JACOBIANS OF W'? HOMEOMORPHISMS, CASE p = [n/2]

PAWEL GOLDSTEIN AND PIOTR HAJLASZ

ABSTRACT. We investigate a known problem whether a Sobolev homeomorphism between do-
mains in R™ can change sign of the Jacobian. The only case that remains open is when
fe Wl’[”/Q], n > 4. We prove that if n > 4, and a sense-preserving homeomorphism f sat-
isfies f € WhIn/2 | g1 ¢ Wwhn=n/2-1 and either f is Holder continuous on almost all spheres
of dimension [n/2], or f~! is Holder continuous on almost all spheres of dimensions n — [n/2] — 1,
then the Jacobian of f is non-negative, Jy > 0, almost everywhere. This result is a consequence
of a more general result proved in the paper. Here [z] stands for the greatest integer less than or
equal to x.

In memoriam: Bogdan Bojarski (1931-2018)

1. INTRODUCTION AND RESULTS

A diffeomorphism f between domains in R™ has either positive or negative Jacobian Jy =
det Df. Recall that domains are open and connected. We say that a diffeomorphism is sense
preserving (sense reversing) if its Jacobian is positive (negative). More generally, we say that a
homeomorphism between domains is sense preserving (sense reversing) if it has local topological
degree 1 (—1) at every point of its domain, see Section 2.5. Every homeomorphism is either sense
preserving or sense reversing. It easily follows from the topological properties of the degree that if
f is a sense preserving (reversing) homeomorphism of domains in R", f is differentiable at x and
J¢(x) # 0, then J¢(x) > 0 (J¢(z) < 0). In particular, if a homeomorphism is differentiable almost
everywhere, then J; > 0 a.e. or Jy < 0 a.e. However, it may happen that a homeomorphism
is differentiable a.e., but its Jacobian equals zero a.e. For elementary constructions, see [40| and
references therein.

Let us assume now that a homeomorphism f between domains in R™ is in the Sobolev space
Wli’f, p>1. If p>n—1, then f is differentiable a.e., |21, Corollary 2.25|, and therefore J; > 0
a.e. or Jy <0 a.e. Another approach, based on the topological degree, allows one to extend this
result to p > n — 1. However, the method completely fails when 1 < p < n — 1. Note also that,
if 1 < p < n, then there are very pathological examples of Sobolev homeomorphisms with the

Jacobian equal zero a.e. The first such example was constructed by Hencl [20], see also 5, 8].

In 2001, Hajtasz asked a question whether a Sobolev Wli’f, 1 < p < n-—1, homeomorphism be-
tween domains in R™ can change sign of the Jacobian. That is, whether there is a homeomorphism
such that Jy > 0 on a set of positive measure and Jy < 0 on a set of positive measure.

Hencl and Maly [24] proved the following two results:

Theorem 1. Let Q C R", n < 3, be a domain and let f € VVI})’S(Q,R”) be a sense preserving
homeomorphism. Then Jy >0 a.e.
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Theorem 2. Let Q@ C R", n > 4, be a domain and let f € VV;’?(Q,R”), p > [n/2] be a sense
preserving homeomorphism. Then J; > 0 a.e.

Here [x] stands for the greatest integer less than or equal to z. Also, by a homeomorphism

f Q@ — R™ we mean a homeomorphism onto the image. Since for p > [n/2] we have the
[n/2],1
loc

embedding into the Lorentz space L C L

loc , Theorem 2 is a special case of a more general
result of Hencl and Maly:

Theorem 3. Let Q@ C R, n > 4, be a domain and let f : Q — R™ be a sense preserving
homeomorphism such that Df € LAY Thep Jr >0 a.e.

loc

On the other hand, Hencl and his collaborators, [4, 26|, constructed the following surprising
example:

Theorem 4. Ifn >4 and 1 < p < [n/2], then there is a homeomorphism f € WhP((—1,1)" R")
such that J; > 0 on a set of positive measure and Jy < 0 on a set of positive measure. Moreover,
f has the Lusin property.

Recall that the Lusin property means that the sets of Lebesgue measure zero are mapped to
sets of Lebesgue measure zero.

The result of [26] provides such a homeomorphism for n > 4 with p = 1, and the general
case is obtained in [4]. See also [16, 17| for related examples of approximately differentiable
homeomorphisms.

Theorems 1, 2, and 4 leave only the borderline case open.

Question 1. Let @ € R”, n > 4, be a domain. Does there exist a homeomorphism
fe WLWZ](Q,R”) such that J; > 0 on a set of positive measure and Jy < 0 on a set of

loc
positive measure?

The main result of the paper answers this question in the negative under some additional
assumptions.

Theorem 5. Let Q@ C R™, n > 4, be a domain and let f € VVIE’C[n/Z](Q,R”) be a sense preserv-

ing homeomorphism such that f~! € Wfli’gf[n/Qlfl(f(Q),R”). Assume also that one of the two
conditions is satisfied:

(a) f maps almost all spheres of dimension [n/2] to sets of H"/ A -measure zero,
(b) f~1 maps almost all spheres of dimension n — [n/2] — 1 to sets of H"~"/?\-measure zero.

Then Jy >0 a.e.

Here and in what follows, by H”* we shall denote the k-dimensional Hausdorff measure.

Remark 6. The space of k-dimensional spheres in R™ can be parameterized by the product
G(k+1,n) xR x (0, 00), where G(k+1,n) is the Grassmannian of (k+ 1)-dimensional subspaces
in R™. Indeed, (V,z,r) € G(k+ 1,n) x R" x (0,00) defines a sphere centered at x, of radius r
and parallel to V. Since there is a natural measure on G(k + 1,n) x R" x (0,00), it makes sense
to talk about almost every k-dimensional sphere in R™.

Remark 7. The classes of bi-Sobolev homeomorphisms, i.e., homeomorphisms such that f and
f~! belong to Sobolev spaces, have been investigated for example in [6, 8, 22, 23, 25, 33, 34, 36].
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The corollaries listed below show particular situations when the condition (a) or (b) is satisfied.

Corollary 8. Let Q CR™, n >4, be a domain and let f € VVIE’C[H/Q](Q,R”) be a sense preserving

homeomorphism such that f~' € I/Vli’?f[n/ﬂ*l(f(ﬁ),R”). Assume also that f or f=1 is Holder
continuous. Then Jy >0 a.e.

Remark 9. In fact, it suffices to assume f is Holder continuous on almost all [n/2]-dimensional
spheres or f~! is Holder continuous on almost all n — [n/2] — 1 dimensional spheres; the proof
remains the same.

Corollary 10. Let Q C R*™, m > 2, be a domain in the even dimensional space and let f €
VV&)’?(Q, R2™) be a sense preserving homeomorphism such that f~1 € Wfli’gn71+5(f((2), R™). Then

Jr >0 a.e.

Corollary 11. Let Q C R*™, m > 2, be a domain in the even dimensional space and let f €
VV&T(Q,RQT”) be a sense preserving homeomorphism such that Df~! € Lfgc_l’l. Then Jy > 0
a.e.

Remark 12. In Corollaries 10 and 11, we restrict the setting to even dimensions, because a
corresponding result in odd dimensions would be a consequence of Theorems 2 and 3 respectively.

The corollaries easily follow from Theorem 5.

Proof of Corollary 8. If f € W1*(SF.R™), then there is a set E C S* of measure zero such that
the complement of this set is the union of the sets such that on each of these sets f is Lipschitz
continuous (see a discussion around (2) below) and hence the Hausdorff dimension of f(S*\ E)
is at most k. According to a theorem of Maly and Martio [30, Theorem C|, [42, Theorem 1|, if
f € WhHE(SE,R™) is Holder continuous, then it maps sets of measure zero to sets of H*-measure
zero so H¥(E) = 0 and hence the Hausdorff dimension of f(S¥) is at most k. Let now f be as in
Corollary 8. Assume that f is Holder continuous. According to the Fubini theorem for Sobolev
functions (Lemma 26), f restricted to almost all spheres [n/2]-dimensional spheres is a Holder
continuous map in W™/ so the image of almost every such sphere has Hausdorff dimension at
most [n/2] and hence its H/I*1-measure is zero, so condition (a) from Theorem 5 is satisfied
and the result follows. Similarly, if f~! is Holder continuous, the condition (b) is satisfied and
the result follows. 0

Proof of Corollaries 10 and 11. Since L{ZC_HE C L{Zc_l’l, Corollary 10 follows from Corollary 11.
According to [23, Theorem C|, mappings f : S¥ — R™ with the weak derivative in L*! map
sets of measure zero to sets of HF-measure zero, so exactly the same argument as in the proof of
Corollary 8 yields that #*+1(f(S*)) = 0 and then, again as in the proof of Corollary 8, the result

follows. O

The main idea in the proofs of Theorems 1 and 2 is to use the linking number. If n > 4 and
p > [n/2], one can find linked spheres in © of dimensions less than p. This allows one to use
the Sobolev embedding theorem on the linked spheres to control the topological linking number
in terms of the Sobolev norm of the mapping. Since a sense preserving homeomorphism maps
linked spheres onto linked topological spheres with the same linking number, one can use this
fact to prove that the Jacobian of a sense preserving map cannot be negative on a set of positive
measure. A similar argument is used when n < 3.

