (x,y)
and (¢, x). Splitting the Bézier Curve with De Casteljau’s algorithm (De Casteljau 1959; Farin and
Hansford 2000), the convex hulls give tighter containment of the trajectory. The flatness factor
of Bézier Curve defined in Equation (24) is used to determine when to stop splitting the curves.
Decreasing the flatness factor, the control points move towards the polynomial path as illustrated
in Figure 13:
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x[n] time[s]
(a) Trajectory on (x,y) plane. (b) Trajectory on (t,x) plane.

Fig. 12. Containment of trajectory in the convex hulls.

F%T i) P3

Fig. 13. Flatness factor. The equilateral triangle of PoyP*P3 has the same perimeter as the convex hull with
vertices Py, P1, Py, Ps.

) SR Xk = X, k+1)ll2
Y({Xai)) = ke — 00 . (24)
||X(i,0) - X(i,n)”z

Remark 5. Splitting the curve (blue) repeatedly into two halves using De Casteljau’s algo-
rithm (De Casteljau 1959; Farin and Hansford 2000), the convex hulls (gray) covering the curve
become flatter, i.e., y — 1. Note that the containment also holds for the time and position coordi-

nate plane.
Remark 6. Flatness factor y for the control points Py, Py, P,, P5 is calculated as in Equation (24):
_ |PoPy| + |P1Ps| + |PoPs|
|Po P3|
where |PyP;| denotes the distance between the control points Py and P;. Using elementary cal-
culations, the maximum possible distance of the control point given the flatness factor y and the
distance [ from the starting point P and the terminal point P; is calculated as

dzé(l_,/).

So, having y close to 1 brings the control points Py, P, P, P5 to the line connecting Py and Ps.

k]
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The distance between the convex hulls, denoted C;, which contain the trajectory and obstacles,
denoted Oj, is calculated by applying GJK algorithm (Gilbert et al. 1988). The procedure to deter-
mine a lower bound on the minimum distance between the flight path and obstacles is written in
Algorithm 2.

ALGORITHM 2: Lower bound of the minimum distance
Step 1. Given the set of control points, {X(g t)}, of the trajectory p(t) split the trajectory into
{{X(0,k) } {X(1, k) }} until each of the split curves is flat enough.

repeat
for X(i,k) in {X(i,k)} do
Calculate the flatness factor y ({%(; x)}) according to (24).

if y > threshold then
| Split the Bézier curve using De Casteljau algorithm.

end
end
until max{y (X(,x))» ¥ (X(1,k)) - - -» ¥ (X, k))} < threshold;
Step 2. From the split Bézier curves with the set of control points, {{X(o )}, {X(1,k)}s - - - {X(n, k) H In

Step 1, determine the distances between each convex hull of control points, {)'((i’ k) }, and each obstacle, O;.
for a geometric obstacle, O; do
| Calculate the distance, d(C;, Oj),between C; and O; with GJK algorithm.
end
return the distance, d
d(y) = min d(C;, 0;)

4.1.4  Dynamic Constraints with Bézier Curve Representation. Constraints on velocity and accel-
eration can also be verified using the Bézier curve representation. Taking the time derivative on
the trajectory x(¢) in Equation (21), the velocity v(t) is written as a Bézier curve with the velocity
control points Vi as follows:

n—1
v(t) = Z\_’kb,':_l(g(t)), Vi = (tl) (Xk+1 — Xk)-
k=0 f

Similarly, the acceleration a(t) is written with the acceleration control points aj as follows:

n=2 n(n—1)
alt) = ) abfPC(0), Ak = =

k=0 f

(Rk+2 — 2Xp41 + Xg).

Since v(t) and a(t) are also Bézier curves, the convex hull of the control points contains v(t) and
a(t), respectively. With a similar procedure used to calculate minimum distance bound between
the trajectory and the obstacle in Algorithm 2, upper bounds on the magnitude of v(¢) and a(t)
are calculated.

Remark 7. Once a tight containment of the velocity curves is attained, the maximum value of
velocity control points for each coordinate is an upper bound for the velocity. Through the same
procedure, an upper bound for the acceleration is calculated. These upper bounds are used to check
the constraints in Equation (20).

4.2 Finite-dimensional Optimal Trajectory Generation

Discretizing the optimal control problem with finite order polynomial approximation, the trajec-
tory generation is cast as the following optimization problem. The decision variables y are the
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control points and flight time, i.e., y = (Xq, . . ., Xy, tf), for an nth order polynomial trajectory with
the terminal time ¢y.

Cost function. From the LGL quadrature in Equation (23), ignoring the remainder term R,, the
cost function is written as follows:

tr{2(f(1) + f(=1))

Fly) = 2 n(n+1)

+ D wef(t)| - (25)
k=1

Constraints. Using Algorithm 2, the collision avoidance constraint, dynamic constraint, and
boundary condition can be put together as the following constraint inequalities:

8 < G(y) < g, (26)
where
ay) ) [ oo
b, (y) 0 b,
ba(y) 0 b,
__ tf L Lmin L Imax
OO = o —xll | BT 0| BT o |
Vo = Vinll2 0 0
“)_(n - Xterm”Z 0 0
UIVh = Vierm |2 [ 0 ] L 0 ]

d; denotes the lower bound on the separation distance from the obstacles, b,,, b, are the bounds
on the velocity and acceleration, and fyin, tmax are the bounds on the flight time. In the above
constraint inequality Equation (26), the lower bound of separation distance from the obstacles for
y denoted as d(y) is calculated using Algorithm 2. The upper bounds on velocity and acceleration
for y, denoted as b, (y) and b, (y), respectively, are determined as described in Section 4.1.4.

