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The stability and dynamical properties of the so-called resonant nonlinear Schrödinger (RNLS) equation, 
are considered. The RNLS is a variant of the nonlinear Schrödinger (NLS) equation with the addition of 
a perturbation used to describe wave propagation in cold collisionless plasmas. We first examine the 
modulational stability of plane waves in the RNLS model, identifying the modifications of the associated 
conditions from the NLS case. We then move to the study of solitary waves with vanishing and nonzero 
boundary conditions. Interestingly the RNLS, much like the usual NLS, exhibits both dark and bright 
soliton solutions depending on the relative signs of dispersion and nonlinearity. The corresponding 
existence, stability and dynamics of these solutions are studied systematically in this work.

© 2020 Published by Elsevier B.V.
1. Introduction

Physical phenomena involving the ingredients of dispersion and 
nonlinearity are usually described by nonlinear partial differential 
equations termed evolution equations [1]. A particularly interest-
ing category of these are the so-called integrable systems which, 
besides their physical significance, also exhibit remarkable math-
ematical properties [2]. Key to the study of these equations is, 
as one might expect, their wave solutions. The Inverse Scattering 
Transform (IST) was developed to provide the mechanism to sys-
tematically address such systems [2]. When the IST methodology is 
applicable, remarkable properties can be found, such as an infinity 
of conserved quantities, analytical single- and multi-soliton solu-
tions etc. Two equations stand out because they are both physically 
important (in fact often thought of as universal, due to their wide 
range of applications) and they initiated the field of integrable 
systems: the Korteweg-de Vries (KdV) and nonlinear Schrödinger 
(NLS) models. The former is a prototypical model for shallow water 
waves while the latter is most commonly used to describe quasi-
monochromatic light propagation in optical media [1].

However, even these universal systems need to be amended in 
order for different phenomena to be incorporated when consid-
ering specific mechanisms [3]. In this case, non-integrable pertur-
bations naturally emerge in these broadly applicable models, such 
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as the NLS equation which has been relevant to optical, atomic 
and water wave systems among others [4,5]. Here, we focus on a 
variant of the NLS equation which is often used to describe the 
transmission of uni-axial waves in a cold collisionless plasma sub-
ject to a transverse magnetic field [6–8]. This system has quite 
similar features to the regular NLS equation, most notably exhibit-
ing bright and dark solitons depending on the relative sign of a 
specific parameter (discussed below).

In its general form the resonant nonlinear Schrödinger (RNLS) 
equation [6–8] reads:

i∂t� + ∂2
x � + γ (−1)n+1|�|2n� = δ

∂2
x |�|
|�| �, (1)

where � (x, t) is the complex wave profile, x, t are the spatial and 
temporal variables respectively and γ , δ ∈ R correspond to the co-
efficients of the nonlinear terms. The last term of the equation 
involving |�|xx/|�|, where the subscript stands for differentiation 
with respect to x, represents the de Broglie quantum potential, and 
can also be viewed as a diffraction term [9]. Its coefficient, namely 
δ, plays a crucial role in the form of the general RNLS equation 
(1), as it describes solutions with different behavior, depending 
on the regions that are separated from the critical value δ = 1
[8]. More specifically, for δ < 1, Eq. (1) bears connections to the 
NLS equation with a power law nonlinearity. For n = 1, it admits 
bright and dark soliton solutions, for γ > 0 and γ < 0 respectively. 
On the other hand, for δ > 1 Eq. (1) has been shown to reduce 
to a reaction-diffusion system (RDS) which in turn represents the 
simplest two-component integrable system contained in the AKNS 
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hierarchy of integrable systems [8,10]. It is worth noting that sim-
ilar to the RNLS models involving nonlinear modifications of the 
dispersion term are of continued interest also in other fields such 
as nonlinear optics; see, e.g., [11] for a recent (albeit somewhat 
different in flavor) example.

The exact solutions of Eq. (1) have long been discussed in the 
literature and with many different methods (including the first 
integral method, the G ′/G expansion, the Darboux-Bäcklund trans-
formation and the Hirota bilinear method, among others) [12–19]. 
Here, and for completeness we will also derive the solitary waves 
of the equation but will focus mainly on their stability properties. 
Below, we also discuss briefly, for completeness, some of the im-
portant properties of the equation and refer the interested reader 
to Refs. [6–8] for more details.

