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Abstract

We analyze the performance of the Tukey median estimator un-
der total variation (TV) distance corruptions. Previous results show
that under Huber’s additive corruption model, the breakdown point is
1/3 for high-dimensional halfspace-symmetric distributions. We show
that under TV corruptions, the breakdown point reduces to 1/4 for
the same set of distributions. We also show that a certain projection
algorithm can attain the optimal breakdown point of 1/2. Both the
Tukey median estimator and the projection algorithm achieve sample
complexity linear in dimension.
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1 Introduction

The Tukey median is the point(s) with largest Tukey depth (Tukey, 1975); it
is a generalization of the one-dimensional median to high dimensions (see (1)
for a formal definition). Its behavior is well-understood under the additive,
or Huber, corruption model (Huber, 1973) in which an e-fraction of the
data are arbitrary outliers. It is first shown in Donoho (1982); Donoho
and Gasko (1992) that the breakdown point for Tukey median is 1/3 for
halfspace-symmetric distributions in dimension d > 2, and the breakdown
point is 1/(d + 1) without the halfspace-symmetric assumption. Further
analyses in Chen et al. (2002) quantify the influence function and maximum
bias for halfspace-symmetric distributions, and the finite-sample behavior
for elliptical distributions is analyzed in Chen et al. (2018).

In this paper, we consider the stronger TV corruption model, which al-
lows both adding and deleting mass from the original distribution. We quan-
tify the maximum bias of Tukey median and provide both upper and lower
bounds for the breakdown point under TV corruptions. Interestingly, the
breakdown point for halfspace-symmetric distributions in high dimensions
decreases from 1/3 under additive corruptions to 1/4 under TV corruptions.
We show that a different algorithm, projection under the halfspace metric,
has breakdown point 1/2 in the same setting, which is the maximum break-
down point any translation-equivariant estimator can achieve (Rousseecuw
and Leroy, 2005, Equation 1.38). We summarize the breakdown point for
different algorithms in Figure 1.

We extend the population results on maximum bias and breakdown point
under TV corruptions to the finite-sample case, showing that we approach
the infinite-data limit within a constant factor once the number of samples
n is linear in d. Our analysis holds under both the oblivious and adaptive
models considered in the literature (Zhu et al., 2019).

2 Preliminaries

We provide definitions for the Tukey median, halfspace-symmetric distribu-
tions, the additive and TV corruption models, maximum bias, and break-
down point.
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Figure 1: Summary of the breakdown point of different algorithms. Here
‘Tukey’ denotes Tukey median and ‘projection’ denotes the projection al-
gorithm. ‘Additive’ and ‘T'V’ are the two corruption models. ‘Symmetric’
denotes the family of halfspace-symmetric distribution, and ‘general’ denotes
the family of all distributions.

2.1 Tukey median

For any distribution p and pu € R?, the Tukey depth is defined as the mini-
mum probability density on one side of a hyperplane through pu:

Dukey(1:p) = inf p(v" (X = 1) = 0). (1)

The Tukey median of a distribution p is defined as the point(s) with largest
Tukey depth:

T(p) = arg max Dyykey (11, p).- (2)
ueR

When d = 1, Tukey median reduces to median. The Tukey median may not
be unique even in one dimension. When the maximizer for Tukey depth is
not unique, we use 7'(p) to denote the set for all the maximizers and refer
to this set as the Tukey median for distribution p.

2.2 Halfspace-symmetric distributions

We adopt the definition of halfspace-symmetric distributions from (Chen
et al., 2002; Zuo and Serfling, 2000). We say a distribution p is halfspace-



symmetric if there exists a point u € R? such that for X ~ p, (X — p) and
—(X — p) are equal in distribution for all univariate projections, i.e.

Yo eRL 0T (X —p) £ —vT (X — p). (3)

Here £ represents equal in distribution. We call the point u the center of the
distribution p. The class of halfspace-symmetric distributions contains both
the class of centro-symmetric distributions in Donoho and Gasko (1992)
and elliptical distributions in Chen et al. (2018). For a halfspace-symmetric
distribution p, p is the mean of p. The Tukey depth satisfies Drykey (1, 0) >
1/2 and the Tukey median T'(p) contains .

