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Abstract
The aim of the present work is to examine the role of discreteness in the 
interaction of both co-winding and counter-winding vortices in the context 
of the nonlinear Schrödinger equation. Contrary to the well-known rotation 
of same charge vortices and translation of opposite charge vortices, we find 
that strong discreteness is able to halt both types of pairs into stationary, 
potentially stable configurations up to a critical inter-site coupling strength. 
Past the relevant critical point the behavior is also somewhat counter-intuitive 
as, for instance, counterwinding vortices start moving but also approach 
each other. This lateral motion becomes weaker as the continuum limit is 
approached and we conjecture that genuine traveling appears only at the 
continuum limit. Analogous features arise in the cowinding where the discrete 
coherent structure pair spirals outward, with rigid rotation being restored only 
in the continuum limit.
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1.  Introduction

The discrete nonlinear Schrödinger equation (DNLS) constitutes one of the most prototypi-
cal examples of a nonlinear dynamical lattice, combining the linear form of lattice (discrete) 
dispersion and nonlinearity [16]. For this reason, the model has been argued to be relevant as 
an exact or asymptotic description of a variety of different settings including, but not limited 
to, optical waveguide arrays [6, 23], as well as the evolution of atomic Bose–Einstein conden-
sates (BECs) in the presence of optical lattice potentials [26]. These applications have been 
motivated by the theoretical exploration and even experimental observation of a diverse host 
of features such as discrete diffraction [8] and diffraction management [9], lattice solitary 
waves [8, 25] and discrete vortices [12, 27], Talbot revivals [14], and PT -symmetry breaking 
[29], among many others.

Especially in two-dimensional settings, the study of both waveguide arrays and also pho-
torefractive crystals has offered a wide range of possibilities [23]. Most recently, this includes 
e.g. the study of topologically protected states in variants of the lattices that break the time-
reversal symmetry [1, 24, 28]. However, many of the relevant studies have been conducted 
in the focusing nonlinearity realm where bright solitonic structures on top of a vanishing 
background may exist. While gap structures have been considered in the defocusing realm 
in square [19] and non-square lattices [22], there is considerably less effort in the subject of 
vortices and their associated dynamics.

Indeed, vortex dynamics and interactions are of principal relevance to the evolution of 
atomic Bose–Einstein condensates [10, 11, 17]. Furthermore, BECs often involve the evo
lution in periodic potentials [26], which in recent two-dimensional extensions have even been 
considered in the realm of geometries with curvature [21]. Nevertheless, the concurrent explo-
ration of defocusing nonlinearity-induced vortices and discreteness has been quite limited, 
to the best of our knowledge, and in fact has been constrained to the study of a single such 
entity [3, 7]. The aim of the present work is to go a step past this and develop a systematic 
understanding of the principal numerical phenomenology, aided by some analytical insights, 
of the case of multiple vortices in the DNLS model. This is a topic of interest for a number 
of reasons: continuum vortex pairs have a very definite behavior dictated by the topological 
charges. For same-charge (cowinding) vortices, the result of their interaction is a rigid rotation 
around their center of mass, while for opposite-charge (counterwinding) vortices, the coherent 
structures move parallel to each other in a steady translational (constant speed) motion [10, 
11, 17]. Discreteness, on the other hand, is well-known to ‘disrupt’ the translational dynamics 
of solitary waves, due to the so-called Peierls-Nabarro barrier [16]. Hence, it appears to be of 
particular interest what the result of the interplay of these opposing tendencies is.

Our findings can be summarized in the following conclusions:

	 •	�For sufficiently weak coupling, discreteness ‘dominates’ the interaction, entirely halting 
the rotational or translational motion of counter- or co-winding vortices, and leading 
instead to the formation of stable stationary configurations of such states.

	 •	�Past a sufficiently large critical coupling, the relevant branches feature a turning point 
bifurcation and stationary states cease existing. A one-dimensional example of such a 
saddle-center bifurcation has appeared for dark solitons in the work of [31]. Interestingly, 
this saddle-center bifurcation is not the only one taking place in the system; there is also 
a pitchfork bifurcation occurring near the turning point with an asymmetric (or 1 vortex, 
as we call it) branch.