2. Properties

The Madelung transformation decomposes the wavefunction as 
� = eR−i S where R = R (x, t) and S = S (x, t) are real-valued func-
tions. It follows directly that Eq. (1) is equivalent to the system of 
equations

∂t R − ∂2
x S − 2∂xR∂x S = 0,

∂t S + (1− δ)
(
∂2
x R + (∂xR)2

)
− (∂x S)

2 + γ (−1)n+1e2nR = 0.

(2)

First, we consider the case with δ < 1 and rescale time and 
phase of the wave function according to t = (1− δ)

1
2 t̃ and S =

(1− δ)
1
2 S̃

(
x, t̃

)
, respectively. By applying the above transforma-

tions to Eq. (2), we get the new system for the phase and am-
plitude

∂t̃ R − ∂2
x S̃ − 2∂xR∂x S̃ = 0,

∂t̃ S̃ + ∂2
x R + (∂xR)2 −

(
∂x S̃

)2 + γ

1− δ
e2nR = 0,

(3)

which, for the new complex wave function �̃ = eR−i S̃ , corresponds 
to the NLS equation:

i∂t̃�̃ + ∂2
x �̃ + γ

1− δ
|�̃|2n�̃ = 0. (4)

For n = 1, the NLS equation, Eq. (4), for γ < 0 is of the defocusing
type and describes black soliton solutions in BECs, nonlinear op-
tics, water waves and in many other systems. For γ > 0, it admits 
bright soliton solutions.

However, when δ > 1, the landscape of solutions of Eq. (1)
differs. To illustrate this, we introduce the transformations t =
(δ − 1)

1
2 t̃ and S = (δ − 1)

1
2 S̃

(
x, t̃

)
and apply them to Eq. (2). In 

particular, upon setting

r = exp
(
R

(
x, t̃

) + S̃
(
x, t̃

))
, (5)

s = −exp
(
R

(
x, t̃

) − S̃
(
x, t̃

))
, (6)

and by dropping the tildes, we obtain the following reaction-
diffusion (RDS) system

rt − rxx + Brn+1sn = 0, (7)

st + sxx − Brnsn+1 = 0, (8)

where B = −γ / (δ − 1). It is particularly intriguing that from a 
conservative (indeed, Hamiltonian, as is discussed below) system, 
we have obtained a system featuring reaction and diffusion in one 
of the components, along with reaction and anti-diffusion in the 
second one. Yet, we note that this system bears gain and loss 
(notice the opposite signs in the nonlinear terms in Eqs. (7)-(8)) 
and can thus be brought under the umbrella of so-called PT -
symmetric systems [20], as shown next. A number of few degree-
of-freedom systems of that form [21] (i.e., ones that could be 
mapped from Hamiltonian to PT symmetric or vice-versa) has 
already been reported, whereas very recently PT -symmetric sys-
tems at the level of partial differential equations [22] have also 
been proposed and studied including the PT -symmetric exten-
sions of the massive Thirring and the Gross-Neveu models.

2.1. Space-time invariance and Galilean symmetry of the RDS

For the general case where n is arbitrary, we investigate the 
time and space invariance of the system (7)-(8). We find that the 
system is invariant under the PT transformation, where the op-
erators P and T acting on the real valued functions r (x, t) and 
s (x, t) are given by

P
(
r (x, t)
s (x, t)

)
=

(
s (x, t)
r (x, t)

)
, (9)

for the parity operator P , while the time-reversal operator T is 
defined as:

T
(
r (x, t)
s (x, t)

)
=

(
r (x,−t)
s (x,−t)

)
. (10)

Consequently the PT operator acting on the functions r and s is 
as follows:

PT
(
r (x, t)
s (x, t)

)
=

(
s (x,−t)
r (x,−t)

)
. (11)