The proof of our Theorem 5 is based on a similar idea. However, we cannot use the Sobolev
embedding theorem on spheres, because now p = k = [n/2] equals to the dimension of one of the
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linked spheres. This causes many technical problems and in order to handle them, we need to
assume Sobolev regularity of the inverse map.

Although Theorem 5 gives an answer to Question 1 only in a very special case, the main
motivation behind Theorem 5 was to modify the technique of the linking number so it could be
used in the limiting case, in which we do not have the Sobolev embedding on spheres. We believe
that if the answer to Question 1 is in the negative, the proof should be based on the linking
number technique and we hope that, with further modifications, our new technique can lead to
the negative answer to Question 1 in full generality, for all n > 4. However, we do not know yet
how to do it and we are not even sure what the final answer to Question 1 is.

The paper is structured as follows. In Section 2 we collect basic tools that are used in the
proof of Theorem 5. Some of the tools collected there are known, but some other are new and
of independent interest. In Section 3 we recall the proof of Theorems 1 and 2. This helps to
understand the main idea of our proof and to see what are the additional difficulties we have
to face. In the last Section 4 we prove Theorem 5. We put a lot of effort to make the paper
self-contained and accessible to those who are new to this area of research.

Notation in the paper is quite standard. The Lebesgue measure of a set A C R" is denoted
by |Al. By H* we denote the k-dimensional Hausdorff measure. A k-dimensional open ball
centered at a point x, with radius r, is denoted by B¥(z,r), and B* denotes the open unit ball
in k dimensions. Similarly, S¥ denotes the unit k-dimensional sphere. The surface measure on
Sk is denoted by do(z). Open half-space will be denoted by ]Rff_“ = R" x (0,00). WP is the
Sobolev space of functions f € LP with Vf € LP. The Lorentz space is denoted by LP¢. We do
not recall the definition of this space since it does not play any role in our proofs. The Jacobian
of a mapping f: R" — R" is denoted by J; = det Df. A domain is an open and connected set.

The integral average is denoted by
1
fdr = — / fdx.
][ |E]
E E

By C we denote a generic constant whose value may change in a single string of estimates. Writing
C = C(n,m) we will indicate that the constant C' depends on n and m only.

Acknowledgement. We would like to thank Jan Maly for providing us with a beautiful proof
of Proposition 28.

A few days before completion of this work we learned the sad news that Professor Bogdan
Bojarski had passed away. He was the PhD advisor of Piotr Hajlasz and an inspiration for both
of us. We mourn his passing, and we dedicate this paper with deep respect to his memory.

2. PRELIMINARIES

In this section we collect some basic facts that are used in the proof of the main result. We
present the results in a slightly more general form than we actually need, because they might be
useful for some other applications.

2.1. Chain rule. The main result of [8] (see also [33]) provides an example of a surjective home-
omorphism f : (0,1)" = (0,1)", n > 3, such that f € W, =1 e Whl and J; =0 ae., J;-1 =0
a.e. Note that f~! o f = Id, but the chain rule

D (f(2))Df(x) = 1d
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cannot be satisfied on a set of positive measure because of the vanishing Jacobians. In fact, f
maps the set of full measure to the set of measure zero where D f~! is not defined. The situation
is different if we assume that J; # 0. Namely, we have

Lemma 13. Let U,V C R™ be open sets. Assume that f € WIIO’CI(U, V), g € VV&;(V, R) and
gofeWr (UR). Then

(1) D(go f)(x) = Dg(f(x))Df(x)
for almost all points x in the set {x € U : J¢(z) # 0}.

Remark 14. In particular, the result says that Dg(f(z)) is well defined at almost all points x
such that J¢(x) # 0.

Proof. The set where the Jacobian is different than zero splits into two sets where the Jacobian is
positive and negative, respectively. Thus it suffices to show that (1) is satisfied almost everywhere
in the set where the Jacobian is positive,

X={xeU: Js(xz) >0},
because a similar argument can be applied to the set where the Jacobian is negative.
It is well known [1, 3, 18] that u € W1!(R") satisfies the pointwise inequality
(2) lu(z) = u(y)| < C(n)]x — y[(M[Dul(z) + M|Dul(y)) a..,

where M|Dul(x) = sup,~g J[B"(J:,r) |Du|(y) dy is the Hardy-Littlewood maximal function. Hence
for each ¢ > 0, u restricted to the set {M|Du| < t} is Lipschitz continuous. This implies that
R™ can be decomposed into a set of measure zero and countably many sets such that on each of
these sets w is Lipschitz continuous. This fact and a partition of unity argument implies that U
can be decomposed into Borel sets

o0
(3) U=N,U|JK;

i=1
such that |N,| = 0 and f|k, is Lipschitz continuous. We need to use here a partition of unity
argument, because f is defined in U, while (2) applies to functions defined on R".

It remains to show that (1) is satisfied at almost all points of the set X N K; for each i =1,2,. ..
Let f; be a Lipschitz extension of f|xnx, to all of R” (see [10, Theorem 3.1]). According to the
Rademacher theorem, [10, Theorem 3.2], Df; exists a.e. Also Df; = Df a.e. in X N K;. Indeed,
f—fi=0in XNK;soD(f— fi) =0ae. in X NK; by [10, Theorem 4.4(iv)]. Let

Wi={x € XNK,: Dfi(x) exists and Df;(x) = Df(z)}.

Since |(X N K;) \ W;| = 0, it remains to show that (1) is satisfied at almost all points of the set
W;. Note that Jy, > 0 on W;. According to [10, Lemma 3.3] we can decompose the set W; into a
family of pairwise disjoint Borel sets

o0
wi=]JS;
j=1
such that f;|s; is bi-Lipschitz for each j = 1,2, ..., and it remains to prove (1) at almost all points

of S;. If |S;| = 0, the result is obvious, so we can assume that |S;| > 0 and hence f(S;) = fi(S;)
has positive measure, too.
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Since g € VVll’l

0w » We have a decomposition

[e.@]
f(S;) =M,U U Ey, |M,| =0, g|g, is Lipschitz continuous.
k=1

Indeed, we have a decomposition of V' similar to (3) and then we take intersections with the set
f(S;). We can also assume that |Ej| > 0 for all k, as otherwise we could add sets Ej, of measure
zero to the set M,. Since the mapping f is bi-Lipschitz on S;, we have that |(f]s;) ™" (M,)| = 0 and
it remains to prove that (1) is satisfied at almost all points of Zj, = (fls,) ™' (Ex) for k =1,2,...
Let gi be a Lipschitz extension of g|g, to all of R”. Then gy is differentiable a.e. and Dg;, = Dy
almost everywhere in Ej,. Since f|s; is bi-Lipschitz, the preimage (f ]Sj)_l of the set of points in Fj,
where g is not differentiable has measure zero. This and the classical chain rule for differentiable
functions imply that go f = g o f; in Z;, and

D(gi o fi)(x) = Dgi(fi(x))D fi(x) = Dg(f(x))Df(x) a.e. in Zj.

Since gy, o f; is Lipschitz continuous and it coincides with go f in Zj;, it follows that D(gy o f;) =
D(g o f) almost everywhere in Zj;. O

As an immediate corollary we obtain the following result that will be used in the proof of
Theorem 5, see also |9, Theorem 1.1 and 1.3|, [12, Lemma 2.1|, [21].

Corollary 15. Assume that Q@ C R" is a domain and f € Wﬁ)’cl(ﬂ, R™) is a homeomorphism such
that =1 € Wbl (£(Q),R™). Then

(4) (Df(2))~" = DfH(f(x))

almost everywhere in the set where Jy # 0.

In particular, Corollary 15 applies to homeomorphisms described in Theorem 5.

Corollary 16. Let U C R" be open and let f € VVli’Cl(U, R™) be continuous. If a compact set
K Cc{xz € U: Jg(x)# 0} has positive measure, then the set f(K) has positive measure.

Remark 17. In general, continuous mappings (even homeomorphisms) may map measurable sets
to non-measurable sets. This is why we assume that K is compact to guarantee measurability of
the set f(K).

