SOBOLEV EMBEDDING FOR M!'? SPACES IS EQUIVALENT TO A
LOWER BOUND OF THE MEASURE.

RYAN ALVARADO, PRZEMYSLAW GORKA, AND PIOTR HAJLASZ

ABSTRACT. It has been known since 1996 that a lower bound for the measure,
w(B(z,7)) > br®, implies Sobolev embedding theorems for Sobolev spaces M'? defined
on metric-measure spaces. We prove that, in fact Sobolev embeddings for MP spaces
are equivalent to the lower bound of the measure.

1. INTRODUCTION

A metric-measure space (X, d, i) is a metric space (X, d) with a Borel measure p such
that 0 < p(B(z,r)) < oo for all z € X and all » € (0,00). We will always assume that
metric spaces have at least two points. Sobolev spaces on metric-measure spaces, denoted
by M7 have been introduced in [11], and they play an important role in the so called
area of analysis on metric spaces |5, 6, 17, 18|. Later, many other definitions have been
introduced in [8, 12, 13, 26], but in the important case when the underlying metric-measure
space supports the Poincaré inequality, all the definitions are equivalent [10, 21]. One of
the features of the theory of MP spaces is that, unlike most of other approaches, they
do not require the underlying measure to be doubling in order to have a rich theory. In
this paper we will focus on understanding the relation between the Sobolev embedding
theorems for spaces M'? and the growth properties of the measure .

Let (X,d, 1) be a metric-measure space. We say that u € MYP(X,d,u), 0 < p < oo, if
u € LP(X, u) and there is a non-negative function 0 < g € LP(X, 1) such that

lu(z) —u(y)| < d(z,y)(g(x) + g(y)) for p-almost all z,y € X. (1)
(

More precisely, there is a set N C X of measure zero, p(N) = 0, such that inequality (1)
holds for all z,y € X \ N. By D(u) we denote the class of all functions 0 < g € LP(u) for
which the above inequality is satisfied, and we set

D.(u) := {g € D) : lgllrxs > 0}.

The space M!'P is equipped with a ‘norm’

N4 - i f .
HUHM1 (X,d,p) ||U||LP(X,u) +gelg(u) H9||LP(X,u)
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We put the word ‘norm’ in inverted commas, because it is a norm only when p > 1. In
fact, if p > 1, the space M'? is a Banach space, |11].

If Q@ C X is an open set, then (2,d, 1) is a metric measure space and hence, the space
MYP(Q,d, p) is well defined. In other words, u € M'?(Q, d, ) if u € LP(Q, ) and there is
0 < g e LP(Q, i) such that (1) holds for almost all z,y € Q.

The space M1 is a natural generalization of the classical Sobolev space, WP, because
if p>1 and Q C R” is a bounded domain with the W!P-extension property, then

M (Q, dgn, L") = WHP(Q) and the norms are equivalent,

see [10]. Here we regard €) as a metric-measure space with the Euclidean metric dgn,
and the Lebesgue measure £*. When p = 1, the space M'! in the Euclidean setting
is equivalent to the Hardy-Sobolev space [24]. While the spaces M for 0 < p < 1
do not have an obvious interpretation in terms of classical Sobolev spaces, they found
applications to Hardy-Sobolev spaces as well as Besov spaces and Triebel-Lizorkin spaces
(see, e.g., [24, 25]).

The classical Sobolev embedding theorems for W!#(R™) have different character when
p <mn,p=mn,orp>n Therefore, in the metric-measure context, in order to prove
embedding theorems, we need a condition that would be the counterpart of the dimension
of the space. It turns out that such a condition is provided by the lower bound for the
growth of the measure
w(B(x,r)) > bre. (2)
With this condition one can prove Sobolev embedding theorems for M!'? spaces where
the embedding has a different character if 0 < p < s, p = s or p > s, [10, 11]. For
a precise statement see Theorem 6, below. The purpose of this paper is to prove that
condition (2) is actually equivalent to the existence of the embeddings listed in Theorem 6.
Precise statements are given in Theorem 1. Partial or related results have been obtained
in [7, 9, 14, 15, 16, 19, 20, 22, 23]. An extension of the results in this work to certain
classes of Triebel-Lizorkin and Besov spaces is given in a forthcoming paper [4].

The first main result of this paper highlights the fact that the lower measure condition
in (2) characterizes certain M"?-Sobolev embeddings. See Theorem 17, Theorem 25, and
Theorem 29 in the body of the paper for a more detailed account of the following theorem.

Theorem 1. Suppose that (X, d, i) is a uniformly perfect' measure metric space and fix
parameters o € (1,00), and s € (0,00). Then the following statements are equivalent.
(a) There exists a finite constant k > 0 such that

w(B(z, 1)) > kr*  for every x € X and every finite r € (0, diam(X)]. (3)

(b) There exist p € (0,s) and C € (0,00) such that for every ball By := B(xo, Ry) with
zo € X and finite Ry € (0,diam(X)], one has

/p* 1/p 1/p
By

1
. By)\""
P dp SC(”(U 0>> Ry ][gpdu + ][IU\”du : (4)
1See (39), below.

S
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SOBOLEV EMBEDDING 3

whenever u € MY (0 By, d, 1) and g € D(u). Here, p* = sp/(s — p).
(¢) There exist p € (0,s) and C' € (0,00) such that for every ball By := B(xo, Ry) with
zo € X and finite Ry € (0,diam(X)], one has

/p* 1/p

1
. By)\"”
mft%W—VPdu gc(ﬂiig Rot%¢wu , (5)
By

YER RS
o By

whenever u € MY (aBy,d, 1) and g € D(u).
(d) There exist constants Cy,Cay,7y € (0,00) such that

- v
][GXP (QM) dp < O, (6)
)

Hg Ls(cBg

0

whenever By C X is a ball with radius at most diam(X), v € M"*(oBy,d, ) and
9 € Di(u).
(e) There ezist p € (s,00) and constant C' € (0,00) such that
[u(z) = uly)] < Cd(x, ) Pllgllrixp.  Vay X, (7)

Hence, every function u € MY?(X,d, u) has Hélder continuous representative of order
(1—=s/p) on X.

Here and in what follows the integral average is denoted by

1
ugp =+ ud :—/ud
E E

where £ C X is a u-measurable set of positive measure. Also, 7B denotes the dilation of
a ball B by a factor 7 € (0,00), i.e., 7B := B(x, 7).

Remark 2. The expression ‘for every finite r € (0, diam(X)]’is a concise way of saying
‘for every r € (0, diam(X)] if diam(X) < oo and for every r € (0,00) if diam(X) = oo

Remark 3. Theorem 1 asserts that in particular, if just one of the Sobolev embeddings
(b)-(e) holds for some p, then all of the embeddings (b)-(e) hold for all p. This is a new

self-improvement phenomena.

Given a metric-measure space, (X, d, 1), the measure p is said to be doubling provided
there exists a constant C' € (0, 00) such that

w(2B) < Cu(B) for all balls B C X. (8)

The smallest constant C' for which (8) is satisfied will be denoted by C),. It follows from
(8) that if X contains at least two elements then C,, > 1 (see |3, Proposition 3.1, p.72]).
Moreover, as is well-known, the doubling property in (8) implies the following quantitative
condition: for each s € [logy(C}),0), there exists x € (0, 00) satisfying

p(Bw,r)) K( r )

u(B(y,R)) = "\R ®)

R
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whenever x,y € X satisfy B(z,r) C B(y,R) and 0 < r < R < oo (see, e.g., [10,
Lemma 4.7]). Conversely, any measure satisfying (9) for some s € (0,00) is necessar-
ily doubling. Note that if the space X is bounded then the above quantitative doubling
property implies the lower measure bound in (3).

The following theorem, which constitutes the second main result of our paper, is an
analogue of Theorem 1 for doubling measures. The reader is referred to Theorem 20 and
Theorem 30.

Theorem 4. Suppose that (X, d, p) is a uniformly perfect measure metric space and fix
parameters o € (1,00), and s € (0,00). Then the following statements are equivalent.

(a) There exists a constant k € (0,00) satisfying

u(B(,n) | /{<1)s7

1(B(y, R)) R

whenever x,y € X satisfy B(x,r) C B(y,R) and 0 <r < R < 0.
(b) There exist p € (0,s) and C € (0,00) such that for every ball By := B(xo, Ry) with
zg € X and Ry € (0,00), one has

1/p* 1/p 1/p

][\u|p* du < CRy ][ gddp| +C ][ lulPdu |

Bog oBo o Bo

whenever u € MY (aBy,d, 1) and g € D(u).
(¢) There exist p € (0,s) and C € (0,00) such that for every ball By := B(xq, Ry) with
o € X and Ry € (0,00), one has

1/p* 1/p
inf ][|u — 5P du < CRy ][ gPdu |
vyeER

Bo oBo
whenever u € MY (cBy,d, 1) and g € D(u).