2.3 Population corruption models

In the population level, we consider two corruption models: additive cor-
ruption model and TV corruption model Diakonikolas et al. (2017); Donoho
and Liu (1988); Zhu et al. (2019).

Additive corruption model In alevel-¢ additive corruption model, given
some true distribution p*, the adversary can generate corrupted distribution
p = (1 — €)p* + er, where e € [0,1) is the level of corruption, and r € M?
is an arbitrary distribution selected by adversary. We denote the set for all
possible e-additive corruptions from p* as

Cadd(P*,€) = {(1 — €)p* +er | 7 € M7}, (4)

Total variation distance corruption model The total variation dis-
tance between two distributions p, g is defined as

TV(p,q) = Sljlpp(A) —q(A). (5)

In a level-e TV corruption model, given some true distribution p*, the
adversary can generate any corrupted distribution p with TV(p,p*) < e.
For any p € Caqq(p*, €), it is always true that TV (p*,p) = supy, e(p*(A) —
r(A)) < e. Thus the TV corruption model is a stronger corruption model
than the additive corruptions, since TV corruptions allow not only additive
corruption, but also deletion and replacement.



2.4 Maximum bias and breakdown point for Tukey median

Given a fixed distribution p*, the maximum bias b(p*, €) for Tukey median
is defined as the maximum distance between T'(p) and T'(p*), where p is in
the set of all possible level-e corruptions:

badd(p*v 6) = sup ||ZL‘ - va (6)
PECadd (P*,€),2ET (p),y€T (p*)
brv(p*,€) = sup |z —yl|. (7)

TV(p*,p)<e,x€T (p),yT (p*)

The corresponding breakdown point €*(p*) is defined as the minimum cor-
ruption level that can drive the maximum bias to infinity:

€ag(p*) = inf{e | b(p*, €) = oo}, (®)
e (p") = int{e | b(p*,€) = o). (9)

Based on the definition of the breakdown point for a single distribution,
we define the breakdown point for a family of distribution G as the worst
breakdown point for any distribution inside G, i.e.

€2dd(9) = ;felg €dd(9), €erv(9) = ;felg eTv(Q)- (10)

3 Population analysis of Tukey median

In this section, we quantify the maximum bias and the breakdown point of
the Tukey median in population level. The maximum bias of the Tukey me-
dian for halfspace-symmetric distributions under additive corruption model
is determined in (Chen et al., 2002, Theorem 3.4), which shows that the
worst-case perturbation is to add a single point with mass e¢. It is also
shown in (Chen et al., 2018, Theorem 2.1) that under additive corruptions,
the Tukey median achieves near optimal maximum bias for mean estimation
if the true distribution p* belongs to the family of elliptical distributions.
Here we demonstrate a gap in the breakdown point for halfspace-symmetric

distributions between the additive and TV corruption models.

Theorem 1. Denote Gnhas as the set of all halfspace-symmetric distributions.
Then the breakdown point for Gnas is

Vs dt 1/2, d=1
€add (Ghalf) = {1/37 p ; 5’ €rv(Ghaif) = 1/3, d=2
T 1/4, d>3



Proof of Theorem 1. We first show the upper bound for both breakdown
points. We defer the lower bound to Theorem 2. The construction of upper
bound is summarized in Figure 1.

d=1 d=2
(additive/TV) (additive/TV) |
. - .1/3
p 172 1/2

Figure 2: Illustration of worst case distributions achieving the breakdown
point. Blue represents the original probability mass in p*, blue cross rep-
resents deleted points and red represents added points by adversary. In all
three cases, the red point is a Tukey median of p. Thus by driving the red
point to infinity the estimator also goes to infinity.

For d = 1, by adding 1/2 mass onto z and letting z — 400, the maximum
bias can be driven to infinity. Thus €*(Gpa) < 1/2 under both corruption
models.