Proof. This is a corollary of the proof of Lemma 13 and we assume the same notation as in the
proof of Lemma 13. In particular we assume that the sets W; and S; are defined in the same way.

Let K Cc {x € U: Jg(x) # 0} be compact and of positive measure. Since f is continuous, f(K)
is compact and hence measurable. One of the sets K N {J; > 0} or K N {J; < 0} has positive
measure. Without loss of generality we may assume that the set K N {J; > 0} has positive
measure.

The sets W; constructed in the proof of Lemma 13 cover almost all points of the set {J; > 0}
so |[KNW;| > 0 for some 4. Since W; is the union of sets S;, |[KN.S;| > 0 for some j. The mapping
fls; is bi-Lipschitz and it follows that f(K N .S;) is measurable and of positive measure. Hence
also f(K) has positive measure. O
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2.2. Blow-up technique. In this section we describe a blow-up technique (Lemma 21) that is
often used in the study of partial differential equations. This technique has also been used in [24].
Later, we generalize the blow-up technique to a simultaneous blow-up for a homeomorphism and
its inverse, Lemma 25. This result will be used in the proof of Theorem 5.

Allresults of this section are local in nature, so they are true for functions and mappings defined
on domains in R™ and not necessarily on all of R™. However, for simplicity of notation we decided
to formulate the results on R™.

We will need the following two classical lemmata, the first of which is due to Lebesgue.

Lemma 18 (The Lebesgue Differentiation Theorem). If f € L}, (R™), 1 < p < oo, then

(5) ][ |f(y) — f(z)|Pdy =0 for a.e. x € R™.
B (z,r)

The points = € R™ where (5) holds true are called p-Lebesque points of f.

The second, due to Calderon and Zygmund, [7, Theorem 12|, is also an immediate consequence
of [10, Theorem 6.2].

Lemma 19. If f € VVli)’f(R"), 1 <p< oo, then
(©) fy) = f@) = Df()-(y—=)|"  rs0

dy —— 0 for a.e. x € R".
T

B (x,r)

Note that the above lemmata immediately generalize to the case of vector valued functions
few Lp (R" R¥), since it suffices to apply them to components of f. In particular we have that

loc

if f € WP(R",R*), then
") £ D) - Di@Iy =50 forac. v e R
B (x,r)

Definition 20. Let f € W, ’p(Rn R¥), 1 < p < co. We say that z € R" is a p-good point for f if
both of the integrals (6) and (7) converge to zero.

Clearly, almost all points of R" are p-good points for f € VVI})CI’

The basic blow-up technique is described by the following lemma. It allows us to regard f
almost as a linear map near any p-good point.

Lemma 21. Let f € Wli’f(R”,]Rk), For a p-good point x, € R™ and r > 0 we define

fr(x) = fl@o + Ti) — f(zo) and  fo(z) = Df(z,)z.

Then f, converges to the linear map fo in the norm of WHP(B" R¥) asr — 0, where B" = B™(0, 1)
15 the unit ball.

Proof. Let z, € R™ be a p-good point for f. Note that D fo(x) = Df(z,). We have
_ — Ay — p
][| Jo(2) = fole)lP do = ][ ‘f(y) Flwo) = Diwo) - (y =) "\

r
B (xo,7)
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as r — 0, and

][ |D fr(x) — D fo(x)|P doe = ][ |IDf(y) — Df(zo)Pdy — 0 asr — 0.
Bn

B (zo,r)

O

The rest of the section is devoted to a simultaneous blow-up for a homomorphism and its
inverse.

Lemma 22. Let f € Wl’p(R",R"), 1 < p < oo, be a homeomorphism such that f~' €

loc

WLIR™ R™), 1 < ¢ < co. Then almost all points of the set {x € R™ : Jg(x) # 0} have the

loc
following three properties satisfied simultaneously

(a) x is a p-good point for f,
(b) f(x) is a q-good point for f~1,
(c) (Df(x))~" = (Df) " (f()).

Proof. A homeomorphic image of a Lebesgue measurable set need not be measurable, but a
homeomorphic image of a Borel set is Borel, so we need to work with Borel sets.

Let A C R™ be a Borel set of g-good points for f~! such that |R™ \ A| = 0. Then f~1(4) is
Borel and hence measurable. Almost all points of the set {Jf # 0} N f~1(A) have properties (a)
and (b) and in order to show that almost all points of the set {J; # 0} have properties (a) and
(b) it suffices to show that the set

X ={zeR": Jy(x)#0}\ f (A

has measure zero. Suppose to the contrary that | X| > 0. Let K C X be a compact set of positive
measure. Then f(K) C R™\ A, and according to Corollary 16, f(K) has positive measure. This
is, however, impossible, since R™ \ A has measure zero.

We proved that almost all points of the set {J¢ # 0} have properties (a) and (b). Now it
follows from Corollary 15 that almost all points of the set {J; # 0} have all three properties (a),
(b) and (c). O

The next lemma is easy to prove.

Lemma 23. Let f be as in Lemma 22 and let A € GL(n) be a non-degenerate linear transforma-
tion on R™. If a point x, € {Jy # 0} satisfies conditions (a), (b) and (c), then x, also satisfies
conditions (a), (b), (c) for a homeomorphism g = Ao f.

Remark 24. Whether a point z, satisfies conditions (a), (b) and (¢) for the mapping f depends
on the choice of representatives of Df and Df~!. More precisely, it depends on how the values
of Df(x,) and Df~!(f(x,)) are defined. However, we proved that no matter how we choose
representatives of Df and Df~!, almost all points will satisfy (a), (b), (c). If a point z, satisfies
conditions (a), (b) and (c) for the mapping f, then we will prove that z, satisfies the same
conditions for g, provided the representatives of Dg and Dg~' are such that

Dg(xo) - ADf($0)7 Dgil(g(wo)) = Dfil(f(wo))Aia

but we can make a choice of such representatives without any harm being done.
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Sketch of a proof. The proof that x, is good for g is straightforward. The proof that it is also
good for g1 = f~1o A~! follows from the change of variables ®(y) = A~!(y). Then the averages
over the balls will became averages over scaled and translated ellipsoids A~'B" and it remains to
observe (a well known fact) that if averages at (6) and (7) (for g~! in place of f) over the balls
B" converge to zero, then also the averages over the ellipsoids A~'B"(g(x,),r) converge to zero.
Indeed, the average over an ellipsoid can be estimated from above by the average over a larger ball
that contains A~!B"(g(x,),r), with a uniform constant that does not depend on the diameter of
the ellipsoid. Finally the condition (c) for ¢ = A o f is a consequence of linear algebra and the
choice of representatives of Dg and Dg~! (see Remark 24). We leave details to the reader. 0

Let f and z, are as in Lemma 23. If J¢(z,) > 0 and A = Df(x,)"', then

Dg(z,) = Dg_l(g(xo)) =1Id.
If Jr(z,) <0 and A =RDf(x,)"", where

10 0 O

01 ...0 0
R = Diag(1,1,...,1,-1)=1]: + ..+ [,

0 0 . 1 0

0 0 . 0 -1

then
D9($o) = Dg_l(g(l‘o)) =R,
because R = R~1.

In both cases the linear transformation A has positive determinant.

The next lemma describes the simultaneous blow-up in the case of negative Jacobian. This
is what we will need in the proof of Theorem 5. In the case of positive Jacobian one can easily
formulate a similar result with R replaced by Id.

Lemma 25. Let f € VV;’?(R”,R”), 1 < p < oo, be a homeomorphism such that f~' €
WEYR™ R™), 1 < q < oo. Then for almost every point z, of the set {x € R" : J¢(x) <0}, there

loc
s a linear transformation A with positive determinant such that the homeomorphism g = Ao f

satisfies
1 —_ = | -1 —_ n mn)y =
Tg%{r lgr — Rllwrmn gn) Tlgé{r I(gr) Rllwa@nrn) =0,

where
gr(x):g($0+rx)7g(x0)7 7'>0
r

Proof. Almost every point of the set {Jy < 0} satisfies conditions (a), (b) and (c) of Lemma 22
for f. Fix such a point x,. Then, by Lemma 23, z, satisfies conditions (a), (b) and (c) for
g= Ao f. Choosing A = R(Df(x,))~!, we have that
Dg(z,) = Dgil(g(l’o)) =R.
Since J¢(x,) < 0, it follows that det A > 0. We identify R with the linear transformation z — Raz.
Since x, is a p-good point for g and g(z,) is a g-good point for g=!, Lemma 21 implies that
. RT -1 o
Tl_lgl+ lgr — RHWLP(Bn,Rn) = rl_li%h (g )r — R”leq(B”,R”) =0,
1

where (g7!), is the blow up of ¢! at g(x,). It remains to observe that (g7 !), = (g,,)~!, which
easily follows from the definitions. O
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2.3. Fubini’s theorem for Sobolev spaces. The fact that almost all slices f,, f; ; in the lemma
below belong to the Sobolev space WP is well known. It is often called Fubini’s theorem for
Sobolev spaces. On the other hand, facts (8) and (9) are not so well known.

