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ABSTRACT
Optimizing an expensive, black-box function f (·) is challenging when its input space is high-dimensional.
Sequential design frameworks first model f (·) with a surrogate function and then optimize an acquisition
function to determine input settings to evaluate next. Optimization of both f (·) and the acquisition function
benefit from effective dimension reduction. Global variable selection detects and removes input variables
that do not affect f (·) across the input space. Further dimension reduction may be possible if we consider
local variable selection around the current optimum estimate. We develop a sequential design algorithm
called sequential optimization in locally important dimensions (SOLID) that incorporates global and local
variable selection to optimize a continuous, differentiable function. SOLID performs local variable selection
by comparing the surrogate’s predictions in a localized region around the estimated optimum with the
p alternative predictions made by removing each input variable. The search space of the acquisition
function is further restricted to focus only on the variables that are deemed locally active, leading to greater
emphasis on refining the surrogate model in locally active dimensions. A simulation study across multiple
test functions and an application to the Sarcos robot dataset show that SOLID outperforms conventional
approaches. Supplementary materials for this article are available online.
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1. Introduction

Statistical problems often involve learning about an intractable,
real-valued function f (x) that can be evaluated at given values
of p continuous input variables x = (x1, . . . , xp) ∈ [0, 1]p.
For example, physical experiments are often infeasible in many
engineering problems so computer experiments are performed
instead through evaluations of a computationally expensive
simulator. Santner, Williams, and Notz (2003) overviewed the
design and analysis of computer experiments and apply the
methodology to understand the evolution of wildfires (Berk
et al. 2002), to design a prosthesis device (Chang et al. 2001), and
to optimize a helicopter blade design across 31 input variables
(Booker et al. 1999). Jala et al. (2016) recently used computer
experiments to assess the impact of electromagnetic exposure
on fetuses. We focus our attention on optimization of a contin-
uous, infinitely differentiable function, f , that is, (1) expensive
to evaluate; (2) depends on a moderate to large number of
variables, and (3) is measured with error.

Due to the assumed cost of evaluation, we desire an optimiza-
tion strategy that requires few evaluations. For expensive f , a
sequential design approach is commonly employed to find χ =
arg maxx f (x). The approach begins with the evaluation of f at
an initial design of input settings. The resulting observations are
modeled with a surrogate function, f̂ , often taken to be a Gaus-
sian process (GP) model, and χ is estimated from f̂ . To improve
this estimation, a new design point x∗ is chosen based on an
acquisition function that assigns a numeric value to each poten-
tial design point, which is related to the point’s expected ability
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to improve estimation of χ if it were added to the initial design.
The function, f , is evaluated at x∗, and f̂ and χ̂ are updated.

The sequential design process requires estimation of two
optima at each step, that for f̂ and the acquisition function.
Although these functions are more tractable than f , they are still
difficult to optimize in high dimensions (Kandasamy, Schneider,
and Poczos 2015). Indeed, acquisition functions are often mul-
timodal and contain regions where both the functions and their
gradients are essentially zero, which is problematic for gradient-
based optimization methods (Lizotte, Greiner, and Schuurmans
2012). Dimension reduction techniques are commonly em-
ployed to improve performance of maximizer estimation. Regis
(2016) reduces the optimization space to a trust region centered
at the current estimator χ̂ . Djolonga, Krause, and Cevher (2013)
assumed that f (x) = g(Ax) for some smooth function g(·) :
R

q → R and row-orthogonal matrix A ∈ R
q×p with q < p.

Their SI-BO algorithm uses low-rank approximation techniques
to identify the subspace that supports f with a Bayesian ban-
dit framework for optimization with respect to g. Wang et al.
(2016) proposed the REMBO algorithm which uses a similar di-
mension reduction technique but identifies maximizers within
randomly generated embeddings z = Ax where A is randomly
generated.

A special case of the SI-BO and REMBO algorithms could
require Ax to simply produce a selection of q < p input
variables, that is, to have the algorithms remove variables from
consideration. For example, the “importance” of each variable
may be quantified through a sensitivity analysis that assesses
the variability of f as x changes over each dimension (Shan
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and Wang 2010). If that variability is reasonably large (small),
then the variable is called globally active (inactive). To this
end, Linkletter et al. (2006) specified mixture priors on the
GP parameters and use Markov chain Monte Carlo (MCMC)
to determine the posterior probabilities of each variable being
globally active. The globally inactive variables are removed from
the design and analysis, and the resulting lower-dimensional
space is easier to optimize across.

Even after employing global variable selection, further di-
mension reduction is possible if we were to focus our atten-
tion on a localized region of the input space, similar to the
idea of a trust region. For example, local sensitivity examines
the partial derivatives of f evaluated at a particular input x∗
(Oakley and O’Hagan 2004), say at χ̂ . Bai et al. (2014) proposed
two approaches for local variable selection. The first assumes
a local linear model around some input x, assesses variable
importance using local sensitivity, and implements a penalized
LASSO framework to perform local variable selection. The sec-
ond approach uses a forward/backward stepwise approach to
choose the set of locally active variables around x using local
linear estimators. Zhao et al. (2018) offered a generalization
of the earlier algorithms and demonstrate set convergence (of
the locally active variables) as well as parameter convergence.
These articles, however, do not consider using the localized
information to improve estimation of χ .