(d) There existp € (s,00) and C' € (0, 00) with the property that for eachuw € M'?(X,d, 11)
and g € D(u), and each ball By := B(xo, Ro) with zg € X and Ry € (0, diam(X)],
finite, there holds

1/p

u(z) — u(y)| < Cd(z,y)' /" Ry/” ][ 9" dp for every xz,y € By.

oBg

Hence, every function u € MVP(oBy,d,u) has Hélder continuous representative of
order (1 — s/p) on By.

Remark 5. Note that Theorem 4 does not cover the case p = s. For that case see
Theorems 27 and 28 in the body of the paper.
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1.1. Notation. Open (metric) balls in a given metric space, (X, d), shall be denoted by
B(z,r) = {y : d(x,y) < r} while the notation B(x,r) = {y € X : d(z,y) < r} will be
used for closed balls. We allow the radius of a ball to equal zero. If r = 0, then B(z,r) = 0,
but B(z,7) = {x}. As a sign or warning, note that in general B(x,r) is not necessarily
equal to the topological closure of B(z,r). By C' we will denote a general constant whose
value may change within a single string of estimates. While the center and the radius of
a ball in a metric space is not necessarily uniquely determined, our balls will always have
specified centers and radii so formally a ball is a triplet: a set, a center and a radius. By
writing C'(s, p) we will mean that the constant depends on parameters s and p only. N will
stand for the set of positive integers, while Ny := N U {0}. The characteristic function of
a set E/ will be denoted by xg.

2. SOBOLEV EMBEDDING ON METRIC-MEASURE SPACES

The next result from [10, Theorem 8.7| provides a general embedding theorem for Sobolev
spaces MbP defined on balls in a metric measure space X. While this result has been proven
in [10] we decided to include a proof for the following reasons. The paper [10] does not
include inequality (11). While in the case p* > 1, inequality (11) easily follows from (12)
(proven in [10]) we do not know how to conclude it from (12) when p* < 1. Also some of
the arguments given in [10] are somewhat sketchy and hard to follow so we decided that
the result needs a complete and a detailed proof. At last, but not least, this result plays a
fundamental role in the current paper and proving it here makes the paper more complete
and easier to comprehend. The proof presented below is similar, but slightly different than
that in [10]. To facilitate the formulation of the result we introduce the following piece of
notation. Given constants s,b € (0,00), 0 € [1,00) and a ball By C X of radius Ry, the
measure /i is said to satisfy the V(o By, s,b) condition? provided

p(B(z,7)) > br* whenever B(z,r) C 0By and r € (0,0Ry). (10)
In this section we will only consider balls B(x,r) with r € (0, c0).

Theorem 6. Let u € M (0By,d, ) and g € D(u), where 0 < p < oo, 0 > 1 and By is
a ball of radius Ry. Assume that the measure p satisfies the condition V(o By, s,b). Then
there exist constants C, Cy and Cy depending on s, p and o only such that

(a) If0 < p < s, thenu € LP" (By), where p* = sp/(s—p), and the following inequalities
are satisfied,

1/p* U 1/p 1/p
* B
furan) <o (BB n | fea) vol fura) ooy
Bg 0 o By o By
1p i Up
: . {1(o By
f AP < p . 12
JeR ][|’u P du _C< o > Ry ][g dp (12)
Bo oBg

2This condition is a slight variation of the one in [10, p. 197].
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(b) If p=s and g € D, (u), then
][exp (0151/8M> du < Cs.

/ ol o
(c) If p > s, then
1/p
oBy) \/?
o= unllomiay < € (M) TR | fan) (13)
0

oBg

In particular, w has a Hélder continuous representative on By and

1/p
ulw) ~ uly)| < Co a7 | [ @dn|  oraleye B (1)
o By
Remark 7. If p* > 1, then Hélder’s inequality yields
1/p* 1/p*
][|u—u30|p* du < 2inf ][|u—7|p* du (15)
vER
BO BO

and hence we can replace the expression on the left hand side of (12) with the one on the
left hand side of (15). Moreover, if in addition p > 1, we also have that (11) easily follows
from this new version of (12). However, we do not know how to conclude (11) from (12)
when p < 1.

Proof. Throughout the proof by C' we will denote a generic constant that depends on p, s
and o only. The dependence of other quantities like b, Ry, u or g will be given in an explicit
form. By writing A &~ B we will mean that the quantities A and B are non-negative and
there is a constant C' > 1 (depending on p, s and ¢ only) such that C~'A < B < CA.

Clearly, we can assume that ngo gPdp > 0. Indeed, if the integral equals zero, u is
constant and the result is obvious.

L/p
By replacing, if necessary, g with g = g + (f o8B0 I° d,u) we may further assume that
1/p
g(z) > 270+1/P ][ g’ du > (0 for p-almost every x € oBy. (16)
oBo

Let N C 0By be a set of measure zero such that the pointwise inequality (1) holds for all
z,y € 0By \ N. Define the sets

E;:={r€oBy\N: g(x) <2}, jeZ
Clearly E;_; C Ej;. Since by (16), g > 0 almost everywhere in o By,

I (030\ U (Ej\Ej1)> =0. (17)

j=—00
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It follows from the pointwise inequality (1) that u restricted to F; is 27+ -Lipschitz, i.e.,
lu(x) — u(y)] < 27 d(x,y) for all z,y € E;. (18)

Also, the measure of the complement of each of the sets F; can be easily estimated from
Chebyschev’s inequality as follows,

woBy\ Ej) = p({x € 0By : g(x) >27}) <2777 / g" du. (19)
oBg
Note that
0By j=—o0

Fix v € R arbitrarily and let

aj:= sup |[u—~| with a;:=0 if E;NBy=10. (21)
EjﬂBo

Clearly, a; < a;j;; and for 0 < p < s we have

j=—o0

Jlu=al i< > o n(Bon (8,\ Ey-). 22

Note that we used here (17), because we need to know that the sets £\ E;_; cover almost
all points in the set By.

The idea of the proof in the case 0 < p < s is to estimate the series at (22) by the series
n (20). Similar ideas are also used in other cases p = s and p > s.

We will need the following elementary result.

Lemma 8. If B(z,r) C 0By and p(B(z,r)) > 2u(cBy \ E;) for some j € Z, then
1
p(Ble.r) N E) > Lu(Ba.n) > 0.

Proof. Observe that

0 < u(Be1)) = (Bl 1) 1 Ep) + (Bl ) \ By) < p(Ba,r) 0 ;) + n(oBo\ Fy)
< pu(B(z,r) N E;) + %M(B(a:,r)).
The claim now follows. O

Let kg be the least integer such that

1/p

N 21/3 s/p .
2% > ((1 (o - 1)) (bRy)~M/P /gp du| . (23)
o By
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Then
1/p
20 % o) | [ g (24)
oBg
Note that condition (23) is equivalent to
1/s
B .\ 21/sb71/s

oBo

Lemma 9. Under the above assumptions u(Ey,) > u(oBy)/2.

Proof. Suppose to the contrary that u(Ey,) < pu(oBg)/2. Then
(o Bo \ Ex,) > p(0Bo)/2. (26)
Inequalities (19) and (25) yield
1/s
=2V (o By \ By, )Y® < 2V/sp~ Vs kor/s / ¢ du | < (oc—1)Ro.
oBo

Therefore, if zy is the center of the ball By, then B(zp,7) C 0By so the V(oBy,s,b)
condition and (26) give

(o By) > pu(B(z0,7)) > br® = 2u(oBy \ Ey,) > p1(0By),

which is an obvious contradiction. O

For k > kg and ¢t =0,1,...,k — kg — 1 we define

1/s
Fp_q 1= 2Y/5p~ /39— (k=(+1))p/s / g’ du
o By
Note that
Y ko1
Tk + Thet + oo+ Thot1 = ol /sp=1/s / gP du Z 9—(k—(i+1))p/s
oBo i=0
Y ko1
< QVsp~1/s / gv du Z 9—(k=(i+1))p/s (27)
By =00
1/s
1/sp—1/s
= 2%1&/3% / i < (o — 1)Ry.
o By

Assume that Ej, N By # () and choose xj, € Ey N By arbitrarily. We will now use induction
with respect to ¢ and define a sequence z,_;, i = 1,...,k — ko such that x,_; € 0By and