The action of the PT operator on the system (7)-(8), and the re-
sulting invariance reveals the parity-time symmetry of the model. 
Next, we investigate whether the RDS has Galilean symmetry in-
variance. For a fixed velocity parameter, namely υ , we define 
a (x, t) = υ

2 x + υ2

4 t and the usual Galilean transformation x′ =
x − υt as well as t′ = t can be considered. By plugging

r̃ (x, t) = e−a
(
x′,t′

)
r
(
x′, t′

) = e− υ
2 x+ υ2

4 tr (x− υt, t) , (12)

s̃ (x, t) = ea
(
x′,t′

)
s
(
x′, t′

) = e
υ
2 x− υ2

4 t s (x− υt, t) , (13)

to the system (7)-(8) we obtain

r̃t − r̃xx + Br̃n+1 s̃n = 0, (14)

s̃t + s̃xx − Br̃ns̃n+1 = 0, (15)

which highlights the Galilean invariance of the RDS. Equivalently, 
a more general solution �̃ can be constructed by applying the 
Galilean transform to �. To do so, if � = eR−i S is a solution of 
(1), so is �̃ where

�̃ (x, t) = e
i
[

υ
2 x− υ2

4 t
]
�(x− υt, t) , (16)

for any real number υ , (R, S are real-valued again). The above fol-
lows from the equivalence of the solutions of (1) with solutions 
of the corresponding Madelung fluid equations, which in turn are 
equivalent with solutions of a corresponding general RDS which 
was already proven to be Galilean invariant.

2.2. Integrals of motion and Lagrangian formulation

Eq. (1) has also been studied with integrable systems tools (the 
so-called direct methods) like the Hirota [7] and Bäcklund-Darboux 
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[8] transformations. The first three conserved quantities, for n = 1, 
are found to be:

N =
∞∫

−∞
|�|2dx, (17)

P = i

∞∫
−∞

(
�∗

x� − �x�
∗)dx, (18)

E =
∞∫

−∞

(
�∗

x�x − δ (|�|x)2 − γ

2
|�|4

)
dx. (19)

In different contexts these integrals represent different physical 
quantities. For example, the first may correspond to the number 
of atoms in Bose-Einstein condensates or to the energy of a pulse 
in optics. The Lagrangian of the RNLS (1) (again for n = 1) reads

L�,�∗ = i

2

(
�∗�t − �∗

t �
) − �∗

x�x + δ (|�|x)2 + γ

2
|�|4, (20)

hence the RNLS is obtained from the Euler-Lagrange equations 
thereof.

Since � (x, t) = eR−i S , the Lagrangian (20) can also be rewritten

LR,S = e2R
[
St − S2x + (δ − 1) R2

x

]
+ γ

2
e4R . (21)

We conclude our discussion in this Section by expressing R, S
in terms of r, s. Let

R (x, t) = R̃ (x, βt) = 1

2
[log r (x, βt) + log (−s (x, βt))] ,

S (x, t) = β S̃ (x, βt) = β

2
[log r (x, βt) − log (−s (x, βt))] ,

(22)

where β = √
δ − 1. Then, the Lagrangian becomes

Lr,s = srt − rst + 2rxsx + Br2s2 (23)

with the Euler-Lagrange equations coinciding with the system of 
Eqs. (7)-(8).

3. Stability analysis

A natural next step is to examine the stability of some of the 
simplest solutions of the RNLS model in the form of plane wave 
solutions � (x, t) = A0 exp [i (kx− ωt)], with A0, k and ω being 
the amplitude, wavenumber and frequency, respectively, of Eq. (1), 
with n = 1, by performing the standard modulation instability (MI) 
analysis. To that effect, we consider the stability for the most trivial 
case where k = 0 and A0 = √−ω/γ . In that realm, we introduce 
the following ansatz

�(x, t) = (�0 + εb (x, t))exp [i (−ωt + εw (x, t))] ,

0 < ε � 1, (24)

and plug it into Eq. (1). The amplitude and phase perturba-
tions assume the form b (x, t) = b0 exp (i (Q x− 
t)) and w (x, t) =
w0 exp (i (Q x− 
t)) where b0 and w0 are constants whereas Q
and 
 are the perturbation wavenumber and frequency, respec-
tively. At order O (ε), the following dispersion relation is obtained