Lemma 26. Let f, f; € Wl’p((O, 1)”), 1 <p<oo, with f; — f asi — co. Denote the points of
the cube (0,1)™ by

(z,9) € (0,1)"" x (0,1)" = (0,1)"
and define
Then for almost all x € (0,1)"~ 12 we have fx, fw € Wl’p((O 1) ) and there is a subsequence f;
such that for almost all z € (0,1)"~¢

(8) i | fi; 0 = fallwro(o,)) = 0-

j—00
Moreover, for any e > 0, there is a compact set K C (0,1)"* such that |(0,1)"~“\ K| < & and
9) Jim sup [Ifij.0 = fellwre(o,ny =0

Proof. The fact that f, € W'P((0,1)%) for almost all z € (0,1)"¢ is an easy consequence
of the classical Fubini theorem applied to a sequence of smooth functions approximating f in
T/Vl’p((O7 1)") We leave details to the reader. Similarly, we prove that for every i € N, f;, €
Wl’p(((), 1)5) for almost all 2 € (0,1)"~¢. Since we have countably many functions f, fi, i € N,

there is a set A C (0,1)"~ of full measure such that f,, fiz € WP for all z € A and all i € N.
We have

Hfi_fH?;le(on ny =
/ / filary) — f(@ )P + |Dfile.y) — Df(a,y)P dyda

(0,1)7=¢ (0,1)¢
= / | fie — fx||W1p )dm—>0 as i — oo.
o0 Fi(w)

In other words, F; — 0in L'((0,1)"*). Therefore, there is a subsequence F;, such that Fj, (z) — 0
for almost all = € (0,1)"~¢, which is (8). Moreover, according to Egoroff’s theorem [10, Theo-
rem 1.16], for any £ > 0 there is a compact set K C (0,1)"¢ such that |(0,1)"~*\ K| < ¢ and
F;; — 0 uniformly on K, which is (9). O

The above result allows for a lot of flexibility and instead of applying Fubini’s theorem to the
products of cubes, we can apply it for example to B" ¢ x S, as described in the next result.

Lemma 27. Let f., fo € W'P(B" ¢ x S, R?), 1 < p < 00, 0 < r < 79, be a family of mappings
such that f, — fo in WP asr — 0. If r; \ 0 is a sequence decreasing to zero, then there is a
subsequence r;; such that f; = fnj satisfies:

For almost all x € B¢

Filtmyxse = folimyxse  in WHP({z} x S) as j — oo,

and for any € > 0 there is a compact subset of the unit ball K C B"¢ such that [B"*\ K| < ¢
and

sup || fj = follwir(fayxsey = 0 as j — oo
zeK
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2.4. Traces and extensions. The following lemma is known, but not very well known.

Proposition 28. Forn > 1 and p > 1, there is a bounded linear extension operator
1
E:WH(R™) — W N ORI, where g = M

1
In other words, WYP(R™) continuously embeds into the trace space W~ a(R") of WwhaRH.
Corollary 29. For n > 2, there is a bounded linear extension operator
E: WY R™) — W0 C(RT).

In other words, WI™(R") continuously embeds into the trace space Wl_%ﬂ’nH(R”) of
Wl,n-f—l(RnJrl)

.
Remark 30. Corollary 29 fails when n = 1, see [2], |29, Exercise 14.36] and |39, Proposition 4].

Remark 31. Proposition 28 was proved in [2]. It also follows from Theorem 14.32, Remark 14.35
and Proposition 14.40 in [29] (first edition). Corollary 29 was also proved in [15, Lemma 14]
as a consequence of Theorem 2.5.6, Theorem 2.7.1, Proposition 2.3.2.2(8), Theorem 2.5.7 and
2.5.7(9) in [41]. All of the arguments listed here are difficult. Below we present an elementary
and unpublished proof of Proposition 28 due to Jan Maly.

Proof (due to Jan Maly). In the proof we need the following result.
Lemma 32. If F € L}OC(R’JFH), felP(R"),p>1,n>1, and

(10) Pt <C { 1Wldy for (5.0) € B x 0,00 = B3,
B (x,t)

then

n+1)p
HFHLq(RTrl) < CHf”Lp(Rn), where ¢ = u

Proof. Since the right-hand side of (10) is bounded, up to the constant C', by the maximal function
M f(x), we have

(11) /\F(w,t)\th < Cr(Mf)4xz) forr>0.
0
On the other hand, the inequality
1/p
Faol<c| f ltwra| <ci,
Bn(x,t)
yields
(12) /|F(:L“,t)\th < C’Hngrl_% =C|flfr—™ for r > 0.

We used here the fact that
n
e n+1>1.
p
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Now if we choose r > 0 such that

M)A (z) = fllgr™, ie, r= (/\%) ’

then the right-hand sides of (11) and (12) are equal to C'||f||p/n(/\/lf(:c))p. Adding integrals at
(11) and (12) yields

/IF(M)qut < CIIf IR (M ()"

and Fubini’s theorem along with boundedness of the maximal operator in LP, p > 1, give

/ |[F(a,0)|"dtdz < C|FIB™ I fIE = CILfIg.

n+1
R+

Now we can complete the proof of Proposition 28.
Let ¢ € Cg°(B"), ¢ >0, [go o(x)dx =1, and ¢y (z) =t "p(x/t).
For f € L{ (R") we define

(Ef)(z,t) = (f * @)z /fx—ty y)dy, (z,t) € RV

Clearly, properties of the convolution guarantee that EFf € COO(]R’}FH) and a simple change of
variables yields

(Ef) ()] = / fW)ouz - y) dy scf £l dy,
Bn(x,t) B (x,t)

where the constant C' depends on ¢ only. Therefore, if f € LP(R™), Lemma 32 gives the estimate

(13) 1Bl pagarsy < ClFllncan.

Assume now that u € WHP(R"). We have

(14) V(B8] = [V (Bu)(. 0] <€ [Vuly)]dy
B (x,t)

Indeed,

IV (Bu) (2, 1)] = / (Va)(z — ty)p(y) dy| < C ][ Vuly)| dy.
Bn B (x,t)
and

0
S E0E| = | [0 Coemd < f IVl
Bn B (2,¢)
because | — y| < 1 for y € B". Now (14) and Lemma 32 imply that

IV(EW)| g1y < ClIVullon).

This estimate and (13) for f = u complete the proof. O
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A localized version of Corollary 29 gives the following result:

Lemma 33. Let n > 2. Then there is an extension operator

E:Wh(9(S" x [0,1])) = Wh T n (S x (0,1))
such that if h = fo on S™ x {0} and h = f1 on S™ x {1}, then traces (in the Sobolev sense) satisfy
Tr Eh(-,0) = fo, Tt ER(-,1) = f1, and

| ER|lwint1snx0,1y) < C0) ([ follwrnsny + | fillwinsny) -

The next result seems new. Its proof uses some ideas from the proof of [19, Proposition 3.3].
Proposition 34. Letn > 2, m > n+ 1 and let f € Wm0 COS*,R™), g € C(S*,R™).
Then there is a function H € CO(S™ x [0,1],R™) N C*°(S"™ x [0,1)) such that H(x,0) = g(z),
H(z,1) = f(z) and

HHHH(S™ % [0,1))) < ClLf = gllwingny (1f = gllwrnggn) + [1Dgllntrsny)™
where the constant C' depends on n and m only and H" ' denotes the Hausdorff measure.

Remark 35. Fix g € C®°(S",R™). Let f, fr € WH N C°(S",R™) and let H, H;, be the homo-
topies for f and fi constructed as in Proposition 34. If fy — f uniformly on S™ as k — oo (we
do not require convergence in the Sobolev norm), then Hy — H uniformly on S™ x [0, 1]. Indeed,
the homotopies are defined by the formula (16) and the extension operator Eh is defined through
the averaging and multiplication by a cut-off function, and such a construction is continuous in
the uniform norm.

Remark 36. The proposition has a clear geometric interpretation. The image of a continuous
mapping f € W™ N C%(S",R™) can be very large. It can even fill a ball in R™. However, if
f is very close in the W™ norm to a fixed smooth map g, then there is a homotopy between f
and g such that the H"*!-volume of the image of the homotopy, except the endpoint where the
homotopy equals f, is very small. We hope that this result might be useful for other applications.