Thk—1 S Ek—l N B('rk7/rk)7 Tk—2 € Ek—2 N B(xk—l)/rk:—l)7 e 71;]60 S Eko N B(Iko-‘rl?/rko-l—l)'
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For i = 1 we construct z;_; as follows. According to (27), B(zk,rr) € 0By and hence the
volume condition V(o By, s,b) and Chebyschev’s inequality (19) yield

w(B(zy,ry)) > brs =227 ¢k=1p / 9" dp = 2pu(0Bo \ Ejg-1).
oBy

Therefore, Lemma 8 implies that p(B(zg,rx) N Fx—1) > 0 and we can find x5 € Ej_1 N
B(xy, rg). Clearly xx_1 € 0By. Suppose now that we already selected point xg_1, ..., Tg_;
for some 1 <17 < k — ky satisfying

Tp—j € 0By N Ey_j N B(xg—jy1,m6—j41) for j=1,... 1.
It remains to show that we can select
Th—(it1) € 080 N Eg_ 1) N B(@p—i, Th—s).
For any y € B(xk_;, 7x—;) we have
d(y, zr) < d(y, vp—;) + d(Tp—i, Tp—iz1) + ... + d(xp_1, k)
< Thei+ Theiz1 + -+ 16 < (60— 1)Ry.
Since z, € By, it follows that B(zy_;,75—;) C 0By. Therefore the volume condition

V(0 By, s,b) and Chebyschev’s inequality (19) yield

((B(xg—iy i) > bry_; =2 27 (B=(+p / 9" dp > 2(0 By \ Eg—(i41))-
oBg
Thus, Lemma 8 yields p(B(xk—i, 7e—i) N Ex_(i41)) > 0 and we can find
Th—(i+1) € Ep_(iy1) N B(Tp—s, "h—i)-
Clearly x_(i+1) € 0By. That completes the inductive argument.
Note that for i =0,1,...,k — kg — 1,
1/s
d(xk—i’xk—(i-&-l)) < Tg—i = /eyt /egm s / 9" dp
oBg

Since Ty—i, T—(i41) € Ep—i, u is 287 -Lipschitz on Ej_;, and xy, € Ej, N 0By we have

k—ko—1
lu(zr) — | < ( Z [u(wgp—i) — U(xk—(i+1))|> + |u(Tr,) — 7
i=0
k—ko—1
< ( Z Qk_H_ld(mk—iyxk—(i—l—l))) + sup |u—7|
=0 EkomO'B(]
Vs ko (28)
< 4. oMyl / g’ du Z ok=(HINA=P/9) L qup  |u — 7|
i—0 Ex,NoBo
o By
1/s o1
= 4.2V /sp=1/s / g’ du Z 21(=p/s) L gqup lu — ).
EkoﬁUBU

oBo J=ko



10 ALVARADO, GORKA, AND HAJLASZ

This yields

1/s
k—1
ap < 4-2Y5p1/s / g* dpu Z 20=P/9) 4 sup |u—~y| forallk>ky (29)
B j=Fko EkOﬂUBQ

Indeed, if Ex N By # 0, then a, = supg, p, |u — 7|. Since z, € L, N By was selected
arbitrarily, taking the supremum in (28) over x;, € Ey N By yields (29). If E, N By = 0,
then a; = 0 (see (21)) and (29) is trivially true.

Since p(FEy,) > 0, by Lemma 9, we can take y € Ey,. If v = u(y), then the Lipschitz
continuity (18), and (24) yield
1/p

sup  |u — | < 28+ diam(0By) < 280126 Ry < CRy(bR3)™V/P / ¢du | . (30)
EkomC"BO 5
oBo

Proof of (a). First we will prove inequality (12). Let v = u(y) as in (30). Recall that
ar = Supg,np, [t — 7|. Since 2'7P/¢ > 1, we can estimate the finite sum in (29) by the
convergent geometric series Z;:ioo 21(1=p/5) 55 (29) gives
1/s
ap < CbV/¢ / gPdp | 2F0P/) 4 sup |u—~| for all k> k.
5 Ekomng
oBo

However, since
ar = sup |lu—~| < sup |u—r| fork <k

ErNBy EkoﬂUBo
we actually have
1/s
ar < Cb~Y/s / gdp | 2X0P) 4 sup |Ju—~| forall k € Z.
5 EkoﬁoBo
0 50

Therefore, (22), (20), and (30) yield

/ u—~[”" dp
By

p*/s (o] p*
< Ch /g”du > Qkpu(Ek\Ek;—l)"f_O( sup Iu—7|> 1(Bo)
k=—00 EkOﬂO'B()
o By
p*/p P
< Ch /gpdu +C< sup Iu—vl) 1(Bo)
Ex,NoBo
oBg
p*/p p*/p
. 11(Bo) / s 1M(Bo) /
<COb P/ (1 P d < Cp PV P d
< ( + bRg) g’ du < bR; g"du

o By oBg
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In the last inequality we used the condition V(o By, s,b) to estimate 1 + u(By)/(bR§) <
2u(By)/(bRy). The above estimate easily implies inequality (12).

Now it remains to prove inequality (11). Take v = 0. Then a, = supg,p, [u|. Let
bko = infEkoﬂUBO ”LL| Since

Vo X B, < 1Uul"XoBo,

Lemma 9 yields

1/p
oB
MoB)y, < B < [ardn s by <2 [ upan
oBo o Bo
The Lipschitz continuity (18), and (24) yield
1/p
sup  |u| < 28t diam (0 By) + by, < 220 Ry + 217 ][ lulP dp
EkoﬂoBo s
o Bo
1/p 1/p
< C' | Ro(bRS)™” / g du | + ][ |ul” dp
B o Bo
Hence, a similar calculation as above gives
pls -
[ duscori | @) Y 2ruE B+ 0 ( sup rur) (o)
Bo Bo k=—00 Ekoﬂa'Bo
p*/p p*
< Cb P /gp dp |  +C ( sup M) 1(Bo)
Ekomcho
oBg
p*/p p*/p
N B
<Cyre (1 + MI)(RS)) / g’ dpu +C ][ |ul? du 1(By)
0 oBo oBo
p*/p p*/p
>k B
<oyt [pan) wo| flran) )
bR}
oBg o Bo

This estimate easily imply inequality (11).

For the parts (b) and (c), observe that since p > s, we have that u € M™9(o By, d, j1),
where ¢ = s/(s + 1), and hence u € LY (By) = L'(By) by part (a). Therefore, ug, is well
defined and finite.
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Proof of (b). Let v = u(y) be as in (30) and ax = supg,p, |u —7|. For a > 0, Jensen’s
inequality and convexity of e yield

el quiz) < fexp | f alute) - )l duty) | duto

By By

By
< ][ ][ )1 1y (0) dp(r) < ][ £ () ][ )= ()

BoBo By Bo
2

_ ][ U 41y ()
Bo

Hence )

— C bV sy —
][exp (Clbl/s |u UBO| ) dﬂ S ][exp ( 1 u 7|) du (31)
HQ Ls(0Bg) Hg L5(cBop)

B() BO

and thus it suffices to estimate the right hand side of (31), where C} is to be chosen.

Since p = s, inequality (30) reads as

1/s
sup |u—~y| < Cb7Y* / gidu| . (32)
EkoﬂUB()
oByg
Given that 27(=5/P) = 1, (29) and (32) yield
1/s
ap < Cb~V/ / g*du | (k—ky) fork > k. (33)
oBg
It follows from (32) that
bl/s _
G Plufz) =1 < CC; forall x € Ey,, (34)
lg L#(0Bo)
while (33) yields
pl/s — ~
G || @) = Gy — ko) for k> ky and all & € By 1 Bo. (35)
9lILs(oBo)

Take a constant C in such a way that exp(CCy) = 2¢.

Let us split the integral that we need to estimate into two integrals

C1bY*|u — 7|) 1 / 1 /
exp (2 M g — + — L+ 1
][ ( 191l 2 (0 30) #(Bo) #(Bo) L

Bg BoﬁEkO BO\EkO

Estimate (34) gives
M(BO n Eko)

=B

IN

exp(CCy) < exp(CCh),
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while estimate (35) and the fact that exp(CCy) = 2¢ yield

1 ~
I < > exp(CCy(k — ko))pt(Bo N (Ey \ Ey—1))
#(Bo) k=ko+1
2—sk0 e Qfsk:o bRS
< 2% (B \ Ep_q) < C /Sd <c—-—2 <,

where the last two estimates follow from (24) and the volume condition V(0 By, s, b), re-
spectively. The proof in the case p = s is now complete.