	 •	�Past the turning point, a reasonable expectation might be that traveling arises, e.g. 
via a SNIPER bifurcation as happens in a different context in discrete systems [18]. 
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Nevertheless, to our surprise, we find that this is not the case. Instead, no traveling (for 
counter-winding) or rotating (for cowinding vortices) state exists in the dynamics past 
the critical point. Instead, cowinding vortices increase their separation distance slowly, 
while counterwinding ones move closer to each other and may eventually participate in 
catastrophic (annihilation) collisional events.

	 •	�As the continuum limit is approached, these ‘lateral’ motions become slower, leading 
us to conjecture that genuine rotational (for cowinding) and translational (for counter-
winding) vortex configurations can be reached solely in the singular continuum limit of 
the model.

The structure of our presentation is as follows. We first provide the general mathematical 
formulation of the model of interest. We then simultaneously consider both the counterwind-
ing and cowinding cases in section 3. A connection with the continuum limit is offered in 
section 4. Finally, section 5 summarizes our findings and presents some directions for future 
study.

2.  Formulation

Our starting point will be a two-dimensional discrete nonlinear Schrödinger equation

i
dψn,m

dt
− |ψn,m|2ψn,m +

ε

2
∆ψn,m = 0, (n,m) ∈ Z2� (1)

where ∆ψn,m = ψn+1,m + ψn−1,m + ψn,m+1 + ψn,m−1 − 4ψn,m is the discrete Laplacian. To 
consider potentially stationary states in the model, for all (n,m) ∈ Z2 we introduce the ansatz

ψn,m(t) =
√
ωφn,me−iωt,

where φn,m  is time-independent, to transform (1) to

C
2
∆φn,m + (1− |φn,m|2)φn,m = 0, (n,m) ∈ Z2.� (2)

Here we have set C = ε/ω.
Through an amplitude-phase decomposition (often referred to as the Madelung transforma-

tion [17]), the complex field is rewritten as φn,m = rn,meiθn,m  for all (n,m) ∈ Z2 so that solving 
(2) is equivalent to solving

0 =
C
2

∑
n′,m′

(rn′,m′ cos(θn′,m′ − θn,m)− rn,m) + rn,m(1− r2n,m),� (3a)

0 =
C
2

∑
n′,m′

rn′,m′ sin(θn′,m′ − θn,m)� (3b)

for each (n,m) ∈ Z2. The sum in (3) is taken over all four nearest neighbours of (n,m) so that 
(n′,m′) = (n± 1,m), (n,m± 1).

In this work we begin by focusing on the behaviour of solutions in the anti-continuum 
limit, C → 0+. Simply evaluating (3) at C  =  0 will of course trivially solve (3b), but this 
gives no indication as to the continuity of solutions into C  >  0 since we no longer automati-
cally satisfy (3b) for C �= 0. Therefore, to maintain continuity of solutions as C → 0+ we can 
replace (3b) with
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0 =
∑
n′,m′

rn′,m′ sin(θn′,m′ − θn,m)� (4)

for all (n,m) ∈ Z2 since C / 2 appears only as a multiplicative constant in (3b).
We consider the existence and stability of vortex pair solutions of (3a) and (4) which satisfy 

rn,m → 1 when (n,m) → ∞. In our work we analyze the existence, stability and dynamics of 
different vortex pair states in N × N  lattices, with N = 41, 81, and 251 (but also examine the 
dependence of the results on the lattice size N). The vorticity of each structure is assigned to 
be either S  =  1 (if the phase rotates counter-clockwise) or S  =  −1 (if it rotates clockwise) in 
the limit C → 0+. Either when we want to examine the unstable dynamics of the model, or 
when we consider values of C past the critical point of existence of stationary configurations 
(see details below), the full dynamical model of equation (1) is evolved in time. We now turn 
to the consideration of the two different cases of vortex pairs.