For d > 2 under additive corruption model, the upper bound of break-
down point €, is proven in (Donoho and Gasko, 1992, Proposition 3.3).
For completeness we sketch the proof here. Consider p* as a uniform dis-
tribution supported on unit ball. The adversary adds 1/3 probability mass
onto a point 1 € R? outside the unit ball to get a new distribution p. Then
Drykey (11, p) = 1/3. On the other hand, for any point p # p, if 1’ is outside
unit ball, there must exist a hyperplane which goes through ' such that the
unit ball is on one side of the hyperplane. Thus Dyykey (1, p) < 1/3. If i/ is
inside unit ball, consider any hyperplane that goes through 0 and /. The
mass of the side of hyperplane which does not contain s is 1/3'. Thus we
also have Dykey(1t/,p) < 1/3. Overall u must be one of the Tukey median
for p. By setting p — oo the proof is done.

Since TV corruption model is a stronger corruption model, the upper
bound of breakdown points for d = 1,2 under TV corruptions readily follows
from that under additive corruptions. Now we show the upper bound for
€Ty When d > 3.

Consider the following example as illustrated in Figure 2: in a 3-dimensional
space, p* is a distribution with equal probability on the four nodes of
a 2-dimensional square. To be precise, p*(X = t) = 1/4 for any t €

'If p is on the same hyperplane. One can slightly rotate the hyperplane such that p is
not on it. This still guarantees the corresponding depth to be arbitrarily close to 1/3.



{(-1,-1,0),(-1,1,0),(1,-1,0),(1,1,0)}. Thus p* is a halfspace-symmetric
distribution, and T'(p*) = (0,0,0) gives a unique Tukey median for p*.
Now we move one of the point (1, 1,0) to (—0.5, —0.5, z) to get corrupted
distribution p, where z > 0. Now the four points form a tetrahedron. For
any point p that is inside the tetrahedron, the Tukey depth Dy is always
1/4. For any point that is outside the tetrahedron, the Tukey depth is always
0. Thus all the points inside the tetrahedron are a Tukey median for the
corrupted distribution p. By taking z — 400, the Tukey median T'(p) is
driven to infinity. Thus we know that €¥,(Gpair) < 1/4 when d > 3.
O

Without the halfspace-symmetric assumption, the breakdown point for
Tukey median under additive corruption model is 1/(d + 1), which is shown
in (Donoho and Gasko, 1992, Proposition 2.3). This is also true under TV
corruption model.

To better illustrate the behavior of Tukey median, we analyze the max-
imum bias for halfspace-symmetric distributions. The performance guaran-
tee relies on the decay function of the distribution, which characterizes how
much probability mass is around the center of distribution. Assume the true
distribution p* is halfspace-symmetric centered at u*. We define the decay
function A(t) : R>o — R>¢ as

W)= s pT(X - ) > b), (11)
vERY, [[v]] <1
where || - ||« is the dual norm of || - ||. Note that h is a non-increasing

non-negative function and h(0) = 1 — Drykey (1", p*) < 1/2 for halfspace-
symmetric distributions.

In the next theorem, we show that the maximum bias is controlled if the
distribution has enough mass around its center:

Theorem 2. Assume p* is halfspace-symmetric with center p* and decay
function h(t) defined in (11). Then the mazimum bias satisfies:

rh_l (max((l—e)((ll:}el)(o))—6’ 1{2_—56) Cd=1
baga(p',€) < § ! (max(U=GlOE ME) d=2, (12)
ot (mhon=s) 13
(h! (max(1 — h(0) — 2¢,1/2—¢€)), d=1
brv(p*,€) < < b7t (max(l — h(0) —2¢6,1/3 —¢€)), d=2. (13)
h=1(1— h(0) — 2¢), d>3




Here h™! is the generalized inverse function of h defined as
= (y) = inf{a | h(z) < ). (14)

For Gaussian distribution with the operator norm of covariance bounded,
p* is the mean and h(t) = 1/2 — ©(t) for ¢t small, and Theorem 2 implies
that Tukey median achieves the maximum bias O(e) for robust Gaussian
mean estimation, which is known to be optimal up to constant factor.