In the proof we will need the following estimate.

Lemma 37. If A and B are two n X n-matrices, then
(15) |det(A + B)| < C(n)(|A]" + [B["),

where | - | stands for the Hilbert-Schmidt norm of a matriz.
Proof. Since the determinant is continuous and homogeneous of order n, we immediately get that

)

Then (15) follows from the triangle inequality and the standard convexity estimate (a + b)" <
2" 1(a" + ") for a,b > 0. O

| det A| = |A" < A|A",  where A =sup{|det M|: |M|<1}.

Proof of Proposition 34. Let

) f—g onS"x({1},
he) = {0 on S x {0},

and define
(16) H(z,t) = (Eh)(z,t) + g(x) for (x,t) € S" x [0, 1],
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where F is the extension operator from Lemma 33. Since the extension Eh is continuous (smooth)
up to the boundary if the function on the boundary is continuous (smooth), we conclude that

H € C%S™ x [0,1],R™) N C>®(S™ x [0,1)) and H(z,0) = g(z), H(z,1) = f(x).

According to the area formula [10] we have that
1
(17) HFLH(S™ x [0,1))) = / / it (w.t) do(z) dt,

0 s»

where

Jir(x,t) = \/det (DH)T(DH)).
Denote the derivative in S x [0,1] by D = (D, 9;), where D, is the derivative on S". Then
DH(J}, t) = (Da:(Eh) + D,g, at(Eh))

The Cauchy-Binet formula [10, Sect. 3.2.1, Theorem 4|, the Laplace expansion along the last
column (9;(Eh))r, and Lemma 37 yield the following estimate, where the sum is taken over all
I = (’L'l,...,inJrl), 1< <ol <y <

I = \/Z (det (Do) + (Dag)r. (@(ER)1))” < ClaER)|(ID(ER|" + | Dag]")
I

Therefore (17) gives

%n+1(H(Sn x [0,1))) < CHEhHTVL{/J'rSnH(SnX(OJ))

1 o/ 1 T
vel [ [t (] [aenr
0 sn 0 sn
< CHf_gH%%n(gn) + HD9H1£"+1(S")HJC_gHle”(S”)'
O

2.5. The local degree and the linking number. To keep the paper self contained, we present
here a short introduction to the theory of local degree. The standard references are the books of
Fonseca and Gangbo [11] and Outerelo and Ruiz [35]. Then, at the end of the section, we discuss
the linking number.

Throughout this section, we assume that 2 C R" is a domain. By C1(©,R") we denote the
set of all these mappings from Q to R™ which admit an extension to a C' mapping on some open

U>DQ.
We begin by defining the local degree for C'' mappings at their regular values.

Definition 38 (|11, Definition 1.2]). Assume ¢ € C*(Q,R"). Let p € R" be a regular value of ¢
and p & ¢(0€2). We define the local degree of ¢ at p with respect to €2 as

deg(s, 2p) = D sgnJy(x).

z€p~1(p)

Moreover, if p € ¢(2), we set deg(¢,Q,p) = 0.

It turns out that deg(¢,€?,-) is constant on connected components of R™ \ ¢(9f2).
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Proposition 39 (|11, Proposition 1.8]). Let V' be a connected component of R™ \ ¢(9) and
assume p1,p2 € V' are reqular values of ¢. Then deg(¢p, Q, p1) = deg(o, 2, p2).

Proposition 39 allows us to define the local degree also at critical points of ¢, as long as they
are not in the image of 0.

Definition 40 ([11, Definition 1.9]). Assume Q and ¢ are as in Definition 38 and let p € ¢(2) \
#(0R) be a critical value of ¢. Let p; be any regular value of ¢ such that p and p; lie in the same
connected component of R\ 9Q2. We set deg(¢, 2, p) = deg(¢, 2, p1).

Note that by Sard’s Lemma such p; always exists; Proposition 39 shows that the above definition
does not depend on the choice of p;.

The local degree is a C'! homotopy invariant:

Proposition 41 ([11, Theorem 1.12]). If H : 2x[0,1] — R™ is a C! mapping such that H(-,0) =
¢(-), H(-,1) =¢(-) and p ¢ H(0Q x [0,1]), then deg(¢,,p) = deg(y, 2, p).

Proposition 41 allows us to extend the notion of local degree to continuous mappings:

Definition 42 ([11, Definition 1.18]). If ¢ € C(Q,R") and p &€ ¢(99Q), we set deg(¢p,Q,p) =
deg(v, 2, p), where v is any mapping in C*(£2, R™) such that sup, g |¢(z)—v(z)| < dist(p, $(092)).

One easily checks that the above definition is independent on the choice of ¢: if we choose
Y1, 2 € CH(Q,R™) satisfying sup, g |¢(x) — ¢i(x)| < dist(p, 9(09)), i = 1,2, then p & H(9Q x
[0,1]), where H is the standard homotopy between ¢; and 9, H(x,t) = (1 — t)y1(z) + tie(z),
and thus, by Proposition 41, the local degrees of 11 and 1o at p are the same.

Remark 43. In fact, a standard smoothing argument shows that the local degree for continuous
maps at a point p, given by the above definition, is a homotopy invariant (without the C'* assump-
tion), as long as the homotopy H does not map any points of 92 into p, i.e. p € H(09 x [0, 1]).

We shall need the following deep facts on the local degree.

Proposition 44 (Multiplication theorem, [11, Theorem 2.10|). Assume Q C R™ is a domain,
¢ € C(Q,R"), V CR" is a domain containing $() and p € C(V,R"™). Let D =V \ ¢(99) and
denote by D; the connected components of D. Then for any p & (v o ¢)(9Q) U (9V) we have
p € ¥(0D;), and the following formula holds:

(18) deg(v 0 ¢, Q,p) = Y _ deg(¢h, Dy, p) deg(¢, 2, ¢;)

for arbitrary q; € D;.

Proposition 45. If ¢ and ¢ are as in Proposition 44 and additionally v and ¢ are homeomor-
phisms, then

a) for any p & (1 0 ¢)(092) U(9V)
(19) deg( 0 6,2, p) = deg(¥, (), p) deg(¢, 2,4 (p)),
b) for every q € ¢(2) we have either
deg(¢7 Q,q9) = deg(¢_l7 ¢(Q)a ¢_1(Q>) =1

deg(¢,Q,q) = deg(¢™',6(Q2),67 ' (q)) = —1.
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Proof. If p & ¥(¢(22)), then both sides of (19) are zero. Assume thus p € ¥ (¢(2)).

By Brouwer’s Invariance of Domain Theorem [11, Theorem 3.30], ¢(9€2) = 0¢(€2) and there
is only one component D; of V' \ ¢(99Q) such that ¢(D;) contains p, namely D; = ¢(Q2), thus
all the terms of the sum in (18) are zero, except the one with D; = ¢(€2). Also, we may choose
¢; = ¥~ (p), which gives (19).

To prove b), take any domain €' such that ¢ € ¢(€') and €' C Q. Applying a) to ¢|g, : ' — R”
and ¥ = ¢~ 1 : ¢(Q) — R, we see that
1= deg(Id, ', ¢ (q)) = deg(¢™", p(), 6" () deg(¢, €Y, q),

Y
thus deg(¢, ', q) = deg(¢~ 1, (), 1 (q)) = £1. What remains to prove is that deg(¢, (', q) =

deg(¢,Q,q) and deg(¢™', (), 07 (¢q)) = deg(¢p™",0(2),97'(q)). Let ¢ € C'(Q,R") be such
that

sup |¢ — ¢| < dist(q, 9(9')) < dist(q, $(09)).
Q
Then, by Definition 42, deg(¢, 2, q) = deg(¢, 2, q) and deg(¢, Y, q) = deg(¢, ', q). However, for
any z € Q\ @,

C(2) = ql = |g = ¢(2)| = 6(2) = ((2)| > dist(q, $(9€)) — dist(q, p(02)) = 0,

thus ¢ € ¢(Q2\ Q) and applying Definition 38 we see that deg({, 2, ¢) = deg((, ', q). Calculations
for ¢! follow the same steps. This concludes the proof of b). O

A homeomorphism A : Q — R™ with degree +1 at all its values is called sense- or orientation-
preserving; if the degree is —1 at all values, we call it sense-reversing.

As an immediate corollary of Proposition 45, b) and Proposition 39, we obtain that every
homeomorphism of a domain is either sense-preserving or sense-reversing.

Corollary 46 (c.f. [11, Theorem 3.35]). Assume Q C R" is open and connected and h : Q — R™ is
a homeomorphism. Then either for every p € h(Q) we have deg(h,Q,p) =1 or for every p € h(Q)
we have deg(h,Q,p) = —1.

