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ABSTRACT: In the Color Glass Condensate(CGC) effective theory, the physics of valence
gluons with large longitudinal momentum is reflected in the distribution of color charges
in the transverse plane. Averaging over the valence degrees of freedom is effected by in-
tegrating over classical color charges with some quasi probability weight functional W{j]
whose evolution with rapidity is governed by the JIMWLK equation. In this paper, we
reformulate this setup in terms of effective quantum field theory on valence Hilbert space
governed by the reduced density matrix p for hard gluons, which is obtained after properly
integrating out the soft gluon “environment”. We show that the evolution of this density
matrix with rapidity in the dense and dilute limits has the form of Lindblad equation.
The quasi probability distribution (weight) functional W is directly related to the reduced
density matrix p through the generalization of the Wigner-Weyl quantum-classical corre-
spondence, which reformulates quantum dynamics on Hilbert space in terms of classical
dynamics on the phase space. In the present case the phase space is non Abelian and is
spanned by the components of transverse color charge density j. The same correspondence
maps the Lindblad equation for p into the JIMWLK evolution equation for W .
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1 Introduction

This paper examines the status of the JIMWLK evolution equation [1-8] in relation to the
effective density matrix of a high energy hadronic system. We are motivated to address this
question by the discussion in a recent paper [9] which suggested an extension of JIMWLK
framework to include a wider set of observables other than just color charge density j%(x)
in the hadronic wave function. The starting point of [9] is the interpretation of JIMWLK
evolution equation as the equation for diagonal matrix elements of the density matrix in the



color charge density basis. Although this interpretation is natural when the color charge
density is large, it is not quite clear how to formalize it for low density, since in this regime
the commutator of the color charge density operators is not negligible and a basis in which
all components of j%(x) are diagonal obviously does not exist. On the other hand, as shown
a while ago [10] the calculations of averages in this regime as well can be formulated in
terms of the functional integral over classical fields j*(z), which suggests that perhaps such
interpretation albeit possibly modified, can be put forward after all.

An interesting suggestion of [9] is that the rapidity evolution of the generalized CGC
density matrix is of the Lindblad type [11],[12]. This type of evolution is very general
in quantum mechanical systems where one follows only part of the degrees of freedom by
reducing the density matrix over the “environment” (the unobserved degrees of freedom
in the Hilbert space). If the “environment” degrees of freedom have only short range
correlation in time, the dynamics of the observed part of the system is Markovian and is
therefore governed by a differential equation. The Lindblad form of such evolution is the
most general one that preserves the properties of the density matrix stemming from its
probabilistic nature (normalization and positivity of all eigenvalues). Although Lindblad
equation naturally arises in time evolution of quantum systems, JIMWLK evolution is of a
somewhat different nature. It describes the change of the system with rapidity (or energy)
but not in time. It is thus not obvious whether one should expect Lindblad form to be
generic in this context and if yes, under what conditions.

In this paper we try to address these questions. We arrive at two basic results. First,
we show that JIMWLK evolution can indeed be understood as evolution of a density
matrix. Within the JIMWLK framework however, the density matrix is not generic, but is
rather assumed to depend only on the operators j%(z) which satisfy the standard SU(N)
commutation relations. The fact that p depends only on the generators of the SU(N) group
means that it has a quasi diagonal form - i.e. it does not connect states belonging to different
representations of SU(N). It is in this sense that the reduced density matrix is (almost)
diagonal even if the commutators of j* cannot be neglected. The consequence of this strong
assumption on the nature of the density matrix is that the states in the Hilbert space of
the reduced system are completely specified by their SU(N) transformation properties at
every transverse position x, and therefore in the reduced space one loses track of the gluon
longitudinal momentum as well as polarization.

Second, we show that on this Hilbert space the JIMWLK evolution is indeed equivalent
to Lindblad type equation for this restricted set of density matrices. The same applies to
the so called KLWMIJ evolution which describes the dilute regime. In analogy with time
evolution of quantum mechanical systems, the Lindblad equation arises in the situation
when the correlations in the “unobserved” part of the system are short range in rapidity.
However we also argue that in general (i.e. away from the dense - JIMWLK and dilute
- KLWMIJ limits) the high energy evolution is unlikely to be of Lindblad type. This
follows from certain general properties of our derivation of the evolution of the density
matrix based on the calculation of the CGC wave function presented in [13] . Although
the calculations of [13] are strictly valid only in the aforementioned limits, the general
features of the derivation are expected to be more universal. The reason that the Lindblad



form is not expected to arise, is that in the high energy evolution framework, the rapidity
does not just play the role of the evolution parameter, but also that of the label on the
quantum states of the gluons which are integrated out. In this situation in general one
does not expect the Lindblad form for the differential equation. Thus to ensure Lindblad
form nontrivial conditions on dependence of the matrix elements on gluon rapidities have
to be satisfied. We discuss this point in detail in Section IV.

Another result of this paper is the precise mathematical relation between the effective
density matrix, and the “probability density function” Wj] that usually appears in the
literature as the subject of JIMWLK evolution. We confirm that the quantum mechanical
averaging with the density matrix p is mapped into the calculation of observables in terms
of functional integral over classical fields j%(x) with the weight functional Wj], as indeed
always done in the CGC literature. This functional integral must be regarded as an integral
over the phase space variables of the classical system, and not its configuration space vari-
ables. This quantum-classical correspondence between the quantum density matrix and the
classical functional of phase space variables W{j| is deeply related to the correspondence
between the density matrix and Wigner function in ordinary quantum mechanics. In the
context of high energy evolution we require a generalization of the original Wigner-Weyl
correspondence[14] since the phase space of the theory is spanned not by operators ¢ and
p which constitute the Heisenberg algebra, but rather by operators j* with the SU(N)
algebra. Nevertheless the basic correspondence involves mappings between quantum oper-
ators and Hilbert space on one side and classical quantities and phase space on the other
side in the sense of Weyl’s correspondence rule. The weight functional W{j] is consequently
identified as the Wigner functional [14] and can indeed be considered as a quasi-probability
distribution on the phase space.

The outline of this paper is the following. In Sec. II, we give a brief review of the
Lindblad equation for density matrix of an open quantum system and a recap of the
Hamiltonian formalism of CGC effective theory. In Sec. III we explain how to define the
reduced CGC density matrix, and show that its rapidity evolution has the Kraus form,
which is a general evolution that preserves probabilistic interpretation of a density matrix,
but is not necessarily differential. In Sec. IV we derive the differential evolution of the
density matrix using the analog of Markovian porperty, i.e. the fact that the correlation of
the “environment” is short range in rapidity. We show that in the dilute (KLWMIJ) and
dense (JIMWLK) limits the differential evolution equation is indeed of the Lindblad type.
We also discuss the properties of the derivation which suggest that the standard Lindblad
form is bound to be modified away from these limits. To be clear, in this paper we do
not go beyond the original JIMWLK setup in the sense that we consider density matrices
that only depend on color charge density operators, and thus presently our derivation
does not extend to ideas put forward in [9]. In Sec. V, we derive the explicit relation
between the standard JIMWLK approach and the density matrix approach described in
this paper. We show that the two are related by a variant of the Wigner-Weyl quantum-
classical correspondence and spell out explicitly the correspondence rules which transform
one setup into the other. The JIMWLK and KLWMIJ equations are then reproduced by
mapping the Lindblad equation for the density matrix in the appropriate (dense and dilute)



limits into the classical phase space. Finally Sec. VI contains a short discussion.

2 Review of Basics

2.1 Lindblad equation for open quantum systems

In this section we present a short review of Lindblad equation for open systems.

Lindblad equation is the most general Markovian and non-unitary evolution equation
for density matrix of an open quantum system. This equation preserves the properties
of density matrix: hermiticity, unit trace and positivity. Here we follow the heuristic
discussions by Preskill [15]. More physical derivations and applications can be found in the
books [16, 17].

Consider a bipartite system involving two subsystems: the “observed system” and
the “environment” with the Hamiltonians H, and H.,, respectively. The two subsystems
interact via the Hamiltonian H,.. The total density matrix of the complete system evolves
according to the quantum Liouville equation

dp o
== —i[H, p] (2.1)

with H = H. s+ er +H se- Formally, the solution can be expressed as

p(t) = U0 (1) (2.2)

with U(t) = et To obtain the density matrix of the observed subsystem after a finite
time, one traces over the Hilbert space of the environment. Let us assume that the initial
total density matrix is a direct product of the density matrices of the observed system and
the environment p(0) = p5(0) ® pe(0) = ps(0) ® [0.)(0c|. For simplicity let us take the
environment to be initially in a pure state denoted by |0.), which can be thought of as the
ground state without loss of generality. The density matrix of the observed system is then
expressed as

ps(t) = Trep(t) = Y (n|U(£)]06) ps(0){0e|UT (1)) = Y~ Mi(£)ps (0) M (2). (2.3)

n

Here {|n)} represents a complete basis in the Hilbert space of the environment. The objects
M, (t) = (n|U(t)|0.), sometimes called superoperators, are operators on the Hilbert space
of the observed system and govern the evolution of its density matrix. As far as the
dynamics of the environment is considered, Mn(t) represents the transition amplitude for
the environment, which is initially in the state |0.), to be in the state |n) after a finite time
t. They satisfy the property >, MZ(t)Mn(t) = 1 following from the unitarity of U(t).

The time evolution of density matrix in Eq.(2.3) has been expressed in an operator
summation form which is also called a Kraus representation. It is easy to check that the
Kraus representation preserves the hermiticity, unit trace and positivity of the density
matrix. It is believed that any reasonable time evolution of density matrices should have
a Kraus representation.



The general Kraus representation Eq.(2.3) does not have the form of a differential
equation for the evolution of the density matrix. It is only under the Markovian approxi-
mation that an equivalent expression in terms of a differential equation becomes possible.
The Markovian approximation holds if the typical correlation time between the environ-
ment degrees of freedom ¢, is shorter than the typical inverse frequency of the observed
system Atg, which is of the order of the relevant “discretization” time step for approxi-
mate differential time evolution. If this is the case the state of environment is only affected
by the state of the observed system at the particular time of observation (measured with
accuracy Atg), and thus the back reaction - the effect of the environment on the observed
system is local in time. We note that this is the typical Born-Oppenheimer situation, when
the environment is associated with fast degrees of freedom, while the observed system is
relatively slow. In the opposite regime it is clear that local (differential) time evolution is
impossible, since the backreaction of the environment on the system will depend on the
state of the system at some past time.

In Markovian regime one then proceeds as follows. For an infinitesimal period of
time, only terms linear in dt should be kept on the right hand side of Eq. (2.3). The
superoperators for n > 0, have the structure

M, (dt) = VdtL,, n>0 (2.4)

The argument here is that M (£)M,(t) is the probability for the environment to ”jump” to
the state n during the time ¢. For small enough ¢ (but such that t > t.,,,) this probability
should grow linearly with ¢. The operators L,, are called Lindblad operators or jump oper-
ators as they involve transitions of the environment to different states after an infinitesimal
time.

The remaining superoperator has the form

My(dt) = 1+ (—iH,s + K)dt (2.5)

with Hs; and K being Hermitian. This is the transition amplitude for the environment
to be in its original state after an infinitesimal time and should be linear in time for
small enough times. The operator K is related to the wave function renormalization effect
and H, governs the unitary evolution of the system without causing any changes to the
environment.

The Kraus normalization condition ) M;ﬂ(dt)Mn(dt) = 1 relates the wavefunction
renormalization operator K to the jump operators by

. 1 .
K=-3 > LiLn. (2.6)

Taking the limit dt — 0, the Kraus representation then becomes an differential equation
dp PV P (P
CZS = —ilHq, ps] + <an8LIL - §LILanS - 2p5LLLn> : (2.7)
n>0

This is the Lindblad equation, or sometimes known as Gorini-Kossakowski-Lindblad-Sudarshan
master equation [11, 12].



2.2 The soft gluon vacuum and the CGC

We now review the derivation of the high energy evolution[18] . There exist two equivalent
approaches to the derivation of the CGC effective theory. One is based on the Lagrangian
formalism [2—4, 6, 7, 19, 20] and the other on the Hamiltonian formalism [21, 22]. We
briefly review the Hamiltonian formalism as it will be the starting point for deriving the
Lindblad equation for the CGC density matrix.

The derivation of the JIMWLK evolution equation starts with establishing the ground
state wave function of soft gluon modes in the background of more energetic gluons which
are described by a color charge density field.