For any fixed distribution p*, it suffices to have t > 0 for h=1(¢) to be
finite. Thus as a direct corollary of Theorem 2, it provides tight lower bound
on the breakdown point of halfspace symmetric distributions in Theorem 1
via noting that h(0) < 1/2 for halfspace-symmetric distributions.

The results in Theorem 2 can be extended beyond halfspace symmetric
distributions. For any true distribution p*, since the Tukey median of p*
may not be unique, we define the new h(t) as

h(t) = sup P (X — ") > ). (15)
vER, ||v||« <1,u* €T (p*)

Then following the same argument as the proof, the result in (12) and (13)
still hold.

Proof of Theorem 2. We first show that it suffices to bound Drykey(T'(p), p*)
via the following lemma:

Lemma 1. Under the same condition as Theorem 2, if Drykey(T'(p),p*) >
o, we have

IT(p) — w*l| < h™a). (16)

Proof of Lemma 1. Let ¥ = arg max|,, <1 v (T(p) — p*). Indeed, for any ¢
such that h(t) < o, if ||T'(p) — p*|| > ¢, we have

Drukey(T(p),p") <p*(8" (X — T(p)) > 0)
=p* (8" (X — p*) > | T(p) — p*|])
<p* (0" (X — p*) > 1)
<h(t) <, (17)
resulting in a contradiction. Thus the lemma holds. O

Now it suffices to lower bound Drykey (T'(p), p*) for different dimensions
and different corruption models.



Under the TV corruption model, from the definition of Dtyke, and TV,
we have for any p € R,

Dukey (14:P) — Dukey (14, P")
= inf p(v" (X —p) >0) — inf p*(v" (X — ) > 0)
veRI veRI

< sup p* (v (X — ) <0) = p(v' (X —p) <0)

vER

<TV(p,p*) <e. (18)

Under the additive corruption model, we have a tigher bound: from the
definition we know that p(A) = (1 — €)p*(A) + er(A) < (1 — €)p*(A) + € for
any event A. Thus

Dukey (11,p) = inf p(v (X —p) 2 0)

< inf (1—e)p (v (X —p)>0)+e

veER

= (1 — €) DTukey (11, P") + €. (19)

When d = 1, we know that Dyykey(7'(p), p) > 1/2 for any distribution p.

Thus Drykey(T'(p), p*) > DT”"ey(lT_(f )ip) =€ > 1{2__: under additive corruption,
Dukey(T'(p), 0*) > Drukey(T'(p),p) — € > 1/2 — € under TV corruption.
When d = 2, we know that Drykey(T'(p),p) > 1/3 for any distribution p
from (Donoho and Gasko, 1992, Proposition 2.3). Thus following the same
argument as d = 1, we have Dyykey(T(p),p*) > (1/3 —€)/(1 — €) under
additive corruption, Dyykey(T'(p),p*) > 1/3 — € under TV corruption.
For arbitrary dimension under additive corruption model, we also have

another lower bound:

Drukey (T(p), P")

(Drukey(T(p);p) = €)/(1 =€)

(DTukey (1%, p) = €)/(1 =€)

(1 =€) Drukey (1", p7) — €)/(1 =€)

(1= €)1 = h(0)) = €)/(1 —e). (20)

) =
Here we use that p(A) = (1 — €)p*(A) + er(A) > (1 — €)p*(A) for any event
A. For TV corruption model, we have

Dukey(T'(p), 0*) = Dukey(T' (), p) — € > Dukey (14", p) — €
> DTukey(M*ap*) —2¢=1-h(0) — 2.

(AVAR VARV

Combining the lower bounds with Lemma 1 gives the proof. O
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4 Finite sample analysis of Tukey median

In this section, we extend the population results in the previous section to
finite-sample case.