While the ultimate goal is to identify χ = arg maxx f (x), one
may not know how many additional iterations are affordable nor
how many are needed to meet this goal. Therefore, we desire a
sequential design approach that consistently increases f (χ̂) fol-
lowing each sequential run. In this article, we develop a Bayesian
sequential design framework called sequential optimization in
locally important dimensions (SOLID) that accomplishes this
by performing global variable selection and localized variable
selection around χ̂ to optimize f . In Section 2, we review
Bayesian estimation of a GP, Bayesian global variable selection
for response surfaces, and two common acquisition functions,
expected improvement (EI) and augmented EI. We introduce
in Section 3 a new measure of local variable importance, based
on local changes in f̂ near χ̂ after perturbing the posterior GP
parameters. In Section 4, we detail the SOLID algorithm and
illustrate it on a toy example. In Section 5, we compare SOLID
with standard sequential optimization methods on multiple test
functions and in Section 6, demonstrate SOLID’s effectiveness
on a robotics dataset from Vijayakumar and Schaal (2000). We
find that SOLID provides larger values of f (χ̂) in the first few
evaluations of f , whereas standard sequential methods require
more evaluations of f to obtain comparable values of f (χ̂).
In Section 7, we discuss the advantages and disadvantages of
using SOLID to sequentially optimize an expensive black-box
function and propose some areas of further development.

2. Background

2.1. Gaussian Process Regression

Let X0 denote the n0 × p initial design matrix whose rows
are the p input settings of the n0 initial runs. The success
of a sequential design strongly depends on the initial design
(Crombecq, Laermans, and Dhaene 2011) and the statistical

model used to make predictions. Space-filling designs, in which
the inputs are “spread out” across the entire design space, are a
popular choice for initial designs (Kleijnen et al. 2005) because
they maximize the possibility of identifying potential regions
that contain the optimum when we have no prior information
about the function. In this article, we use maximin LHS designs
(Joseph and Hung 2008) because their projection properties
provide useful information for performing variable selection.

Evaluating f at each row of X0 produces a response vector,
y, from the model Y(x) = f (x) + ε where ε ∼ N(0, τ 2).
A surrogate model, f̂ , is constructed from y and is used to
make predictions for an arbitrary input x. The surrogate model
considered in this article assumes that f is a realization of a GP
with mean function E[f (x)] = μ(x) and covariance function
cov[f (x), f (x′)] = σ 2K(x, x′) for any two inputs x and x′.
Following Welch et al. (1992), we set μ(x) ≡ μ for all x.
There are numerous choices for correlation functions, including
Matérn, nonstationary correlation functions, and BSS-ANOVA
(Reich, Storlie, and Bondell 2009). Although a nonstationary
correlation function could be more appropriate, they can require
a large number of design points for proper estimation, which we
cannot afford for our problem of interest. Instead, we choose the
squared exponential correlation function (Sacks, Schiller, and
Welch 1989)

K(x, x′) = exp

{
−

p∑
k=1

γk
(
xk − x′

k
)2

}
, (1)

where γ1, . . . , γp ≥ 0 are the correlation range parameters.
If γk = 0, then varying xk across [0, 1] has no effect on the
response.

The covariance function for f induces a covariance function
for Y(x), which includes a nugget term τ 2 to account for random
variation. Even for deterministic functions where Y(x) = f (x),
including a nugget effect can protect against violations of model
assumptions (Gramacy and Lee 2012). Letting Yi(x) denote the
ith observation at x, we then have

cov[Yi(x), Yj(x′)] =
{

σ 2 + τ 2 if x = x′ and i = j
σ 2K(x, x′) otherwise. (2)

Let VX be the n × n covariance matrix of y from design matrix
X and let v(x) be the n × 1 vector of covariances between y and
new observation Y(x). The prediction for f (x), conditional on
y, is a Gaussian random variable with mean and variance

f̂ (x | �) = μ + v(x)TVX
−1(y − μ1n) ,

s2(x | �) = σ 2 − v(x)TVX
−1v(x),

(3)

where � denotes the vector of GP parameters (Gelman et al.
2004). Of course, � needs to be estimated from the available
data, which we do following Linkletter et al. (2006) which
incorporates global variable selection, described next.

2.2. Bayesian Estimation and Global Variable Selection

Each input variable xk influences f through its corresponding
range parameter γk in K(x, x′), where γk = 0 implies that the
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input variable is globally inactive. Linkletter et al. (2006) placed
positive mass on γk = 0 through a mixture prior such that

γk = ukbk, uk ∼ Gamma(au, bu), bk ∼ Bernoulli(θ),
(4)

where uk is independent of bk, and θ ∼ Beta(aθ , bθ ) is the
probability of each variable being globally active. More details
on parameter priors are available in Appendix A.1.

The decision to declare an input variable globally active is
based on the posterior probability Pr(bk = 1 | y) = Pr(γk >

0 | y) ≡ b̂k. Variable k is declared globally inactive if b̂k < g
where g ∈ (0, 1) is some threshold. Following Linkletter et al.
(2006), a data-driven estimate of g may be found by augmenting
the design with one or more random inputs and setting g to
be the estimated probability of those variables being active. In
this article, once variable k is deemed globally inactive, the kth
column of X is permanently removed from future consideration
and the remaining GP parameters are re-estimated. Henceforth,
p will always reference the current number of variables that are
deemed globally active at the current sequential step.

Each posterior draw �t , t = 1, . . . , M, results in a new
prediction surface f̂t = f̂ (·|�t) and χ̂ t , that is estimated from
f̂t . We will also make use of the marginal prediction surface
f̂ = M−1 ∑

t f̂t and define the estimated global maximizer to
be

χ̂ = arg max
x

f̂ . (5)

Note this estimator may differ from the alternative estimator
M−1 ∑

t χ̂ t , the average of the maximizer posterior draws.

2.3. Specifying the Acquisition Function

To determine a new design point to help identify χ , Jones,
Schonlau, and Welch (1998) introduced the efficient global
optimization (EGO) algorithm, which balances exploring the
design space and honing in on areas likely containing χ . As
introduced by Močkus (1975), the improvement at any x is
I(x) = max{f (x) − y(xopt), 0}, where xopt is the row of X
where y(xopt) is the largest observed response in y. Since f is
unknown, the EGO algorithm instead uses f̂ to compute the
expected improvement, EI(x) = E[I(x)]. Jones, Schonlau, and
Welch (1998) showed that EI can be written as

EI(x) = s(x) {Z(x)� [Z(x)] + φ [Z(x)]} , (6)

where s(x) = √
s2(x), Z(x) = [f̂ (x) − y(xopt)]/s(x), and �(·)

and φ(·) are the CDF and PDF of a standard normal distribu-
tion, respectively. The next input is x∗ ≡ arg maxx EI(x).