Corollary 47. If h: Q — R™ is a sense-preserving (reversing) homeomorphism and Q' C ), then
hlg : ¥ — R™ is also sense-preserving (reversing).

This is a corollary from the proof of Proposition 45, where we showed in the last step that
deg(¢, 2, q) = deg(¢, ', q).

The terms sense-preserving and sense-reversing are justified by the following fact.

Proposition 48. Assume Q@ C R" is a domain, ¢ € C(Q,R") and h: U — R™ is a homeomor-
phism of a domain U D ¢(2).

o If h is sense-preserving, then for every p € U \ ¢(92) we have
deg(¢, 2, p) = deg(h 0 ¢, 9, h(p)).

o If h is sense-reversing, then for every p € U \ ¢(92) we have
deg(¢, €2, p) = —deg(h o ¢, h(p)).
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Proof. Assume h is sense-preserving and apply Proposition 44 to ho ¢: let D = U \ ¢(02) and
denote by D; the connected components of D. Then p € D; for exactly one j € N and we have
for any ¢; € D;, i # j,

i#]
= deg(¢7 Q7p)7
because deg(h, Dj, h(p)) = +1, while deg(h, D;, h(p)) = 0 for i # j, since h(p) & h(D;).

The case of sense-reversing h is proved in exactly the same way. O

Definition 49. If M and N are compact, connected, oriented, smooth n-dimensional manifolds
without boundary and ¢ : M — N is C'°° smooth, then we define

deg(p,y) = > sgnJy(a),
z€¢™1(y)

where y € N is a regular value of ¢, and Jy(x) is the determinant of the derivative D¢(x) :
TyM — Ty N. Tt turns out that deg(¢,y) does not depend on the choice of a regular value y.
The common value of all deg(¢,y) is denoted by deg ¢ and is called the degree of ¢.

One can prove that homotopic mappings have equal degrees. Since every continuous mapping
is homotopic to a smooth one, one can extend the notion of degree to the class of all continuous
mappings ¢ : M — N. For more details, see [32].

The following result relates the local degree of ¢ with the topological degree of ¢ restricted to
the boundary.

Proposition 50 ([35, Proposition 1V.4.6]). Let 92 be a connected, compact and smooth manifold
oriented by the outward normal vector (|35, Section 11.7.7]) and assume ¢ € C(Q,R™) is such that
Qﬁ’aQ : 00 — S L. Then

deg ¢lan = deg(o, 2,0).

Our main purpose for introducing the local degree is to justify the properties of yet another
invariant, the linking number.

The linking number is an important and well studied invariant in the theory of knots. It was
introduced by Gauss in a short note of 1833 [13] (see also [38| for a nice historical account and
modern interpretation): if 41, 72 are two parameterized, non-intersecting, oriented curves in R3,
71, Y2 : St — R3, then the linking number £(1,72) is defined (in modern notation) as the integral

0 o=k [ SOUDTOND )

dm 7 (s) — @)
SixSt

The Gauss map for 1, 72 is defined as

(21) Sl % Sl 5 (S,t) \ Y ’71(3) — 72(75) c SQ.

[71(s) = 72(t)]
It turns out (see e.g. [38]) that the linking number given by (20) is equal to the degree of the
Gauss map: £(v1,72) = deg(®). In colloquial terms, the linking number tells us how many times
(counting directions) one curve winds around the other.

These definitions have been later generalized to pairs of non-intersecting manifolds in higher
dimensions (see the paper by M. Kervaire, [28], who attributes the idea to A. Shapiro). Here, we
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shall restrict ourselves to the case when the manifolds in question are two oriented spheres S*, S,
where k£ + 1 = n — 1, continuously embedded in R™ in such a way that the embedded spheres do
not intersect. Then, if we denote the embeddings as before, in the case of curves, by 71 : S¥ — R”
and 72 : S' — R™, we can define the Gauss map of the two embeddings by the formula (21), (this
time, however, 1 : S¥ x S — S*™1), and the linking number of the two embedded (oriented)
spheres, identified here with the embedding maps 1 and 79, is defined again as ¢(y1,v2) = deg ).

More generally, we can define, by the same formula, the linking number ¢(71,2) between any
two continuous maps y; : S¥ — R™ and v : S' — R”, k+1 = n — 1, provided 71 (S*) N2 (S!) = 2.

The linking number is a homotopy invariant in the sense that if v1,7; : S¥ — R™ \ 75(S!) are
two mappings of S¥, which are homotopic in R™ \ ~2(S!) (i.e. neither the two images v1(S¥),
71(S*), nor the image of the homotopy between them intersects vo(S')), then £(v1,v2) = £(31, 72).
Indeed, if T' : S¥ x [0,1] — R™ is the homotopy between 7; and 71, the image of which is disjoint
with the image of yo, then W : S¥ x S! x [0,1] — S™ given by the formula

v I'(s,r) —7(t)
(87 = T = (0]

is a homotopy between

s, t) —2(s, ) and O(s. ) = Y1(s,t) — y2(s,t)
L oYy p R SR Rl Y Py g

and thus the linking numbers £(vy1,7v2) = degv and £(71,72) = degzﬁ are the same.

The following known invariance result is very hard to find in the literature, thus we present the
proof here (essentially the same argument, in a less general situation, was given in [24]).

Proposition 51. Assume k+1=mn—1 and let y1 : S* — R™ and 7o : S — R™ be continuous
maps such that v1(SF) Nyo(S') = @. Let h: R® — R™ be a homeomorphism. Then

e if h is sense-preserving, then £(ho~yi,ho~yy) = €(v1,72);
e if h is sense-reversing, then £(ho~i,ho~yy) = —l(y1,72).

Proof. We begin by fixing some notation. Let ; € C(B¥*!,R") be any extension of ~1, i.e.
logr+1 = 71. Let A = B*+1 x S! be a full torus, embedded smoothly in R” in a way that the
orientation of the boundary of embedded A by the outward normal vector is consistent with the
orientation of S¥ x S!, and define F : A — R™, F(z,y) = 71(z) — Y2(y).

In the proof, we shall need a simple lemma, connecting the linking number with the degree of
the non-normalized Gauss map F'.

Lemma 52. With the above notation,
U(y1,72) = deg(F, A,0).

Proof of Lemma 52. The claim would follow from Proposition 50, if F mapped 0A to S*~!,
not to R™ (because F' = ;3 — 72 on 0A). Note, however, that F(0A) C R™\ {0}. Set
d = dist(y1(S¥), %2(S)) = dist(F(0A),0), and take ¢ : [0,00) — [0,00) to be a smooth, posi-

tive function such that
1 for s <d/2,
Pls) = {3 for s > d.

Then
z

hi(z) = PO t€[0,1],
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is a homotopy connecting Id : R” — R™ with a mapping which is identity on B"(0,d/2) and a
projection z — z/|z| outside B"(0,d). Obviously, 0 & (h; o F')(0A) for any t € [0, 1], thus

deg(F, A,0) = deg(hg o F, A,0) = deg(h1 o F, A,0).
However,

is the Gauss map whose degree, by definition, equals ¢(71,72). Thus Proposition 50 yields
£(71>'72) = deg(hl 0 F)‘aA = deg(hl oF, A70) = deg(FvAa 0)'
[l

Assume now h is sense-preserving (the case of h sense-reversing is treated in the same way).
Let Gy : A x [0, 1] — R™,

Gi(z,y) = h(tn(x)) — h(r2(y) — (1 = )7 (2)).
Then Gi(z,y) = (ho¥1)(x) — (hov2)(y), thus by Lemma 52 applied to ho~; and ho~s in place
of v1 and 72,
{(h o, hony) =deg(Gy, A,0).
We have

Gole.y) = h(0) — h(xa(y) — T1(2)) = h(0) — h(~F(z,y)) = h(0) + (~1d) 0 h o (~1d) o F(z,y).

Note also that G¢(z,y) = 0 if and only if 41 (x) = ~2(y), which is not possible if (x,y) € A, thus
0 ¢ Gi(0A) for any t € [0, 1], and Remark 43 yields

£<h °71, ho fYQ) = deg(Gla A7O) = deg(G07A7 0)
= deg(h(0) + (=Id) o ho (=Id) o F, A,0)
= deg(Fa A7O) = £(71772)7

because z — h(0) 4+ (—Id) o ho (—Id)(z) is a sense-preserving homeomorphism of R™ which maps
0 to 0 and we can apply Proposition 48.

g

3. PROOFS OF THEOREMS 1 AND 2

For n = 1, the claim of Theorem 1 is obvious: a sense-preserving homeomorphism of an open
subset of a real line is an increasing function, thus it is differentiable a.e. and its derivative is
non-negative. In dimension n = 2, every W1 homeomorphism is again a.e. differentiable (see
[31, 14]) and its weak Jacobian coincides with its classical one a.e. The sign of the latter reflects
whether the homeomorphism preserves or reverses the local orientation, and thus for a sense
preserving homeomorphism f we have Jy > 0 a.e.