Given finite samples, there are two different corruption models: oblivious
corruption and adaptive corruption (Zhu et al., 2019). In the oblivious
corruption, the adversary first picks a corrupted population distribution p
from Ctv(p*, €), then we take n samples from p. In the adaptive corruption,
we first take n samples from p*, then the adversary samples n’ from some
distribution that is stochastically dominated by a binomial distribution n’ ~
B(n, €) and replace n’ points in the samples by arbitrary points to get the
corrupted empirical distribution p,,. It is shown in Diakonikolas et al. (2019);
Zhu et al. (2019) that adaptive corruption model is a stronger corruption
model than oblivious corruptions.

Now we bound the maximum bias in the finite-sample case. We show
that with d/e? samples, the estimation error can be of the same order as the
population error in Theorem 2:

Theorem 3. Assume the true distribution p* is halfspace-symmetric cen-
tered at p* with decay function h(t) defined in (11). Denote py, as the cor-
rupted empirical distribution under either oblivious or adaptive TV corrup-
tions of level e. When d > 3, with probability at least 1 — §, there exists
universal constant C' > 0 such that for any i € T(pn) as the Tukey median

Ofﬁn;

I — 7]l < B (1= h(0) - 26) (21)

when 2€ <1 —h(0). Here e =€+ C -/ %Og(l/é) , h=1 is the generalized
inverse function of h defined in (14).

Proof. 1t suffices to show the result for adaptive corruption model. From
Lemma 1, we know that it also suffices to lower bound DTukey(/l, p*), where
fi € T(pn).

We introduce the halfspace metric defined in Donoho and Liu (1988) as

TV(p,g) = sup |p(v’X >t)—q(v X > 1), (22)
vERL tER

From the definition we have ﬁ(p, q) < TV(p,q) for all p,q. We first show

that | Drykey (14, 2) — Dukey (14, q)] < TV(p,q) for any two distributions p, ¢

11



and any p € R?. To see this, note that the left hand side is

‘DTukey(/%p) - DTukey(M7 Q)’
= inf p(v' (X —p) > 0) — inf gv' (X —p) >0)
veRd veRd

< sup g’ (X —p) < 0) = pu" (X — p) < 0) < TV(p,q).

For Tukey median i = T'(p,) = arg max,,cga DTukey (> Pn);

DTukey(,&ap*) > DTukey(,&aﬁn) - ﬁ(ﬁnap*)
> DTukey(N*aﬁn) - Tv(ﬁmp*)
> DTukey(N*vp*) - 2Tv(ﬁn)p*)'

Now let p; be the uncorrupted distribution, so that p, is obtained from p;,
by modifying part of samples as in adaptive corruption model. Then by
triangle inequality of TV,

DTukey(ﬂap*) > DTukey(N*ap*) - 2ﬁ(ﬁn7ﬁ;’;) - 21/:\//(13;71)*)
> 1= n(0) = 2TV(Pn, p,) — 2TV (py,, )

where we repeatedly use the fact that for any p, ¢, u, we have | Dyyyey (11, p) —
Dukey(11,q)| < TV(p,q). Here p,, | p;, follows adaptive corruption model.

Now we upper bound the two terms TV (p,, p),) and ﬁ(ﬁ;‘;,p*). From (Zhu
et al., 2019, Lemma B.1), we know that with probability at least 1 — 4,

VG, 5) < (vt ALy (23)

For the second term ﬁ/(ﬁ;,p*), from the VC inequality (Devroye and
Lugosi, 2012, Chap 2, Chapter 4.3) and the fact that the family of sets
Hz | vz >t} | |v|| = 1,t € R,v € R?} has VC dimension d + 1, there
exists some universal constant CV¢ such that with probability at least 1 —§:

—~ 1+ log(1
TV p) < o [T Lt osl/) (24)
Denote ¢ = (1/e + logéi/a))Q +CVe -4/ %‘M. Combining the two

lemmata together, we know that with probability at least 1—26, Dyykey (f1, p*) >
1—h(0)—2€. The proof is completed by combining the result with Lemma 1.
]

12



As a direct corollary of the finite sample result, we can show that for
Gaussian distribution the estimation error is O(e) with sample complexity
O(d/e?). We remark that with the same proof, the population results in
Theorem 2 for d = 1, 2 and additive corruptions can all be extended to finite-
sample results with sample complexity O(d/e?). Similarly the halfspace-
symmetric assumption can be discarded.