2 = Q 2
[
(1− δ) Q 2 − 2γ A2

0

]
, (25)

that links the perturbation wavenumber, frequency and amplitude 
of the solution. When δ = 0, Eq. (25) coincides with the respec-
tive dispersion relation of the NLS equation [4,5]. In particular, the 
results arising from the stability analysis of the NLS equation and 
for γ = −1 suggest the absence of that instability and the plane 
waves are spectrally stable. On the other hand, for the focusing 
NLS case with γ = 1, we expect that small perturbations with 
wavenumbers Q < Qcr = A0

√
2γ , on top of the plane wave so-

lution, will grow over time. For the RNLS equation with δ < 1, the 
MI analysis results are similar to the ones of the NLS equation. 
More specifically, and for γ < 0, there is no modulation instabil-
ity, and thus the plane waves persist. As such, localized solutions 
of interest may occur on top of a plane wave background, whereas 
for γ > 0, we expect that suitable small perturbations will grow 
over time for Q < Qcr = A0

√
2γ /(1 − δ) in that case. On the other 

hand, when δ > 1, and for any value of γ , small perturbations 
with wavenumbers Q 2 > 2A2

0γ / (1− δ) grow over time. Thus, we 
expect instabilities to occur in the focusing case of γ > 0; addi-
tionally, an unstable regime emerges even for the defocusing case 
of γ < 0, but for small-wavelength perturbations contrary to the 
γ < 0, δ < 1 setting. The above analysis, suggests two different 
regimes in the parameter δ, that is, δ < 1 and δ > 1. We will treat 
the cases with δ < 1 and γ < 0, and δ > 1 (for all values of γ ), 
called scenarios A and B hereafter.

It is therefore relevant to show the dynamical evolution of 
plane wave solutions in those two cases. The results confirming the 
MI analysis are depicted in Fig. 1 for both scenarios A (left panels) 
and B (right panels), respectively. In particular, these panels corre-
spond to densities |� (x, t) |2 for the initial condition � (x, t = 0) =
1 perturbed by a sine function of amplitude of O

(
10−3

)
that has 

a wavenumber Q of Q = 2. When δ < 1 and γ = −1 (left pan-
els), there are no signs of instability, as predicted from Eq. (25); 
indeed, the initial small perturbations remain small for the re-
mainder of the evolution. However when δ > 1 (right panels) the 
plane wave solution is highly unstable. The initial small pertur-
bation of the plane wave exhibits exponential growth almost im-
mediately resulting in the rapid deviation from the homogeneous 
background solution. Note, here the different time scales on the 
left (0 < t < 1000) and the right (0 < t < 0.004). It should be noted 
that we numerically integrate Eq. (1) in time using a finite dif-
ference scheme for the spatial discretization and the Runge-Kutta 
method for the time marching. The resolution of the spatial dis-
cretization is dx = 0.02 and the time step-size is dt = 10−4 for the 
left panels and dt = 10−6 for the right panels of Fig. 1.

3.1. Linear stability analysis of the stationary states

Once a steady state solution is available, we can explore their 
potential robustness. Towards this direction, we use the linear sta-
bility analysis, and upon linearizing Eq. (1) around a steady state, 
we find its excitation spectrum. The scope of this analysis is to 
identify the fate of small perturbations on top of an already known 
solution. If φ (x) stands for a steady state, we consider small per-
turbations through the ansatz:

�(x, t) = e−iμt
{
φ (x) + ε

[
u (x)e−iωt + ν∗ (x)eiω

∗t
]}

, (26)

where ω is the (potentially) complex eigenfrequency, i.e. ω =
ωr + iωi and (u, ν) are the perturbation eigenmodes. After plug-
ging the ansatz (26) into Eq. (1) and keeping terms of order O (ε), 
we derive the eigenvalue problem:

