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We define the “entropy of ignorance” which quantifies the entropy associated with ability to perform
only a partial set of measurement on a quantum system. For the parton model the entropy of ignorance is
equal to the Boltzmann entropy of a classical system of partons. We analyze a calculable model used for
describing low x gluons in Color Glass Condensate approach, which has similarities with the parton model
of QCD. In this model we calculate the entropy of ignorance in the particle number basis as well as the
entanglement entropy of the observable degrees of freedom. We find that the two are similar at high
momenta, but differ by a factor of order unity at low momenta. This holds for the Renyi as well as von
Neumann entropies. We conclude that the entanglement does not seem to play an important role in the

context of the parton model.
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I. INTRODUCTION

In recent years very interesting quantum information
theory'connectionshavebeguntobeexploredinthecontext of
high energy and nuclear physics. A set of ideas has been
floated which suggests a deep relation between the
propertiesofscattering,suchasspectrumofproducedparticles
and entanglement properties of hadronic wave function [2—
13]. These ideas have found some tentative support in
qualitative comparative analysis of data in Ref. [14]. It is
thus interesting to elucidate to what extent this way of
thinking can be subjected to a more quantitative test.

In this paper, we make a step in this direction. In
particular, we ask if the relation suggested in Ref. [15]
between the entropy in the parton model and the entropy of
entanglement in a proton wave function exists in a
computable model of a hadronic wave function frequently
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See Ref. [1] for a short introduction.
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used in the Color Glass Condensate (CGC) calculations
(see Refs. [16-20] for reviews on CGC).

The authors of Ref. [15] considered the following
question. On one hand the proton as a quantum object is in
a pure state and is described by a completely coherent wave
function with zero entropy. On the other hand in high
energy
experimentsdeepinelasticscattering(DIS)whenprobedbya
small external probe, it behaves like an incoherent
ensemble of (quasifree) partons. Such an ensemble carries
a nonvanishing “classical” entropy. Reference [195]
suggested that the origin of this entropy is entanglement
between the degrees of freedom one observes in DIS
(partons in the small spatial region of the proton) and the
rest of the proton wave function which are not measured in
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the final state and therefore play the role of an
“environment.”

According to this idea, the lack of coherence and large
entropy of the partonic density matrix which describes DIS
within the parton model approach is due to entanglement
of the observed partons with the unobserved proton degrees
of freedom. If one knew the proton wave function, one
would be able to calculate this density matrix by reducing
it with respect to the unobserved environment,

pAPM % Trunobs)sj Pih Pj; olb

where jPi is the proton wave function and the partial trace
is taken over the unobserved degrees of freedom (the

nature of which is not important at the moment). The
2470-0010=2020=101(3)=036017(10)
entropy of the parton model is then identified with the von

Neumann entropy of the reduced density matrix according

to

Spm %4 —TryszpM lnp"pM: 02b

This proposal in principle eliminates the tension between
the pure nature of the proton state and incoherent nature of
the parton model.

However a little thought shows that this is not the only
way to eliminate this tension. The point is that the set of
measurements that is described by the parton model is not
complete, in the sense that it does not provide exhaustive
information about the density matrix, even just about the
density matrix of the observed degrees of freedom. In DIS
the only quantity one measures is the average number of
particles

hNi % Trz 02dmz2kb2 atdkbPadkbp pPMm: a3p

Here, we suppress the longitudinal momentum label x in
order to illustrate our point in the simplest setting.
Extending to transverse momentum distributions (TMD’s)
one probes the average particle density at a fixed transverse

momentum k % 8ki;koP: hatgkpadkpi. Even considering

more general measurements, such as those of double parton
distributions, and possibly multiparton distributions one
only probes the averages of the type
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ha'All of these observables are diagonal in the
numberdk'pPadk'p...a'gk"Padk"bi. operator basis, and
therefore in principle carry no information about

nondiagonal elements of the density matrix in this basis.
Thus there is an infinite number of density matrices which
are completely equivalent for the limited purpose of
describing the results of only these measurements.