In the light cone gauge AT = 0, the Hamiltonian of the pure gluonic sector of QCD is

1

1
H= /dl'_dXJ_ <2H;($_,XJ_)H;($_,XL) + 4Fi‘}(x_,xL)Fi‘}(x_,xL)> (2.8)

with the chromoelectric and chromomagnetic parts being
1
o0_

Fi(z™,x1) = 8iA?($77XJ_) — 0;Ai(x7,x1) — gfabCAg(mf,xl)A?(xf,xJ_)

I (z7,x)) = - A (a7, x.) = (beB,A?(x_,xL)) ,

(2.9)

The covariant derivative is defined as D;’“b = 9;6% — ¢ f“d’Af and 0_ = 0/0x~ is the
longitudinal spatial derivative. The 1/0_ operator in the expression of the chromoelectric
field has to be regularized as it contains a singularity at vanishing longitudinal momentum,
kT = 0. This singularity is ultimately related to the zero mode in the A%(z~,x ) fields
and is regulated by imposing a residual gauge fixing condition. We choose the residual
gauge fixing

0;Af(z~ — —00) =0 (2.10)

One separates the gluonic degrees of freedom imposing a longitudinal momentum sep-
aration scale A*. In the high energy limit, the dominant interaction between soft gluons
(k™ < AT) and hard gluons (k* > A™) has the form of eikonal coupling A; J with J
representing the color charge density of the hard gluons and A, representing soft gluons.
This interaction term emerges from the chromoelectric part of the Hamiltonian and in-
volves the specific expressions J = —gf®¢A%0_A¢ and A, = 8%11(;. Furthermore, as far
as soft gluons are concerned, the hard gluon dynamics can be viewed as frozen in time so
that the color current J;F = J7(z7,x, ) is time independent at the lowest order. All in all,
the Hamiltonian for the soft gluonic modes becomes

B 1 1 1 ., _ s —
HCGCZ/de dx <2(Ha (z ,XL)+5JJ)2+ZFM(I x 1) F (2 ,xQ) (2.11)

Canonical quantization is implemented by promoting the normal modes of the full A¢
fields to operators and imposing the equal (light cone) time commutation relation

(A (2™, x1), Ay~ y 1)) = —%e(x_ —y7)080(x, —y.) (2.12)



with the sign function defined as e(z) = 3(0(z) — ©(—z)). In terms of the canonical

creation and annihilation operators, the normal modes A{ have the expansion

R too Jkt 1 T N
A% (™ — a0 (kT —iktx ~Ta kT ikt 21
k) = [ G (A ) a0 e ) )
with

gt x1),al (0" y 1) = 2m)aae (0t - p)a(x1 — v ). (2.14)

The color charges in the leading order are taken to have the extreme Lorentz contracted
form JF(z7,x,) = §(x7)j%x.) with the transverse color charge density
A dk+ ATb
—a

o) =™ [ Sl xna e x) (215)
>

The components of color charge satisfy the commutation relations of the SU(N) algebra

7x0), 0| = g Tk — 1) (2.16)

The Hamiltonian system Eqgs. (2.11), (2.10), together with the commutation relations Egs.
(2.12), (2.16) constitute the starting point for the derivation of the CGC effective theory.

The first goal is to find the ground state wave function of the soft glue. This is in
general a very complicated problem, but is simplifies in two parametric regimes. One
interesting regime is when the color charge density is small j* ~ g (dilute limit). Here
one can treat the interaction with color charges perturbatively. The other regime is the
dense limit where the color charge is parametrically large j* ~ %. Here the simplification
is that the commutator of the color charges is (almost) negligible and they can be treated
as (almost) classical fields.

In the dilute limit, the ground state wave function can be found by a direct perturbative

calculation. The resulting vacuum wave function can be written as
[0) = C0) (2.17)

with the coherent operator

C = Exp {i/dxlbg(xl) /A+ ﬂ (d;{a(k+7XJ_) + d?(k"',xl))} (2.18)

Ate—Ay W’k—’—’l/Q

where F is the energy of the process.
Here b (x| ) satisfy the equations

0ibi (x1) = j*(x1),

- (2.19)
O (x1) — 9;b(x1) — gf by (xL)b5(x1) = 0.

or, in the dilute regime

1) = [ Pygre) ) (220)



In the dense limit, similar analysis applies except now b¢(x ) ~ 1/g and additional order
O(1) quantum fluctuations on top of the b fields need to be considered. One can still
use perturbative expansion in g, but resumming terms of order gb. In the leading order
the Hamiltonian is diagonalized by a nontrivial Bogoliubov transformation. The detailed
analysis appears in [22]. The resulting ground state wavefunction is

o) = CBI0). (2.21)
The additional Bogoliubov operator B can be formally expressed as
B = Exp {agAaﬁag + aaAgﬁaw} . (2.22)

Here «, 8 represent all the possible indices (color, spatial coordinates, polarization, and
longitudinal momentum which varies between ATe~2Y and A1). The explicit expression of
the symmetric matrix Mg is not available, however, the action of the Bogoliubov operator
on the fundamental degrees of freedom flg and ;% have been derived.

The nontrivial structure of the soft gluon ground state leads to appearance of induced
color charge density due to the soft gluons modes. This additional color charge density
serves as an additional source for even softer gluons which arise in the evolution to even
higher rapidities. This is the basic physics of the high energy evolution.

3 The Reduced CGC Density Matrix and Its Evolution

Having found the vacuum of the soft gluons, we can now address the evolution at high
energy. We take here a different perspective on this derivation than given in the literature,
and discuss the evolution from the point of view of quantum density matrix.

Given that we have separated our degrees of freedom into soft and hard gluons, we
can view our system naturally as bipartite. At some initial rapidity, the soft gluons are in
the perturbative vacuum state, and thus the total density matrix is separable

p= o ® [0)0] (3.1)

where the density matrix p, is an operator on the hard gluon Hilbert space.

The assumption inherent in the derivation of the JIMWLK equation is that the only
relevant degrees of freedom on this Hilbert space are components of the color charge density
3’“(){ 1). This is a crucial assumption. If the valence Hilbert space could be factorized into
a direct product of the space spanned by j’“(x 1) and its complement, reducing over the
complement would rigorously define p,[j]. However the full Hilbert space of the valence
modes does not have such a direct product structure. It is thus not clear whether a well
defined mathematical procedure of “integrating out” exists which may reduce the density
matrix so that in general it depends only on j’a(x 1)- Nevertheless one can simply assume
that at initial rapidity the density matrix indeed has such a form. It is then true (as we
will see below) that this form persists throughout the evolution to higher rapidities. We
will thus abide by this assumption and will treat p, as an operator that depends only on

~

J4(x1)-



After boosting the system by a finite rapidity Ay, the total density matrix changes
due to the emission of soft gluons into the newly opened rapidity interval.

p(Ay) = ©[0)p, (0[O . (3.2)
The gluon emission operator as discussed above can be written as

Q= Q[ et a% Ay] = CB (3.3)

Pt B Rl AN

with € and B defined in eqs. (2.18) and (2.22), respectively. This form applies both for the
dilute and dense regime of the evolution. Note that Q depends on the soft gluon creation
and annihilation operators as well as the color charge density operator. While the &?T, ai
act on the soft vacuum state |0), the 7* acts on the valence (hard) density matrix p,.
Dependence on Ay of Q is crucial in obtaining the evolution equation. This point will be
elaborated in the following.

Our next goal is to derive the reduced density matrix by tracing over the “environment”
degrees of freedom. The purpose of this reduction of the Hilbert space is to integrate out all
the additional degrees of freedom associated with soft gluons that emerged after boosting
the wave function, except the additional color charge density that they contribute. The
reason for this exception is, that in the next step in the evolution the even softer gluons
will couple to the total color charge density, including that due to gluons in the rapidity
interval between y and y + Ay. Our current soft gluons give a nontrivial contribution to
this charge density, and we have to keep this extra contribution explicitly, rather than
integrate it out.

3.1 Defining the charge shift operator

Put in different words, we are interested in a general set of observables that depend on
rapidity integrated color charge density. Before evolution those are averages of the form

(0@G") = Tr[O0(G")p] (3.4)

while after a step Ay of the evolution

(O + Joor)) = TrO( + Jior)A(AY)] (3.5)

Here 5&)& (x) has the explicit expression eq.(2.15) with the longitudinal momentum inte-
gration restricted in the rapidity range Ay.

It is thus clear that we should not simply reduce the density matrix over the Hilbert
space of soft gluons, but “partially” trace over the soft gluons integrating out all degrees of
freedom except the color charge density. To facilitate this partial tracing over soft gluons,
we introduce the operator R, which is defined by its action on %,

RUjo(x1)R = j%(x1) + jog (x1) - (3.6)

so that
RTO(j*(x1)) R = O(*(x1) + Joor(x1)) - (3.7)



for any operator O. It may not be obvious that R can be properly defined as an operator on
the Hilbert space, given that different components of j“(:c) are noncommuting operators.
As we show now, this nevertheless is the case.

Let us introduce the operator ®%(x ) via

R =Exp{—i | d®x1jon(x1)9"(x1)} (3.8)

We will look for ®* (we omit the transverse coordinate dependence for simplicity) as a
set of operators acting on the same Hilbert space as 7% satisfying the following commutation

relations
(@, &' =0, 59)
[7,5%] = M®(®) '
with M chosen to satisfy the requirement
exp { i &} ¢ exp {~ija®} = ¢+ joor (3.10)

In calculating the action of R we assume that the operators ;% satisfy S U(N) algebra, and
so do the operators j’goft, while the two set of operators commute with each other.
We use the Baker-Hausdorff formula

1 1 1
eXYe X = Y+H[X, Y]+5 X X, Y]]+§[X, X POY o — [ X [ [ YTl
‘ ' ' (3.11)
With the commutation relations eq.(3.9) we have (for adjoint representation —i f2%%¢ = T2)

(1750 D%, 5] = 1750 M (®) (3.12)
1 2b &b :ha Fa e 1 %a - b b T
Sl ", 1750 07, 57]) = 5 iften, (197" M(®)) (3.13)
L.~ e~ A = A 2q % 1., . = 2
?[Uscoftq)ca [ngoftq)b> [”goftq)a>]e]]] = g”goft ((ngb(I)b)QM((I))>ae (3‘14)
Let us take the ansatz
o0
M®(®) = —i Y n X"y, with x = igT?®". (3.15)
n=0

Clearly, cg = 1 follows from the requirement eq. (3.10). This requirement further imposes
the constraint

i+ ;::0 G i ! {XkM(X)]ab —0 (3.16)

which after substituting the ansatz for M (x) becomes

1= (ki"l)!xsgm (3.17)

k=0m=0

~10 -



which is equivalent to the following recursive relations

N—-1
JE— Cm M JE—
CN — — Z m, with Cco = 1. (318)
m=0
These relations are satisfied by
ab
M®(x) = —i [g coth% - % . (3.19)

One can check explicitly that Taylor expansion of eq. (3.19) in y reproduces all the coeffi-
cients calculated using the recursive relations in eq. (3.18).
Once the function M in Eq.(3.19) has been determined, the algebra of 7% and @ is
completely defined.
We note that in order for this algebra to be consistent, the commutators have to satisfy
Jacoby identity
(197, 5°1,5 + [[7°, 5], @] + [[7°, 80, %] = 0, (3.20)

which is equivalent to an additional constraint on M
[Mab’56] . [Mac’}b] — igbedMad. (321)

In Appendix A we verify that the Jacoby identity is in fact satisfied at least to fourth
order in expansion of eq.(3.19) in powers of d. Although we do not have a complete all
order proof, one could in principle continue the order-by-order proof. We believe that the
algebra eqs.(3.9),(3.19) is in fact consistent and we will continue our analysis under this
assumption.

We have thus found the algebra of operators ®* and j® that implements eq.(3.7).
Note that expansion of M in powers of ® can be recast as formal expansion of $ in
powers of 5]%. Thus to leading order we have o = —i(ﬁ% 4+ .... In the dense regime
where the commutators of charge densities can be neglected our operator R therefore
reduces precisely to the shift operator exp{— f:u J& e (X 1) s7a— 57 } used extensively in the
existing literature. The previous discussion puts its use also 1n the dilute regime on firm

mathematical basis, provided the commutation relations of $* are modified according to
eq.(3.19).