3.  Vortex solutions

In this section we handle both counter- and cowinding vortex solutions together. In section 3.1 
we describe how the internal symmetries of the vortices can be used to reduce the number of 
equations required to solve (3). Section 3.2 presents our numerical existence and continuation 
results which show that both counter- and cowinding vortices as solutions of (3) can only exist 
up to some finite C  >  0, after which they become dynamic solutions of the full DNLS (1). The 
stability of these static solutions is examined in section 3.3 and then in section 3.4 we provide 
dynamic simulations of the solutions near their respective critical existence thresholds in C  >  0.

3.1.  Symmetries and reductions

We can obtain stationary vortex solutions by exploiting the symmetries of the system (3) and 
the underlying lattice structure in a similar way to what was done for single vortex solutions 
in [3]. Here we define a function for which we will show that its roots can be used to obtain 
vortex solutions of (3) with the boundary conditions giving that the vortex is either counter- or 
cowinding. Define

F1
n,m(C, r, θ) =

C
2

∑
n′,m′

(rn′,m′ cos(θn′,m′ − θn,m)− rn,m) + rn,m(1− r2n,m),

F2
n,m(C, r, θ) =

∑
n′,m′

rn′,m′ sin(θn′,m′ − θn,m),
�

(5)

for all integers n,m � 0, where r = {rn,m}n,m�0 and θ = {θn,m}n,m�0. For some fixed c � 0, 
the indices (n,m) = (±c, 0) will be considered the centers of each of the vortices. Notice 
that the form of F1

n,m(C, r, θ) is taken to correspond to (3a) and the form of F2
n,m(C, r, θ) cor-

responds to (4), and moreover F2
n,m(C, r, θ) has no explicit dependence on C. Nevertheless, we 

will always be solving for roots of F1 and F2 together, endowing F2 with an implicit depend
ence on C coming from obtaining roots of F1 at specific parameter values of C.

The system (5) is not fully defined until it is coupled with appropriate boundary conditions 
which account for neighboring connections with n  =  −1 or m  =  −1. It is exactly these bound-
ary conditions that are used to extend to either counter- or cowinding vortices. We begin with 
counterwinding vortices and introduce the boundary conditions

r−1,m = r1,m, rn,−1 = rn,1, θ−1,m = θ1,m, θn,−1 = 2π − θn,1� (6)
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for all n,m � 0. Based upon these conditions, we necessarily have that θ0,m, θn,0 ∈ {0,π} for 
all n,m � 0. For the positive integer c which is used to define the center of each of the vortices 
we will take

θn,0 =



0, 0 � n � c

π, n > c.
� (7)

We note that these boundary conditions (6) along with the assignments (7) imply that

F2
n,0(0, r, θ) = rn,1 sin(θn,1 − θn,0) + rn,−1 sin(θn,−1 − θn,0)

+ rn+1,0 sin(θn+1,0 − θn,0)︸ ︷︷ ︸
=0

+rn−1,0 sin(θn−1,0 − θn,0)︸ ︷︷ ︸
=0

= ±rn,1 sin(θn,1)∓ rn,−1 sin(θn,−1) = 0,

for all n � 0. This shows that our boundary conditions (6) necessarily give that F2
n,0(C, r, θ) = 0, 

and in turn will reduce the number of equations required to obtain a counterwinding vortex 
solution.

Then, for a fixed C  >  0 solutions of F1(C, r, θ) = F2(C, r, θ) = 0 can be extended over the 
entire lattice through the following extension:

r−n,m = rn,m, rn,−m = rn,m, r−n,−m = rn,m,
θ−n,m = θn,m, θn,−m = 2π − θn,m, θ−n,−m = 2π − θn,m,

for each n,m � 0. The symmetries of the phase components over the full lattice are given on 
the left in figure 1, and we note that the symmetries of the radial components are significantly 
simpler since they are identical in each of the four regions of the figure. Notice that counter-
winding vortex solutions necessarily have an (n,m) �→ (−n,m) flip symmetry.