[
L1 L2

−L∗2 −L∗1

][
u
v

]
= ω

[
u
v

]
, (27)

where L1 and L2 are given by
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Fig. 1. Mesh (upper panels) and contour (bottom panels) plots of plane wave evolution of the RNLS equation for δ < 1 and δ > 1 shown in the left and right panels 
respectively. The initial condition is � (x, t = 0) = 1 perturbed by a sine function (see text for details). The parameters used are δ = 0.99 and γ = −1, and δ = 2, γ = −1, in 
the left and right panels respectively.
L1 = −
(
1− δ

2

)
∂xx + δ

4

(
−2

(
φx

φ
− φ∗

x

φ∗

)
∂x +

(
φx

φ

)2

−
(

φ∗
x

φ∗

)2

+ 2
φ∗
xx

φ∗

)
− μ − γ (−1)n+1 (n + 1) |φ|2n, (28)

L2 = δ

2

(
φ

φ∗ ∂xx +
(

φx

φ∗ − φφ∗
x

(φ∗)2

)
∂x − |φx|2

(φ∗)2
+ φ

(
φ∗
x

)2
(φ∗)3

− φφ∗
xx

(φ∗)2

)

− γ (−1)n+1 nφ2|φ|2(n−1). (29)

For the simplest case where n = 1 and φ (x) ∈R, the above matrix 
elements assume the much simpler form

L1 = −
(
1− δ

2

)
∂xx + δ

2

φxx

φ
− 2γ φ2 − μ, (30)

L2 = δ

2

(
∂xx − φxx

φ

)
− γ φ2. (31)

Steady states are numerically identified by using the Newton-
Raphson method, although as we will see below they are often 
available in closed analytical form for the steady states waveforms 
of the present model. Then their spectrum (ωr,ωi) is obtained by 
solving numerically the eigenvalue problem of Eq. (27). When the 
spectrum has purely real eigenfrequencies, then the corresponding 
steady state is dynamically stable. The presence of complex eigen-
frequencies in the spectrum indicates that the particular steady 
state is unstable, i.e., that small perturbations lead either to an ex-
ponential growth (for purely imaginary eigenfrequencies) or to an 
oscillatory instability of the solution (for genuinely complex ones – 
although such a scenario will not be encountered in what follows). 
In the sections that follow, we are going to investigate the solu-
tions that exist for scenarios A and B and monitor their stability 
and associated dynamics.

4. Scenario A: soliton solutions for δ < 1 and γ < 0

This case scenario corresponds to γ < 0 and δ < 1. A fun-
damental solution that can be obtained in this effectively (still) 

Fig.
para
(das
μ =
the 

defo
bilit

4.1. 

soli

�(

whe
cou

−ũ

wit
from
(32
NLS
valu
2. Densities of the stationary dark solitons for three different values of the 
meter δ of δ = 0.01 (solid blue), δ = 0.3 (dashed black line), and δ = 0.99
hed-dotted red line), respectively. The other parameter values are: γ = −1 and 
−1. (For interpretation of the colors in the figure(s), the reader is referred to 
web version of this article.)

cusing case is the dark soliton solution, and its existence, sta-
y and dynamics will be investigated in what follows.

Exact solutions

For the case of cubic nonlinearity (n = 1), Eq. (1) possesses dark 
ton solutions of the form

x, t) = √−μ tanh

(√ −μ

2(1− δ)
x

)
eiμt, μ < 0, (32)

re we set μ = −1 in the analysis that follows. Solution (32)
ld be directly obtained from the Duffing equation

xx + 2ũ3 + μ̃ũ = 0

h ũ = √
γ̃ /2u, μ̃ = μ/ (1− δ) and γ̃ = μ̃/μ, which originates 

 (1) after employing the ansatz � (x, t) = eiμtu. For δ = 0, Eq. 
) gives the well-known dark soliton solution of the defocusing
 equation. Fig. 2 illustrates solution profiles for three different 
es of δ of δ = 0.01, 0.3 and 0.99 (see the legend therein). We 
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Fig. 3. Top panels: The corresponding spectral planes for the cases δ = 0.01 and 0.99 are shown in the left and right panels respectively. Bottom panels: Contour plots showing 
the dynamical evolution of the dark soliton solutions confirming their predicted dynamical stability. The left panel shows the case with δ = 0.01 and the right panel the case 
with δ = 0.99. The other parameter values used are γ = −1 and μ = −1.
observe that as we go towards the upper limit in δ, the width of 
the solution is decreasing.