3.2 The evolution

Having defined the charge density shift operator R we can write Eq.(3.5) in the form
T[O()* + Jéor)A(Ay)] = Te[RTO(j*) Rp(Ay)] = Tr[O(j*) Rp(Ay) RT] (3.22)

The operator R in this expression can be understood as acting on the density matrix p,
rather than on the observable O. Using this form we can define the reduced density matrix
which when traced with the operator O(j) gives the same result as p(Ay) traced with
O(j + j’soft). We thus define the evolved CGC reduced density matrix by tracing over soft
gluons

po(By) = Tr[Rp(Ay) R = Y (n| ROI0)pu (02" R n) = Z Mypo, (3.23)

n

- 11 -



with M, = (n|RQ|0). The complete basis {|n)} represents the Fock states in the soft gluon
Hilbert space. This procedure technically is very similar to the standard reduction of the
Hilbert space discussed in the previous section with p,(Ay) playing the role of the reduced
density matrix in a bipartite system.

When formulated in this way, the rapidity evolution of the CGC density matrix is
formally very similar to the time evolution of the reduced density matrix of a bipartite
system with the operator RO playing the role of the time evolution operator U.

Eq.(3.23) gives the change of density matrix in the form of a Kraus representation. As
a consequence, p,(Ay) has all the properties of a density matrix as long as p, is a density
matrix initially. Note that, > M);Mn =1 as both O and R are unitary operators.

4 The Differential Form of the Evolution - the Lindblad Equation

To extract a differential equation from the Kraus representation, we need to evaluate
the superoperators M,, and analyze their Ay dependence. The calculations of M, can be
simplified by working in the Leading Logarithmic Approximation (LLA) so that only terms
that are proportional to asAy on the right hand side of eq.(3.23) are kept.

4.1 The dilute limit

We start by considering the dilute limit, i.e. assume that parametrically b ~ O(g). In
this regime the gluon emission operator is just the coherent operator and A = 0. This is
the so called KLWMIJ limit introduced in [23] .

0 = Exp { [tz [ 52V (aletrx) + amxm)} (4.1)

Note that we have changed the integration variable from longitudinal momentum &% to
rapidity 1 and an explicit numerical factor v/2 follows [13]. In this limit the dependence
on Ay becomes very transparent

N A A A
M, = (n|R|0) = Exp {—Q;:baba} (n|R Exp {iﬂba / SZ&L(n)} 10). (4.2)

Note that the operator R has a nontrivial action on the n-gluon state. It does not change
the number of soft gluons in a Fock state but rotates their color indices according to its
definition in eq.(3.8)

Raj(k*,y 1 )R = [R(y )l (K", y1) @3
Ra' (k™ y )R = [R(y)ladf (K", y1)

with )
RlyL) =90 (4.4)

In the LLA we need to collect terms which contribute at order O(cas) to the evolution.
For the virtual term we have

My=1- %baba + O(g") (4.5)
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and

et Ay A
]\40/71)]\4(;r = Pv — g (babapv + pvbaba) + 0(94) . (46)

It is obvious that, for Fock states with even numbers of gluons, Mo, is at least of order
O(g?) and thus will not contribute to the evolution at LLA. The same holds for Moy, 1
associated with Fock states of odd numbers of gluons. The only exception is M, related to
the single gluon Fock state. For a one-gluon Fock state |14, w, 1) = ajll(wl, n1)|0) with
transverse position wi, rapidity n; and color index a; we have,

Ml{alvwlﬂh} = iV/2ba(W1)Raa, (W1) (4.7)

Summing over all possible one-gluon Fock states,

dm

- g _ )
o /dWl Ml{m,whm}val{ahwl,m} = —bapvba (4.8)

T
with b, = RLBbﬁ and again we used the compact notation with index «, 8 representing
colors, transverse coordinates and polarizations. The evolution equation for the density
matrix follows

T oA AT AT L[ Ti(oN A
(babapv + pobaba — 2bapuba) = [05(), [bg, (), po]]- (4.9)

_%x

dp, . .

1
dy Cor
In this equation we have written the virtual terms in terms of b rather than b, since the
unitary operator R drops out of this expression anyway. This is the Lindblad equation for
the CGC density matrix in the dilute limit.

Eq.(4.9) is written in a somewhat convoluted form in terms of the operators b, which
contain the operator R. It is perhaps worthwhile to make explicit the operational meaning
of various factors of R in the right hand side of eq.(4.9). As already mentioned, the virtual
terms do not actually involve R since for unitary R

baba = baba (4.10)

As for the real term, we have (suppressing the transverse coordinate)

~

badoba = by RaapulJIR] ks = by |2l = 9T°| b5 (4.11)
A B

where the last term is defined by Taylor expanding of p,, shifting the argument 7% in every
term by the matrix 7% and finally taking the v matrix element of the the whole expression
in all products of T’s that arise.

In the above explicit calculation, the LLA automatically picks up terms that are linear
in Ay thus making the extraction of a differential equation from the Kraus representa-
tion straightforward. Physically indeed we can understand this from the point of view of
Markovian nature of the process. The variable analogous to time in the present discussion
is rapidity. Thus the requirement of short range correlations in time of the “environment”
in the CGC case translates into the requirement of short range in rapidity correlations
for the soft gluons, which are integrated over. This is indeed the case. In the LLA the
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relevant “time” scale for the change of the density matrix is O(1/as), as obvious from the
differential equation eq.(4.9). The soft gluons in our approximation do not interact with
each other, and thus their correlation function is free. The free propagator is proportional
to 1/k™ ~ e~¥, and thus the typical correlation length in rapidity space is O(1). The evo-
lution is therefore clearly in the Markovian regime which allows, at least naively speaking
for the existence of differential evolution in the Lindblad form. We will come back to the
discussion of Lindblad form later.

Equation eq.(4.9) may look slightly unfamiliar as it does not quite have the form of the
KLWMIJ equation discussed in [23] . This is because it is written for density matrix and
not the weight functional W[j]. To get to the latter form one needs to perform an extra
step, i.e. Weyl transformation. This will be the subject of the next section. But before we
do that, we consider the evolution of the density matrix in the dense regime.

4.2 The dense limit.

As we have seen, in the limit where the hadronic wave function contains a small number
of partons (the dilute limit), the Lindblad form of the evolution equation follows directly
using the straightforward perturbation theory at low x. We now turn our attention to the
dense limit, where we assume that the color charge density in the wave function is large,
parametrically of order 1/g. The wave function in this limit has been calculated several
years ago in [13]. In this section we use the results of that paper and reinterpret them from
our current point of view.

N

To prepare for the calculation, note that the soft gluon emission operator 2, when
acting on the vacuum state |0) can be written as

. ) dn .. . 1 [dnd€ R .
010) = Bxp { V2, [ §11akn) + antlf B0 {5 [ 22%Amn,5>a;<n>al<s>}/\(f4m1>21)o>

Here we write out the dependence on rapidity explicitly. Other indices (color, polarization,
transverse position) are collectively represented by the Greek letters «, 3,v. The matrix
Af}’(x 1,Y1,71,n2) determines the amount of ”squeezing” of the soft gluon vacuum. As
we mentioned above, it has not been calculated explicitly in [13], however its properties
relevant to the JIMWLK limit are known (see later). The AV'(A) is a normalization constant
that only depends on A. Note that both b, and Ag, are operators in the Hilbert space
of hard gluons as they depend on the color charge density j, and so in principle they do
not commute. In eq.(4.12) all the factors of A should be understood as placed to the right
of by. In the JIMWLK limit however, where parametrically, b = O(1/g) while A = O(1),
as was shown in [13] the order of the factors does not matter. In fact in showing that
the operator Eq.(4.12) diagonalizes the QCD Hamiltonian to leading order, ref.[13, 22]
explicitly used this argument and assumed commutativity of the various factors of b and A.
We will not deviate from this assumption here and will treat these factors as commuting.

We further separate the annihilation operator a,(n) from the coherent state operator
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and move it to the far right acting on the vacuum state:

0)0) =Exp {-?ﬁbau - Ao)aﬂbg} Exp {i\@ba(l — Ao)ap / gzag(n)}

(4.13)
1 [dyd
< Bxp{ ;5 [ S pral(Aas(n 9l } W0
where we have defined
Ay d¢
Mas= [ Grhas(Con (414)

Since A,p(¢,n) depends only on the rapidity difference ¢ —n [13], Ag op is rapidity inde-
pendent. It does however have a nontrivial dependence on the width of the evolution step
Ay. The nature of this dependence is very important. As we discussed above, we expect
to have a bona fide differential evolution equation only if the correlations of the soft gluons
in rapidity are short range. The function A(n,&) is in fact the inverse of the correlator
of the soft gluon modes. It should therefore decrease exponentially for rapidity difference
greater than ~ 1. For such a function A the dependence of Ag on Ay should be smooth
with Ag approximately constant for 1 < Ay < 1/as. We will assume here that this is
indeed the case and will treat Ay as a constant independent of Ay. The results of [13]
suggest that this is valid in the JIMWLK limit, i.e. when the dense hadron scatters on
a dilute target, which is the regime that concerns us in this paper. We note that going
beyond the JIMWLK limit posed some problems in [13], precisely for the reason that some
of the soft modes in general seemed to possess long range correlations in rapidity. Our
current understanding is that such long range correlations indeed are incompatible with
the differential form of the evolution. It is thus possible that in order to go beyond the
JIMWLK limit one would have to rethink the way in which the bipartitioning into the
“observable” system and “environment” is done. This is however beyond the scope of the
present paper.

In eq. (4.13), the first exponential represents wavefunction renormalization effects
that have an overall Ay factor. The second exponential contains the single gluon emission
vertex ibo (1 — Ag)ap which is “renormalized” relative to the dilute case by the presence of
the Bogoliubov operator B, while the third exponential contains the double gluon emission
vertex Agg(&,7).

Two gluons emitted from the same double gluon emission vertex are in general cor-
related in rapidity, while two gluons emitted from two single gluon emission vertexes are
uncorrelated.

We are now ready to calculate the superoperators. The fundamental difference with
the dilute case, is that now not only one gluon state, but states with arbitrary number of
soft gluons yield nontrivial jump operators that contribute to the evolution of the density
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matrix. For an n soft gluon state we have
. A Ay
M,, =(n|RQ|0) = Exp —gbabg(l —Ao)ap p N(A)

i { Va1~ ooy [ 3k f w0 {5 [ ;lzgfr/\aﬁ(mf)&fx(n)d;(i()} ro)>
4.15

Depending on the Fock state [n) being considered, we separately discuss the situations when
the Fock state contains zero gluons, odd number of gluons and even number of gluons.

4.2.1 Wavefunction renormalization operator

The superoperator M, represents the wavefunction renormalization effects
- . Ay
My = (0| R2|0) = Exp —gbab/g(l —No)ap p N(A). (4.16)
Up to terms linear in Ay,
o Ay 2
My~1- o [babﬁ(l - AO)aﬁ] + O(Ay ) (4'17)

Note that the wavefunction renormalization operator My is independent of R and we
have ignored the normalization N (A) factor, since it is irrelevant in the JIMWLK limit
[13]. The superoperator My contributes to the change of density matrix through the term

S . Ay A
Mopo Mg = p, — o |baba(1 = Ao)as pu + pu (1~ AD)agbabs| + O(AY?). (4.18)

4.2.2 Jump operators with odd number of gluons

For Fock states with odd numbers of gluons, one needs odd number of single-gluon-emission
vertices in calculating the jump operators. However, every single gluon emission brings an
extra power of Ay, since gluons produced from different single-gluon-emission vertices are
uncorrelated in rapidity. The integral over rapidity of every such gluons in the amplitude
and conjugate amplitude brings therefore an extra power of Ay. Thus one needs to keep
only one single-gluon-emission vertex in M2i+1 in order to calculate the relevant jump
operators that contribute to the differential form of the evolution equation.
The explicit expression for a jump operator follows from eq. (4.15)

i, = (ol (12a(1 = Mohas [ 52000 ) Bxo { =5 [ 525 Aapta akniabi) 0
= (iRl - s0ls) (o] [ Goab(OBxe {5 [ 525 Rapla Oaknabie) }10).
(4.19)
Here
Rap(1.€) = R, Ao (0. € Rs. (4.20)
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To arrive at this expression we have inserted the factor R R = 1 next to the soft gluon
vacuum state |0), used the fact that R|0) = |0) and evaluated the action of R on the soft
gluon creation and annihilation operators using Eq.(4.3).

Importantly, the operator ordering in Eq.(4.19) is such that all the operators R are
understood to be placed to the left of all the factors of the b, and A,g. This follows from
the fact that the operator R in the original expression is acting directly on the n-gluon
state, and thus all the factors of ® indeed are ordered to the left of all j-dependent factors
in the original expression. Thus for example in the definition Eq.(4.20) the action of Rss
on A is understood only as a color matrix rotation. This comment also applies to the rest
of the formulae in this section.