Proof of (c). Let v = u(y) be as in (30) and a, = supg, g, |u — y|. Since 2'7/* < 1,
we can estimate the finite sum at (29) for & > ko, by the convergent geometric series
Z;Ok 2j(17p/3) e CQkO(lfp/S)‘ AS Such

=Ko )

1/s
ay < Cb~Ys / gPdp | 280-P/) 4 sup |ju—~| for k> k. (36)
EkomO'B()
oBo
Then (36), (24), and (30) yield
1/p U 1/p
B
ap < C(bR‘S)’l/”RO / g’ du =C <%) Ry ][ g’ du for k > k.
0
By o By

Since the right hand side is a constant that does not depend on k, we conclude that |u— 7|
is bounded on By. More precisely, |u — 7| equals almost everywhere to a function that is
bounded in By and (13) follows from the estimate

|u — up, || oo (Bo) < 2/|u — Lo (Bo)-

[t remains to prove Holder continuity of u along with the estimate (14). If z,y € By
and Ry :=2d(z,y) < (6 —1)Ry/o, then z,y € B := B(z, Ry) and 0B, C 0By. Therefore,
estimate (13) applied to B; in place of By yields

1/p

oB 1/p
o)~ )] < 2 un iy < € (U2 ) | f o
1

oB1
1/p

= Cb~"Pd(x,y)' /P /gpdu

oB1
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If 2d(x,y) > (6 — 1)Ry /0o, then (13) gives

p 1/p
o) = )] < 2 un g < € (U)o | f o
o Bo
1/p
< CbPd(x, y)' /g” dpu
oBo
This completes the proof of Theorem 6. 0

3. AUXILIARY RESULTS

In this section we will collect some lemmata of a purely technical nature that will be
needed in the proofs of the main results. Since the results collected here are not interesting
on its own, the reader may skip this section for now and return to it when needed.

An open set 2 C R” is a metric-measure space with the Euclidean metric and Lebesgue
measure. If z € Q and r € (0,00), then we can always find a radius r, < r such that
|B(z,7,)NQ| = 5|B(x,r)NQ)|. However, in a general metric-measure space (X, d, p), it is
not always possible to find a concentric ball with half of the measure of the original ball,
but for z € X and r € [0, 00) we still can define

(1) = sup {s €0,r] : p(B(z,s)) < %M(B(:c,'r’))}.

Note that for s = 0, B(x,s) = ) so ,(r) > 0. The basic properties of ¢, (r) are listed in
the next lemma. The reader is reminded that B(z,r) := {y € X : d(z,y) <r}, v € X,
r € [0,00). In particular B(z,0) = {z}.

Lemma 10. Suppose that (X, d, p) is a metric-measure space and fix x € X, r € [0,00).
Then the following statements hold.

(i) @z (+) is nondecreasing, i.e., v.(s) < @, (t) whenever 0 < s <t < oo.
(i) One has that

u(Bla,¢.(r) < 5 u(B(z,7)) < p(B(w,pu(r))). (37)

DO | —

(iii) @.(r) € [0,7], where p.(r) =1 if and only r = 0.
(w) If p({z}) =0 and r > 0, then @i(r) > 0 for every j € Ny, where
pa(r) =1 and @L(r) = a1 (1), j EN.
Moreover, the sequence {@%(r)}jen, is strictly decreasing, i.e.,

> 0a(r) > @i(r) > > pl(r) > @l (r) > >0, (38)

x

and p(B(z, p5(r))) < 277 p(B(z,r)). Consequently, lim @i (r) = 0.
j—ro0
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Proof. Given that (7) follows immediately from the definition of ¢,, we begin by estab-
lishing the first inequality in (37). Take r; T ¢.(r). Then pu(B(z,r;)) < tu(B(z,r)) for
each j and hence, pu(B(z, p,(r))) = lim;_,0 u(B(x,7;)) < 3u(B(x,7)). To prove the sec-
ond inequality in (37), observe that $p(B(z,r)) < pu(B(z,s)) for all s > ¢,(r). Indeed,
if p.(r) < r, this follows from the definition of ¢,(r); if ¢.(r) = r, the first inequal-
ity in (37) implies that » = 0 and the estimate is obvious. Now passing to the limit in
s(B(z, 1)) < p(B(z,s)) as s is decreasing to ¢,(r), yields the second inequality in (37).
This completes the proof of (ii). The claim (%ii) easily follows from the first inequality in
(37).

As concerns (iv), it is clear that r > @,(r) > 0 given (i) and the second inequality
n (37). Then (38) can now be justified using an inductive argument. Finally, repeatedly
calling upon (37) we have p(B(z,¢i(r))) < 279 p(B(z,r)), from which it follows that
lim; 00 ¢2 () = 0, This finishes the proof of the lemma. O

Recall that a metric space (X,d) is said to be uniformly perfect if there exists a
constant A € (0, 1) with the property that for each x € X and each r € (0,00) one has

B(x,r)\ B(x,Ar) #0 whenever X \ B(z,r) # 0. (39)

Note that every connected space is uniformly perfect; however, the class of uniformly
perfect spaces contains very disconnected sets such as the Cantor set. Moreover, observe
that if (39) holds for some A € (0,1) then it holds for every X" € (0, A]. Therefore, we may
always assume that 0 < A < 1/5.

Since by our assumptions metric spaces have at least two points, it easily follows that
uniformly perfect spaces have no isolated points.

Lemma 11. Let (X, d, p) be a uniformly perfect metric-measure space and let 0 < X\ < 1/5
be as in (39). Ifz € X, r € (0,diam(X)] is finite, and r > 3,(r)/A2, then there is a ball
B(z,7) C B(x,r) such that A\r < 7 < min{r, 3pz(7)/ \*}.

Proof. Note that X \ B(z, .(r)/A + 2Ar) # 0. Indeed, given that A < 1/5, the radius of
the ball is less than 7r/15 and hence, its diameter is less than 14r/15 < diam(X). Since
(X, d) is uniformly perfect, we may choose a point

T € Bz, p,(r)/A+ 2Xr) \ B(x, 0. (r) + 2X%r).
With 7 := 2, (r) /X + 2Ar > Ar, we claim that
B(z,0,(r)) € B(Z,7) C B(z,7) and B(Z,27'\F) C B(xz,7) \ B(z, 0. (1)). (40)
For the inclusion B(x, ¢,(r)) C B(Z,7), observe that if z € B(x, (1)),
d(z,7) < d(z,z) + d(z,T) < @(r) + [@e(r) /A + 2Xr] <7
given that 1/\ > 1. To prove B(z,7) C B(z,r), observe that for z € B(f,ﬂ, we have

d(z,x) <d(z,7) + d(T,x) < [20(r) /X + 2X\r] + [ (r) /X + 2)7]
=30, (r)/ N+ 4 r < 5Ar <.
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To finish the proof of (40) we need to show that B(Z,27'A\7) C B(z,r) \ B(x, p.(r)).
From what we have already proved B(Z,27'A\7) C B(¥,7) C B(z,7). To show that
B(z,271A7) € X \ B(z, p.(1)), fix z € B(Z,27*\7). Then,

0. (r) + 20 < d(2,7) < d(w,2) + d(2,7) < d(x,z) + 2717,
d(z,7) > @u(r) + 2% — 2707 = X2 > 3p,(r) > 0. (1),
which in turn implies the desired inclusion. This finishes the proof of (40).

It follows from (40) that B(z, p,(r)) and B(Z,27'\7) are disjoint subsets of B(z,7) and
p(BG.27N) = L [u(B(E.2757) + n(B.273)
< 3 ln(Ble, )\ B, o)) + (B 27 A7) (41)
< (Bl o.(r) + n(BE227)] < 3 u(BE ),

where, in obtaining the second inequality in (41), we have used second inequality in (37).
Inequality (41) implies that pz(7) > 27'AF. Hence, 77 < 2pz(T)/A < 3pz(T)/A\?, since
1/X > 1. On the other hand, it is straightforward to verify that

_ 2¢,(r)
T
The proof is complete. O

2\
+2)\7‘<Tr+2)\r<r.

Lemma 12. Let (X,d, ) be a uniformly perfect metric-measure space, fiz s € (0,00), and
let 0 < A < 1/5 be as in (39).

(i) Assume that there is a finite constant C > 0 such that u(B(z,r)) > Cr® whenever
z € X and finite r € (0,diam(X)] satisfy r < 3¢, (r)/X*. Then u(B(z,r)) > Cre
for every v € X and every finite r € (0,diam(X)], where C=C).

(ii) Assume that there is a finite constant C > 0 such that

p(B(z,r)) A%
o >0 (=), 42
5.1 = () 2
whenever x,y € X, B(z,r) € B(y,R), 0 <r < R < oo, and r < 3p.(1) /2.
If C'=CN?, then
/L(B($,T)) ~(7\°
" >0 (=), 43
w5 2 ¢ (%) 42)
whenever x,y € X, B(x,r) C B(y,R), and 0 <r < R < 0.