Assume n > 3. To simplify the notation we shall write v = n — 1 — [n/2]. We will argue by
contradiction: assume that the set {J; < 0} has positive measure.

Pick a p-good point z, € {Jy < 0} for f (in the sense of Definition 20) and consider the blow-up
frof fat x,:
f(xo + T'.%') — f(xo)

r

fr(x) =
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According to Lemma 21, f, — fo in W'P(B",R") as r — 0, where fo(z) = Df(x,)z. Note that
fo is a linear, orientation reversing isomorphism.

We pick in B™ two solid tori, i.e. smooth embeddings ¢ : B2+ x S — B™ and 15 : B! x
Sin/2l — B", such that for any = € B2+ and y € B¥+! the embedded spheres S% = 11 ({x} x S¥)
and SL"/Q] = 15({y} x SI"?l) are linked, with linking number K(S;,SLH/Q]) = +1 (see the next
section for a particular construction).

By Lemma 27, we can choose a sequence 7; \, 0 and particular = € BI*/Z+1 and y € BV+!
such that f; = f,, converge to fo in W'? on S§ U SL”M. If n > 3, then p > [n/2] > v, and by
the Sobolev-Morrey embedding theorem f; converge to fo uniformly on S}, U Sén/ 2 Ifn=3and

p = 1, the Wh! convergence of f;, on the sum of circles S% U Sgn/ 2] implies uniform convergence
as well.

Since f; converge to fo uniformly on S} U Sg[,n/ 2], fj are homotopic to fy for j sufficiently large,
and the image of each sphere in that homotopy does not intersect the image of the other (the
image of S¥ in that homotopy stays in a small tubular neighborhood of f,(SY), and, similarly, the

image of Sgn/ 2l in that homotopy stays near fo(Sz[/n/ 2])). Thus
CU5(82), f3(SP™) = £ fo(8%), fo(S)7™)) = —(8%,85/%) = —1,

since fy is a linear, orientation reversing homeomorphism.

However, each fj, as a translation and rescaling of an orientation preserving homeomorphism
f, is again an orientation preserving homeomorphism, thus Proposition 51 yields

0(f5(85), £(S52) = €87, 87 = +1,
which gives the desired contradiction.

Remark 53. Note that the proofs of Theorems 1 and 2 required only a few results from Section 2,
namely Lemma 21, Lemma 27 and Proposition 50 (i.e. the whole Section 2.5). However, the proof
of Theorem 5 will require the whole content of Section 2, that is, in addition to results needed for
the proofs of Theorems 1 and 2, we will need Lemma 25 and Proposition 34.

4. PROOF OF THEOREM 5.

Throughout the proof, we shall assume that the assumption a) holds, i.e. f maps almost all
[n/2]-dimensional spheres into sets of [n/2] + 1 dimensional Hausdorff measure zero. The case
when b) holds is treated in the same way. We simply need to exchange f and f~! in the proof
below.

We argue by contradiction: assume that the set {J¢ < 0} has positive measure.

To simplify the notation we shall write v = n — 1 — [n/2]. According to a local version of
Lemma 25 for homeomorphisms on domains instead of R™, we can find x, and a linear transfor-
mation A € GL(n) with det A > 0 such that the sense preserving homeomorphism g = Ao f
satisfies

. T ~1 _
rﬂ%ﬁ lgr — RHWL[n/?](IB%n,]Rn) = Tl_lféﬂ 1(gr)™" — R”le”(B”,R”) =0.
Let By = B"/2+1 B, = B¥*! be closed unit balls. Note that the manifolds B; x S” and By x Si*/2

have dimension n. Let ¢1 : By x S¥ «— B™ and 9 : By X S*/2l <5 B" be smooth embeddings,
smooth up to the boundary. According to Lemma 27 applied to the family g, o 1o and then for
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the second time to the family (g,)~' o ¢, we can find a sequence r N\, 0 such that the mappings
gk = gr, satisfy:

There are compact sets K1 C B and Ko C Bo of positive measure such that

(22) lim sup ||(gx) tou —Ro tllwirqayxsy) =0
k—o00 pe Ky

and

23 li -R n 2y = 0.

(23) dim, sup gk © 12 = R o tallyyrim/a1(gy) stz

We shall define the embeddings ¢; and ts explicitly, to make sure that the embedded spheres
v({z} x $¥) and 15({y} x SI"/?]) are linked with the linking number 1.

o for z € By ¢ RIWA+! 5 e S§¥ ¢ R¥!, we set

5+ 11 5+x1  5+m ) $[n/2]+1)
0 b1 10 Y10 10 )
thus the image of 1 is the full torus with its core sphere lying in the hyperplane of the
first v + 1 coordinates,

o for y € By C R¥t! and p € SI/2 ¢ RV/A+H! we set

0 Yo 5+ Yvt1 I 54 yvp1 5+ Yut1
[’2(y7p) - (1077 107 10 P1 47 10 P2+, 10 p[n/ZH*l)’
thus the image of 1o is the full torus with its core sphere lying in the hyperplane of the

last [n/2] + 1 coordinates.

1(xz,0)=(

To simplify the notation, as in the previous section we shall write S¥ = ¢;({z} x S¥), Sz[,n/ 2=
eo({y} x S/A).

Since the assumption a) holds, i.e., f maps almost every sphere of dimension [n/2] to a set of
([n/2] 4+ 1)-Hausdorff measure zero, it easily follows that g, for every k, has the same property.

We may thus assume, possibly shrinking K, that for every y € Ky and any k the set gk(Sén/ 2])

has ([n/2] + 1)-Hausdorff measure zero. (Similarly, if b) holds, i.e., f~! maps almost every sphere
of dimension v to a set of (v 4+ 1)-Hausdorff measure zero, we can assume that for every z € K3
and any k the set g, *(S%) has (v + 1)-Hausdorff measure zero. )

The images of ¢; and ¢y are two full, disjoint, linked tori, and for each x € B; and y € By, S¥

and Sz[,n/ 2 are two linked spheres. We choose orientations of the spheres S¥ and S["/2l so that the
linking number equals

0(Sy, S = 0(ua] fayxsvs L2l gy wsina) = +1.
The first equality mans that for all x € B; and all y € By we equip S, and S?[Jn/ 2l with orientations
so that the diffeomorphisms
tleyxse {z} xS = 87 and ol gima t {y} ¥ s/l SZ[J"/Z]
are orientation preserving.

The linear transformation R is the reflection in the last coordinate. Since the spheres S[yn/ 2]
are centered at a point lying in R¥*! x {0}, the reflection R preserves the center and hence
R(S?[Jn/ 2]) = S[yn/ 2, However, the reflection R changes the orientation of the sphere Sén/ 2l More
precisely, the mapping

(24) R: SL”/Z] — SL"/z] has degree —1.
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By R(S[yn/ 2]) we denote the sphere SZ[,”/ 2 With the opposite orientation, so the mapping R : SLn/ 2
R(Sgn/ 2]) is orientation preserving. In particular, (24) implies that

(25) oSy, R(SIV) = —1.

On the other hand, the spheres SY are centered at points lying in {0} X R+ and the
last coordinate of the center is [, 941/10, where x = (21,..., %}, 2141), 50 R(Sy) = S% where
T = (T1,..., %2, —Tpy241). Also, the orientation of R(S}) is the same as that of S5. More
precisely, the mapping R : S% — S% is orientation preserving, so R(SY) denotes the sphere S¥
with the original orientation. In particular,

(26) ((R(SY), P2 = 0(S5, 7)) = +1.