In the following, we explicitly calculate a few expressions of the jump operators and
their action on the density matrix. This will make the dependence on Ay more transparent.

For a one-gluon Fock state [1q, w, 1) = ak, (w1,11)|0) with transverse position wy,
rapidity n; and color index «q, the jump operator is

Ml{m,wmh} = /d2Z1i\f26a(zl)[1 - AO]CYB(Zth)RBal (Wl) (4‘21)

Note that the jump operator associated with one-gluon Fock state is independent of the
rapidity index ;. Integration over all the one-gluon Fock states produces an overall factor
Ay in the evolution of the density matrix. The one-gluon jump operators contribute to
this evolution through

R dm A
MlvaI = Z/dwl/27TMl{al,W1a771}p”M1T{a17W1,771}
ai

_A2y
_7T

=251~ RoJapul(1 ~ K})Bla

dz1dz3ba (21) [/ dw1(1 = Ao)ap(z1, w1)[RpuR (1 — Ab)ys(w1,22) | bs(22)

(4.22)

In the last line we have reverted to the convoluted notation where single index o represents
the transverse position, color and polarization. Barred quantities here and below indicate
the quantities that are rotated by the R matrix.

For a three-gluon Fock state 314, w,n,:i=1,2,3}) = ah, (wi, nl)aLQ (wa, 172)a:r13 (ws,13)]0),
the jump operator is

Msi, icing = — /d2zli\/§ba(zl) ([1 — Aolap(z1, Wi)Apa (W, 2, W3, 13)

(4.23)
+ [1 — Ao)ar(z1, wa)Agr (Wi, mi, ws, m3) + [1 — AO]aA(Z17W3)A,Bm<W17771§W27772)>

X Rpar (W1)Riaz (W2)Ras (W3)

It contains sum of all possible terms where two out of the three gluons are emitted from
the same two-gluon-emission vertex. Note that A is a symmetric matrix. The contribution
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of the three gluon jump operator to the evolution of the density matrix is

~ - dm dna dns - -
Mg[)ng = Z dWldWQdW;g ﬂﬂﬁM f

. D, M.
2m 2w 21 3{&1"‘"1""“:1’2’3}'0” 3wy mi5i=1,2,3}

(4.24)

This expression has in principle nine terms. However, for terms that involve the same

1,002,003

two gluons connected to a two gluon emission vertex both in Ms and M T, integration over
rapidity produces higher than linear powers in Ay. For example
%%%AM\(WL771§W27772)AI,5<W1,771§W27772) = (Ay)2/;ifr/\m(wl,wzC)AL;(WLWQ;C)-
(4.25)
This term therefore does not contribute to the differential form of the evolution.
On the other hand, for the two-gluon-emission vertexes connected to different pairs of
gluons, only one explicit Ay factor arises

dny dna d
ﬂﬂﬂl\m(wl,771;W27772)1\;5(‘”1,771;W37773) = Ay Ao er(wi, Wo)AS s(w1, ws).

2m 2w 27
(4.26)
These terms do contribute.
The contribution of the three gluon jump operators is thus
s A L _ )
Msp, 1ty ==2 > [ dwidwadws[b(1 — Ao)la, (W1) Ao azas (W, W3)hy
T a1,02,a3
% 8 10 (W1 W) [(1 = AD)Blay (W) (4.27)
_Ay

=—r(1 = Ao )N plo £ [(1 = A p)br]e

In the last line we have used superscripts L and R to indicate the position of various factors
relative to the density matrix p,, thus j_X07 1, indicates that this factor Ag is placed to the left
of p, etc. The ordering is important as the various operators do not commute with g,. The
reason to write the expression in this particular way is that we can use convenient matrix
notations, so that products in eq. (4.27) are matrix products over all indexes carried by
Ao and b, i.e. color, polarization and transverse coordinate.

This pattern clearly generalizes to any odd n. Linear in Ay contributions arise only
from terms where no two gluons are emitted from the same two gluon emission vertex
both in M, and M. Diagrammatically the terms that yield linear in Ay contributions are
depicted in Fig.1.

Generalizing the above analysis to jump operators with 2m + 1 numbers of gluons we

obtain
m
M2m+1{ai,wi,ni;i:1 ,,,,, 2m—+1} = Z [Z\/ib(]' - AO)]le (W’Ll) H A,sz,le (W’ikJ nlk7wll 9 ThZ)
P={i1,...,i2m41} k#l#1
2m+1
X H Rﬁiqaq (WQ)
q=1

(4.28)
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b(1—A)
A
A
A
AN AN
AN AA,
A
b(1—A)

Figure 1. The diagrams involving the odd number of gluons that contribute terms linear in Ay to
the evolution of p.

Here i1,149,...,%m+1 is a permutation of 1,2,...,2m+ 1. The sum over P goes over all the
possible permutations.

The action of MgmH on the density matrix after summing over all the possible Fock
states with 2m + 1 gluons and performing the rapidity integrations, becomes

. ) Ay - _ 4= e
Mool 1 = “2B0(1 = Ro.)J(A] hos) (1= K} p)balps.  (4:29)

Here, just like for M the contribution comes only from those terms that do not contain a
single pair of gluons emitted from the same two gluon emission vertex in Msy, 1 and Mgn 41
as illustrated on Fig.1.
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Now adding all the jump operators associated with odd numbers of gluons, their action
on the density matrix is

. . Ay - _ I e
> Mo pudyy iy = =2 1(1 = Ros))(1 = Af pRo.r) ' [(1 = &) )balpe.  (4:30)

m=0
4.2.3 Jump operators with even number of gluons

If the number of gluons in the Fock state is even, the gluons can either be emitted from
a two-gluon-emission vertex or from even number of single-gluon-emission vertexes. Since
gluons emitted from single-gluon-emission vertexes are uncorrelated in rapidity, the more
single gluon emission vertexes are involved, the higher power of Ay is generated. Recall
that we only need to keep terms linear in Ay. To extract these terms, we allow either no
gluons or two gluons to be emitted from the single-gluon-emission vertexes. The rest of
the contributions, as we wil see are subleading in powers of Ay.

The expression for the jump operators with even numbers of gluons by My, follows
from eq. (4.15)

. N ~ . 1 [ dndé . .
N, <3}, + 383, = 2al o {3 [ S 00, ol (a0

2
el (8,1~ dobys [ 524(0)) Bxo {5 [ 5755 Aaslin ik n)al) 100
(4.31)

We have denoted the parts with no single-gluon-emission vertex and with two single-gluon-
emission vertexes by M9, and M3, , respectively. The action on the density matrix becomes

N po M, = M3, po My} + M, po M)+ M oo Myl + M3, p0 M3, (4.32)
Just like in the case of odd number of gluons, not all the terms in eq.(4.32) contribute to
differential evolution. The last term in eq.(4.32) contains an overall factor of (Ay)? and
therefore can be discarded. The first term in eq.(4.32) does contain terms that are only
linear in Ay, however in the dense limit it is suppressed by a power of «a; relative to the
second and third terms, as in the dense limit b ~ 1/g, while A ~ 1. Similar terms arise
in the expansion of the normalization factor N (A), which we have neglected above. We
therefore discard these terms in the week coupling limit. Only the second and third terms
in eq. (4.32) are to be evaluated and contribute to the differential evolution of the density
matrix.

We first evaluate MJ . For example, for a two-gluon Fock state |2 {a1,

aly, (Wi, m)ab, (w2, 72)[0)

Dot woimonmamt =~ AA (WL 113 W2, 72) Ria (W1) Ras (W2) = —Aaas (W1, 713 W2, 772)

(4.33)

W1,71502,W2 ,n2}>

Generalization to Fock states with 2m gluons is straightforward

™ 1 -
el S E ||7 ) ) —— )
2Mia; wimgi=1,...,2m} _< 2) m! ‘ Aaizkflo‘izk (Wz%*l’m%*l’wl%’m%)
P:{il,...,zzm}kz:l

(4.34)
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The summation is over all the permutations. The prefactor (1/2)™ is needed to account
for the fact that A is a symmetric matrix. The factor 1/m/! takes care of the fact that two
permutations that differ only by ordering of some pairs of indices and nothing else, give
identical contributions which only need to be counted once.

To calculate ]\}[22n we start with the simple situation of two-gluon Fock state

R —— / 0218 23be(21)b, (2) ([1 — Aolap(z1, w1)[1 Ao]pé(z&m))
X Rﬁoél (Wl)R’&m (W2)

= —[b(1 = Ko)]ay (W1)[B(1 = Ao)]as (w2)
(4.35)

Generalization to Fock states with 2m gluons leads to

m—1
Woerwiniiom =gy (73) 2 0= Aol () = Aol (wi)

P={i1,....iam }

m
| | Aq Qigp 1 Qigy, Wl2k 19 Mgk 17W12k’7712k)

k=2
(4.36)
The action of the two gluon jump operator on the density matrix is
of _ dm d772 - _ _ - .
M3 po M, dwidwa - [b( — Ao)]ay (W1)[b(1 — Ao)]ay (W2) puAlyy oy (W1, 7113 W2, 112)
oqozg
=5 [bL(l — Ro,0)JAS glbr(1 = Ro.L)]pw
(4.37)
For the four gluon operator we similarly find
o Ay i o1
M 1)M o [br(1 — AO,L)]AO,RAO,LAQR[Z)LO —Ao.1)]pw - (4.38)

Summing up all the jump operators with even numbers of gluons, we get
0o
S N8 pu 8], = 52001~ Ron)](1 = B o) AL a1~ Bor)lpe. (439
and its complex conjugate
oo
S W18, 13, = S (1~ B Ao (1~ B phos) M Br(— A )l (440

4.2.4 All together now.

We now put together the above results. The wave function renormalization operator and
the jump operators with even numbers of gluons contribute to what one might call “the
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virtual part” of the evolution:

e
Nopu Mg + Y Monpu ],

n=1

e @w) 51 = Rop)(1 = & po.r) ™ (1= A )b | 4o (4.41)
(?f:) [bR(l —Aor)(1 - Ao rlor) (1 - ]\(TLR)ER] fo

Adding contributions from jump operators with odd numbers of gluons we get

00 00
-]\40f3v]w(;r + Z M2n/3vM;rn + Z M2n+1pAvM2Tn+1
n=1 n=0 (4.42)

o= (52) [60 )0 = K )0~ Bl )0~ o)~ )]

4.2.5 Operator ordering.

As we have mentioned earlier, the relative ordering of operators of b and Ag in Eq.(4.42) is
not important. It is however important to keep track of the ordering of the classical fields
by, and bp relative to the density matrix. More precisely, in the JIMWLK limit one can
change the order of various factors in Eg.(4.42) as long as each factor (by, — bg) is kept as
a unit and is commuted with any other operator in question..

The argument for that was given in [13] , and we reproduce it here for completeness.

Recall that the JIMWLK limit is obtained when parametrically b ~ O(1/g) and Ay ~
O(1), and additionally the evolution equation should be expanded to order a,. The latter
expansion gives the leading contribution when the dense hadron scatters on a dilute target.

Since both b and Ay are functions of j, the commutator between b and Ay can be
estimated as

5b . 5A0 b 5A0
bAg — Agb 7%, =igf*"— ~ . 4.4
The difference b, — br can also be estimated as
R . . ob . oy abe 00 0Py .
(br — br)pv = (bpy — pub) = 5 1% ] p igf* % ~ O(9)pw (4.44)

and barred quantities are color rotated by R ~ O(1).The difference between Ag , and Ag g
is estimated similarly

SA 8y acéA Cav )
Sl = i ~ O (4.45)

(AO,L - AO,R)ﬁv = AO,av - ﬁ’uAO 5]

Since the factor (b, —bg)? on the right hand side of eq. (4.42) is already of order of «, the
ordering between b and Ay and the difference between Ao 7, and Ag g contribute to higher
orders in ag and therefore can be ignored in the JIMWLK limit as long as one does not
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order the operators differently in the terms containing by, and br. Thus for example, one
can substitute in Eq.(4.42)

(1= Af R)(1 = RorAf o)1 (1 = Ron) =)(1 = A ) (1= Ao ph] ) '(1 = Ror)  (4.46)
or

(1= A} p) (1= Ko Al )71 (1 = Agr) =) = A )1 — Kot Al )M (1 = Aor)  (447)
as a whole, without breaking the factor (b, — br)? into separate pieces.