The finite-dimensional nonlinear optimization problem to generate the trajectories is formu-
lated as follows:

myin F(y). (27)

subject to
g <G(y) < g,

The solution to the optimization problem can be obtained by employing standard optimization
algorithms, such as interior point optimizer (IPOPT) (Wachter and Biegler 2006), sequential qua-
dratic programming (SQP) (Bertsekas 1999, pp. 431), to name a few. A flight path that minimizes
the flight time, while avoiding collisions, is presented as an example of the implementation of the
optimal path planning in Figure 14.

4.3 Optimal Path Planning Considering the Perceived Safety Model

Define x(t) in the same way we defined x,, in Equation (2), where x(t) € R® contains the distance to
the robot, the rate of change of the distance, the position coordinates and the velocity coordinates
at time ¢. Notice that with the polynomial path p(#) and p(t) one can directly construct x(t). For this
reason, to simplify the notation, we can use x(¢) and (p(¢), p(t)) interchangeability as arguments
of the functions fz(-), J(-) and I(-).

In the optimal path planning, we only consider values of fg larger than a threshold b,, where
ba > 0is essentially a tuning parameter. Intuitively, we ignore arousal levels below the threshold.
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Fig. 14. An optimal flight path minimizing time while avoiding obstacles.

To make the optimization problem tractable, instead of adding a strict constraint, the constraint is
incorporated in the running cost as a penalty function (Zangwill 1967):

I(p(£), p(t), h) := 1 +y max(0, f5(x(1)) = ba)?, (28)
where y is the penalty coefficient. The corresponding cost function J (%o, . . ., X», tr) becomes
r
JXos .- Xnotp) = tp + yf max(0, f5(x(t)) — b,)*dt. (29)
0

Remark 8. Notice that this is fixed end-point calculus of variation problem, where the total
flight time #f is not fixed, yet x(¢r) is a fixed point, and we want to minimize the cost-function
concurrently with the penalty term.

The two arousal prediction functions are used in the optimal flight trajectory generation, as
shown in Figures 15(a) and 15(b). The smaller value of b, results in a path that is more safety
conscious, as intended by the running cost function in Equation (28). Flight paths generated with
the proposed model show the desirable behavior, as shown in Figure 15(a) (decreasing b, results
in greater distance from the human). However, the paths with the Gaussian noise model have
unconvincing shapes. This undesirable behavior of the Gaussian noise model (MSE minimization)
is due to over-fitting, as we have seen in Figure 9. It shows that the standard regression (MSE
minimization) model does not generalize in the optimal path generation task.

5 CONCLUSION

We present a path planning framework that takes into account the human’s safety perception in
the presence of a flying robot. We devise a machine learning method to estimate the uncertain pa-
rameters of the proposed safety perception model based on test data collected using Virtual Reality
(VR) testbed. Also, an offline optimal control computation using the estimated safety perception
model is presented. Due to the unknown factors in the human tests data, it is not suitable to use
standard regression techniques that minimize the mean-squared error. We propose to use a Hidden
Markov model (HMM) approach where human’s attention is considered as a hidden state to infer
whether the data samples are relevant to learn the safety perception model. The HMM approach
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(a) The proposed HMM model. (b) The Gaussian i.i.d. noise model.

Fig. 15. Flight paths generated with the two perceived safety models. The circle around the human represents
personal space, which the robot needs to avoid.

improved log-likelihood over the standard least squares solution. For path planning, we use Bern-
stein polynomials (Bézier curve) for discretization, as the resulting path remains within the convex
hull of the control points, providing guarantees for deconfliction with obstacles at a low compu-
tational cost. An example of an optimal trajectory generation using the learned human model is
presented. The optimal trajectory generated using the proposed model results in a reasonable safe
distance from the human. In contrast, the paths generated using the standard regression model
have undesirable shapes due to overfitting. The example demonstrates that the HMM approach
has the robustness to the unknown factors compared to the standard MSE model.

5.1 Future Work and Discussion

A drawback of the proposed framework is the lack of adaptability, because the algorithms for esti-
mation and path planning are off-line algorithms. For example, the pool of 56 subjects is probably
not enough to generalize the arousal prediction model to many different scenarios. In contrast, an
online algorithm can continue to update the parameter of the prediction model using the current
data. Also, the off-line trajectory generation might not be suitable when the environment is dy-
namically changing. To address this issue, future work will consider learning-based approaches
that adapt to uncertain environments and human behavior. Reinforcement learning (RL) is a suit-
able tool to determine the optimal policy for uncertain systems. However, there are two technical
challenges to apply RL in real environments. First, RL involves trial and errors, which can lead to
catastrophic failures. Therefore, RL requires stabilizing controllers to avoid such failures. Second,
the majority of RL algorithms rely on Markov assumption, i.e., full state observation. However,
complete state observation is rarely available in real applications. Model-based RL approaches
that run system identification for state estimator can be used to overcome incomplete state obser-
vation as in Karkus et al. (2017) and Yoon et al. (2018). The future work will focus on extending the
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online HMM estimation-based reinforcement learning (Yoon et al. 2018) to a realistic environment
where the flying robots and humans actively interact.
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