By Proposition 34 and Remark 35, for each & € N we may define a continuous map
Hiyjp: Ky xS”x[0,1] = R"
such that for each z € Ky, Hy (x,-,-) is a homotopy between
Hyg(z,1) = g¢ ' o tlayxsy and  Hyg(x,-,0) = R ot gy usv-
Moreover, Proposition 34 along with (22) yields

sup H' T (Hy ({2} x S¥ x [0,1)) = 0 as k — oc.
€Ky

Therefore by taking a suitable subsequence of gk_1 (still denoted by glzl) we may require that

1
(27) sup H" M (Hyp({z} x S¥ x [0,1))) < o, for all k.
€K 2

Likewise, we define a continuous map
Hyy, s Ko x S 5 [0,1] — R®
such that for all y € Ky, Hai(y,-,-) is a homotopy between
Ho (Y, 1) = gr o talgyxsmrzn and  Hag(y, -, 0) = R ooy csmra-
Again, Proposition 34 along with (23) yields

su}() H["/Z}H(Hg,k({y} x S % 0,1)) = 0 as k — oo.
YEK2

Since for every y € Ko we have
MO (Hy g ({y} > ST 5 {1}) = HIVAH (g, (S)/7)) = 0,

by taking a suitable subsequence we may require that

(28) sup HV AT (Hy i ({y} x S % [0,1))) < ik for all k.
yeKo 2

Note that this is a stronger condition than (27) in the sense that now we have the estimate for
the whole interval [0, 1], while in (27) we only have the estimate for the interval [0, 1).

We prove the following;:

Lemma 54. For every y € Ko, for almost every x € K

(29) Fnen Vism  SUN Hyp({y} x S % [0,1)) = @.
Also, for every x € Ky, for almost every y € Ko
(30) Imen Yizm  SPYANHy ({2} x 87 x [0,1)) = 2.
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Proof of Lemma 54. We will only prove (29) since the proof of (30) follows from the same rea-
soning. Fix y € K3. We want to show that for almost all x € K7, (29) is satisfied.

We define a projection of the embedded full torus ¢1(B; x S¥) onto By by
m:1(Br x SY) — By, ((z,0)) = x.

It is easy to see that 7 is 10-Lipschitz and hence it increases the Hausdorff measure H[/2+1 of a
set at most by a constant factor C(n) = 10["/2+1, Let

Ti(y) = Hap({y} x S35 0,1]) N 11 (By x S7)

be a part of the image of the homotopy H» 1,(y, -, -) that is contained in the domain of the projection
m. Estimate (28) and the fact that 7 increases the Hausdorff measure by at most C'(n) imply

n/2+1 ( U W(Tk(y))) < Z Cn)27*=Cn)27™" -0 asm — oo,
k=m k=m

SO

A <ﬁ G w(Tk(y») =0.

m=1k=m

To complete the proof of (29) it suffices to show that (29) is satisfied by all

(31) zeKi\ () U @) = J ) EN\x(Tey).

m=1k=m m=1k=m
Note that if x € K; \ 7(Tk(y)), then
m(SE N Tk(y)) € w(S5) Na(Ti(y)) = {=} N7 (Tk(y) = 2,
S0
(32) 870 Ha({y} x S/2 % [0,1]) = S7 N Ti(y) = 2.
Therefore if = belongs to the set (31), then
Fmen Vism  © € K1\ 7(Tk(y)).
Since the condition x € Kj \ 7(T}(y)) implies (32), claim (29) follows.

To finish the proof of Theorem 5, we want to choose x € K; and y € K5 in such a way that

i) there exists m such that

o
sy J Hop({y} x SP2 < [0,1]) = &,
k=m
i.e., the sphere S avoids, for all sufficiently large k, the image of the homotopy
Hy g (y,-,-) oty joining gplgn/zr with Rlgp/al,
and simultaneously ’ !
ii) there exists m such that

siv2n (| Hig({z} xS x [0,1)) = 2,

k=m
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i.e., the sphere Sén/ 2 avoid, for all sufficiently large k, the image of the homotopy
Hip(x,-,-)o Ll_l joining gk_1|S; with R|sy, except possibly at the endpoint: we do not
rule out yet that SLH/Q] Ng, ' (SY) # @.

Assume we have chosen z and y satisfying conditions i) and ii) above. Then, for all sufficiently
large k, S¥ N gk(SL"/ 2]) = ¢, and since gk_1 is a homeomorphism, this immediately implies that
Sy[f/ 2N g;l(Sa’j) = . Therefore, for all sufficiently large k, the sphere Sg[Jn/ 2 avoids the image of
the whole homotopy joining g,;1|g; with R|sy, including the endpoint:

ii’) there exists m such that

.

s ) Hik({a} x 8% x [0,1])

k=m

Denote by A; C K x K the set of all (z,y) satisfying the condition i) above. By Lemma 54,
(29), for every y, € K3 the section A1 N{(x,y,) : a € K1} is of full measure, and thus, by Fubini’s
theorem, A; is of full measure in K7 x K5, provided that A; is a measurable set. Similarly, the
set Ag C K1 x K3 of these (z,y), which satisfy the condition ii), if measurable, is of full measure
in K1 x K5. We shall leave the issue of measurability of A; and A and address it at the end of
the proof. Since A; and As are of full measure, their intersection is not empty and we can find =
and y simultaneously satisfying the conditions i) and ii) and hence conditions i) and ii’).

In particular, there is x € K1, y € K9 and k € N such that

SY N Ha({y} x S x [0,1]) = SI2 0 Hy ({2} x S¥ x [0,1]) = 2.
We fix such a point (z,y) € K1 x K3 and we look at linking numbers of spheres and their images
in g, g,;l and R.

The mappings gk_llgg and R|sy are homotopic (with Hy (z,-,-)o Ll_l providing the homotopy),

and the image of the homotopy does not intersect Sgn/ 2l This and (26) yield
1= 682, S[172) = (R(S), S7) = tlgi (82, 51%)
and, since g is a sense preserving homeomorphism,

+1 = £(g;; 1 (SY), Sl = e(SY, gr(SIV2)).

Next, using the homotopy between R]S[n/z] and gk’S[n/% given by Hy (y,-,-) o LQ_I, we have
y Y

+1 = 0(SY, ge(Si/2)) = (s, R(SIMH)) = -1,

where the last equality follows from (25). This gives the desired contradiction and finishes the
proof, except for the set aside problem of measurability of the sets A1 and As.

Since the proof of measurability of both sets follows exactly the same scheme, we shall prove
only that A; is measurable.

If we write
Wi ={(2,y) € K1 x Ky = SYn Hy({y} x SP x [0,1]) = &},
then Ay = ;1 Nr,, Wk, thus to prove measurability of Ay, it suffices to prove it for W.

Let
Fr = (11, Hap): K1 x ¥ x Ky x S % [0,1] = R® x R"
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and denote by A = {(z,z) : x € R"} the diagonal in R™ x R™. Then, since F} is continuous,
K1 x S” x Ky x SI"/2) x [0,1] is compact and A is closed, the set F, *(A) C R>"*! is compact.
Let now

IT: Ky x S” x Ky x S % [0,1] = K x K»

be the projection on the first and third factors. The set II(F 1(A)) is a compact subset of
Kq x Ky9. We have

(z,y) € TI(F, ' (A))
& there exist 0 € S, p € S[”/Q}, t €[0,1] with (z,0,y,p,t) € Fk_l(A)
(33) & Jopt Fi(z,0,y,pt) € A
© Jopr iz, 0) = Hak(y,p,t)
& 870 Ha({y} % S7/2 x [0,1) £ 2,

which shows that Wy, = (K71 x K2) \ II(F, '(A)), and that W}, is an open (and thus measurable)
subset of K7 x Ks. This concludes the proof of measurability of A; and the proof of Theorem 5.

Remark 55. Under the assumptions of Corollaries 10 and 11, the proof simplifies greatly. Recall
that in these corollaries we assume n = 2m, thus v = n — [n/2] — 1 = m — 1. If we assume
f~t e whm=1+e then gk_1 — R in WHm=1+¢ and by the Morrey-Sobolev imbedding, on almost
every sphere S” this convergence is uniform (the same conclusion holds if we assume Df~! €
L}Zc_l’l). We can set the homotopy between R|sy and gk_l\g; to be Hy, k(x,0,t) = tgk_l(Ll(x, o)+

(1 —t)R(t1(z,0)); then for a.e. z € B; and sufficiently large k the whole image of the homotopy
Hi(z,-,-) lies in the torus ¢;(B; x SI"/2), thus for any y € By this image does not intersect ng]:

(34) 3 Vst SN H ({2} x Y x [0,1]) = @.

Fix any y € By. Denoting by Y (y) the projection of Ty (y) onto the cross section t1(B1 x {o,}) (in
analogy to Yj(y)), we see that the (m + 1)-dimensional Hausdorff measure of Y (y) tends to zero.
We can thus find x € B; such that (34) holds and ¢1(z,0,) N Yx(y) = @ for some k > [. Then S%

does not intersect the image of the homotopy joining R| S[n/2] with gk]S[n/z], except possibly at the
Y Yy

endpoint — we have not ruled out that S¥ N g (S:Ln/ 2]) # @. We have thus found x and y satisfying

conditions i) and ii) in the proof of Theorem 5 (although with = and y exchanged) and we may

conclude the proof as it is done there.
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