4.2.6 The Lindblad form, finally.

We now simplify eq.(4.42) using the results of [13]. First we note that the function of
A appearing in eq.(4.42) can be represented as a square if we indeed forget about the
difference between A; and Agr. Define formally

©=4/(1—-AAT)1 (4.48)
We can then write
(1-AH(1 -AANT1-A)=N'N (4.49)
with
N=06(1-A7A) (4.50)

In fact the matrix © appears naturally in the calculation of [13]. Since the soft gluon
vacuum is a squeezed state due to the presence of the Bogoliubov operator B, it is the Fock
space vacuum of the Bogoliubov transformed set of creation and annihilation operators,
related to the original gluon operators a' and a by

B = Opaiiy + Ppodf; Bl = 0r,al + &%, 4, (4.51)

paa

where © and ® are constrained by the unitarity condition
00" — o' =1 (4.52)
The following relation was also derived in [13]
A=0"'0 (4.53)
Using these relations we find
(1-ANH1 —AADHH 1 - A) = (67 — dT)(O — ®). (4.54)

with the usual definitions © = RTOR and & = RT®R. This is indeed the same as eq.(4.50)
with

N=0-d (4.55)
After integration over rapidities, eq. (4.54) becomes
Ay f f i) = BVt
1—AN)(1—=ApA 1-Ag)=—"N'N 4.56
(1 - A - Bk - Ag) = SUNTN, (4.56)
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where N| = [ dn(© — ®) has been calculated in [13]

1 1 ab
NL == [1*Z*L] == 5ij—8i§8j—DiﬁDj (XLaYL)- (457)
where the covariant derivative is defined as Dg® = §%00; — igTy, bs.
Substituting eq.(4.56) into eq. (4.42) , we obtain

X Ay po e o
pu(By) = po = S (be = br)NLNL (b = br)po (4.58)

To write this explicitly as an operator equation we need to make the choice of whether to
place the factor NTN to the right or to the left of the density matrix, as both choices, as
well as some others are equivalent in the JIMWLK limit. Additionally we need to specify
the ordering between the operators b and A on one hand and factors of R on another, which
has been scrambled in the calculation above. It is not our goal here to carefully restore the
correct ordering, as only the JIMWLK limit of this expression is strictly speaking under
control. We therefore simply choose the specific ordering which reproduces JIMWLK as
well as gives an evolution equation which preserves the Hermiticity of the density matrix
also away from the JIMWLK limit.

We take
NiN, =RININDR,  b=bR, b =R (4.59)
where the operator ordering is now specified. With these definitions we write the evolution
as
dpy 1 /.= v o o oao 4o Bty
dy = E (pvba(NINJ_)aﬁbIa + b};bapv(NINJ_)aﬁ - bapv(NlNJ_)aﬁb}; - bgpvba(NINJ_)a,B) + h.c.

1 1 7 ~ — —
= g [P o] (VL 80)0] +

(4.60)
Written out explicitly
dpy RPN i 5 R (N
dy = - in [vaa(NLNi)aﬂbﬂ + RawbwbﬂRpﬁpURBA(NLNL)ARRHQ (4.61)

— by RpapoRE (NI N ) wsbs — REbupubs(NT N1 geRua| + hec..

Several words on the nature of the evolution of p, as given by (4.61). As we dis-
cussed earlier, the only relevant characteristic of a state in the valence Hilbert space is its
representation of the color SU(N) (at each spatial point). Therefore the valence Hilbert
space on which p, is defined is a direct sum of all the possible subspaces labelled by dif-
ferent representations of SU(N), i.e. the values of all the Casimir operators at each point
T = {7%(x1)j%x1), d*j%(x1)5%(x1)j¢(x1) ...}, so that H = @®H. Since the density
matrix itself depends only on j¢, it is a block diagonal operator on this Hilbert space and
has nonvanishing matrix elements only between states that belong to the same represen-
tation J. The same is true for the operators b, and N,g since they also are functions of
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j® only. Thus if not for the operator R in Eq.(4.61) the evolution would mix the matrix
elements of p, in a given representation J only between themselves. The presence of the
operator R changes the nature of the evolution. It shifts j¢ to j+gT'® and therefore mixes
matrix elements of p, in one representation with those in another representation with an
additional adjoint added in. The operator R is thus the only source of communication
between subspaces of different 7 in the evolution. Note that even though such cross talk
between different representations exists throughout the evolution, the matrix g, remains
block diagonal if it was chosen to be block diagonal at the initial rapidity, since for such
an initial condition the right hand side of eq.(4.61) is a function of j.

Note that Eq.(4.61) is somewhat more general than the JIMWLK equation. To obtain
the original JIMWLK equation (apart from invoking quantum-classical correspondence
which is the subject of the next section) one has to expand (4.61) to second order in in
®?. In fact eq.(4.61) as written here contains both, the JIMWLK limit when expanded
in ®* as well as the KLWMIJ limit when expanded in j*. It can therefore be viewed
as an interpolating form of the evolution equation for density matrix between the dense
and dilute regimes, just like the corresponding equation for the (quasi)probability density
functional Wj] in [13].

The expansion to leading order in d° can be performed directly in Eq.(4.61). One
has to be careful however, since apart from expanding the explicit dependence on o in
operators R one also needs to expand the commutators of p and b. This is easier done in a
somewhat roundabout way, namely transforming the operator equation into the equation
for the quasi probability function, performing the expansion there, and then returning to
the operator equation using the Wigner - Weyl transformation. We will do precisely this in
the next section after introducing the quasiclassical correspondence between the quantum
dynamics and dynamics on classical phase space. Here we only present the result of this
exercise. The evolution equation in the JIMWLK limit turns out to be

dpy 1

dy - _% dQZL[Q?(ZL)7 [Q?(Zl)7 pAU]] (462)

where

O (x) = / [U(x) <Di;2 _ %12) Dé?] " x2) i) (4.63)

and the matrix U is defined as
U(xy) = Pexp [ig / d’y 1 by )T C] (4.64)
C

with the path C starting from infinity on the transverse plane and ending at some point

XLI.

We note that this is precisely the equation for density matrix proposed in [9].

'The most common form of the eikonal scatttering amplitude one finds in the literature is a lightlike
Wilson line. This is the right definition in a gauge which has a nonvanishing light cone component of the
vector potential A~. Our discussion here is set in the lightcone gauge in which A~ = 0. In this gauge the
scattering amplitude is given by the transverse Wilson line at ™ — oo, which is defined in Eq.(4.64).
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A comment is in order on the form of the evolution equation. First we note that
Eq.(4.62) is of the Lindblad type. Thus we find that both in the dilute and dense limits
the CGC density matrix satisfies Lindblad type equations. Interestingly however, our
interpolating equation Eq.(4.60),(4.61) does not have the Lindblad form. One might wonder
if this absence of Lindblad form is simply an artifact of our approximation. After all, the
calculations that lead to Eq.(4.60) are under full control only in the two limits. However
the reason for deviation from Lindblad in rapidity evolution seems to be very general, and
it rather looks like very special conditions have to be satisfied in order for Lindblad form
to hold.

We drew an analogy from open quantum systems by treating the valence gluons as “the
system” and the soft guons as “the environment”. However, time evolution and rapidity
evolution are very different concepts. In the former situation, the system degrees of freedom
and the environment degrees of freedom are well specified from the beginning and do not
change over time. The interaction between the system and the environment is assumed to
be Markovian which holds if the system degrees of freedom are slow while the environment
degrees of freedom are fast. Time correlations of the environment degrees of freedom are
assumed to be local in time compared to the long time scale on which the changes of the
system occur, and this leads to Lindblad form of the evolution equation via Eq.(2.4).

In the case of rapidity evolution, however, the separation between the “environment” -
the fast soft gluonic degrees of freedom and the “system” - the slow valence partons is not
fixed, but instead the separation boundary moves together with the evolution parameter.
As the rapidity increases one therefore integrates over additional degrees of freedom, namely
those whose rapidity label is between the old and new values of the evolution parameter
- Ay. The rapidity thus appears not only as a parameter of the evolution analogous
to time, but also as the label of the quantum states which are being integrated out in
the process. This integration over additional degrees of freedom is part and parcel of
rapidity evolution, and the increment in the density matrix Ap, proportional to Ay arises
due to this integration. Thus the "Markovian” regime (i.e. short correlation length of
the environment modes in rapidity) albeit sufficient to guarantee existence of differential
evolution, does not guarantee that this evolution is of Lindblad form. In fact it is easy to
trace that the additional integration over the rapidity label is in fact the reason why the
general argument that leads to Lindblad form for time evolution in quantum mechanics, is
violated in our calculation.

The crucial missing piece is Eq.(2.4). As discussed in Section II, in an evolving quantum
system for small At the probability Mi(dt)Mn(dt) o dt is proportional to dt for every
environment state n save the vacuum. One can then define the jump operator L, via
M, (dt) = VdtL, and the Lindblad form follows. On the other hand, in the case of rapidity
evolution the factor Ay arises only as a result of the integration over rapidity label of the
gluon states in the rapidity window [y ; y + Ay]. As a result we have

y+Ay R
/ M (n, Ay) M, (n, Ay) < Ay (4.65)
n

=Y

but the probabilities for individual states with fixed 1 do not scale with Ay. It thus does
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not appear to be possible in general to define a jump operator unless M, (n) has very special
properties. Indeed, examining our calculation, for example in Eq.(4.32), we realize that
the fact that only the terms MgnpUM;i + Mgnﬁngg contribute at linear order in Ay is
precisely due to the integration over the rapidities of the 2n gluons. This is also the reason
this contribution cannot be written in the standard Lindblad form Ayﬁgn ﬁvfjgn. The same
is evidently true also for the odd gluon contributions.

Nevertheless in some special cases the Lindblad form may be attainable. For example,
if M(n,Ay) = M(Ay), i.e. if the probability of a particular state does not depend on
the rapidity of the gluon, the jump operator can indeed be defined. This is precisely the
situation we encounter in the derivation in the dilute (KLWMIJ) limit. In this case the
coherent operator C involves only the gluon creation operator integrated over rapidity and
as a result the probability MJLMn does not depend on the rapidity label of the gluons in
the state n. This then allows to take the ”square root” of the probability and define the
corresponding jump operator L,, which ensures that evolution is in Lindblad form. It is
more difficult to trace the origin of the Lindblad form in the dense limit. However, given
that JIMWLK and KLWMIJ limits are dual to each other, it is not surprising that such a
form indeed exists.

In this section we have discussed the energy evolution in terms of the CGC density
matrix. This is not the way it has been formulated in the literature so far. In the next
section we show how to relate the two formulations.

5 From the Lindblad Equation to the JIMWLK Equation via Quantum-
Classical Correspondence

In the previous section we have derived the rapidity evolution equation for the CGC density
matrix. To turn this into the conventional JIMWLK evolution equation we will invoke a
variant of the Quantum-Classical correspondence, which for simple quantum mechanical
systems has been studied 50 years ago, for review see [14]. To start with, we present this
analysis as it appears in [14, 24-26].

5.1 Quantum mechanics in phase space

For simplicity, consider a system with one degree of freedom equipped with the canonical
variables ¢ and p that satisfy the cannonical commutation realtion [, p] = i. The state of
the system is described by the density matrix operator p. Observables are expressed as
functions of ¢,p, e.g. A= Alp, 4]-

Suppose we want to represent a calculation of quantum expectation values in a form
similar to averaging over classical distribution in phase space, i.e.

15(54) = [ dpdg Alg.p)W a5 (51)
This can be achieved if one can find a one to one correspondence between an arbitrary

quantum operator A(g,p) and a corresponding classical function A(q, p), and additionally
similar correspondence for the density matrix p — W (g, p).
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In principle one can devise different mappings that achieve this goal. One widely
used mapping is the Wigner-Weyl transformation that maps fully symmetrized quantum
operators in the Hilbert space to the corresponding classical functions in the phase space
(and back). The familiar form of the Wigner transformation uses eigenstates of the ¢
operator and defines the classical phase space functions via

Wlq,p] = /dzei”z<q - %\ﬁlq + §> (5.2)

and
z

). (5.3)

. Z SR
Awlg,pl = /dze’pz@/ - §\A[q,pﬂq+

The Wigner function W{q,p|] that corresponds classically to the density matrix is often

called the quasi probability distribution function on the phase space. To formulate the

mapping in a basis-independent way, one follows Weyl’s correspondence rule which asso-

ciates fully symmetrized operators in Hilbert space to classical functions in phase space.
Consider the following representation of an operator G(p, §)

Gmﬂ:/ﬂmmwwmwmu (5.4)

This can be regarded as an operator Fourier transformation. First of all, note that the
operator GG written in this form is necessarily symmetric under permutations of ¢ and
p. This is straightforward to see by expanding the exponential in Taylor series. This is
however not a restriction on the set of operators one can consider, as any operator function
can be written in a symmetric form utilizing the commutation relation between p and 4.
The simplest example of such symmetrization is p§ = %(ﬁ@ + qp) — % One can easily
convince oneself that any polynomial of p and ¢ can be written in a symmetric form of this
type.