The EGO algorithm was built for deterministic computer
simulations, where τ 2 = 0. The augmented EI criterion (Huang
et al. 2006), or AEI, is more appropriate for nondeterministic
functions

AEI(x) ≡ E
[

max{f̂ (x) − f̂ (xopt), 0}
] (

1 − τ√
s2(x) + τ 2

)
,

(7)
where xopt ≡ arg maxxi∈X{f̂ (xi) − νs(xi)} for a given ν ≥ 0.
Huang et al. (2006) stated that the xopt design point is chosen

to reflect the user’s degree of risk aversion, where ν = 1 repre-
sents a “willingness to trade 1 unit of predicted objective value
for 1 unit of the standard deviation of prediction uncertainty.”
See Brochu et al. (2010) for a discussion of other acquisition
functions for identifying χ .

There are numerous algorithms to optimize AEI. Picheny
and Ginsbourger (2014) optimized AEI through genetic opti-
mization with derivatives, developed by Mebane and Sekhon
(2011). Kleijnen (2015) constructed a space-filling design of
candidate points C ⊂ [0, 1]p and sets the next design point to
be x∗ = arg maxx∈C AEI(x). These approaches are not immedi-
ately appealing for the problem at hand because (1) they may fail
to find the true maximizer of AEI due to its multimodal nature
in moderate to high dimensions and (2) they may encourage
initial exploration of the design space, leading to poor initial
improvement over the current χ̂ . Sections 3 and 4 describe how
we address these issues using a local variable selection algorithm
and adaptive candidate sets to improve optimization of AEI
and f .

3. Bayesian Local Variable Selection

Optimizing AEI around the current χ̂ is appealing for multiple
reasons. For one, it limits the possibility of the next design point
to explore unobserved regions of the design space having high
uncertainty under the surrogate model and instead encourages
identification of a local optimum in an area that has been esti-
mated to contain χ̂ . Hence, it is more likely to lead to an updated
χ̂ with a larger f (χ̂) than if we chose a design point by globally
optimizing AEI. Another reason is that, even when a variable
is determined to be globally active, and hence has γ̂k > 0, it
may be that the variable is not important in a localized region of
interest. Employing local variable selection can help to optimize
AEI and update χ̂ by significantly reducing the dimensionality
of the optimization problem. This localized strategy would be
especially beneficial for expensive functions with a potentially
limited number of additional evaluations.

We define here a new measure of local importance defined on
some region of the input space and, in the next section, develop
a flexible algorithm that uses local variable selection to identify
the maximizer for AEI. An appealing aspect of the proposed
measure is its avoidance of expensive gradient evaluations. To
motivate the measure, consider the two-dimensional toy exam-
ple in Figure 1.

Both x1 and x2 are needed to describe the function globally,
but there are areas that would require only one of the variables
for optimization. Focusing on the localized, rectangular region
labeled as (b), we make a baseline predicted surface using our
current posterior estimates of γ1 and γ2.

The global parameter γ2 is likely greater than 0, but x2
clearly does not substantially affect f in this region. Consider the
alternative predicted surface restricted to this region, where γ2 is
temporarily set to 0 and γ1 is the same as in the baseline surface.
If this alternative predicted surface is similar to the baseline
predicted surface, we would conclude that x2 is locally inactive.
Figure 2 shows the baseline and alternative predicted surfaces
for this rectangular region and demonstrates how one would
reach the conclusion that x2 is locally inactive.
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Figure 1. Toy example function f (x1, x2) in [0, 1]2 having two local regions in which f attains its maximum. In regions (a) and (b), optimization only needs to be done with
respect to x2 and x1, respectively.

Figure 2. The far left image is f̂ for the Figure 1 function with a highlighted region of interest, shown in greater detail in the second plot. This represents the “baseline”
predicted surface for determining local activity. The third and fourth plots show the alterative predicted surfaces: f̂ 1 with γ1 = 0 and f̂ 2 with γ2 = 0. The similarity
between the baseline surface and f̂ 2 indicates that x2 is locally inactive in that region.

Our approach assesses local variable importance within a
neighborhood of each maximizer posterior draw χ t by compar-
ing the baseline predicted surface, f̂t to each of the p alternative
predicted surfaces, denoted by f̂ k

t , generated by temporarily
fixing γk = 0. To this end, we first generate q prediction points
Qt from a truncated multivariate normal distribution

Qt ∼ TN[0,1]p(χ̂ t , δI) , (8)

where δ controls how far the prediction points are spread from
χ̂ t , and the truncation keeps Qt within the [0, 1]p design space.
We calculate the baseline and alternative predictions at the
points in Qt , denoted f̂t(Qt) and f̂ k

t (Qt), respectively. We com-
pare the baseline and alternative predictions using the squared
correlation

R2
kt = corr

(
f̂t(Qt), f̂ k

t (Qt)
)2

. (9)

If R2
kt is close to one, then setting γk = 0 did not greatly affect

the predictions, offering evidence that xk is locally inactive.
It is possible that the χ̂ t ’s will be dispersed across the in-

put space and different variables are likely to be locally active

with respect to different χ̂ t (Bai et al. 2014). Anticipating this
possibility, we average over the R2

kt values and define the local
importance Lk of input k as

Lk ≡ 1 − mean(R2
k1, . . . , R2

kM). (10)

Then Lk is an averaged measure of local importance across the
posterior distribution of χ . We declare a variable to be locally
active if Lk ≥ ρ for 0 < ρ < 1 and let A denote the set of
locally active variables. Algorithm 1 summarizes this procedure,
including an additional step to perform the above calculations
on only m < M of the posterior draws for computational
reasons. The choice of the m draws should be done carefully to
be representative of the entire posterior distribution.