Interestingly, this lack of knowledge of the actual
density matrix of the system can be characterized by an
entropy. We will dub this entropy “the entropy of
ignorance.” Consider the situation in which one in principle
can only measure a defining set of observables fOig which
is not complete, i.e., does not include all coordinates and/or
conjugate momenta of the given quantum system. A

Published by the American Physical Society
density matrix that reproduces the results of this set of

measurementsa;, which looselyp”daq;p is parametrized by
some parameters speaking correspond to possible values of
the observables not included in the set fOig. To each such

density matrix one associates von Neumann entropy

Sdab % -Tr¥sp dablnp”dab: 04p

We define the entropy of ignorance as the maximum of
Sdab with respect to variation of a

& 2 S(a), =0

Si% -Tr¥p~"6a PInp"da”b; © Ja; : d5p

In Appendix A we give some examples of S and its
dependence on the defining set of observables in a simple
quantum mechanical model.

powers and products of the particle density operatorsin the

case of the parton model the set fO;g includes all density

matrix written in the Fock (particle number)

basisa’dkbPadkp. Thus only diagonal matrix elements of the

are determined by the defining the set of observables. The
parameters o;therefore parametrize the off diagonal matrix
elements of p” in the particle number basis. The parameters
o~ defining the entropy of ignorance correspond to
diagonal p”. In order to prove this (see Refs. [1,21] for
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details) consider p"8tb % 81 - tPp"p b tp”, where po is
obtained from p” by dropping the off-diagonal elements of
the density matrix. Owing to the normalization condition,
the variation of the entropy with respect to a parameter
reads

005t ~Tr a1 “Pap stp 5tb:
86b

Therefore att % 0

0S

Otto¥% —Tr%0p”" —p obInp”o % O: a7p

Y

Then due to the concavity of the von Neumann entropy

0252

<0;
ot o8p

one concludes that S8pdt % 1bb < S6pdt % Obb or in other

words

S<Se o9p

Interestingly, since the matrix p“da”b is diagonal in the
particle basis, the entropy of ignorance is exactly equal to
the Boltzmann entropy of the classical ensemble of partons
with the probability distribution where probability to find
the system with n particles is equal to the corresponding
diagonal matrix element of p"da”p

Si % S % —Xn pn Inpn; pn¥% hnjp”jni: 810p

Note that in this particular case, i.e., when the defining
set of observables is a complete set of operators diagonal
in a particular basis, the entropy of ignorance becomes
identical with the so-called diagonal entropy introduced
and studied in Refs. [22-24]. This quantity is defined as Sp

% Pipilnpi, where p/’s are diagonal matrix elements of the

density matrix in a specific basis. In [22-24] the authors
where primarily concerned with understanding of the
nature of equilibration (thermalization) and thus
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considered diagonal entropy in the energy basis. Our
physical motivation here is different; however, the formal
similarity of the two quantities is interesting and may be
useful to explore in the future.

An amusing case for the entropy of ignorance arises if
we consider a system in a pure state. In this case, the von
Neuman entropy is strictly zero; however, if we ignore the
off-diagonal elements of the density matrix and compute
the entropy of ignorance the result is nonzero. We will
consider this interesting situation in the context of our
model wave function below.

Since the classical parton model entropy is given by the
entropy of ignorance, this begs the question whether the
entanglement entropy in the sense of Ref. [15] plays any
role in the physics of parton model, or at the very least is
not too different from the entropy of ignorance. Our goal
in this paper is to compare the entanglement entropy and
the ignorance entropy in a computable model which has
been used in recent years in the context of high energy
scattering—the Color Glass Condensate model.

The outline of this paper is as follows. In Sec. II we
describe the CGC wave function. We point to certain
similarity between reducing the CGC density matrix over
the valence degrees of freedom and reducing the proton
density matrix with respect to the environment’ alluded to
earlier. In Sec. III we consider the Renyi entropy. We
calculate the Renyi entropy of entanglement and the Renyi
entropy of ignorance and compare the two. We find that the
contribution of very high transverse momentum modes to
the two entropies is the same to leading power in 1=k?, but
the contribution of modes with momentum equal to or
smaller than the saturation momentum differs by a factor
of order one. In Sec. IV we extend the discussion to the von
Neumann entropy. Here we find that the discrepancy
between the entanglement and ignorance entropies at high
momenta is somewhat more significant. For large k modes
the two are still equal, but the relative difference between
the two vanishes as a power of momentum enhanced by a
power of the logarithm. At low momentum, however, the
relative difference between the two von Neumann
entropies is the same as between the two Renyi entropies.
In Sec. V we consider the entropy of ignorance, but this
time for a fixed configuration of the valence color charge
density. We find that even for a fixed typical configuration
of the valence fields the ignorance entropy approximates
well the Boltzmann entropy of the partons, whereas the
entanglement entropy in this case is strictly zero. Finally
we close with a discussion in Sec. VI.