4.2. Numerical results

Upon numerically identifying the above exact solutions using 
the Newton-Raphson method, we proceed to solve the eigenvalue 
problem (27) numerically. The corresponding spectra of the solu-
tion (32) are presented in the top panels of Fig. 3 for the cases 
with δ = 0.01 (top left panel) and δ = 0.99 (top right panel), re-
spectively, i.e., the two limits: the NLS and the infinitesimal width 
case. We studied systematically the spectra for all the values of 
δ in the range δ ∈ (0,1) and found that all the eigenfrequencies 
are lying on the real axis, thus suggesting that the solutions are 
spectrally stable for all δ in this interval. It is natural to explore 
the robustness of solutions (32) by integrating Eq. (1) forward in 
time. To that end, we have used finite differences for the spatial 
discretization with dx = 0.02 and the Runge-Kutta method for the 
time evolution with dt = 10−4. The results from the simulations 
are shown in the bottom left and right panels of Fig. 3 for the 
cases with δ = 0.01 and δ = 0.99, respectively. In both cases, the 
solitons remain robust for the time intervals considered therein.

5. Scenario B: soliton solutions for δ > 1

5.1. Theoretical background and exact solutions of the general RNLS 
equation

We construct a traveling wave solution of the generalized RNLS 
(1) by assuming � (x, t) = φ (x− υt)ei(−κx+ωt+θ) , where φ (w) > 0, 
w = x − υt , and κ, ω, θ, υ ∈R.

In the present case R (x, t) = logφ (x− υt) and S (x, t) = κx −
ωt − θ . Then by substituting these transformations into Eqs. (2)
with the assumption that φ (w) is not a constant function, we ob-
tain the conditions:

φ′′ (w) + aφ (w) = λφ (w)2n+1 ,

a =
(
ω + κ2

)
, λ = −γ

(−1)n
.

(33)
δ − 1 δ − 1
The traveling wave solution can then be found in the form φ (w) =
A [sech (αw)]1/n with suitably constants A > 0 and α [4]. The re-
sulting waveform and associated algebraic conditions for A, ω, κ
and υ read:

�(x, t) = A
[
sech (α (x− υt))

] 1
n ei(−κx+ωt+θ), (34)

with

ω = − (δ − 1)
α2

n2
− κ2, κ = −υ

2
,

A =
[

− (
ω + κ2

)
(n + 1)

γ (−1)n

] 1
2n

, γ (−1)n > 0, (35)

where θ is an arbitrary phase. Also, we should note that the last 
condition implies that n should be odd for γ < 0, whereas n
should be even for γ > 0.

5.2. Numerical results

We examine the relevant theoretical prediction in the prototyp-
ical case of n = 1 for stationary solutions with υ = 0. In that case, 
the associated bright solitary waveform becomes:

�0 (x) = α

√
2(1− δ)

γ
sech (αx) . (36)

We again identify numerically the steady states of Eq. (36) by us-
ing the Newton-Raphson method. As initial guess we use the exact 
solution �0 (which naturally constitutes an excellent initial guess, 
as it is exact up to the local truncation error). We have investigated 
two different sets of parameters; the first corresponds to δ = 1.01, 
γ = −1 and α = 0.8, and the second to δ = 2, γ = −1 and α = 0.8. 
The respective profiles of the exact solutions �0 (red circles) and 
the numerically exact solutions � (blue line) are shown in the top 
left and right panels of Fig. 4. The bottom panels of the same fig-
ure show the associated spectral planes. It can be appreciated that 
the modes are extremely unstable in this case. This is rather nat-
ural to expect as the point spectrum of the solitary wave consists 
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Fig. 4. Top panels: Densities of the exact (red circles) and the numerical (solid blue) steady state solutions of Eq. (36) for δ = 1.01 (left panel) and δ = 2 (right panel). Bottom 
panels: The corresponding spectral planes. The other parameter values used are n = 1, υ = 0, γ = −1, α = 0.8 and ω = −1.