Declaring a variable to be locally active does not necessarily
mean the function exhibits nonstationary behavior. For a func-
tion generated from a stationary GP, the parameters γk describe
the correlation with respect to the entire input space. As we focus
our attention to a smaller region of interest, variables having
γk > 0 will start to appear unimportant. The larger γk is, the
smaller the region needs to be for this to happen. We allow
the uncertainty of χ to dictate the size of the region. Even if f
is generated from a nonstationary GP, our use of a surrogate
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Algorithm 1 Identifying locally active variables
1: Initialize ρ and δ; randomly sample m ≤ M posterior draws
2: for t ∈ {1, . . . , m} do
3: Estimate χ̂ t using �t and all globally active variables
4: Construct q prediction points Qt centered around χ t
5: Determine baseline predictions, f̂ at Qt using �t
6: for variable k ∈ {1, . . . , p} do
7: Make alternative predictions, f̂ k

t at Qt and calculate
R2

kt
8: Calculate Lk = 1 − mean(R2

k1, . . . , R2
km).

9: return A = {k : Lk ≥ ρ | χ̂} the set of locally active
variables

function assuming a stationary GP is necessary given our cost
assumptions of evaluating f . To further support this, our toy
example and numerical studies involve functions that exhibit
nonstationary behavior.

4. Sequential Optimization Using SOLID

In practice, finding the optimal AEI often involves reducing
the optimization space, such as with trust regions. If χ̂ is near
χ , further exploration would be unnecessary, and restricting
the search for the AEI maximizer to a small neighborhood of
χ̂ would be advantageous. Local variable selection can further
reduce the dimension of this localized search space. We detail
here the SOLID algorithm that uses global and local variable
importance measures to improve estimation of χ .

In SOLID, rather than restrict the AEI search space for the
kth locally active variable to be within some neighborhood
centered at χ̂ , we restrict the space to be

Rδ
k := [

min (χ̂k,1, . . . , χ̂k,m) − δ , max (χ̂k,1, . . . , χ̂k,m) + δ
]

∩ [0, 1] , (11)

using the kth coordinate of the m χ̂ t ’s and δ implemented in
Algorithm 1. For the jth locally inactive variable, we set Rδ

j :=
χ̂j, the jth coordinate of χ̂ which is calculated from f̂ . Let Rδ

denote the corresponding restricted search space.
Unlike the trust region in Regis (2016), the range of the Rδ

search is guided directly by the estimates of χ̂k,t and explores
only the locally active variables. Moreover, (11) incorporates the
uncertainty of χ into the search space Rδ . The inclusion of the
δ parameter allows us to further expand the region if the dis-
tribution of the χ̂k,1, . . . , χ̂k,m may be too narrow (perhaps due
to selecting a smaller m for better computational performance).
One could also use a different parameter than the δ used in
Algorithm 1.

To search for the AEI optimum in Rδ , we construct an |A|-
dimensional maximin LHS design Lδ ⊂ Rδ with c settings to
evaluate AEI. For example, if only the first a < p variables are
locally active, then the set of restricted candidate points Cδ ⊆
Rδ would be

Cδ = [
Lδ χ̂a+11c . . . χ̂p−11c χ̂p1c

]
. (12)

It is possible that Rδ is still too restrictive so we also consider a
slightly larger space RA withRA

k := [0, 1] for each locally active

variable k, and RA
j := χ̂ j for each locally inactive variable j.

This allows us to consider exploration of unobserved locations,
but only within the locally active dimension. We again use a
maximin LHS design L of dimension |A|, within RA for the c
candidate points. These unrestricted candidate points CA are
constructed in the same manner as in (12), where the column
of each locally inactive variable j ∈ Ac is χ̂j1c. Note that
Rδ ⊆ RA but that Rδ is more densely concentrated around the
χ̂ t ’s.

While it is possible to combine both Cδ and CA into one large
candidate set, we have found that the candidate points with the
greatest AEI often all reside in one of the two sets. Whichever
set has the largest AEI becomes the final set of candidate points
C. Conceptually, this helps us see if SOLID is honing-in on a
restricted space Rδ or exploring the larger space RA. Using the
|A|-dimensional gradient of AEI (see Picheny and Ginsbourger
2014), we conduct line searches from the five most promising
candidates in C, restricting the search to lie within a ball of
radius δ (as specified in (8)). After the line searches are complete,
the one with the largest AEI is chosen as the next design point.

Thus far, we have described using the local variable selection
results only for optimizing AEI, but they could also apply for
the estimate of χ̂ . One may be skeptical of doing this since the
proposed local variable selection procedure uses the posterior
draws χ̂ t which are calculated without local variable selection.
By estimating χ across all globally active variables, we are likely
to observe larger variation of χ t because we are optimizing in
higher dimensions. Modifying the χ̂ optimization space to RA

should provide a more stable estimator.
We have described, up to this point, a single iteration of a

sequential optimization algorithm detailing the global and local
variable selection procedure, the localized AEI optimization,
and the localized estimation of χ . The next iteration starts with
evaluation of the recommended design point from the localized
AEI optimization. We then re-estimate the GP parameters using
MCMC with priors from the initial iteration. Recall, if at least
one variable is deemed globally inactive at this next step then
we would again re-estimate the GP parameters and perform
global variable selection using only the globally active variables.
Next we perform our Bayesian local variable selection across
all globally active variables and maximize AEI in the new lo-
calized region. Note that previous results of the local variable
selection algorithm are ignored. This way, any misclassification
of locally active/inactive variables will not have long-lasting
consequences. This flexibility also allows assessment of local im-
portance to recalibrate when χ̂ changes. The SOLID procedure
is summarized in Algorithm 2.