II. THE CGC WAVE FUNCTION

We now introduce the CGC wave function [25,26] that
we will use in our calculation.

The Color Glass Condensate describes scattering at high
energy. For an ultrarelativistic hadron, a large fraction of
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momentum is carried by the valence quarks and gluons.
Due to their quantum nature, partons carrying a large
fraction of momentum radiate low energy gluons which
have a lifetime relatively short to that of the valence
charges. To put it in another way, the valence (“hard”)
partons can be treated as static sources of the soft gluons.
The wave function of the system of slowly evolving
valence charges and faster soft gluon degrees of freedom
has the form

i % jsi @ jvi; 311p

where jvi is the state vector characterizing the valencesi is

the vacuum of the soft fields degrees of freedom and j

in the presence of the valence source. Despite appearances,
the state is not of a direct product form since the soft
vacuum depends on the valence degrees of freedom.

In the leading perturbative order the CGC soft vacuum
has the form

jsi % Cjoi 312p
with the coherent operator
C % exp2itr Zk b'dkb? 6kp; a13p
where
@idkp = api dkp p aid—-kp; a14p

the trace is over all colors, and the transverse vector is
denoted by k % dki;koP. We use the following notation:

d%k

k%270 21b2 : ol15p

The background field b, is determined by the valence color
charge density p via

i iki i

badkp % gpadkp _ k2 b cadkp: 316p

The correction ci,0kp is suppressed by at least Odp2b at
small charge density, and we will neglect it in the
following. It can be taken into account as a perturbation,
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but we believe our results are stable to this particular
correction.

Note also thatthe leading order inc' is transverse, that

ispdkp, only gluons with the longitudinalC and jsis

customarily modeledi.c - k % 0. Therefore at polarization

contribute to

The valence wave function jvi in the so-called McLerran-
Venugopalan (MV) model as

[27.28]

hpjvihvjpi % Ne-R xu2pa8kppadkp; o17p

where N is the normalization factor and the parameter p?
determines the average color charge density in the valence
wave function. Note that Eq. (17) does not determine the
does not enter our calculation.(possibly p-dependent)
phase of jvi. This phase however

Consider the hadron density matrix:

p" % jvi @ jsihsj @ hvj: a18p

In the following we will integrate out the valence (slow)
degrees of freedom and derive the reduced density matrix
for the soft gluons. That is we compute the reduced density
matrix p°r % Trpp™ =Z Dphpjp”jpi ¥% Z Dphpjvijsihsjhvjpi:
a19p

We will then use this density matrix for calculating the
entanglement entropy of the soft gluons and compare it to
the entropy of ignorance.

We expect this model to be a meaningful proxy to study
the question discussed in the Introduction. One obvious
common element between our model calculation and the
real life parton model is the natural bipartitioning of the
degrees of freedom in the underlying wave function and
integrating over the environment. Physically though the
analogy goes a little further. In our model approach we will
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be reducing the density matrix over the slow degrees of
freedom. The parton model in QCD has a similar meaning.
At large transverse momentum (Q?) the observed partons
correspond to the faster degrees of freedom. The
unobserved environment that has to be integrated out
presumably consists of lower transverse momentum modes
(or in coordinate space modes extending outside the spatial
region probed by the virtual photon) which have lower
frequency than the high transverse momentum partons, and
possibly confinement scale nonperturbative glue which
again naturally has much lower frequencies. Thus,
although the analogy may not be perfect, we believe that
our toy model captures some basic relevant physics and
therefore can teach us a meaningful lesson about the actual
QCD parton model.

[II. DENSITY MATRIX IN NUMBER
REPRESENTATION AND THE RENYI ENTROPY

Using the MV model for the valence degrees of freedom,
the reduced density matrix is calculated as

p"r % NZ Dpe-R ku2padkbpaskpCOpb; ibPj0ih0jC+Opc; @cjb:

a20p
The very same reduced density matrix was obtained, and
the von Neumann entropy was calculated in previous
papers of some of the authors [4,12,13]. The calculation
was performed in the field basis. Since the gluon number
basis plays a special role in our current discussion, we will
perform this calculation independently using this basis.
Here because of the particularity of Eq. (16) in the leading
order, we consider longitudinally and transversely
polarized gluons with corresponding annihilation operators
defined as a*.8kb¥%k-a.dkP=jkj and a‘. 8kble;kial.dkP=jkj.
We label the basis states as

jnacdkP;macd-kpi % jNAGKkPi;