Fig. 5. An example of the case with γ = −1 and δ = 1.1 is given. The left panel shows the space-time evolution of the norm, where the instability is essentially indiscernible 
over the time scale [0, 0.17] shown. The middle panel shows the (logarithm of the absolute value of the) difference of the solution intensity from the initial condition (�0) 
intensity in its space-time evolution. Here the dramatic growth of the error is evident (not only weakly on the boundaries but also more clearly) in the center of the domain. 
Finally, in the right panel what is shown is the quantity of the middle panel specifically at x = 0 as a function of time. This density difference is shown at x = 0 as a function 
of time t in a semilog plot. The inset shows the exponential part of the growth with the best fit over more than two orders of magnitude. The best fit slope (i.e., the 
instability growth rate) is 208.6.
solely of the ω = 0 eigenfrequency pairs due to the translational 
and phase symmetries. However, the continuous spectrum of the 
problem lies entirely on the imaginary axis reflecting the modu-
lational instability of the background, as per Eq. (25). We note in 
passing that rather similar results were found for the case of γ < 0
and odd n, as well as for that of γ > 0 and even n.

Here it is important to discuss the dynamical evolution of the 
bright soliton solutions for the cases with δ > 1 that were studied 
above. Notice that the stability analysis indicates that the solution 
is wildly unstable with growth rates (of the background equilib-
rium state) extending over an interval up to ωi = Q 2

√
δ − 1. The 

maximal Q corresponds to the minimal length scale dx of the 
domain, according to Q = 2π/dx and is typically of the order of 
many hundreds. Thus, it should come as no surprise in Fig. 5 that 
even when starting with the exact analytical bright solitary wave 
solution with no perturbation (other than round off error), even-
tually the relevant instability takes over and grows with a rate 
that in the present example is found to be approximately 208.6. In 
the figure, the maximal density evolution is shown by comparing 
to the density of the (exact solution) initial condition, along with 
the left panel of the space-time profile of the solution. The latter 
shows no discernible signs of instability over the time scale shown. 
The middle panel shows the space-time evolution of the difference 
log(||�|2 − |�0|2|). The extremely rapid exponential nature of the 
growth (with this extremely high growth rate) is rather transpar-
ent within the middle and right panels of the figure, in line with 
our theoretical prediction about the highly unstable nature of the 
δ > 1 dynamics.

6. Conclusions

We have investigated a more general form of the RNLS equation 
with power-law nonlinearity. This equation, similar to the RNLS 
with a cubic nonlinearity, behaves differently for different values 
of the coefficient of the de Broglie potential, relevant to the cold 
collisionless plasma system of interest here. More specifically, for 
δ < 1, it reduces to the standard NLS equation with a power law 
nonlinearity via a suitable transformation. We investigated dark 
solitons for different values of the parameter δ and we observed 
that they are dynamically stable solutions as our linear stability 
analysis suggests and numerical simulations corroborate. On the 
other hand, when δ > 1, the general RNLS reduces into a system 
featuring reaction and diffusion in one component while the sec-
ond one has reaction and anti-diffusion. This, in turn, represents 
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a partial differential equation example of Hamiltonian form that 
can be transformed into a PT symmetric one. We performed a 
stability analysis of bright soliton solutions of the RNLS not only 
with n = 1 but also for n > 1 in the case of δ > 1. The analysis 
of these states however indicated that they are all unstable at the 
linearized level, a feature in line with the modulational instability 
analysis also performed herein. This instability was shown to be 
associated with large growth rates evidenced in our direct numer-
ical simulations.

Numerous further directions may be worthwhile to further pur-
sue in this setting. Most notably deriving and examining the rel-
evant model in higher dimensions. In its one dimensional install-
ment and for the associated real solutions, the principal solutions 
of the model appear to be similar to the usual NLS ones with 
suitable renormalization of the dispersion coefficient. However, in 
higher dimension the genuinely complex nature of the associated 
wavefunction is more likely to make it relevant for this to no 
longer be the case, when considering solutions of a vortical form. 
There, the full role of the effect of the δ-induced perturbation may 
be quite intriguing to appreciate. Such topics are currently under 
consideration and will be reported in future studies.
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