We demonstrate SOLID in Figure 3 on the toy function
(Figure 1) that includes a third, unimportant variable x3. We set
the global and local thresholds to be g = 0.50 and ρ = 0.30,
and set δ = 0.15. We considered c = 300 candidate points
when optimizing AEI. Observations were generated with noise,
τ 2 = 0.08. For simplicity, the marginal surfaces were built
using m = 25 random draws using MCMC chains of length
M = 500. We start with an initial maximin LHS design with
n0 = 10, p = 3, shown as � in Figure 3 in the upper left
panel.

In the first iteration, y(xopt) = 7.71 and all three variables
were deemed globally active. Local importance was assessed
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Figure 3. The predicted surface f̂ of the Figure 1 function across nine runs of SOLID. The design points (�) and χ̂ (∗) are shown. Local importance is assessed at each of
the 25 posterior draws of χ̂ t (�). The shaded rectangles represents either RA or Rδ , depending on which has the AEI maximizer (�). In runs 3, 4, and 9, x2 was found to
be locally inactive, so the candidate points explore only the x1 dimension (horizontal line).

around the m = 25 posterior draws of χ̂ t , shown as open circles
in Figure 3. All three variables were also deemed locally active,
with L1 = 0.52, L2 = 0.81, and L3 = 0.76. It follows then that
RA = [0, 1]3, the entire input space, and Rδ (visualized in just
the important dimensions as the shaded rectangle in the upper
left panel of Figure 3) was bounded by 0.66 ≤ x1 ≤ 1.00, 0.00 ≤
x2 ≤ 0.59 and 0.44 ≤ x3 ≤ 0.94. The localized optimum
estimation step was not technically localized since RA = [0, 1]3

and we determined χ̂
0 = (0.88, 0.42, 0.57).

Next we optimized AEI to determine the next design point.
The c = 300 candidate points were generated in RA and
Rδ , producing CA and Cδ , respectively. The set Cδ contained
the point with the largest AEI and a line search optimization
algorithm contained in this restricted space determined the next

design point to be x∗ = (1.00, 0.31, 0.67). This point was added
to X and we then evaluated Y(x∗).

In the second run, all variables were again found to be
globally and locally active. The updated optimum was χ̂

1 =
(0.90, 0.40, 0.58). Here the unrestricted candidate set CA =
[0, 1]3 was preferred for AEI optimization and the next selected
point was x∗ = (0.99, 0.47, 0.55), close to χ̂

1.
In the third run, we found b̂3 = 0.49 < g = 0.5 so variable

x3 was permanently removed and the remaining GP parameters
were re-estimated. Both x1 and x2 were still deemed globally
active, as they should be. Their respective local importance
measures were L1 = 0.85 and L2 = 0.29. With L2 < ρ =
0.3, x2 was declared locally inactive, and so RA and Rδ were
entirely contained within the x1 dimension, both fixing x2 at
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Algorithm 2 Summary of SOLID
1: Set n0, N (maximum number of evaluations), g, δ, ρ, M, m,

c
2: Create an initial maximin LHS(n0, p) design, X
3: Generate y from Y(X)

4: for step i ∈ {0, . . . , N} do
5: Obtain M posterior draws of �t and χ t (Section 2.2);

calculate f̂ and χ̂ .
6: Global variable selection: Remove variables with b̂k <

g from X; if variables removed, repeat step (5) with new X
7: Local variable selection: Implement Algorithm 1 with

δ, ρ, and m < M χ t ’s; store A
8: Define restricted Rδ and unrestricted RA search spaces
9: Localized optimum estimation: Update estimate χ̂ in

RA using f̂ ; store as χ̂
i.

10: Create maximin LHS designs Cδ ⊆ Rδ and CA ⊆ RA

11: Evaluate AEI in Cδ and CA; define the set with the
largest AEI as C

12: Localized AEI estimation: Perform line search opti-
mization to identify x∗ = arg maxx∈C AEI(x)

13: Augment x∗ to X; generate Y(x∗) and add to y
14: return {χ̂0, . . . , χ̂N}

0.41. Maximizing AEI, the next design point x∗ = (0.88, 0.41)

was added to X. Note that the setting for the third input variable
was no longer considered. If a value for that variable were
required for the function to be evaluated, one could choose the
corresponding coordinate from the previous optimum estimate,
which in this case was 0.58 for x3.

For the remaining runs, x1 and x2 were always found to be
globally active but x2 was found locally inactive in runs 4 and 9.
As design points were added and parameters were updated, f (χ̂)

rose steadily: 7.42, 9.41, 9.89, 9.92, 9.93, and 10.00, with 10.00
being the largest possible value.

5. Simulation Study

We conducted a simulation study to evaluate the effects of global
and local variable selection on sequential optimization. We
compared four approaches: (1) GVS conducts global variable
selection only; (2) SOLID, as described in Section 4; (3) Oracle
uses only the known globally active variables (without perform-
ing any variable selection); and (4) None uses all variables.
Within each simulation run, all four approaches used the same
initial design, a maximin Latin hypercube design, and the same
vector of initial responses. The responses were measured with
error, τ 2 = 0.05.

We compared results for three different test functions in
p = 15 dimensions, named Beach, Drum, and Simba. Although
these are not conventionally high-dimensional functions, they
are still sufficiently large enough to be important for practical
concerns. All three functions have 6 truly globally active vari-
ables. The names for each function come from their visualiza-
tion in the x1 and x2 subspace with all other variables set to χj,
their values in the global maximizer, visualized in the top row
of Figure 4. The Beach function resembles a sandy beach along
a pink sea; Drum resembles an oval shaped drum; and Simba is

reminiscent of the scene from Disney’s “The Lion King” (Hahn,
Allers, and Minkoff 1994), where Rafiki holds Simba high up on
Pride Rock, against the rolling hills and surrounding plains. The
Beach function is constructed to have a local mode in a region
far away from χ . Four variables are locally active around this
local mode, but only x1, x2 and x3 are locally active around χ .
The Drum function is primarily influenced by x3, but around
χ , x1 through x5 are all locally active. The Simba function is
especially challenging to optimize, since it has a large number
of local modes involving all six globally active variables. Around
χ , however, only x1, x2 and x3 are locally active. Results for three
additional test functions commonly found in the optimization
literature are shown in Section 3 of the supplementary materials.