Ye Ya Yk c

021p
Ye YA Yk

where A % k; L and c are the polarization and color indices

respectively. We have introduced for convenience Nic % nic

b mic. The reason for introducing Eq. (21) is that in our
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density matrix, a mode with momentum k mixes only with

the mode with momentum -k due to the fact that p.dkp %

Pa0-kP. In addition the density matrix is translationally

invariant, which has a consequence that p”r is a direct
product of density matrices in a fixed transverse
momentum sector.

The continuum states are customarily normalized as

hnacdkbjnacdkobi % hOjYaprcdrkbla—
Yaancptdnk!lobn jOi
022p ffi ffi

with the corresponding orthogonality relation

hkjkoi Y hOja}\cGKba;\cowékobjOi Y 821tP26M0 Scco 626&— KODZ

823p

For convenience we discretize momentum by putting the
system inside the spatial region of area S, and granularity

A. Then hkjkoi Vs 92A12P2 6Mno Scco Skko 24P

with S1A2 % 62nb2. We also find it easier to work with the
states which have a unit norm, as this makes the
interpretation of diagonal matrix elements as probabilities
straightforward. We thus redefine the multigluon states as

jnacdkP; macd-kPpi

Ye YA Yk

% Y YAYK 72 pB-nb o2 TFfin™

120 05" mEpyca 18ffirm i

025b

and use this normalization in the rest of the paper.

A. Entropy of entanglement

From the structure of the density matrix it is obvious that it is a direct product over color. We thus consider the

calculation for a fixed color index c.

The action of the coherent operator on the soft gluon vacuum can be represented as

CjOi % eiR kbei okPYaci pokpbaicd-kpjOi ¥ €iR k bicdkbaicbdkbe-12Rugz2jpcdkpj2jOi;

026b
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where we used Baker-Campbell-Hausdorff formula. We can then write p”as

~ 2 AL A a2
Pr ¥ NZ Ydeaakpe—AWzm: 02p12pk _g22PpadkbpadkpPCibai dkbaﬁaﬁkbazénzpszIhOJe-ibaiékbaiaakb 7 02p

k a
2 a2
Ya N NZYdpadkbdpad—kbe-26~,2 » 82p12bk _£22PpaORBpadkp€is2 b Bbai SkPaiat pbaidkbatiad-kppjOi
k>0 a
x hOje-is2® by k ajy w28 6b Skbpbiadkbaisd-kPP:
027p

Consider the matrix element _ Quhn*.dqb;m*.6-qPjp”dqbjar.8qb;B .d-qbi. Since all operators inside the

exponential commute with each other in Eq. (27), we have

AZ
hcOP cd Pj i 2bai k atia =2 baidkPatiad-kpPjOi Nk Q ;Mk—=C € 5v66bP b

A2 L2
% hnc“dgb;mcd-qPj  8i %2 b btbdqthatbt dgPPn: 8i-52 b bbtdgPattbd—qPPme0i k

_ Yb Yt nXemt nl m !
%h 0P 0 Pjdi 2a™2p2 bk°dgbatkedqbb 8i 52a™p2 bk
dgbakt“6—-gbb™j0i Nk q ;m_k—q — _ Ny - my]
i npmkA2  aemkbk g kbkg Tk i g kA2 kP g kP-Q ok _
28
% & b 82mb2 20 pcankbblffin 0 cp6mkbb!ffim % Obn q_ n m 02yb2 2 pc6nkb!ffin Y cp6
mkPp Iffim 0 p

and the trivial

. ; S -0 0,100,151
hnic8gbP;micjd—-qgbjei™ s %:b dbiadkpatiapbaidkbatiad-kbbj nt,0%mt 00 Ya
029p
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The latter indicates that the gluons with the transverse polarization contribute only to partonic vacuum; they are in the
pure state and thus do no contribute to entropy. We will thus consider only longitudinally polarized gluons. Integration
with respect to pa0kpP can now be carried out in Eq. (27). For the integral to yield a nonzero value it is required that

npB%mbpa: 830Pkkkk

Thus the required matrix element is

__hncdg_P;mcd-qPjp rdqbjucdygb; fcd=—qPi¥ N282An2br24pzy qg22 ——=n-p-1qg22 62Am2b2
npg pANnImp!Bab!Bffidnpp;mpa; 031p

where we left out the polarization label, as only k contributes to the nontrivial part of the density matrix.