Given the representation eq.(5.4) we define a classical function on the phase space via

F(p,q):/f(u,v)ei(“p+”Q)dudv. (5.5)

This is Weyl’s rule for correspondence between quantum operators and classical functions
on phase space. Note that under Weyl’s rule, the same Fourier kernel f(u,v) is used in eqs
(5.5) and (5.4).

From Egs. (5.5) and (5.4), the mapping between F(p, ¢) and G[p, ¢| can be represented

as
... [dpdq R R
Glp,q] = 5 QWF(p, O)Aw(p—Dg—4d), 5:6)
F(p.q) = Tr(G[p, 4l Aw(p — p.q — 9))
with

Ay(p—p,q—3q) = /dudve—i[U(p—ﬁ)Jrv(q—é)} ) (5.7)
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The Weyl mapping kernel A,,(p — p, g — §) is a functional of both canonical operators p, §
and phase space classical variables ¢, p. It has the following properties

Aw(p—p,q—q§) =AL(p—p.q—q); Tr[Aw(p —Dg—q)] =1 (5.8)

Tr[Aw(p — g — DALY — 5,4 — 9] = 27)*5(p — 1')o(¢ — ¢'). (5.9)
The basis independent mapping in eqs. (5.6) reproduces the familiar Wigner transfor-
mation eq. (5.3) when the eigenbasis of ¢ is used.

F.) = [ 841615080 - b0~ )

d / . . /
- /;r/dudvel(“p”q)e”(q5”)<Q’\G[ﬁv dllg’ —w)

q —i PN
= [5L [ueramsta - o + qui@iGlhald — )
2w 2
P |
= [ due™™{q + SulG[p, dllq — Su)
where we have used the Baker-Campbell-Hausdorff formula, and
6iuﬁ|q/> _ |q/ _ u>; ei("ﬁ+vé)’q’> — eiuﬁew‘?e_%"”|q/> = eivqle_%uv|q/ — ’LL> . (511)

Thus the Weyl’s correspondence rule provides a basis independent mapping between quan-
tum operators in Hilbert space and classical functions in phase space.

Using eq. (5.6) one finds that expectation values of quantum observables can be
calculated as weighted integrals in the phase space

Te(pA) = / dpdqAulg, W, 7] (5.12)

with

Note that once the operator Ag[g,p] is written in a fully symmetrized form with
respect to ¢,p, its associated Wigner-Weyl mapped classical function can be obtained
by simply replacing the quantum operators §¢,p with their classical counterparts q,p,
Asla, p] = Asla, p] = Auwlg, pl. ) - )

Consider now a product of two operators F'[q, p] = A[q, p|Blq, p]. Even if both Aq, p]
and B[cj, p] are fully symmetrized, their product as a function of p and ¢ does not necessarily
have a fully symmetrized form, and therefore the Wigner-Weyl transform of a product is
not equal to product of two Wigner-Weyl transforms. Instead, the correct procedure to
obtain the Wigner-Weyl transformation for a product of two observables is

A _A
Fulq,p] = Awlg, ple? Bylq,p] = Buwlq, ple” 2 Aylq, p] (5.14)

. 58 97 o . .
with A = 5-5- — 55>, where the derivatives act on functions on the left or on the right
p Oq q Op
as indicated by the arrows.
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An alternative representation for the transformation of products of operators can be
achieved by introducing the left and right Bopp operators

i 0 i 0
QL_Q+§@7p’ PL—p_Eafq (5.15)
and 9 9
i i
Qr = “2ap Pr=p+ 29q" (5.16)

The two sets of Bopp operators labelled by “L” and “R” are operators in phase space
rather than Hilbert space, as they act on classical functions of p and ¢q. Note that the pairs
(Qr, Pr) and (Qgr, —Pr) as operators in phase space form the same Heisenberg algebra as
do (¢, p) in the Hilbert space. Using Bopp operators, the Wigner-Weyl transformation of
a product of two observables is expressed as

Fw[‘]ap] = AS[QL7 PL]Bw[Q7p] = BS[QR7 PR]Aw[Q7p] . (5'17)

Here As[Qr, Pr] is obtained by replacing ¢ and p in Ag[q, p] by Qr, and P, respectively, and
similarly for B[Qg, Pr]. One can use either set of Bopp operators, depending on whether
one uses them in the left factor or the right factor of the product. The two expressions
in eq.(5.17) are equivalent. The action of Bopp operators represents the additional sym-
metrization rearrangement necessary in order to represent a product of two symmetrized
operators in a completely symmetrized form.

As an application of the Wigner-Weyl transformation formalizm, consider the equation
of motion for classical quasi distribution W that follows for the quantum Liouville equation

for the density matrix

dp s
2 — _GH. b 5.18
D il ) (515)
with the Hamiltonian H = H [G, p]. Performing the Wigner-Weyl transformation of eq.(5.18)
we obtain
dWlg,p . A A
P (g, plet Wia,p) — Wla,ple® Hula.p)
A (5.19)
= 2Hy[q, p] sin <%>W[q,p]
or equivalently using the Bopp operators
dWlq,p :
L (HIQr, P1] ~ HIQn, Prl) Wla,p). (5:20)
On the other hand, for a fully symmetrized observable Ag[q, p], the Heisenberg equation is
dAslq,p A .
08 _ i1, .00, (5.21)
Its phase space formulation becomes
dAslg,p] .
) i(1(Qu. Pr) — H(Qn Pr)Ada. o
(5.22)

= {itar, Adla. o)}

S

4,p—q;p
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In the second line, symmetrization for H|[q, p|As[q, p] and Ag[d, p|H|q, p] with respect to
q, p is performed before replacing ¢, p with g, p, respectively.

5.2 Quantum-classical correspondence for SU(N) charges

In the context of the JIMWLK evolution, the relation between the “probability density
functional” W{j|] and the density matrix p is similar to that between Wp,¢] and p in
quantum mechanics as described in the previous subsection. In this subsection we make
this relation explicit. Much of this discussion already appears in the literature, e.g. in [10],
but the relation to the classical-quantum correspondence and Wigner-Weyl transformation
has not been elucidated in the past.

Unlike the canonical case discussed above, we are now dealing with the system whose
phase space is spanned by the generators of the SU(N) group j*(xy). It is important to
stress that the components of color charge density are coordinates on the phase space, and
not on configurations space. The Hilbert space of the corresponding quantum system is
spanned by the quantum operators j*(x ) that satisfy the SU(N) commutation relations
[7%(x1,7%(yL)] = igf*™7¢(x,)d(x. —y.). Note that although the full Hilbert space of
CGC requires introduction of the operators <i>a(x 1), the observables that are currently
considered in all calculations are only functions of the color charge density 7%(x ). It is thus
sufficient for our purposes to discuss the quantum-classical correspondence for operators
that depend only on j(x, ). One must keep in mind however that if one wishes to generalize
the framework along the lines of [9], this correspondence has to be extended to include also
functions of ®(x, ).

For quantum systems of spins, most notably the SU(2) group, the mapping between
the Hilbert space and the phase space has long been studied [27-30]. These studies mostly
rely on introducing a particular (over)complete basis (ususally generalized coherent states)
and working in a fixed representation of the underlying Lie group. Our situation is slightly
different, since as discussed above the valence Hilbert space is a direct sum of different
representations of SU(N). We therefore cannot fix the representation and instead will rely
on the operator properties of the quantum-classical correspondence. The purpose of this
section is, drawing analogy to the canonical case to provide the mapping between quantum
operators in valence Hilbert space and classical variables in non-Abelian phase space, as
well as relation between the quantum density matrix and “classical” quasi probability
distribution.

We concentrate on operators in the Hilbert space which can be written as functions
of ﬁa(x) and that are fully symmetric with respect to interchange of the different color
components of ;% If an operator is not written in a fully symmetrized form, it can always
be brought into such form by repeated use of the basic commutation relations of 7%. This
has been explicitly demonstrated in [10].

We will construct the analog of Weyl’s quantum-classical correspondence where the
classical counterpart of a quantum operator is obtained by replacing an operator j* with
its classical counterpart j* once a quantum operator O is expressed in terms of fully
symmetrized products of 7%, so that O =0, (j“) , where the subscript “s” indicates a fully
symmetric function. This is the most straightforward generalization of Weyl’s quantum-
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classical correspondence. In the following the spatial coordinates of j’“(x 1) are suppressed
since j%(x,) with different transverse coordinates commute. All the nontrivial action
therefore happens at the same transverse coordinate.

In analogy with the discussion of the Weyl’s correspondence rules for canonical oper-
ators in the previous subsection, we adopt the following rules for correspondence between
an operator and a classical function on the phase space

Fil = [ fle)e®ida, G.lj = [ fla)eida. (5.23)

Note that for SU(N,), the color index runs from 1 to N2 — 1. The above Fourier trans-
formations are understood as N2 — 1-variate transformations. It is easy to see by Taylor
expanding the second of eq.(5.23) that Gy is a fully symmetric function of ;.

Note that eq.(5.23) is an operator relation, and is not limited to any particular repre-
sentation of the SU(N) group, but is rather valid on all the valence Hilbert space.

Eq. (5.23) leads to the following relation between Gy[j] and Fj]

Glil = [ diFlilsw () (5.24)

with the mapping kernel
Aw(,j) = / da e~ gied (5.25)

Our definition is such that the integration [ dj is over all real valued j* with a simple
integration measure on RV -1,

The Ay (j,j) maps classical functions F[j] to quantum operators Gs[j%]. By requiring
that for a fully symmetrized operator Gy [j] the corresponding classical function in phase
space is just Gslj], so that F[j] = G,[j] we can also find the inverse mapping.

Let us write this mapping in the suggestive form:
Gylil = Tr (GLLIAwG.) - (5.26)
Substituting eq. (5.24) into eq. (5.26), one obtains the condition that Ayy[j, j] must satisfy
T (Awlin 3 Awlie.Jl) = 661 —ja). (5.27)
The following expression of Aw[j,j] solves this constraint:
Bulidl = [ dgac®id, e (5.28)

Here dg, is the Haar measure over the SU(N) group. Each group element g, is labelled by
the parameters «. The factor d, (j) denotes the dimension of the particular representation
r and is viewed here as a function of j which depends only on the Casimir operators of
the Lie algebra. The function is such that for a given representation its numerical value is

equal to the dimension of this representation.
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To prove that Ayy[j,j] satisfies eq. (5.26), we use the Peter-Weyl theorem [31] for
representations of Lie group

oo dp

r)T r
S DG (900) DS (903) = 0(9or — gan)- (5.29)
r=1j,k=1

Here D(") (go) is the representation of group element g, and r indicates all the irreducible,
inequivalent representations. As above, d,. is the dimension of the representation r.

Using eq.(5.28) in the left hand side of eq.(5.27), and remembering that summation
over all representations r is a part of tracing over the valence Hilbert space, we recover the
right hand side of eq.(5.27).

The above expression is the formal definition of the kernel A, however for all practical
purposes one does not need to know its explicit form. This is because the classical coun-
terpart of the operator G [j] is simply obtained by substitutionj — j once the operator G
is written in the fully symmetrized form.

Now we can establish the relation between quantum average of operators in Hilbert
space and phase space weighted integrations

T(56.) = [ di G oA (3.5) = [ di G Wi (5.30)
with the classical weight functional
Wi = Tr (52w (G.3)) (5.31)

One can check that [ djW(j] =1 using Trp = 1 and so the classical weight function W |j]
has the interpretation of quasi probability distribution.

The mapping back from the classical weight functional to the density matrix is through
the kernel Ay, [_],j] Again, one does not need an explicit form of A to perform this mapping.
The practical way to do it, is to expand Wj| in Taylor series, and then substitute in every
term

| o
G =y g (5.32)

where the summation goes over all possible permutations of (1,...,n).