We may do something similar for cowinding vortices by introducing the boundary 
conditions

r−1,m = r1,m, rn,−1 = rn,1, θ−1,m = 2π − θ1,m, θn,−1 = 2π − θn,1,
� (8)

for all n,m � 0. Similar to counterwinding case, these boundary conditions require that 
θn,0 ∈ {0,π} for all n � 0, and hence for c  >  0 as described above we have that

θ0,m = 0, θn,0 =



0, n � c

π, n > c.
� (9)

An important distinction between the counterwinding and cowinding vortices is that in the lat-
ter case the values of θ0,m are fixed by the boundary conditions (8), whereas in the counterwind-
ing case we do not necessarily have explicit values for these phase components. Furthermore, 
the boundary conditions (8) along with the assignments (9) imply that

F2
0,m(0, r, θ) = r1,m sin(θ1,m − θ0,m) + r−1,m sin(θ−1,m − θ0,m)

+ r0,m+1 sin(θ0,m+1 − θ0,m)︸ ︷︷ ︸
=0

+r0,m−1 sin(θ0,m−1 − θ0,m)︸ ︷︷ ︸
=0

= r1,m sin(θ1,m) + r−1,m sin(θ−1,m) = 0,

for all m � 0, again due to the selection of boundary conditions. Similarly, the conditions 
for m  =  0 give that F2

n,0(C, r, θ) = 0 for all n � 0, and therefore we are only left to solve 
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F2
n,m(C, r, θ) = 0 for all n,m > 0 for {θn,m}n,m>0. This shows that our assignments (9) neces-

sarily give that F2
0,m(0, r, θ) = F2

n,0(C, r, θ) = 0 for all n,m � 0, and therefore reduces the 
number of equations required to obtain a cowinding vortex solution.

Then, for a fixed C  >  0, solutions to F1(C, r, θ) = F2(C, r, θ) = 0 can be extended over the 
entire lattice through the following definitions:

r−n,m = rn,m, rn,−m = rn,m, r−n,−m = rn,m,
θ−n,m = 2π − θn,m, θn,−m = 2π − θn,m, θ−n,−m = θn,m,

for each n,m � 0. The symmetries of the phase components over the full lattice are given on 
the right in figure 1, and again we note that the symmetries of the radial components are sig-
nificantly simpler since they are identical in each of the four regions of the figure. Notice that 
cowinding vortex solutions necessarily have an (n,m) �→ (−n,−m) flip symmetry.

For both types of vortices considered in this work, the definition of the functions F1,F2 
show that we may exploit the symmetries of the system (3) to greatly reduce the number of 
equations required to obtain a vortex solution. Most importantly, in the anti-continuum limit 
C  =  0 we have

F1
n,m(0, r, θ) = rn,m(1− r2n,m),

for all n,m � 0. Requiring that rn,m be nonnegative implies that rn,m ∈ {0, 1} for all n,m � 0. 
In our case we will consider rn,m  =  1, for all n,m � 0 and n �= c, along with the following two 
scenarios: rc,0  =  0 and rc,0  =  1. The former case corresponds to the vortical configurations 
that we will numerically consider below. The latter will be associated with a complementary 
branch that will arise in the relevant bifurcation diagram (see the details in the next subsec-
tion). This will give two vortex solutions of each type to continue in C � 0, and also describes 
a process by which counterwinding vortices can be obtained numerically by restricting our-
selves to a finite positive range of integers n,m, i.e. the first quadrant. Then, once we have 
obtained a numerical solution in the anti-continuum limit, we may continue this solution in 
C to move beyond this limit and into a region of parameter space where obtaining solutions 
becomes significantly more complicated since we must solve for roots of both F1

n,m and F2
n,m 

for all n,m � 0. Most importantly, the above discussion shows that the curves of counter- and 
cowinding vortices continued in C up from the anti-continuum limit C  =  0 will always retain 
the symmetries of figure 1.

Figure 1.  The symmetries of (left) counterwinding and (right) cowinding vortex 
solutions. The red shaded cells represent the indices (n,m) = (±c, 0) and the blue 
shaded cell is the center of the lattice (n,m) = (0, 0). The green shaded region 
represents the indices n,m > 0, and symmetry-based extensions beyond this region are 
indicated in each of the remaining three regions. The fuchsia region represents the cells 
with indices (0,m), m �= 0, which are not fixed by the symmetry of the counterwinding 
vortex solution.