To calculate the Renyi entropy we need to find Trp*2.. This requires squaring the matrix element and summing with
respect to all possible n, m, a, B. Most efficiently this can be done by using an integral representation for the factorial dn

b Bb!:
VA . b
onp BP! Yo dtitinPpe-t 032p
0
and for the Kronecker delta function The final expression for the matrix element including the
normalization is hncd_qP;mc6-qPbjp rdqPjacdqPb;Bcd—-qgbi
np;mlldz — — np-m-ap; 033P & B s - -
bap % 2TticZ 26 b6 % d1—RppdnmmpiBab!IBIR2

nbpOSNpBP;dMbab: 036b

where C is a unit circle. The normalization N is fixed by
requiring that Trp”, % 1. This leads to

For the trace of the square of the density matrix we getffi
N % 282mbr2puspg2 — 61 - Rb; 334b
where hncdgb;mcd—-qPjp rdgbPjacdqb;Bcd-qbi 2
m;n;Xu;BYs

a35p - - - -
R%“41p2 g2’ 2

A2 1 g % 01 - RP2 21wt dzzZ dtidtze-u-t2

x X. 1tiz-1 _Rmt2z_Rnnimla!p!

2 2 m;n;ap
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x 11z-1 R2et2zR2p %011 ——RRP22- 037p
and the final result for Trp™?,
6hn dgb;m 6-gbjp” dqPbja dgP;B d—qPib2
m;n;Xot;B c = c r— ¢ — c
1
1-R
%1pR%1p4egqun 038b

At small momentum this ratio goes to zero, and at large
momentum it approaches unity. The Renyi entropy is thus

d2q g2102
1
-InTrp; - N2— z SRY% %28
D1 T +45 0, g2 :339p

The color factor arises since the density matrix is a product
of density matrices over the color index, while the area
factor appears due to taking the continuum limit in the sum
over momentum.

This coincides with the result obtained in Ref. [4]. In
number representation basis, we were thus able to
reproduce the result of the previous calculations of the
entanglement entropy which were performed in the field
basis.

B. Entropy of ignorance

We now turn to the calculation of the entropy of
ignorance. To do that, as discussed above we replace p”r by
only its diagonal part in the gluon number basis, p”;.

Then diagonal matrix elements of the density matrix for
a given value of momentum q are

Ychncdq_P;mc6-gbjp"18gbjncdgb;mcd—qgbi

% 81 - Rpdnnp!mm!pIR2 npm:
040p

PHYS. REV. D 101, 036017 (2020)
For trdp? b at fixed momentum and color index we

evaluate the following:

trdp2ib % 81 — RP2Xm;n &rnaptmm [PIR2
pd11--RRp22ffi;

nbmz%—

d41p

where the sum is computed in Appendix B.
The associated Renyi entropy is given by

1d%q
2 1 2
Sr% —InTrp” — Ng—18, %28 bz
22005,
4g 12
2,2
gu "
1 225 g "h »

sp qoa ffitt 3p

The two expressions Sgand S'rare clearly different. They
do coincide, however, in the limit of high transverse
momentum. Considering the contribution from high
momenta g2 >> g2, we find

14
von Neumann S;(q)/SE(q)
1.3 .
\ — — - Renyi Sk(¢)/Sr(q)

9 1.2
3
F 1.1

1.0

0.9 T T T T T

2 6 8 10
a/9n

FIG. 1. Ratios of entropy densities at a given magnitude of the
transverse momentum g=gy. Sp89%P is the von Neumann entropy
density of ignorance and Sedq b is the corresponding
entanglement entropy density. The same for Renyi entropy

densities.
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2 2

~

SirAQ2Pq

1 49 p
25 2ul N — N%—l SJ_ 2 28 p q

SRaquqz»gzuz: 043p

Thus the leading contribution of the high momentum
modes to the ignorance and entanglement entropies is the
same. The first subleading term is different

¥%SIROQ2b = SRAQ2Pq2»>ga2 = ON2c — 1PS1L gq2u22 2:
044bp

We will discuss this feature in the last section.