5 TV Projection Algorithm

In the previous two sections, we show that Tukey median can achieve break-
down point 1/4 for halfspace symmetric distributions under TV corruptions
and the sample complexity is linear in dimension. In this section, we show
that projection under halfspace metric TV, as defined in (22), is able to
improve the breakdown point to 1/2 under the same conditions. The TV
projection algorithm is first proposed in Donoho and Liu (1988) for robust
mean estimation, and later generalized in Zhu et al. (2019) for general robust
inference problems.

Denote G(h) as the set of halfspace-symmetric distributions with con-
trolled cumulative density function around its center:

G(h) = {p | X ~ p is halfspace-symmetric around p and
sup p(oT (X — p) > ) < h(t)}. (25)

veRY, o] <1

The TV projection algorithm projects the corrupted empirical distribution
p onto the set G(h) under TV distance, i.e. the output is

f(p) = E4[X], where ¢ = arg min 'ﬁ/(q,p). (26)
q€G(h)

Note that the TV projection algorithm requires the knowledge of the set
G(h), while the Tukey median is agnostic to the distributional assumption
on p*. In return, the TV projection algorithm achieves a breakdown point
of 1/2 and better maximum bias than the Tukey median, as shown in the
following theorem:

Theorem 4. Assume the true distribution p* is halfspace-symmetric cen-
tered at p* with decay function h(t) defined in (11). Then for any p with
TV(p*,p) <€, the projection estimator ji(p) in (26) satisfies

la(p) — pll <2071 (1/2 =€) (27)

13



when € < 1/2. Here h™! is the generalized inverse function of h defined
in (14).

Proof. By triangle inequality and the property of projection,
TV, q) <TV(QE',p)+ TV(p.q9)
< TV(p*,p) + TV(p,p")
= 2TV(p*,p) < 2TV(p",p) < 2e. (28)

We also know that p*,q € G(h). Let 0 = argmax,|, < v (i — p*). We
have

(0" (x 5 <)

. N p—pt W=
@7 (x — i) < N < p T (29)
We show that it implies for any e < 1/2, || — p*|| < 2h71(1/2 — ¢).
For any ¢ such that h(t) < 1/2 — e, if ||g — p*|| > 2t,

pr(oT (X -

<o) =1 T (x -t 2 B

>1—p* (0" (X —p*)>t) >1—h(t) >1/2 +e (30)

On the other hand, from ﬁ/(p*, q) < 2¢, we know that

P (X — %ﬂ) <0) <q(aT(x = 2“‘) <0)+ 2

§h(”u2_'u||) +2e<1/2 +¢,
resulting in a contradiction.

O

The population result can also be extended to finite-sample case by pro-
jecting pp, instead of p under TV. The proof follows the same technique in
Theorem 3. The key to the success of TV projection is that it allows us to
check the halfspace that goes through the middle of u* and fi, while Tukey
median is only allowed to check the halfspace that goes through p* and fi.
Although projection under TV would also give the same population rate, the
finite sample error can be huge since TV(p,,p) = 1. For both Theorem 3
and 4, the results can be extended to a more general perturbation model of
corruptions under TV distance.

14



6 Open Problem

Considering the TV corruption model, Tukey median is an affine-equivariant
estimator with breakdown point 1/4 in high dimensions and good finite
sample error for halfspace-symmetric distributions. The TV projection al-
gorithm is not affine-equivariant, but achieves breakdown point 1/2 and
good finite sample error in the same set of distributions. Both algorithms
may not be efficiently solvable.

It is an open problem to find an estimator that is affine-equivariant, with
breakdown point 1/2 and good finite sample error for halfspace-symmetric
distributions without considering computational efficiency.
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