It was important to choose n0 to be large enough to construct
a reasonable f̂ without being so large that χ would easily be
known. To that end, the initial designs for Beach and Drum
had n0 = 70 observations, and Simba had n0 = 80. For all
methods we used noninformative priors σμ = 100, aη = bη =
0.1, aθ = bθ = 1. We set au = 1 and bu = 10 so that
E(uk) = 10 and var(uk) = 100 (see (4)). We ran MCMC chains
of length M = 1000, of which m = 100 posterior draws were
used for the marginal surfaces. We set δ = 0.30 and chose
conservative global and local variable selection thresholds, g =
0.05 and ρ = 0.02. Of primary interest was determining the
response of the true function f evaluated at χ̂ across N = 25
additional runs. Because each initial designs gave a different χ̂

0,
our performance metric was relative improvement

f (χ̂ i
) − f (χ̂0

) . (13)

To summarize across all N = 25 runs, we defined overall
improvement

1
25

∑25
i=1 f (χ̂ i

) − f (χ̂0
).

Averaging across 100 simulated initial designs, we present
the mean relative improvement for each added sequential de-
sign point, for each approach and test function in Figure 5.
As expected, Oracle performed the best on Beach and Drum,
largely because it optimized across only the 6 globally active
variables. Across all test functions, None performed the worst,
since it always optimized over a 15-dimensional space. SOLID
had higher mean relative improvement than GVS for each of
the first 10 runs on the Drum, and each of the first 20 runs
on the Beach. For the Simba function, SOLID had higher mean
improvement than GVS and Oracle for each of the first 6 runs.
In Table 1, SOLID had significantly higher overall improvement
than GVS (p-value < 0.001) in terms on Beach and Simba, and
even outperformed Oracle on Simba (p = 0.003).

SOLID was able to achieve its enhanced performance, not
only by permanently removing variables through global vari-
able selection, but by honing in on more promising lower-
dimensional subspaces. Figure 6 shows that our proposed mea-
sure of local importance successfully captured the locally active
variables. Table 2 shows that across all three test functions,
SOLID was optimizing over fewer variables than GVS, as de-
fined by the number of variables explored by the AEI function.

We also compared the methods in terms of computational
costs. Oracle, which knows the set of globally active variables
and does not perform any variable selection, took 1.8 hr to
add 25 design points, averaged across all test functions. For
every hour that Oracle took to obtain 25 new design points,
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Figure 4. Each column shows a different six-dimensional test function in the x1, x2 dimension with the other coordinates fixed. The first row sets x3 to x6 to their optimal
values in χ . Beach has χ = 1, 0.85, 1, 0, 0, 0); Drum has χ = (0.368, 0.533, 0, 1, 0.555, 1); and Simba has χ = (0.523, 0.0999, 0, 0.298, 0.298, 0.245). Plots in the second
row are nearly identical to those in the first, indicating x6 is locally inactive. The third row shows that x3 is locally active, as changing x3 led to very different behavior of f .

Table 1. The mean improvement for all approaches and test functions averaging across 100 simulated initial designs and 25 runs.

Oracle SOLID GVS None GVS = SOLID
Test Function Mean SE Mean SE Mean SE Mean SE p-value

Beach 1.49 0.026 1.30 0.023 1.15 0.024 1.00 0.021 <0.001
Drum 3.20 0.037 2.66 0.038 2.62 0.038 2.14 0.035 0.122
Simba 1.25 0.025 1.39 0.029 1.19 0.025 1.13 0.024 <0.001

NOTE: A Wilcoxon rank sums test shows that SOLID performs significantly better than GVS on the Beach and Simba functions.

None took 1.4 hr, GVS took 4.0 hr, and SOLID took 5.3 hr.
Although computationally more expensive, if each evaluation of
f is expensive, SOLID would still be preferable to GVS and None,
since it required fewer evaluations of f to obtain equivalent
or better estimates of χ . To see this, we compared the mean
improvement value that Oracle achieves after 7 runs with the

number of runs the other approaches needed to achieve at
least that value (see Figure 5). On the Beach function, SOLID
needed 10 runs, whereas GVS required 13, and none required
15. Similar patterns held for the Drum and Simba functions.

As evidenced in Figure 5, the mean improvement value for
GVS eventually met (on the Beach and Simba functions) or
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Figure 5. Mean relative improvement (f (χ̂ i
) − f (χ̂0

)) across 100 simulations, using the three test functions for sequential runs i ∈ {1, . . . , 25}. Improvement at run 0 is
not shown as all approaches have zero relative improvement.

Figure 6. Lk boxplots over all 100 simulated datasets and 25 runs, where the “whiskers” are the 5th and 95th percentiles. Gray boxplots correspond to the truly locally
active variables.

Table 2. The false positives are variables that are included in the design but are truly globally inactive.