At momenta of order gu and smaller, ie., in the
saturation regime, the two entropies are substantially
different. The ratio between the two is plotted on Fig. 1. At
zero momentum the ratio depicted in Fig. 1 tends to 3=2,
since Srdg? > 0P ~ In1=q? while Sg'dg% > 0P ~ In1=q3.

IV. VON NEUMANN ENTROPY

Let us now study the behavior of the von Neumann

entropy.
A. Entropy of W)
entanglement - q* Gu?

The entanglement entropy in this model was calculated
in Ref. [4]. The complete final result (adjusting for a
different normalization of p2used in Ref. [4]) is

1 1 2c Z
T od2g2" z g2u22
s gap2ffi
Se% 20N - 1pSL 82 b g b 1b4q
xInlp2 g22u2 b 2g2u2slp 4 g22
ffi #: d45pbq q g

B. Entropy of ignorance

The von Neumann entropy of ignorance for a single
momentum mode q is

Sléq_p ¥ —Xm;n pnm ll’lpnm o46b

PHYS. REV. D 101, 036017 (2020)
with
pnm % hncdq_P;mcd-gbjp 10gPjncdgb;mcd-_qgbi:  847p

Supplementing the above by the integration with respect to
the transverse momentum, the formal expression is

1
Z —S(NE-1)sy

S1% 2
X 22 Xm;n 81 = RPdmmp!nn!pIR2
mpn d q 821P
% Ind1 - RPOmmplanlhlR2. —  mpn: 048p Unlike in

the case of Renyi entropy we are unable to sum the series
analytically. Numerically this can however be calculated;
the resulting plot of the ratio of two entropies appears in
Fig. 1. We see that the differences for von Neumann
entropy are somewhat more pronounced.
Just like for the Renyi case, we can study analytically the
contribution of high momentum modes. For large g to the
subleading order we get

SiI3gb = ON*=1IP,g°°S*Ine q2p*2p gq’Ha” e d49b q

8

22S
i (44)]9# L e w4
q gH and

2c-1

Sedqgb: 850p

Obviously, the leading behavior of the two expressions is
the same. The subleading terms are different just like in
case of the Renyi entropy. The difference is again a
subleading power of 1=g2, but this time it is enhanced by
Ing?.

At small momentum we find numerically that the ratio
tends to 3=2 just like for the Renyi entropy.

This larger discrepancy for von Neumann entropy is
indeed demonstrated in Fig. 1.

V. FIXED COLOR CHARGE CONFIGURATION

So far we have compared the entanglement entropy with
the ignorance entropy of the reduced density matrix, which
was obtained by tracing over the valence degrees of
freedom. There is another instructive exercise we can do.
Let us consider the density matrix for soft modes at a fixed
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configuration of the color charge density. Recall that the
valence charges are slow degrees of freedom, so that in any
scattering event at high energy the valence charge density
is fixed. So any given event essentially probes the hadronic
wave function at fixed color charge distribution p.dgb. It is

thus interesting to see how the entanglement and ignorance
properties differ at fixed p.

As far as entanglement is concerned, the situation is
completely trivial. At fixed p,dqPb the soft modes are in a

pure state, as can be easily seen from

p" % CjOih0jCt 351p

with a unitary C, see Eq. (13). Thus entanglement entropy
at
fixed p strictly vanishes.

The ignorance entropy on the other hand is not zero.
Indeed, for a fixed configuration, the diagonal matrix
element is

hncdgb;mcd—-qPjp " dgPjncdgb;mcd—qPpi

s —_ —_

Yle-2agjpd e 282 A2p g 4mpn: 52 % nlm! 2,

qq20j2nob2bj o P

6 b

Therefore the associated Renyi entropy is given by

Si1% =InTrp™2 % 12517 8d2rzgbz Xa 4qgzz02Amzb2 jpadqbj2

mp(20 A |, 2 2-02P200q.Pj2:053P
0 (]2 T

A typical configuration in the MV model has the magnitude
of order

A2 jpalqgPbj2 ~p2:  854b 62mb2
We thus obtain
, FORE
SY % -InTrp” - N;:—1S8S% & b
2
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x0d2meqb2 7 Aggeur —— 1,2g2112

d55p

-In
2 0 Q2

At hight momentum the integrand behaves as 4 gqou2 -

20888,24,2,p2; compare this with the ignorance entropy 4 84,2

60 ¢4 b? of the reduced density matrix.