The other issue we need to understand in order to formulate evolution in the classical
phase space approach is how to extend the mapping for products of quantum operators.
In principle, this involves generalizing Moyal’s star-product to a general Lie algebra. How-
ever, rather than taking this general mathematical approach, the particular realization for
SU(N) algebra has been worked out in [10, 32]. Consider a product of two operators with
each one written in the symmetrized form

Glj] = As[j)Bij] (5.33)
The analog of the transformation eq.(5.17) for the present case is

Gs[j] = AS[JL]BS [J] = BS[.]R]AS[-]] (534)
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where the appropriate Bopp operators are defined as

N T T]ba
—i% L coth — + —
I = [2“ 273
1 5 1 5 \2 1 5§ \*
7] -b e -b e -b e
=+ =4 (gTe— — i (gT — gt (gTe=
J +2] <g 5j6>ba+12‘7 (g 5j6>ba 720] (g 5je>ba+ 5.35
.a __ b [Icothz_Z]ba ( )
IR =J B 979
, 1,b<65> 1,b<65>2 1,b< 5§ \*
=i =i\ 9T ) + 50 (9T ) — 5550 (9T ) +...
2 0j¢ ) pe 12 0j¢ ) pa 720 05 ) b
with
)

The Bopp operators j7 and js,’% act on functions in the phase space rather than the
Hilbert space. It is straightforward if somewhat tedious to explicitly check that, similarly
to Bopp operators defined in Egs.(5.15),(5.16), the SU(N) phase space Bopp operators
ji and —j% form the same SU(N) algebra as the operators 7% on the Hilbert space. In
addition, j¢ and j% commute [j¢, j%] = 0.

We find it interesting to note that the functional form of the Bopp operators j% involves
exactly the same function as in eq.(3.19), which ensured correct operator properties of the
charge shift operator R.

As a corollary to this discussion consider Hermitian conjugation in Hilbert space

(AB)T = BT AT (5.37)
As discussed above the classical correspondence is
AB — Ay(J1)Bs(j);  BYAT = B*(j)A*(Jr) (5.38)

Thus the Hermitian conjugation operation is represented by complex conjugation in con-
junction with changing left (right) Bopp operators int right (left) Bopp operators

(.) = (L R)* (5.39)

5.3 The evolution equation for the quasi probability distribution.

Using the correspondence rules described above we can now rewrite the evolution equations
eq. (4.60),(4.61) for the density matrix as the evolution equation for the quasi probability
distribution W{j].

The right hand side of eq.(4.61) contains product of operators (NJL_N 1), b, R and
p. Performing Wigner-Weyl transformation the density matrix p becomes W[j%(x)]. The
operator b becomes b§ = b*[j{ (x1);x 1] or b% = b*[j%(x1);x 1], depending on its position
relative to the factor p in eq.(4.61). The operator NINJ_ becomes N17RNJ_7R with N| p =
N [jg(x1)]-
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Additionally we need to understand how the operator R is mapped to the phase space.
To do this, we note that for a fully symmetrized operator O,[j9], the action of R operator
is
ROL[UIRT = O,[3* + gT%] — RO [j°] (5.40)
with the phase space shift operator
a 90
R, =€l " (5.41)

Therefore, we should simply replace the action of the operator R with the phase space
shift operator R,.
It is now straightforward to write the equation for W. We obtain

dW;y[ja] N *i (5F = bR (N N1 R)ap(B], — ) + hec. | W] (5.42)

with b9 = bgRﬁa and hermitian conjugation defined in Eq.(5.39). Eq.(5.42) is the final
form of the evolution equation in the classical phase space formulation. When ;5 are
considered as coordinates on a classical phase space, this equation is interpretable as a
Focker-Planck equation for the quasi probability phase space distribution W.

One can now take various limits to reproduce the results known in the literature. In
particular, assuming that j is small and expanding the right hand side of eq.(5.42) to second
order in j one straightforwardly recovers the so called KLWMIJ equation [23],[33].

Alternatively, keeping all orders in j, but expanding to second order in §/dj one re-
produces the JIMWLK equation. This last expansion is a little more involved, but it is
performed explicitly in [22]. We reproduce the derivation here for completeness.

To reproduce the JIMWLK kernel, we truncate R, to first order in §/§j* and expand
br, and br around b(j*). We only need to keep first order terms, since Eq.(5.42) contains
a factor (by, — bg)?2.

At this order there is no need to expand N| g or N| 1 so that both are substituted
by N (j).We have

bRy — br = b [jLIR;" — b[jR]
S5b¢ ) SbP
~ a _ s T b i (e _ e
(bz[]+56(1 7)) (0ar + g b5d> (bz[]]+5j6(JR J))

) 5bb
—gbz ab(s d 5 Cd

(5
» 5
e 57l (5.43)
- f

:gb?(XJ_) ab(s d

1
0; — Di—=Dd
= [a-pigp ] )
In the last line we have used igT},b¢ = §°°9; — D and igT{,j¢ = —(0D — D9)® =
igj°T5, as well as g? (()ZCB = [Di%]be (x1,z1). Additionally using eq. (4.57), we calculate

ab
Q¥(x) = [UNL (b1 Ry — bR)]%(x) = —i [U(x) (Di;2 9, 012) D@] (x,z)(sjf(z). (5.44)
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where the standard eikonal scattering matrix U is defined in Eq.(4.64).
Eq.(5.42) now becomes
dwWj] 1 .
T A LA (5.45)
One can express the JIMWLK equation in terms of single gluon scattering matrix
U(x )% rather than the color charge density j%(x,). The relation between the two was

derived in [22]. Now we can relate functional derivatives with respect to the U matrix to
those with respect to the color current.

0 ” sUYz, ) 5
d7%(x1) _/d 1 579(x1) (SUCd(ZJ_) (5.46)

with

5UCd(zL) _/ 9 5U6d(zl) 5b?(yL
0j(x1) S 0B (y 1) 8j(xL

N m m T 1 ba
ZZQ/Cdel (UTb (YL)Tm> U™ (z,) [Dl] (yi.x1)
= ig/dez (UTbm(YL)TZZ)
c
= igT, 0" ) [ alU] (y..x0) (5.47)
c

1 ba

= igT5U" (2, )U(2.) [81)] (z1,%x1)
1 ba

=igU™ (2 )T [81)] (z1,x])

= —ig [U(ZL)TdalD] : (z1,%x1)

In the above we have used UTTeU = U®T? and D; = UTH,U. We have also used

oU(z )
2 )ty [ awisty - w0 Ul
5bl (YL) C (5.48)
—; UTbm Tm Und dwié _
g (Y1) cn (z1) . wio(y,L —wy)
Finally, we obtain
B _/dz sU(z,) 6§
5j9(x1) Toja(x1) SU(z,)
o [ anvmanymy [] o) e
=19 Z | Z) )1y | == Z1,X 1) Srearo

:ig/dzJ_Tr <U(ZL)Tb5UT6(zL)> [(‘;D] ; (z1,%1)

=g [ [Dla} " (k2T ().
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We have denoted

b _ b 0
Jp(z1) = —Tr (U(ZJ_)T 5UT(ZL)> . (5.50)
Also recall that
1 _ 1 -y o 1 R VN C IR D)
8282 (XLYJ_) - 27 (XL — YL)2 ) Dz D2 (XLYJ_) - 27_‘_U (XJ_) (XL — YL) U(yl_)

(5.51)

Finally, eq. (5.44) becomes
@bVl =~ £ [y YR ) - v Ty (552

The standard JIMWLK kernel is reproduced as

S KA
_ % / (zL —x1)i (Z2L —y1)i TE(y1) (5.53)

212 J, v x, (2L —x1)% (21 —y1)?
x 1+ UMy )U(x1) = Uy )U(z1) = UT(z)U (x 1) Ti(x1) -

5.4 From JIMWLK back to Lindblad.

Finally using Eq.(5.45) and Eq.(5.44) we can transform the evolution equation back to
Hilbert space. First we note, that the amplitude @f is hermitian as an operator on the
phase space. This is obvious from Eq.(5.52), since J5(y 1) can be commuted to the left
through the factors of U, as the right color index on U is contracted with the index of
Jb(yL). One can then write the JIMWLK equation as

O = [ @0, (@0, W) (:54)

where the commutator is understood as the commutator of the operators on phase space.
Transforming this back to Hilbert space we see that to this order all we need to do is
substitute —i(sj%(z) — @“(Z) and keep the structure of the double commutator. This
procedure gives Eq.(4.62) as claimed.

6 Discussion

This paper is devoted to analysis of the high energy limit of hadronic scattering, and its
energy evolution formulated as effective quantum theory.

The dynamics of this effective theory is governed by a density matrix. Here we were
able to define this "reduced” density matrix in a way reminiscent to an open quantum
system, i.e. bi partitioning the degrees of freedom into the ”system” and ”environment”
and integrating over the environment. In the present case the bi partitioning is into the
“valence” gluons as the system and “soft” gluons as the environment. Despite some simi-
larities, there is a significant difference between the high energy limit considered here and
bi partitioning in a quantum open system. In a quantum system one normally integrates
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completely the environment and then considers only observables that depend on the de-
grees of freedom of the ”system”. This is not the case for the high energy limit, since the
soft gluons contribute nontrivially to the color charge density, which is the basic observable
in the effective theory. Defining the reduced density matrix is therefore rather nontrivial.
Nevertheless we were able to do it.

We have then followed the usual assumption made in the derivation of the high energy
evolution, i.e. that only the distribution of the color charge density in the transverse plane
is relevant for determining hadronic properties at high energy. Assuming that the reduced
density matrix of a hadronic system depends only on the components of the color charge
density results in a quasi diagonal density matrix in the sense that its matrix elements
between states belonging to different color representation vanish. This is true both in
dense and dilute limits, and generalizes the notion of diagonal density matrix discussed in
[9] to arbitrary parametric values of color charge density.

Under this assumption we have shown that the rapidity evolution of the reduced density
matrix is of the Lindblad type in the two limiting cases - the dense (JIMWLK) and the
dilute (KLWMIJ) limits. This is true even though the nature of the energy evolution is in
principle quite different from the nature of time evolution of a dynamical quantum system.

Interestingly the evolution equation that interpolates between the two limits, Eq.(4.60)
does not have a Lindblad form. Although the derivation of this interpolating equation is not
under parametric control, the basic features of the derivation are generic, and our analysis
shows that the absence of Lindblad form should be a rule rather than exception. The basic
reason is that the rapidity plays a dual role in high energy evolution: it is the analog of
the evolution time on one hand, and is a quantum number that labels the quantum states
of the environment that are integrated out on the other hand. This invalidates in principle
the usual argument for the Lindblad form of the differential evolution equation.

Finally, we have shown how to rigorously relate the reduced density matrix description
of the evolution with the approach used in most pertinent literature based on the probability
density functional W[j]. To this end we have explored the Wigner-Weyl transformation,
which maps the Hilbert space description of a quantum system in terms of density matrix
p into the classical phase space description in terms of quasi probability distribution W.
By adapting this transformation to the present case we have shown that the Lindblad
evolution equation for p is indeed equivalent to a Fokker-Planck type equation for W,
where the components of the color charge density j are considered as coordinates on a
classical non Abelian phase space. This Fokker-Planck equation reduces to KLWMIJ and
JIMWLK equations in the appropriate dilute and dense limits.

In quantum optics, it has been known for decades that the Lindblad master equation
maps to the Fokker-Planck equation through quantum-classical correspondence. Here we
have established the same in the context of high energy evolution with the JIMWLK (or
KLWMIJ) playing the role of the Focker-Planck equation.

We stress again that this paper deals only with the conventional JIMWLK /KLWMILJ
setup, where the density matrix is assumed to depend only on the color charge density
degrees of freedom. Recently it was suggested that this framework may be too restrictive
and may not be adequate for studying some interesting observables at high energy [9].
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Such observables, like correlations between the transverse momentum and density in the
transverse plane may be formally subleading at high energy, but could be of great interest in
the study of correlations in particle production. In order to include these into consideration
one has to extend the conventional framework and allow for density matrices that depend
not just on color charge density j, but also on their conjugate variables, which in the present
paper we have identified as the operators do. It was suggested in [9] that the evolution of
this more general density matrix is also given by the same Lindblad equation. Although
this seems very likely to be the case, our current derivation does not cover this interesting
more general situation. It should be possible to extend our current method to deal with
this intriguing problem. This investigation is currently under way.

We now comment on several questions/issues that arise from our results.