Mean number of variables at run 25 (across 100 simulations)

Test function Used for optimization False positives

approach Beach Drum Simba Beach Drum Simba

Oracle 6.00 6.00 6.00 0.00 0.00 0.00
SOLID 6.32 5.58 6.65 7.11 6.88 7.71
GVS 9.38 11.83 10.85 4.30 6.22 5.71
None 15.00 15.00 15.00 9.00 9.00 9.00

NOTE: There are 15 total variables; at most 9 are false positives.

exceeded (on the Drum function) the value obtained by SOLID.
The difference in how these two methods selected inputs at
which to evaluate f next could explain this result. By selecting in-
puts whose values vary in all p globally active dimensions, GVS
may be better able to identify truly globally inactive variables

and correctly remove them from the design matrix. By removing
more globally inactive variables than SOLID, GVS could eventu-
ally experience comparable or better mean improvement values.
In the first few sequential runs, however, the results favored
SOLID.
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6. Analysis of Sarcos Robot Data

The Sarcos robot dataset (Vijayakumar and Schaal 2000) con-
sists of n = 44,484 observations and p = 21 input variables,
available at www.gaussianprocess.org/gpml/data. The input vari-
ables are the positions, velocities, and accelerations of seven
different points on a robot arm as it draws a figure eight (Vi-
jayakumar, D’Souza, and Schaal 2005). We transform the inputs
such that x ∈ [0, 1]21. The response variable Y(x) is the first
of seven joint torque measurements (Parker 2015). Sequential
optimization requires being able to evaluate the response surface
at arbitrary input values, but this is not possible with the discrete
Sarcos data. Therefore, for illustration purposes, we generated
data assuming the true response surface is a kernel smoothed
function. For any input x, we have

f (x) =
∑

i∈S y(xi)K(xi, x)∑
i∈S K(xi, x)

, (14)

where S = {1, . . . , n}, xi are the observed inputs in
the Sarcos dataset, and the kernel smoother is K(x, x′) =
exp{−∑p

j=1 h−2(xj − x′
j)

2}. Based on 5-fold cross-validation
minimizing the out-of-sample prediction MSE, the best band-
width was h = 0.08272.

With thefields package in R, we randomly selected inputs
that led to space-filling designs. We included ten times as many
initial design points as dimensions (Loeppky, Sacks, and Welch
2009). We considered only 15 sequential evaluations in this
analysis due to the computational demands. Using only the GVS
and SOLID approaches, we evaluated the improvement (13) at
each run i ∈ {1, . . . , 15}. We set g = 0.15 and ρ = 0.01 to
provide a moderate amount of variable selection, and we set
δ = 0.20 to emphasize local searches. τ 2 = 0.05. We used
the same priors and number of MCMC chains and posterior
samples as in Section 5.

We present results for 100 simulated datasets in Figure 7.
SOLID achieved greater improvement than GVS over 100 sim-
ulated datasets at nearly every run of the sequential design.
Comparing overall improvement, SOLID was significantly bet-
ter than GVS (p-value < 0.001). SOLID consistently used fewer

variables for optimization than GVS. We found that neither
method removed any variables based on global variable selec-
tion. However, by the final run, SOLID used 15.88 variables
during its optimization and design selection, compared to 21 for
GVS. Figure 7 shows the proportion of datasets with globally
and locally active variables at the final run. Of the 21 input
variables, SOLID identified several as locally active. At the last
run, variables Position 1, Acceleration 1, and Acceleration 4
were identified as locally active in 93%, 100%, and 96% of the
simulated datasets.

7. Discussion

When optimizing a function f (·) where each evaluation is ex-
pensive, one goal is to obtain the largest f (χ̂) in as few eval-
uations of f as possible. To that end, we proposed SOLID, a
new method that measures local variable importance around χ̂

and uses this information to optimize f in a sequential design.
Whereas global variable selection permanently removes globally
inactive variables, our local variable selection approach is flexi-
ble, adapting to the uncertainty of χ̂ . We tailored local variable
selection to optimize the search for both the maximizer of the
AEI acquisition function and the global maximizer. Rather than
exploring the entire p-dimensional space, SOLID examines only
the locally active variables. In a simulation study, we found
that our definition of local importance successfully captured
the subset of locally active variables across multiple test func-
tions. By reducing the optimization dimension global and local
variable selection, our SOLID algorithm achieved higher f (χ̂)

values compared to the standard methods, for a fixed number
of sequential evaluations.

One reviewer pointed out that the presence of locally active
variables could lead to nonstationary behavior in the response
surface. Depending on the nature of nonstationarity, this could
result in the estimated GP spatial range parameters, which as-
sume a stationary covariance, as poor indicators of a variable’s
global importance. It is our intention that any variable that
influences f anywhere in the input space be classified as globally

Figure 7. The left plot is mean relative improvement (±1 SE) by run across 100 simulations. The right plot is the proportion of 100 simulated datasets in which each variable
was locally active at the 15th run. The variables above correspond to the positions (P), velocities (V), and accelerations (A) of seven locations on the robot arm.

www.gaussianprocess.org/gpml/data
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active. Using a GP model with a nonstationary covariance func-
tion is the next step, though computational costs would increase
and our definition of globally active would need to be modi-
fied. On the other hand, a nonstationary covariance function
may not be necessary. The three test functions in Section 5
exhibit nonstationary behavior, yet the SOLID behaves well and
rarely drops a globally active variable. It is also possible that
a stationary covariance function would still able to predict f
in a subregion near χ , which is one reason why we chose our
local selection criterion to be based on prediction comparisons
instead of directly inspecting the estimates of the spatial range
parameters.

There are several ways that SOLID could be further im-
proved. In our implementation, we fixed the global and local
selection threshold parameters (i.e., g and ρ) but an adaptive
approach could lead to improved performance. This is also true
for the δ parameter used to declare local importance. Ideally
this parameter would shrink as the design space is filled. Finally,
there needs to be further exploration of the design impact on
SOLID’s performance, both in terms of the design size and how
well the design supports estimation of the γk. Following Lin-
kletter et al. (2006), we used a maximin Latin hypercube design
as our initial design. We have started to explore the distance-
distributed designs discussed in Zhang, Cole, and Gramacy
(2019) as they can better estimate the γk.