That is if we fix a typical configuration of the color
charges p.0qgb, the ignorance entropy we obtain is very
close

to the ignorance entropy of the reduced density matrix. On
the other hand the entanglement entropy crucially depends
on reducing the density matrix—it vanishes for a fixed
configuration of the color charges p,dgb, but is nonzero for

p”r. This is a clear indication that the ignorance entropy in
general is not related with entanglement.

VI. CONCLUSIONS

In this work, we have compared the entanglement
entropy Sg with the entropy of ignorance S;in a computable
model. The entropy of ignorance, Sywas defined as entropy
associated with the fact that only a limited number of
observables is available for measurement in a quantum
system. The model we have chosen has a number of
similarities with the parton model of QCD.

Our comparison shows that in general Sg and S, can be
quite different. In the context of the parton model S;is equal
to the Boltzmann entropy of a classical ensemble of
noninteracting partons. We found for example, that for a
fixed configuration of the valence charges (analogous to
fixed configuration of low transverse momentum modes in
the hadron wave function) Sg vanishes, while S;does not.
Moreover for a typical configuration S;is very similar to its
value for ensemble average.

There is however one striking feature of our result that
needs to be understood. We found that with the reduced
density matrix p”, for both Renyi and von Neumann the
differences between S, and Sg disappear in the ultraviolet,
cf. Egs. (43), (44), (49), (50). To get some insight into this
let us first ask which states contribute the most to the
entropy in the ultraviolet.
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First we note that the eigenvalues pjof p”at fixed small
momentum ¢ << g?u? have hierarchical structure, so that po
% 1 -6, 6K 1, while pp21 < 1, and p1 >p2 > p3 > .... Also,

since p”ris normalized, we have

Sentropy to leading order at small% P;" 1 i ®P1% . Thus

only pogzand. p1 contribute to

Consider the Renyi entropy first. Since at large
transverse momentum jgj, R ~ 1=g2, it is obvious from Egs.
(36) and

(37) that the largest matrix element of p”,is the one with n
% B Y% m¥ a0, as we alluded to in Sect. IV. The

Renyi entropy of p” is dominated completely by the
contribution of this matrix element. Since this element is
on the diagonal of p™,, it of course also contributes the same
amount to the Renyi entropy of ignorance. This is the
reason why the UV leading behavior of Sg and S'ris the
same.

Note that this leading matrix element is the matrix
element in the vacuum state at a given value of momentum.
The equality of the leading contributions to Sg and S'rin the
UVis thus a rather trivial effect, inasmuch as it does not
actually probe the distribution of partons in the density
matrix, but only the probability that no partons are present.
Asking about parton distribution is asking about
subleading corrections to entropy.

It is indeed easy to see that on the level of the first 1=qg?

correction Sg and S'z behave differently. The 1=qg°
corrections to Sgin Eq. (37) originate from two types of
matrix elements. First, there are diagonal contributions
withn¥% a¥% 1orm%B %1, and the rest of n, m, a, B
vanishing.

These terms contribute to Sgand S's equally. Then there are
nondiagonal contributions to Sg, which are banished from
S'r: these are contributions nondiagonal in the total particle
number,e.g.n¥m¥%l,a%B%Oorak%Bkln%m%O.
As it turns out the contributions of terms diagonal and
nondiagonal in the particle number are equal. Thus the first
corrections to the leading term reflect the nondiagonal
nature of p”rversus diagonal p” and are different for Sg and
S's.
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Now let us consider the von Neumann entropy. Here the
situation is somewhat different. The largest eigenvalue of
p”“rdoes not necessarily give the largest contribution to Se.
For a hierarchical density matrix like our p~r, the von
Neumann entropy is

°° e

1

Se % —poInpo -Xpi Inpi =6-8In6 % & & 356b

%1
where the leading logarithmic contribution 8Ind originates

from i % 1 in Eq. (56) while the linear correction in 6 is
from the “vacuum” matrix element i % 0. The eigenvalue po
corresponds roughly speaking to a partonic vacuum state,
while p; corresponds to a single parton with longitudinal
polarization, with p; % &%, (this correspondence is only
approximate, since as we know p~is not actually diagonal
in the particle number basis). Indeed Eq. (56) (up to the
overall factor that arises due to summation over colors and
integration over the transverse plane) coincides with Eq.
(50).