J J Bramburger et alNonlinearity 33 (2020) 2159
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3.2.  Existence of stationary solutions

Having set up the relevant existence problem of a stationary vortex pairs analytically, we now 
turn to the corresponding numerical considerations in N × N  lattices. We will mostly present 
numerical results for N  =  41, but remark that our results have also been checked with N  =  81 
and 251 to determine consistency. Moreover, unless otherwise stated, on every lattice we take 
c  =  5 but comment on the effect of changing c towards the end of this section. Using an ansatz 
such as the one described in the previous section we are able to identify solutions involving 
two distinct vortices of each type in the anti-continuum limit given by fixing rn,m  =  1, for all 
n,m ∈ {0, . . . , (N − 1)/2} and (n,m) �= (±5, 0). The vortex pair branch involves the selection 
of r±5,0 = 0 in the anti-continuum limit of C  =  0; we are able to continue these relevant waves 
into C  >  0. Examples of these continued solutions, hereby referred to as stationary symmetric 
counterwinding (cowinding) vortices, are depicted in figure 2 (figure 3) on a 41× 41 lattice 
for the parameter value C  =  0.4. In the figure structures involving zero or one vortex at the 
anti-continuum limit are also shown; these structures are explained in detail below.

Contrary to single vortices that can be continued throughout the interval of real non-neg-
ative values of C, we find that stationary symmetric counter- and cowinding vortices do not 
exist for all values of the coupling constant C. Of course, this is natural to expect given the 
absence of such stationarity in the continuum limit. However, the interest in our case involves 
the transition from the anti-continuum stationarity to the continuum traveling. We depict the 
bifurcation diagram of the stationary counter- and cowinding vortices on a lattice with N  =  41 
in figure 4 with the vertical axis given by the complementary norm

P =
∑
n

∑
m

(1− |φn,m|2),� (10)

where we recall that 1 is the background density. For both types of vortices we have P is 
equal to 0 and 2 in the anti-continuum limit, depending on whether r±c,0 = 1 or whether 
r±c,0 = 0. We will refer to the continued solutions in C  >  0 as a 0VS and a 2VS, respec-
tively, i.e. as bearing 0 or 2 vortices, respectively. It is important to highlight that the relevant 
terminology is principally meaningful in the anti-continuum limit, yet by extension in the 
manuscript, we will refer to the branches using the same notation for non-vanishing values 
of C. The upper branches in blue in figure 4 correspond to a stationary 2VS with r±5,0 = 0 
in the anti-continuum limit, whereas the lower branches in red correspond to a stationary 
0VS with r±5,0 = 1 in the anti-continuum limit. Our numerics reveal that upon continuing 
these solutions into C  >  0, r±5,0 monotonically increases with C, whereas 0VSs have r±5,0 
monotonically decreasing as C increases. This monotonic decrease eventually terminates at 
a turning point bifurcation C  =  Ct where these two symmetric vortex states (the 2VS and the 
0VS) collide and annihilate each other. Our numerical investigations have revealed that this 
scenario is independent of the number of lattice sites, but we do remark that the exact value 
at which the turning point takes place does appear to change with N. In particular, we have 
found that on the 41× 41 lattice we have Ct  =  0.5375386 for counterwinding vortices and 
Ct  =  0.4953718 for cowinding vortices. For counterwinding (cowinding) vortices the relevant 
critical point location slowly decreases (increases) as a function of increasing lattice size N up 
to an asymptotic value, as shown in figure 5.