Proof. In order to prove (i), fix a point x € X, a finite radius r € (O,diam(X)}. If
r < 3p,(r)/A?, then p(B(z,r)) > Cr® > Cr* by assumption. Thus, in what follows we
will also assume that r > 3p,(r)/A\% Let B(z,7) C B(x,r) be a ball as in Lemma 11.
Since 7 < 3pz(7)/A? and Ar < 7 < r < diam(X), it follows that

w(B(z,r)) > p(B(x,r)) > Cr* > CA°re.

It remains to prove (ii). First observe that (42) implies that C' < 1. Let z € X and
0 < r < diam(X). Since there are no isolated points in X, there are infinitely many
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points in B(z,r/2) and so we can find = € B(z,7/2) with measure as small as we wish. In
particular, we may find x € B(z,r/2) such that

p({r}) < gu(B(z,r/2) < Su(Bla,r), (14)

where the last inequality is a consequence of the inclusion B(z,r/2) C B(z,r). It follows
that ¢, (r) > 0 as otherwise we would have B(z, p,(r)) = {z} and (44) would contradict
the second inequality in (37). Given that ¢,(r) > 0, we can take y =z and 0 < r = R <
3¢.(r)/A%. Then (42) readily implies that C' < 1.

Now we can finish the proof of (i7). Let x,y € X, B(z,r) C B(y,R), and 0 <r < R <
0o. We want to prove (43). If 7 < 3¢,(r)/A?, then the claim follows by assumptions. Thus
we may assume that r > 3p,(r)/A%. If r > diam(X), then B(z,r) = B(z,R) = X and
(43) is trivially true, given that 1 > C' > C. Thus we may assume that r < diam(X).
This allows us to find a ball B(z,7) C B(z,r) as in Lemma 11. Since B(z,7) C B(y, R),
7 <r, it follows that 0 < 7 < R and 7 < 3pz(7) /A2 Therefore, (42) implies

w(B(x,r)) _ p(B(@,7)) ™\ s (Y
W(By, R) = n(Bly, R) ZC<E> > v (5)

where in the proof of the last inequality we used the estimate r > Ar. This finishes the
proof of the lemma. O

In the sequel, we will also need the following well-known result.

Lemma 13. Given © € X and 0 < r < R < oo, there exists a (R — r)~"'-Lipschitz
function @, r : X — [0,1] such that ®,p =1 on B(z,r) and &, p =0 on X \ B(z, R).
Consequently, one has (R — 1) "'Xp@.r) € D(anR).

Proof. Fix a point x € X, numbers 0 < r < R < oo, and define ¢,z : X — [0,1] by
setting for each y € X,

1 if y € B(x,7),
R —d(x, .
q)r,R(y) = # lfy€B<J],R)\B(ZE,T>,
0 ifye X\ B(z, R).
Then the claims follow from straightforward computations. O

Construction 14. Let (X, d, 1) be any metric-measure space and o € [1,00). Fix a ball
B := B(z,r) with z € X and r € (0,diam(X)], finite. We define a collection of functions
{u;}jen as follows: for each j € N, let r; := (27971 +271)r and set BY := B(x,r;). Then
1 3

§r<rj+1 <r; < ZT’ VjieN.

Then for each j € N, define u; : X — [0, 1] by setting u; := ®,,,, »,, where the function
®,.,,r,; is as in Lemma 13. Noting that (r; —rj+1)_1 = 277271 we have that u; is 202y~ 1
Lipschitz on X supported in B?, and that g; := 2772 'yp; € D(u;). In particular, we
have that u; € MY (0B, d, j1). |
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Construction 15. Let (X,d, ) be a uniformly perfect metric-measure space, suppose
o € [l,00), and let 0 < A < 1/5 be as in (39). Fix a ball B := B(z,r) with z € X and
r € (0,diam(X)], finite. Assume that r < 3¢,(r)/A%. In particular, we have 0 < ¢, (r) <r
(see part (iii) of Lemma 10 for the second inequality). Define a collection of Lipschitz
functions {u; }jen by first considering radii 7; := (27771 +271)p,(r), j € N which satisfy

1 - - 3
5%(7’) <Tjp <715 < Z%(’f’)- (45)

For each j € N, let u; : X — [0, 1] be defined by w; := ®3,, | 7, where the function &5, 7 is
as in Lemma 13. Then each u; is 272, (r)~!-Lipschitz on X, and g; := 27 2¢,(r) 'xp, €
D(u;), where B’ := B(x,7;). In particular, u; € M'?(cB,d, ).

Observe that @; = 1 on B and #; = 0 on B\ B’. It follows that for each v € R we

have |@; — | > 3 on at least one of the sets Bit! and B\ BJ. Observe that by combining
(37) in Lemma 10 and (45), we have

- 1
p(B™) < p(B(,0:(r))) < 5p(B),
and
~. ~. 1
w(B\BY) = w(B) = u(B’) 2 p(B) = u(B(w, pu(r))) = 51(B).
Therefore,
win {u(BP), u(B\ BY)} = u(B)
and hence,
[uj —y| > % on a subset of B having p-measure at least M(Ej“). (46)

The next result is an abstract iteration scheme that will be applied many times in the
proofs that the embedding theorem imply the measure condition. It is an abstract version
of an argument used in [23].

Lemma 16. Suppose 0 < a <b< 00,0 <p<q< oo andp,7 € (0,00). If a sequence
(a;)jen satisfies

a<a;<b and a;iql < ijajl./p VjeN, (47)

then
a}—P/qpprq/(q—p) > 1.

Proof. Let a:=p/q € (0,1). Rise both sides of the second inequality in (47) to the power

pa’/~t. Then

al al —1 jai=1 qi—1

afyy <P T Ay

With P; = a‘]?‘jfl, the above inequality reads as

ol 1 pjaj_1
Pjn <p™ 1 P
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from which a simple induction argument and an observation that P, = a; give

j

Pis1 < H [Ppak_lTpkak_l : (48)

k=1
Since a; € [a,b] and o/ ! — 0 as j — oo, it follows that lim; ., P; = 1. Therefore, passing
to the limit in (48) as j — oo gives
< [T [t ] = e
k=1
= appP/(=e)pp/ (=) — ¢ ppa/(a=p) 7pa®/(a=p)?

and the lemma easily follows. O

4. THE CASE p < s

Theorem 17. Fiz o € (1,00), s € (0,00), p € (0,s), and let p* = sp/(s — p). Then the
following statements are equivalent.
(a) There exists a constant k € (0,00) such that

w(B(z,7)) > kr®  for every x € X and every finite r € (0, diam(X)]. (49)

(b) There ezists a constant Cs € (0,00) such that for every ball By := B(xo, Ry) with
zo € X and finite Ry € (0,diam(X)], one has

1/p* /p

1/p 1
. By)\"”
Juran) <es(UB wa( foan) + [ frra) | o0
0
Bo

oBo o Bo

whenever u € MY (g By, d, 1) and g € D(u).

If, in addition, (X, d) is assumed to be uniformly perfect (cf. (39)) then (a) (hence, also
(b)) is further equivalent to:

(¢) There exists a constant Cp € (0,00) such that for every ball By := B(xo, Ry) with
zo € X and finite Ry € (0,diam(X)], one has

/p* 1/p

1
. By)\"”
inf ][|u—7|p du §CP<M> Ry ][gpdu : (51)
Bo

Y€ER RS
o B

whenever u € M'P(c By, d, 1) and g € D(u).

Remark 18. The implications (a) <= (b) and (a) = (¢) will be proven without assuming
that (X, d) is uniformly perfect. Uniform perfectness will only be needed in the proof of
the implication (¢) = (a). [
Remark 19. As the proofs of the implications (b) = (a) and (¢) = (a) will reveal, one
can take the constants x in (49) to be 27%(8Cs) ™ and 27°(24CpA~2) 7P\, respectively.

Here, A < 1/5 is the constant from the definition of the uniformly perfect space (see (39)).
Moreover, the implications (b) = (a) and (c¢) = (a) are also valid when o = 1. |
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Proof. We will first show that (a)implies both (b) and (¢) (without the additional assump-
tion that X is uniformly perfect). Fix a ball By having finite radius Ry € (0, diam(X)]. If
B(x,1) C 0By and r € (0,0 Ry], then o~ 'r < diam(X), and (49) yields

w(B(x,r)) > w(B(x,07'r)) > k(o) = r’, (52)

where ¢ = ko~*. Thus, p satisfies the V(o By, s, ') condition. Since

1/p s\ 1/p
(C/)—I/P (M(;?O)) > (CI(O/'gS) ) _ O_s/p > 1,
0 Clip

inequality (11) with b replaced by ¢ yields
1/p* 1/p 1/p

B /P
SC(C/)_I/p<%> Ry ][gpdﬂ + ][’“|de
0

o Bo o Bo

Hence, (b) is valid. Given that (51) is an immediate consequence of (12), this finishes the
proof of the fact that (a) implies both (b) and (c).