In this discussion pp and p; are the eigenvalues of p”.
The difference between these eigenvalues and the first two
diagonal matrix elements however is small. In particular,
since po2 ~8%, we have poo % pop 0882b; p11% p1b

0862b. Therefore the contribution to the ignorance entropy

due to these terms is

Si6q2b % Sedq2b p 0862 In1=6p a57p

which is indeed born out by Egs. (49) and (50).

We conclude that the identical UVasymptotics of S,8¢%b
and Sg6qg’p are due to the small occupation numbers of
partons at large qg°. Indeed, at intermediate and low
momenta where the occupation numbers per unit phase
space volume are of order unity the difference between the
two types of entropies becomes significant, at the order of
50%. We expect that the real parton model of QCD shares
these features. At very large momenta the entanglement
and ignorance lead to the same entropy, while at low Q? the
resulting entropies should be different. This is likely to be
unrelated to any nontrivial dynamics of the environment
degrees of freedom, such as confinement but is just the
consequence of low occupation number of partons at high
momentum.

036017-11



UAN, AKKAYA, KOVNER, and SKOKOV

To summarize, our understanding is that the lack of
coherence and large entropy of the partonic density matrix
within the parton model approach must be due to
“ignorance”, i.e., to our ability to measure only a restricted
number of observables, rather than to the entanglement of
the observed partons with the unobserved degrees of
freedom, as suggested in Ref. [15].
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APPENDIX A: ENTROPIES OF ENTANGLEMENT
AND IGNORANCE FOR A SIMPLE TWO FERMION
SYSTEM

As a simple example of calculation of the entropy of
ignorance consider two fermions, A and B, in the following
pure state:

|
b2 ~[14) ® ([0

jpasi % 2 ffijoai @ jOsi pei 2 bjlsip:  JAILb

Since this is a pure state, its von Neumann entropy
vanishes.

Let us calculate the standard entanglement entropy of a
single particle subsystem. After tracing out particles A or
B, the reduced density matrix in the particle representation
basis for subsystem A and B are

p2
A% 2_o 3 Loffil; 5A2P 1 1ffi
1 3 psl
% 1 1 8A3P

4
The entanglement entropies for the subsystem A and its
complement are identical (as they should be)
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Sedpab % Sedpsb % 23_In2 p pl2ffiacothp2ffi= 0.416496:

0A4b

The ignorance entropy depends on the set of defining
operators fO;g. Let us first take fOig as all operatorsS,in this

diagonal in the particle number basis. To calculate case we

should take the density matrix discarding the
offdiagdiagonal matrix elements in the number
basis,f1=2;1=4;0;1=4g and pas %
3l 2~ 1.03972
Si3pasb % Xipilnpi % 2 nemt : dASP

Another simple quantity is the entropy of ignorance for
the reduced density matrix pa. This time the measurable
quantities are operators diagonal in Fock space offermion
A. The diagonal density matrix is obtained by dropping the
offdiagonal matrix elements of pa: p'a % diagf1=2;1=2g.

Si0paP % In2 = 0.693147: dA6b

Similarly, p's % diagf3=4;1=4g, and the corresponding
entropy of ignorance is

3
S3p8b % 2In2 - Zln 3x 0.56233: SA7D

Note that as opposed to the corresponding entanglement
entropies, the two entropies of ignorance are not equal to
each other S,8pab # Sidpsb.

APPENDIX B: MODE SUM FOR REYNI
ENTROPY

Here we present the explicit form for the mode sum S:

SV Xm,-n-é-m-ﬂ-!-b-mﬁ-!-b!RZ
0B1p

mpn2:
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Using the integral representation of -function for

%3m b nbl2

%Om pnbl2% Zo dtidt2e-ti-t.0titzPmpn 6B2P

allows us further to factorize the sums. After this
factorization, we get

Y4 oo 1 R

S Yao dtidtye-L-HXmrdrtb2 2—pt1t2ffi 2m

2

0B3p
Each of these sums gives modified Bessel function lo:

oo

S%Zo dtidtre " 2IBRptat,ffib: 3B4b
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One of this integrals can be analytically computed after the

change of variables x % ptit,ffi

z - ® ﬂe_t‘—%l(z)
S % 20 o n
dxxZdRxp
% 4Zo  dxxKod2xblo?dRxb: dB5b

The last equality is based on 10.32.10 from Ref. [29].
Finally, the integral over x can be done analytically; it is 0
for jRj > 1 and

1
S % pT=Rz 0OB6b ffi

otherwise.
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