One limitation of SOLID is its required computations to esti-
mate local importance and its utilization of MCMC to estimate
f . In instances where the underlying function is inexpensive
to evaluate, it would be faster to use conventional sequential
design approaches. Additionally, for experiments involving, say,
more than 50 variables, the MCMC algorithm presented here
for global and local variable selection could become excessively
slow and other methods would be preferable, such as the ran-
dom embedding approach (Wang et al. 2016) or by specifying
an additive model (Kandasamy, Schneider, and Poczos 2015).
That said, SOLID’s local variable selection could be used for
many functions f , without needing to know which or how many
variables are locally active. An area of future work would be to
incorporate aspects of these other methods within the SOLID
framework, perhaps to perform fast initial screening.

Appendix A.

A.1. MCMC Details

We use Metropolis–Hastings within Gibbs sampling to obtain posterior
samples of �. For convenience, we reparameterize to the total precision
(inverse variance), η = (σ 2 + τ2)−1, and proportion of variance
from the response surface, r = σ 2η. Using the parameterization in
Section 2.2, let

V(x, x′) = 1
η

[
rK(x, x′) + (1 − r)1{x=x′}

] ≡ 1
η

W(x, x′). (A.1)

Denote 1
η WX as the n x n covariance matrix corresponding to X. The

log-likelihood is

log L
(
y | �, X

) = −n
2

ln(2π) − 1
2

ln | 1
η

WX|

− η

2
(y − μ1n)TW−1

X (y − μ1n). (A.2)

The full conditional distributions of μ, η, θ , and bk are conjugate,
and so these parameters are updated by sampling from their full con-
ditional distributions

η | rest ∼ Gamma
(

n
2

+ aη , bη + 1
2

[
(y − μ1n)T WX

−1(y − μ1n)
])

μ | rest ∼ Normal

(
η1T

n W−1
X y

σ−2
μ + ηw

,
1

σ−2
μ + ηw

)
(A.3)

θ | rest ∼ Beta

(
αθ +

p∑
k=1

bk , bθ + p −
p∑

k=1
bk

)

bk | rest ∼ Bernoulli
(

pk1
pk1 + pk0

)
,

where w = 1T
n W−1

X 1n and pk� ≡ p(y | bk = �, �(−k))p(bk = � |
θ) for �(−k) = �k/{bk}.

We implement the Metropolis–Hastings algorithm (Hastings 1970)
to update r and u1, . . . , up. The variance ratio r is sampled using the
Metropolis–Hastings algorithm with a Beta(10, 1) proposal distribu-
tion. For each k ∈ {1, . . . , p}, if bk = 0 then uk is updated from its
prior, otherwise it is updated using a Metropolis–Hastings step with
a sliding uniform candidate distribution, conditioned on the current
value of uk, and designed to propose smaller values of uk corresponding
to smoother surfaces. Specifically

uk ∼ Uniform
(
max{0, uk − 50ε(uk)} , uk + ε(uk)

)
,

where

ε(uk) ≡
{

min{50, ukh} uk ≥ 30
max{1, ukh} 0 ≤ uk < 30 (A.4)

and h ∼ Unif(1/2, 2). This proposal distribution is used because it
ensures candidates are positive and its candidate distribution’s variance
increases with the current value of uk.

At each sequential step i ∈ {0, 2, . . . , N}, we estimate χ̂ i using all
p globally active variables and the quasi-Newton optimizer, L-BFGS-B
(Byrd et al. 1995), ensuring the maximizer is contained in the design
space [0, 1]p. We input the marginal predicted function, f̂ and its
marginal gradient along with the previous χ̂ (if available) and the
four design points with the largest observed responses. This multi-start
search is to prevent suboptimal convergence to a local optimal.

After obtaining χ̂ , local variable importance is assessed using the
posterior draws χ̂ t , and the next design point x∗ is chosen from theRA

or Rδ restricted spaces. We again used line searches to optimize AEI
within these two restricted spaces but other optimization algorithms
are possible, including the genetic algorithm and derivative optimizer
genoud (Mebane and Sekhon 2011). In Step 9 of Algorithm 2, we
restrict the search space of χ̂ to lie in RA, where each locally inactive
variable j ∈ Ac is fixed at the corresponding entries of χ̂ . This leads to
a refined estimate of χ̂ , at the end of the each sequential run.

A.2. SOLID Local Tuning Parameters

Two tuning parameters influence the decision to declare a variable
locally active or inactive. The δ parameter in (8) affects the spread
of the prediction points about χ̂ t , and so the choice of δ affects Lk.
Smaller values of ρ allow for a larger number of variables to be declared
locally active. It is possible to choose ρ after each run such that a fixed
proportion of the globally active variables are considered locally active.
One could reason that in “some region of the design space, only a
small number of factors are actively influencing the response” (Myers,
Anderson-Cook, and Montgomery 2016).

To examine how sensitive SOLID’s performance was to different
specifications of the ρ local variable selection threshold and the δ
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Table A.1. A sensitivity analysis on 100 simulated datasets, showing mean im-
provement after 7 runs, for 6 combinations of ρ and δ.

Mean improvement (SE)

Settings δ = 0.2 δ = 0.6

ρ = 0.01 6.55 (1.21) 9.17 (1.50)
ρ = 0.05 6.32 (1.32) 8.63 (1.42)
ρ = 0.15 3.60 (1.38) 5.56 (1.05)

NOTE: All initial designs use 21 dimensions and 10 × 21 = 210 design points.

radius for local importance, we considered 100 simulations using a
two-factor crossed design. Because so few variables were declared to
be globally inactive, we disabled the global variable selection feature in
the sensitivity analysis. We set the initial design to have size n = 210
and considered the improvement after 7 runs, limiting the number
of runs due to computational costs. Results in Table A.1 show that a
larger radius (δ = 0.60) and conservative threshold (ρ = 0.01 or
ρ = 0.05) provided for the best performance. As long as a conservative
local variable selection threshold was chosen, the results were not too
sensitive to ρ.

Supplementary Materials

The supplementary materials includes additional details about SOLID,
simulation results for more test functions, and three R scripts that: (1)
generate test functions, (2) create all necessary functions to perform SOLID,
and (3) perform a single iteration of the simulation study.
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