First, the fact that the evolution of the reduced density matrix beyond dense-dilute
limit is most likely not of Lindblad type begs an interesting general question. It is known
that Lindblad equation preserves the properties of the density matrix, namely normaliza-
tion and positivity. Is this also the case for Eq.(4.60) even though it is not in Lindblad
form? It is quite obvious that the normalization of the density matrix is preserved under
Eq.(4.60), since its right hand side is a commutator, and therefore has a vanishing trace.
As for the positivity, it is more difficult to establish. We note however, that the differential
evolution follows from the Krauss representation Eq.(3.23) which does preserve positivity
[15]. We therefore believe that the differential evolution Eq.(4.60) does indeed preserve
positivity and thus is a consistent evolution of a density matrix. If this is the case, one
is lead to a general conclusion that the set of possible differential evolutions of a density
matrix is not limited to equations of Lindblad type.

Second, we note that one of the useful perspectives on the JIMWLK evolution is that
of a Langevin equation for Brownian motion in the space of Wilson line U%(x ) [34, 35].
The bi partitioning into the “system” of the hard gluons and “environment” due to the
soft gluons harmonizes nicely with the random walk picture. After a boost by Ay, the
soft gluons can be emitted into any of the multigluon Fock states {|n)}. This emission
contributes to a random addition to the color charge density jg fAy Jy + 0% with 65
being a random variable, which therefore random walks in the color space. The Langevin
equation is a reformulation of the Focker-Planck equation, which is equivalent to JIMWLK.
It is then interesting to ask whether such a Langevin description can be extended beyond
the leading order. The NLO JIMWLK equation has been derived some years ago [36—
39]. Naturally the derivation involves integration over gluon and quark degrees of freedom
in the rapidity interval Ay. As opposed to the leading order, where as we discussed the
probability to create all single gluon states is equal, independent of their rapidities, at NLO
there is a genuine integration over rapidity of two soft parton states. This suggests that
the evolution equation for the density matrix is not of Lindblad type for the same reason
Eq.(4.60) is not. If that is the case one does not expect it to be equivalent to a Focker-
Planck equation for the quasi probability function and thus the Langevin description may
well not be possible.

We hope that the new perspective on high energy evolution discussed in this paper
will be useful not only for a more fundamental understanding of JIMWLK equation but
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will also prove useful for future developments.

A The Operator ®°

In this Appendix we present the derivation of the quantum “phase” operator 5[3“, which
via eq.(3.8) defines the quantum shift operator of the color charge density. Part of this
derivation appears in the text, but we keep here all the details for completeness.

We are looking for M (®), as a functinal of operator & that satisfies the commutation

relations
(@, 9" =0,
sa b ab <A1)
[©%, 5] = M*®(®)
so that the color charge density shift operation is
€xp {i.}goft&)a} 36 €xp {_ijgofti)a} = 56 + 3seoft . (AQ)
Using the Baker-Hausdaurff formula
1 1 1
eXYe X = Y4H[X, Y] [ X Y [ 1 XY T+ X (X [ (XY
. ' . (A.3)
and expanding eq.(A.2) in commutators, the first three terms are
(17508 D%, 5] = gt MO (@) , (A.4)
1.4 = A 2q 5 RN A .9 2 1. “e 2%
7@, (1750 8%, 5] = [, o PBOM(®) = g f0 200 M ()
I . . -
= o ik (19TE0") M (@) (A.5)
1 - . -
=3 iJSoft (Zgqu)bM(‘I’))ae ;
N & .4 2 A 20 A 1 4 . 2
a[zjscoftq)ca [ngoftq)b) [Ugoftq)a)]em = i”goft ((ngb(I)b)QM(@))ae : (AG)
Here we have used —if®¢ = Ty.
From the above explicit calculations, it is natural to make the following ansatz
oo
MP(D) = —i Y en[X"y, with x = igT?®". (A7)
n=0

Clearly, ¢y = 1 follows from the requirement eq.(A.2). This requirement further imposes

the constraint

. > 1 ab
i+ kz_o G M| =0 (A.8)

which after substituting the ansatz for M (x) becomes

=3 e (4.9)




Note that for k = 0,m = 0, the ¢g = 1 automatically satisfies the above condition. For
N =k +m > 1, the coefficients of YV have to be vanishing, one then obtains

N c
m
E —— =0 (A.10)
— |
= (N —m+1)!
which is equivalent to the following recursive relations

N-1

—_ Cm 3 —_
CN = — Z m, with Cco — 1. (All)
m=0
A few examples can be explicitly calculated
o 1
T
Co C1 1
CH=—— — = —
2T 3 2 127
_ a0 _a o _,
TR TR TR
cp €1 C2 C3 1 1
oyy=--—————— _——= —_— = ——
TR 432t e 7200 (A.12)
_ o a o a_ '
S T TR TR
__G@_a_¢c_a_11 1
CT T T 6 T 5 31 670 30240
_ @ _a & a &,
TR TR TEPTETE
Co C1 (&) Cq4 Ce 11 1
CS = — — — — — — _——=——_——

o & 7 51 3! 308! 1209600 °
It turns out that these numbers correspond to the coefficients in expanding the function

abiy — i [X eotn X — X]%
M9 (x) = z[Qcoch X (A.13)

One can now explicitly check that Taylor expansion of eq. (A.13) in x reproduces all the
coefficients calculated using the recursive relations in eq. (A.11).

In addition one needs to check the consistence of the Lie algebra constructed from P
and ;. This consistency requires that the following Jacobi identity holds

(19,5, 5 + [17°, 5, @] + [[5°, €71, 5] = 0, (A.14)

which is equivalent to

[Mab";c] . [Mac";b] _ ngfbchad ) (A15)
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On the left hand side

o0

M5 = —i' 3 ealx )]
n=0
oo

n—1
. k el n—1—k
=1 Z Cn Z Xael [X61627j X82b

[e.9]

k d “c k
= _ZZCnZXael 'Lg 6162 Q) yJ ]XZle (A16)

[e.e]

k —1—-k q sdc
72 Z Cn Z Xa61 Zg 162 Xezb M

n=1

oo

2 k —1-k
- _Z Z Cn Z Xael Zg 162 Xe2b Z cdeC .
n=1

On the right hand side

o
igfPIM =" gty (A17)
N=0

We here check the consistency condition eq. (A.15) order by order to verify that it indeed
is satisfied. We do not have a proof for the case of general N, but we believe the same
procedure can be carried out to high order terms.

The left hand side of eq.(A.15) has N = m +n — 1 in terms of power of ®*. Also note
that m > 0 and n > 1. In the following, we calculate the cases N = 0, 1,2, 3 in details.

N=0

For N = 0, the right hand side is gf*?cod.q = gf*“®, the left hand side can have n =
1,m=0

(—1)2coc104e, (ng€162) Oesb0de — (b <> )

=5i9TG — (b ©) = sig(=if™) — (b 5 ) (A18)

:gfabc )

For N = 0 terms eq.(A.15) holds.

N=1

For N =1, the right hand side becomes

1
971Xt = — 50 igTE,®) = S TR, (A.19)
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For the left hand side N = m +n — 1 = 1, we have two possibilities n = 1, m = 1 and
n=2m=0.

1—-k
— CpC2 Z Xael Zg 6162 X62b 5dc - Clcl(sael (ZgTeleg)(SEbedc - (b A C)

= - 0002[5ae (i9T¢e,) qu)e)(sdc (19T e, ) (1978 ;) 0eap0ac) — 3 (igTey) (igT5. %) — (b ©)
— — coealig)*[- T:@Té;e T, TE 0 — G ig) TLTED° — (b )
= — coealig)?[—(T°T")ae + T, T8 — & (ig)* (TVT%)0e® — (b 45 )
= — coea(ig)?[—ifPITE + 2TL, TSHD° — ¢ (ig)?i frITs, ¢
= — g% (—3cocr — &) TETS, % = ; 2TaTe,0° .
(A.20)

Therefore for N =1 terms eq.(A.15) holds.
N =2
For N = 2, the right hand side becomes

gf%%ox 2y = (i9)2 T (T T?) 1@ §°2 (A.21)

For the left hand side N = m 4+ n — 1 = 2, there are three possibilities n = 1,m = 2;
n=2m=1;n=3m=0. From ¢3 = 0, we can only consider the first two possibilities.

—i)2c1ey Zxael igT, 6182 Xe;)k(igT§§¢e3) + (—i)QCQCléael(ngedlez)(igTe3<I>e3igTe4<I)e4)d6562b

- (zg)?’clcQ(TaeQTegTe + T8 T TP — (ig)Peact Tl (THT) 4B B
= — (i9)3c1ea[—(TPTT)ese5 + (TTPT) ey + (TPTTC) e, | D 4
= — (ig)°c1ca[2(T T T ) ees — (T°TT)aes + (TP THT) g, | O %

(A.22)

Note that es and e4 are symmetric. The last two terms in last equality cancel. After
subtracting the (b <> ¢) part, one obtains

— (i9)3 1002 f (T T) e, P @ = —(ig)32c1 02T (TT ) 0 B3 P4 (A.23)
Since ¢; = —1/2, clearly for N = 2 terms eq.(A.15) holds.

N =3
For N = 3 the right hand side vanishes because ¢35 = 0. We have to show that the left
hand side also vanishes. First note that for N = m +n — 1 = 3, there are four possibilities:
m=1m=3); mn=2,m=2); (n=3,m=1); (n=4,m = 0). Only the two cases
n=2,m=2and n=4,m = 0 contribute. We then need to show that the following terms
cancel.

2 [(Tde3)ab(Td1 T) 4+ (THTD) o (T Td2)dc} — cocs [(TCle Tdads)

(A.24)
+ (THTTRTS),, + (THTRTT%),, + (leTdZTd?’TC)ab} (b o)
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The guiding principles of organizing these terms are the following:
e di,do,ds are symmetric indices, we are free to interchange among them.

e We rearrange terms according to their b, c indices. If b,c are indices of the same
matrix like 77", there is no need for further simplication. If we have T' b T¢ in adjacent
position like 7T, the b <+ ¢ subtraction gives a commutator, which results in placing
b, ¢ indices on the same matrix 7. Then no further simplification is needed.

e If T% T¢ are not directly in the adjacent position, we rearrange the b, ¢ as the indices
of matrix element not the label of T" matrix.

e We use the cancellations between terms like (T*TNT%T9),. and (THTR2T4T),,.
First note the last two terms in the second bracket
(THTETBET), — (b ¢) = 2(TNTRT), TE, (A.25)

and

(T TRTeT),, — (b < c)
= — (TNT2TT) 4, — (b 4 €) (A.26)
=(TNTPT%) o Ty, .

the first two terms in the second bracket

(TTHTRT) 4+ (THTTRTY) y — (b ¢)
=2TTNTRT®) g, — Tg (TTT) g — (b ¢ )
= — 2T THTRTS) Yy + (TUTTRTE) Y + 2T TN TRTS),, — (THTTRT%),,
_ 2,L~fadle(Ter2Td3)cb _ 2ifadge(Td1 Terg)cb _ 2Z-fad36(Td1 Td2Te)cb + ifadge(le Ter3)cb
— _ 5ifadee(pdipeqds) o padie; pedahphipday  o; adae; pdach(pdiphy
_ 5,L~fad2e(Td1Ter3>cb _ Qifadleifedzhifhdngccé
= — bifrle(Th )y, + 2(THTRTYS), T

(A.27)

In obtaining the third equality, we have moved the T'% matrix in the first term gradually
to the far right so that the resulting term will cancel the third term. We also moved the
T® matrix in the second term passing 7%, which then will cancel the fourth term. Now
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consider the terms in the first bracket.
(TOT9)  (THT) g + (TBTY) (TN T ) g — (b > €)
= — (ThTorhrdz), — (TBTTATE) (b )
= — (TBTTUT®)y — (T"THTNT®) e + T (T THT?) e — (b4 €)
= — 2TBToTh ), 4 (TOTBTUTYR),, 4 2(TBTTh ), — (TOTBThT)
= — gjfadie(pdapeqdzy, padse(pepdipdzy, . padie(pdspeqdz), - ; padse(pdspdipey,
:ifadle(ng Teqda Yoo + Z‘fadgeifedlh(Tthg Yoo + ifadgeifdleh(ng Th)bc
:ifadle(Td3 Ter2 )bc + ifad3eifed1hifhd2dTI;ic
=i frNe(TBTTR)y, + (TBTHT™) T
(A.28)

Note that ¢ = (1/12)> = 2 and cocs = —g;. Therefore for N = 3 terms eq.(A.15) holds.
We have checked four leading terms in the expansion of the Jacobi identity. The
same explicit procedure can be followed for higher order terms as well, but it becomes

increasingly cumbersome. We therefore stop at this point.
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