Our investigation has revealed that there exists another pair of each vortex type which 
cannot be obtained via the functions F1,2 since they do not satisfy the symmetries of fig-
ure 1. In the anti-continuum limit these solutions are characterized by taking rn,m  =  1 for all 
(n,m) �= (±5, 0), with r5,0 = 1− r−5,0 ∈ {0, 1}, and therefore we will hereby refer to these 
asymmetric cowinding vortices as 1VSs since their value in the complementary norm (10) is 
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exactly 1 in the anti-continuum limit (and they effectively involve only one vortex instead of 
two). An example counterwinding vortex profile is given in the bottom left panel of figure 2 
and analogously we provide a sample cowinding 1VS in figure 3. We find that continuing 
these solutions up from the anti-continuum limit leads to one of r5,0, r−5,0 increasing monoton-
ically up from 0 and the other decreasing monotonically down from 1. As is demonstrated in 
figure 4, these asymmetric counterwinding (cowinding) vortices bifurcate through a subcriti-
cal (supercritical) pitchfork bifurcation from the 2VS branch of symmetric counterwinding 
vortices and the 0VS branch of symmetric cowinding vortices. This phenomenology is present 
irrespectively of lattice size but the value of Cp  does in fact vary with N, as can be observed in 
figure 5). Furthermore, these asymmetric solutions exist for all C ∈ [0,Cp] starting from the 
anti-continuum limit and are mapped into each other by taking

Counterwinding : φn,m �→ φ−n,m,
Cowinding : φn,m �→ φ−n,−m,

for any C � 0 for which they exist, as is natural for two branches emerging as a result of a 
pitchfork bifurcation. We find that, as expected, the dependence of Ct and Cp  with respect to 
the distance between vortices for fixed N gives a monotonic increment of Ct when the distance 
is increased. Figure 6 shows this phenomenon for counterwinding vortices by depicting Ct 
versus c; as Ct − Cp � 10−4, the curve Cp (c) is almost indistinguishable from Ct(c) and we 
have decided not to include it. A monotonic trend for the critical point as a function of c is also 
obtained in the cowinding case (results not shown here).

Figure 2.  Counterwinding vortices for C  =  0.4 and c  =  5 in a 41× 41 lattice. Density 
(top left panel) and phase (top right panel) of a symmetric 2VS (two-vortex state). 
Bottom panels show the density of 1VS (left) and 0VS (right). The phase of the latter 
solutions is not shown as they are almost identical to that of the 2VS.
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3.3.  Linear stability

The spectral stability of stationary solutions is obtained by means of Bogoliubov–de Gennes 
spectral linearization analysis. More specifically, the relevant ansatz of the form

ψn,m(t) =
√
ω[ψn,m + δ( pn,meλt + q∗n,me

λ∗t)]e−iωt,

is introduced into the differential equation (1). Then, at lowest order in δ the linear problem 
can be written as the eigenvalue problem:

λ

(
pn,m
qn,m

)
= i

(
2|φn,m|2 − 1− C

2∆ φ2
n,m

−(φ2
n,m)

∗ 1− 2|φn,m|2 + C
2∆

)(
pn,m
qn,m

)
.

As in the single vortex case of [7], there will be eigenvalues with negative Krein signature/
energy (the latter being defined as K =

∑
n,m |pn,m|2 − |qn,m|2) hereby denoted as NEEs, as 

well as continuous spectrum, which of course will be discretized since we are numerically 
identifying these vortices on a finite lattice. At the anti-continuum limit nVSs of all types, 
with n = 0, 1, 2, have exactly n pairs of degenerate (between them) NEEs with λ = ±i corre
sponding to excited sites, and N2  −  2n eigenvalues with λ = 0 corresponding to the non-
excited sites.

We begin with a discussion of counterwinding vortices. Moving into C  >  0 we find that 
the degeneracy of λ = 0 eigenvalues (and of NEEs for 2VSs) is broken so that the continuous 
bands on the imaginary axis become bounded away from the origin of the complex plane. As 
illustrated also in the case of the single DNLS vortex [7] (which, at the same time, is based in 
the analysis for 1D dark solitons performed in [15]), the background nodes lead, for finite C, to 
a continuous spectrum extending over the interval λ ∈ i[−