We now focus on proving that (b) implies (a) (still without assuming that the space is
uniformly perfect). To this end, fix a ball B := B(z,r) with z € X and r € (0, diam(X)],
finite. Specializing (50) to the case when By := B (and simplifying the expression) implies

that
1/p* 1/p 1/p

. 1 1
][IUIP du) < Cor| = /g”du +0s | /IU\”du : (53)
B oB oB

holds whenever v € M (0B, d, ) and g € D(u).

Let r;, u;, g;, and B?, j € N be as in Construction 14. Since u; € M'?(cB,d, i), the
functions u; and g; satisfy (53). Observe that for each j € N, we have (keeping in mind
that o > 1)

1/p
1 Cs22
Cor | [ahin) =25y (54)
oB
and
1/p
1 Cg ,
Co | o2 [lulran| < S5 nwoe (55)

Moreover, since u; = 1 on B/*! we may estimate

frra) =(452)"

In concert, (54)-(56) and (53), give

1/p* +2 j+3
/’L(BJ—‘FI 29 J\1/p 052‘7 J\1/p .
(u( < Cs( 24— (B < ST (), Ve,
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Therefore,
; * 8Csu(B)YP" : :
u(B]H)l/p < (%) QJM(B])l/P. VjeN.
/rnS
Since 0 < pu(3B) < pu(B?) < p(B) < o0, j € N, Lemma 16 applied to
, . 8Csu(B)YP
aj = p(B), pi=p, q=p, pi=—f— rg/p) and T:=2,

yields

8Csu(B)YP"\" .. .
S'U(/p) ) opp*/(P*—p) < u(B)(8Cs)Pr—s2°
7/15

1< u(B)' 7 (
and hence p(B) > 27°(8Cs) Pr®. Thus, (49) holds with x := 27%(8Cs)?. Given that
Kk € (0,00) is independent of the ball B, this finishes the proof of the implication (b) =

(a).

There remains to prove that (c¢) implies (a) under the additional assumption that (X, d)
is uniformly perfect. To this end, fix z € X and a finite radius r € (O,diam(X )} Let
B := B(z,r). Also, let A € (0,1) be as in (39) and recall that there is no loss in generality
in assuming that A < 1/5. As such, if we appeal to part (i) in Lemma 12, then it suffices
to only consider the case when r < 3¢, (r)/A?. It is crucial for the argument below that
r < 3p,(r) /A%, because it implies that 7; > A2r/6 so the balls B7 defined below have radii
comparable to that of B. This estimate is used in (58) and in fact, it is the only place
where we use it; that allows to mimic the argument used in the proof of the implication

(b) = (a).

Define 7;, u;, g;, and B’, j € N as in Construction 15. Since u; € MY (0B,d, 1), the
functions u; and g; satisfy (51) (used here with By := B), which after a simplification gives

1/p* 1/p
. . 1 ~ .
inf ][|uj — P du <Cpr|— /(gj)pdu : VjieN. (57)
yER rs
B oB
Observe that for each j € N, we have (keeping in mind ¢ > 1 and r < 3p,(r)/\?)
r j+2 (~) 1/p j+2
1 ~ 20+ CP’I" H B’ 320 Op ~:\1/p
cor | £ [Goran] = <2 = P (B) (58
pr| /(gg) p o) ( " ) < =z HB) (58)
ocB

Combining (57) and (58) with (46) gives

1 M(§j+1) 1/p* ) 120}3 ~ 1
() <2 wesn @)

Hence,

~ L IN1/p 24Cp u(B)VP"\ -~ :
(B g( PUBIE ) w5y, vjen

Since
0 < u(3B(x, p.(r)) < pu(B?) < u(B) < o0,
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Lemma 16 applied to

i . 24Cp u(B)YP"
a; = u(BJ), pi=p, q:=p°, p:= ( };\270(8/17) and 7 :=2,
yields
~\1-pspr [(24Cp n(BYYPINT
(B (BRG] e < um aonc
SO

p(B) > 275(24CpA2) " Prs,

This inequality was proved under the assumption that r < 3p,(r)/A? and hence part ()
of Lemma 12 implies that

pw(B(z, 7)) > 275(24CpA?) PNy
whenever r € (0, diam(X)] is finite. This finishes the proof of the theorem. O

Theorem 20. Fiz o € (1,00), s € (0,00), p € (0,5), and let p* = sp/(s — p). Then the
following statements are equivalent.

(a) There is a constant k € (0,00) such that

u(B(SB,T)) p T 5
W(Bu.R) ~ (R) (59)

whenever x,y € X, B(z,r) C B(y,R), 0 <r < R < c0.
(b) There ezists a constant Cs € (0,00) such that for every ball By := B(xg, Ry) with
zo € X and Ry € (0,00), one has

1/p* 1/p 1/p
][|u|p* | <csho ][ P +Cs ][ wpde| (60)
Bo
whenever u € MY (0 By,d, 1) and g € D(u).

oBo o Bo

If, in addition, (X,d) is assumed to be uniformly perfect (cf. (39)) then (a) (hence, also
(b)) is further equivalent to:

(¢) There exists a constant Cp € (0,00) such that for every ball By := B(xo, Ry) with
o € X and Ry € (0,00), one has

/p* 1/p

1
inf ][|u — [P du < CpRy ][ g du ] (61)
Bo

veER
o Bo

whenever u € MYP(c By, d, 1) and g € D(u).
Remark 21. As the proof of Theorem 20 will reveal, the implication (a) = (¢) holds in

metric measure spaces which are not necessarily uniformly perfect. Moreover, the impli-
cations (b) = (a) and (¢) = (a) are also valid when o = 1.
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Proof. We begin proving the implication (a) implies both (b) and (¢). Fix any ball B, :=
B(zo, Ry) and let B(y, R) = 0 By. Then inequality (59) implies that the measure u satisfies
the V(0By,s,b) condition with b = ru(cBy)(0cRy)~°. As such, for this value of b the
inequalities displayed in (60) and (61) follow immediately from (11)-(12) in Theorem 6.
Note that these implications are valid without the additional uniformly perfect property.

/p* 1/p /p

We prove next that (a) follows from (b). Fix a ball By := B(y, R) so inequality (60)
1
< CsR ][gp dp | +Cs ][ lulPdu | (62)

gives
1
1t au
By o Bo oBg

whenever u € M'?(cBy,d, 1) and g € D(u).

Moving on, suppose B := B(z,r) C By, r € (0, R]. For each j € N, define r;, u;, g;,
and B’ as in Construction 14. Since u; € M'? (o By, d, 11), for each j € N we have

1/p
CsR2i+2 ( 1u(BY) 1/p
P d =
CsR ][g] u . (M(JBO) : (63)
o B
and
1/p ( ) U
pw(B’
|P < ' 4
CS f ‘U’]‘ d:u — CS (/,L(O'BO)) (6 )
oBg
Moreover,
1/p* ( ,+1) 1/p*
. (B’
|P > '
gf ) > (G5 o)
0

In concert, (63)—(65),*and (62), give
() o () () < )

where the last inequality follows from the observation that » < R and u(By) < p(oBy).
Therefore,

) . SCsR
BItH/p* < —Stt
B < (e

Applying Lemma 16 with

) 2 uw(BHYP, VjeN.

j SCsR
= B’ = =p" = d =2
a; N’( )7 p 'z q p, P T',U(Bo)l/s al T ,
and remembering that a; = u(B*) < pu( B) yields
P p/s D
1< u(B)' ¥ (8C—SR> rp"/ (0" =) — (“(B)) (8Cs)? (E) 9
T

Therefore,
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whenever B(z,r) C B(y,R), r € (0,R]. This completes the proof of (59) with x =
(805,')_8 2_52/p.

There remains to prove that (¢) implies (a) under the additional assumption that (X, d)
is uniformly perfect. Recall that we may assume that 0 < A < 1/5, where A as as in (39).
Let z,y € X, B:= B(z,r) C B(y,R), 0 <r < R < co. In light of part (ii) of Lemma 12,
we may assume that 7 < 3¢, (r)/A\%. Let 7, 4, g;, and B, j € N be as in Construction 15.
Then, the functions u; and g; satisfy (61) (used here with By := B(y, R)). Observe that
for each j € N, we have (keeping in mind that o > 1)

1/p . ~ N\ 1/p . ~ N 1/p
 Cp R [ (B 3Cp R2*2 ( u(BY)
=T <u(aBo)> = (u(B@) -

OPR ][ gvjp d/uL
oBg

Now (66) combined with (61) and (46) yields

1 M(éjH) l/p*<3CPRQj+2 M(Ej) e
2\ u(Bo) - A wBo) )

Therefore,
24Cp R

gy < (_2ACPR N oy
p(B7) P < Ner j1(Bo) /s pu(B?)
Applying Lemma 16 with
. 24Cp R
P= 13 1/s
A?r u(Bo)

and keeping in mind that a; = p(B) < u(B) = u(B(z, 1)), yields

/s
1 < u(B)*/v 2GR ot/ —p) _  H(B) PR\ (24Cp\" 9%
- A?r u(Bo)'/? 1(Bo) r a2

aj = ,u(éj), p:=p, q:=p, and 7 := 2,

Therefore,
2\ s
/L(B(SL’,T)) > ( A > 2—52/p <£) )
n(By, R)) — \24Cp R
This finishes the proof of the theorem. O

In the next two results we investigate the relationship between the lower measure bound
in (2) and global Sobolev and Sobolev-Poincaré inequalities, i.e., estimates of the form

1/p* 1/p 1/p
/ lul?" dp < Cgs /gp dp | +Cs / lulPdu | (67)
b X b
and
1/p* 1/p
inf / lu —~|P" du <Cp /gp dp |
vER
X b

where u € MYP(X,d, 1) and g € D(u). It was shown in [9] that if the measure x is doubling
then the Sobolev embedding in (67) implies the measure p satisfies the lower bound in (2).
In Theorem 22, we prove that the assumption pu is doubling is not necessary.
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Theorem 22. Suppose (X,d, p) is a metric measure space. Fix s,p € (0,00) such that
p < s and set p* := sp/(s — p). Then the following statements are valid.

(a) If there exists a finite constant Cs > 0 satisfying
1/p* 1/p 1/p

/\u]p* du < Cg /gpdu +Cs /\u]pdu ,
b b

X

whenever w € M'(X,d, 1) and g € D(u), then there exists a finite constant k > 0
such that

u( ) kr®  for every x € X and for every r € (0,1].

(b) If the metric space (X d) is uniformly perfect and there exists a finite constant Cp > 0
satisfying
1/p* 1/p

inf / u— P dp < Cp /gpdu : (68)
veR
X X
whenever w € MY (X,d, ) and g € D(u), then there exists a finite constant k > 0
such that
M(B(x, r)) > kr®  for every x € X and for every finite r € (O,diam(X)].

Remark 23. As a consequence, the global Sobolev-Poincaré inequality in (68) implies the
local Sobolev-Poincaré inequality in (51) of Theorem 17. In fact, within the class of M-
spaces on uniformly perfect metric measure spaces, the global Sobolev-Poincaré inequality
in (68) implies all of the local estimates in (4)-(6) as well as the global Holder condition
in (7).

The proofs of parts (a) and (b) are similar to the proofs of the implications (b) = (a)
and (¢) = (a) in Theorem 17, respectively. We leave details to the reader.

Corollary 24. Let (X,d, ) be a bounded uniformly perfect metric measure space, and fix
s,p € (0,00) such that p < s. Then with p* := sp/(s — p), the following statements are
equivalent.

(a) There exists a finite constant k > 0 such that
H(B(x,r)) > kr® for every x € X and every finite r € (O,diam(X)].
(b) One has MYP(X,d, ) C LP (X, u) and there exists a finite constant C's > 0 satisfying

[l (x ) < Csllullaroxap, Yue MYP(X,d,p). (69)
(¢) There ezists a finite constant Cp > 0 satisfying
1/p* 1/p
inf / lu — <Cp /gp du | (70)
veER
X X

whenever u € MY (X, d, ) and g € D(u).



26 ALVARADO, GORKA, AND HAJEASZ

Consequently, in the context of bounded uniformly perfect metric measure spaces, the
global estimates in (69)-(70) are equivalent to the local estimates in (4)-(6) as well as the
global Hélder condition in (7).

Proof. Tt is clear from Theorem 22 that (c¢) implies (a), and that (b) implies that that
there exists k € (0, 00) such that

p(B(z,7)) > kr* for every z € X. and every r € (0, 1].
If however, 1 < r < diam(X) < oo, then [diam(X)] 'r < 1, which implies

p(B(z,7)) > p(B(z, [diam(X)]'r)) > k[diam(X)]~*r*.
Hence, the statement in (a) holds.

On the other hand, given that diam(X) < oo, we can find a constant = € (0, 00)
(depending only on k, s, and the space X) so that p satisfies the V (2B, s, k) condition
(cf. (10)), where By = X is any ball of radius Ry := 2diam(X). Consequently, (69) and
(70) now follow immediately from (11) and (12) in Theorem 6. This finishes the proof of
the corollary. 0

5. THE CASE p=s

Theorem 25. Suppose that (X, d, 1) is a uniformly perfect measure metric space. Then
for each fized s € (0,00) and o € (1,00), the following two statements are equivalent.

(a) There exists a constant k € (0,00) such that
w(B(z,7)) > Kkr*  for every x € X and every finite r € (0, diam(X)]. (71)
(b) There ezist constants Cy,Ca,y € (0,00) such that

_ v
][exp <01M) dp < Oy, (72)
)

Hg Ls(oBo,u

0

whenever By C X s a ball with radius at most diam(X), u € M"*(oBy,d, 1) and
9 € Dy(u).

Remark 26. The implication (a) = (b) holds in any metric-measure space, not necessarily
uniformly perfect. |

Proof. Fix s € (0,00) and o € (1,00). For the implication (a) = (b), observe that if
By is a ball having finite radius Ry € (0,diam(X)], then (71) implies that y satisfies the
V(0 By, s,b) condition with b := ko~* € (0,00), see (52). As such, the desired conclusion
now follows from part (b) in Theorem 6 with v = 1.

Regarding the opposite implication, suppose that (72) holds for some C;, Cy, v € (0, 00),
and fix z € X, r € (0,diam(X)], finite. Let B = B(z,r). According to part (i) of
Lemma 12, it suffices to prove (71) under the additional assumption that r < 3p,(r)/\?,
where 0 < A < 1/5. Then 0 < ¢,(r) < r and we define 7;, u;, g;, and B, j € N as
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in Construction 15. In particular, we have that u; and g; satisfy (72) (used here with
BD = B), i.e.,

7. — (77, v

]/exp (CIM) du<Cy  VjeN. (73)

) 1951122 (8.0
Since o > 1 and r < 3p,(r)/A?, we have

_ 2j+2 o . 2j+2 - .

19311 eom = 3 B < 3550 w(B). (74)
Now (46), (73) and (74) give

u(BIY) eXp( CyN?r )7 - 75)
n(B) 2420 (BiYs) T

Without loss of generality we can assume that Cy > 1. Then it follows from (75) that
Oy \2 B 1/~ B 1/(2s)
o < {log <02 b )} < (257717 G (—“ﬁ. : ) ,
24 - 27 p(BI)V/s p(Bi+1) p(BIth)
where the last inequality follows from the estimate log(y) < q%'/?, which holds true for all
y,q € (0,00) (applied here with ¢ = 2sy~!). Therefore,

- ) 24(25,}/—1)1/7 Cl/(ZS)M<B)1/(2s) ) ~ e
p(BITHE) < ( Gy 20 p(B)Y.

Now applying Lemma 16 with
24(28’}/_1)1/7 021/(25)”(3)1/(25)

a; = u(éj), p:=s, q:=2s p:= Cr , and T :=2,
we get

L< () E (PGB 20 )G

- Ch\%r - CiN%s s
SO )
C3\=*
B(x,r)) > ! re.
B > ()

The proof is complete. H

In the case of doubling measures we have the following characterization which is a
consequence of Theorem 6 and Theorem 28, below.

Theorem 27. Suppose that (X, d, i) is a uniformly perfect measure metric space and fix
o € (1,00). Then the following two statements are equivalent.

(a) The measure u is doubling.
(b) There ezist constants Cy,Cy, s,y € (0,00) such that

B 1/s),, 2
][exp <C’1'u<0 ) *Ju UBO‘) dp < Cy, (76)
ROHQHLS(O’BO:H«)

Bo
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whenever By C X is a ball, w € M"*(cBy,d, ) and g € Dy (u).

For the implication (a) = (b) in Theorem 27, one can take s := log,(C,,) where

u(B(z,2r))
c,= sup ——=
g zeX,re(0,00) :U/(B(xu T))

€ (1,00)
is the doubling constant for p, see (9). Then pu satisfies the V(0 By, s,b) condition with

b= rku(ocBy)(ocRy)~* and (76) follows from Theorem 6.

Theorem 28. Let (X, d, ) be a uniformly perfect measure metric space and suppose that
there exist s,Cy,Cy,v € (0,00) and o € [1,00) such that

B 1/s),, Y
fexp (C«:lM(U 0) |U/ uBO‘) d“ S 02’ (77)
Rol|gll 2+ (080w

0

whenever By C X is a ball, w € M**(0By,d, ) and g € Dy (u).

Then for every e € (0,00), there exists a constant k € (0,00) such that

[L(B(l’,?")) ; i s+e
u(B(y,R))Z (R> ’ {7

whenever z,y € X, B(z,r) C B(y,R), 0 <r < R < oo. In particular, the measure i is
doubling.

Proof. Note that the estimate in (78) will follow once we prove that for each 5 € (1, 00),
there exists kg € (0, 00) satisfying

w(Blz,r)) (7 pelE=D
u(B(y. R)) - B<R> ’ (79)

whenever z,y € X and B(z,r) C B(y,R), 0 <r < R < oco. To this end, fix § € (1,00)
and suppose B := B(z,r) C B(y,R) for some z,y € X and 0 < r < R < oo. Recall
that we may assume that 0 < A < 1/5, where \ as as in (39). As such, appealing to
(ii) of Lemma 12, it suffices to only consider the case when r < 3¢, (r)/A%. Next, let 75,
u;, g;, and B, j € N be as in Construction 15. Then, it follows (77) (applied here with
By := B(y, R)) that the functions u; and g, satisfy

B 1/s|77. _ (7. Y
][exp (Cl,u(a 0)~ % (UJ)BO‘) du<Cy, VjeN (80)
Rng L#(0Bo,u)

0

Observe that for each 7 € N, we have
1/s

. ~. 1/s . ~. 1/s
. R [ (B 3R2%2 [ (B
mlf@ya) =75 (M(UBO)> = (#(Bo)) -

oBg
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where, in obtaining the inequality in (81), we have used the fact that r < 3¢, (r)/\2
Altogether, (81), (80), and (46) yield

Rj+1 2 1/s \ 7
uB) (CM 'ru(Bﬂg)' ) <C
1(Bo) 24 - 2 R p(BI)Y/s

Note we can assume without loss of generality that C', > 1. Then using the estimate
log(y) < qy'/? (which holds true for all y,q € (0,00)) with ¢ = 8sy~!, we may conclude
from (82) that for each j € N, there holds

O B i (et )] <y I M(BO)))I/(BS).

24-20R  y(Bi)t/s = (Bt u(Bi+L

(82)

Therefore,

- 24R<ﬁ8,y—1)1/7 Cl/(ﬁs) ) -
J+1Y1/(Bs) 2 J J\1/s
uB)T < (CM? r(BoyF i | 2B

Now, invoking Lemma 16 with

_ 24R(Bsy 1) ¢y P
. J e = =
aj == uw(B’), p:=s, q:=Ps, pi= CiA2 7 p1(By) B~/ (5s)

and 7 :=2,
and keeping in mind that a; = u(B) < u(B) = u(B(z,7)) and By = B(y, R), yiclds

—1\1/y /(B *
1< pu(B)Y8 (243(557 )1 G ) 985/ (35—

Cl)\Q TM(BO)(’B_l)/(ﬁS)
B (/L(B(Q?,?")))(BI)/B (E)S (24(55,}/—1>1/’YC21/(55)> 085/(5-1)

1By, R)) r C1 A2
Therefore,
pB(z,1) C1N? o5/ (31 <i>ﬁs/(ﬁ—1) |
u(B(y, R)) — \ 24(Bsy-1)1/r /%) R
This finishes the proof (79) and, in turn, the proof of the theorem. O

6. THE CASE p > s

Theorem 29. Suppose that (X,d, ) is a uniformly perfect metric measure space and fix
s,p € (0,00) satisfying p > s. Then the following two statements are equivalent.

(a) There exists a finite constant k > 0 such that
w(B(z,7)) > kr° for every x € X and every finite r € (0, diam(X)]. (83)

(b) There exists a constant Cy € (0,00) with the property that for each v € M“(X, d, p)
and g € D(u), there holds

u(2) — u(y)| < Crd(z,y)'*""llgllrce,y, Yoy €X, (84)
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Hence, every function u € MYP(X, d, u) has Holder continuous representative of order
(1—s/p) on X.

Proof. We begin by proving the implication (a) = (b). Fix any ball By having finite radius
Ry € (0,2diam(X)]. If B(z,r) C 2By and r € (0,2Ro], then 4~ 'r < diam(X), and (83)
gives

u(B(x,r)) > p(B(x,47'r)) > k(d7'r)" =&,
where kK = k47°. Thus, p satisfies the V(2B,y, s, k) condition (see (10)). As such, part (¢)
in Theorem 6 guarantees the existence of a constant C' € (0, 00) (independent of By) with
the property that whenever u € M'?(2By, d, 1) and g € D(u), there holds

1/p
lu(z) —u(y)| < CRYPd(z,y) =P / g’ du for all z,y € By. (85)
2B,

Now, if u € M'"?(X,d, u) and g € D(u), then their pointwise restrictions to the ball 2B
(still denoted by u and g) continue to satisfy (1). Hence, this restriction of u belongs to
M"P(2By,d, 1), and g remains a generalized gradient of u. Therefore, by (85) we have

lu(z) —u(y)| < CEVPd(x,y) " /?||gllr(x, for all z,y € By. (86)

Given that the constants C' and k are independent of the arbitrarily chosen By, it follows
that (86) implies (84), finishing the proof of (a) = (b).

For the reverse implication, fix x € X and r € (0, diam(X)}, finite. If B(z,r) = X then
diam(X) € (0,00) and

w(B(, 1) = u(X) > u(X)[diam(X)]*r*.
Thus, in what follows, we may assume that X \ B(z,r) # (.

Let A € (0,1) be as in (39) and define v : X — [0,1] by setting u := @ ,, where
the function @, is as in Lemma 13. Then, v € M"P(X,d,u) and the function g :=
(A1) " X B(zar) belongs to D(u). Moreover, since (X, d) is assumed to be uniformly perfect,
we may select a point y € B(z,7) \ B(z, Ar). Then by (84) (used here with this choice of
u and g), we have

1= lu(x) — uly)| < Cud(,y) " *|lgllogx < CuA™r ™" u( B, )",
from which (83) follows with x := (A\/Cy)? € (0,00). This finishes the proof of the reverse
implication and, in turn, the proof of the theorem. O

Theorem 30. Suppose that (X, d, i) is a uniformly perfect metric measure space and fix
s € (0,00), 0 € (1,00). Then for each p € (s,00), the following two statements are
equivalent.

(a) There exists a constant k € (0,00) satisfying
B S
A w(7), (57)
n(B(y. R)) R

whenever z,y € X satisfy B(z,r) € B(y,R) and 0 <1 < R < 00.
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(b) There exists a finite constant Cy > 0 such that for each ball By := B(xg, Ry) with
x9 € X and Ry € (0,00), and each uw € M'P(0By,d, 1) and g € D(u), there holds

1/p
h@%@Mg@mwwwwpfww . Vaye B, (88)
o By

Hence, every function v € MY (0By,d,u) has Hdlder continuous representative of
order (1 — s/p) on By.

Proof. We begin proving the implication (a) = (b). Given a ball By := B(xzg, Ry) with
zg € X and Ry € (0,00), let B(y,R) := 0By. Then inequality (87) implies that the
measure p satisfies the V(0 By, s,b) condition with b = ku(oBy)(cRy)~*. As such, for this
value of b the inequality displayed in (88) follows immediately from (14) in Theorem 6.

In order to prove the implication (b) implies (a), fix points x,y € X and suppose that
B := B(x,r) C B(y,R), where 0 < r < R < oo. Specializing (88) to the case when
By := B(y, R) implies that

1/p
u(z) = u(w)] < Cd(evw) PR | f | | viweBuR),  (59)
o By
whenever u € M (0 By, d, ) and g € D(u). If B(z,r) = X then B(y, R) = X given that
B(z,r) C B(y, R). Thus, in this case, (87) trivially holds with any ~ € (0,1]. As such, in
what follows we will assume that X \ B(z,r) # (.

Let A € (0,1) be as in (39) and define u : X — [0,1] by setting u := @ ,, where

the function @, is as in Lemma 13. Then, u € M'?(cBy,d, 1) and the function g :=

(A1) " X B(zr) belongs to D(u). Since (X, d) is assumed to be uniformly perfect, we may
select a point w € B(z,r) \ B(x, Ar). Then by (89), we have (keeping in mind ¢ > 1)

1/p
1 = |u(z) — u(w)| < Cyd(z,w) =*/PR/P ][ g’ dpu
oBg

<en(7)(155)

from which (87) follows with x := (A\/Cg)? € (0,00). This finishes the proof of the reverse
implication and, in turn, the proof of the theorem. O
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