√
16C2 + 8C,

√
16C2 + 8C] along 

Figure 3.  Same as figure 2 but for cowinding vortices.
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the imaginary axis. At the same time, the absolute value of the NEEs decreases in a quasi-linear 
way, and we find that there exists a critical value, denoted as Cc ≈ 0.080, for which one of them 
enters the continuous band, creating a cascade of Hamiltonian Hopf and inverse Hamiltonian 
Hopf bifurcations, thus leading to oscillatory instabilities. The dependence of the NEEs for 
C  <  Cc is almost the same, up to a  ∼10−4 difference, between 2VS and 1VS. Following the 

Figure 4.  Dependence of the complementary norm P versus the coupling constant C 
for (top) counterwinding and (bottom) cowinding vortices with c  =  5 on a 41× 41 
lattice. The right panels are a zoom in of the turning point and pitchfork bifurcations.

Figure 5.  Dependence of the bifurcation points Cp  and Ct with respect to the lattice size 
N for counterwinding (left panel) and cowinding vortices (right panel).
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analysis performed in [7], the NEEs can be approximated by λ ≈ ±i(1− 2C), which leads to 
a collision with the continuum band at C = (2

√
3− 3)/6 ≈ 0.077, in good agreement with 

the numerical result. As in the single vortex case, due to the inverse Hamiltonian Hopf bifurca-
tion there will be linearized stability windows that would not appear if the continuous spec-
trum were dense. In the limit N → ∞ we expect to find that the vortex would be oscillatorily 
unstable whenever C  >  Cc. Notice that the value of Cc decreases when the distance between 
vortices is decreased; in fact, for c  =  1, Cc ≈ 0.071.

Figure 7 depicts the dependence on C of the real and imaginary part of the eigenvalues for 
counterwinding 2VSs, 1VS, and 0VSs. In these images we have used a 41× 41 lattice, but 
as previously remarked, the results remain nearly identical for different lattice sizes. We can 

Figure 6.  Dependence of the bifurcation points Ct with respect to c for counterwinding 
vortices with N  =  201. Notice the sharp increasing when c  =  50.

Figure 7.  Dependence with respect to C of the (top) real and (bottom) imaginary parts 
of the eigenvalues of counterwinding (left) 2VSs, (middle) 1VSs, and (right) 0VSs. In 
every case, a 41× 41 lattice has been used. Notice that among the 3 branches only the 
2VS branch is stable up to a critical Cc away from the anti-continuum limit of C  =  0.
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see that 1VSs and 0VSs are exponentially unstable for every C � 0 for which they exist since 
they both have eigenvalues λ whose real parts are only vanishing at their bifurcation points 
Cp  and Ct, respectively. In figure 8 we provide a zoomed in version of figure 7 close to Cp  and 
Ct for the imaginary part of the eigenvalues of 2VSs and the real part of the eigenvalues of 
0VSs, respectively. Here we find that one of the NEE pairs arrives at λ = 0 at C  =  Cp  so that 
the vortex pair becomes exponentially unstable past the bifurcation point due to its subcritical 
pitchfork bifurcation with the 1VS solution branch. The continuation past this critical point of 
the subsequently exponentially unstable 2VS solution branch stops when the remaining NEE 
pair reaches λ = 0 at C  =  Ct. There, the collision occurs with the 0VS solution branch and 
the termination of both of these branches takes place. No stationary solutions involving two 
counterwinding vortices at such a distance can be identified past this critical point. Both (the 
0VS and the 2VS) branches have a positive real eigenvalue pair and a zero eigenvalue pair at 
the bifurcation point of C  =  Ct. Notice that supposing the previous linear dependence of the 
NEEs λ = ±i(1− 2C) leads to a zero eigenvalue at C  =  0.5, a value which is very close to 
the bifurcation point observed in figure 5.

The case of cowinding vortices is similar. Moving away from the anti-continuum limit 
there exists a Cc ∈ (0,Cp) for which the NEEs of the cowinding 2VS collide with the continu-
ous band, creating a subsequent cascade of Hamiltonian Hopf and inverse Hamiltonian Hopf 
bifurcations. This gives an oscillatory instability for the cowinding 2VS state for C above Cc. 
We note that for C  <  Cc the linear dependence of the NEEs is the same as in the counterwind-
ing case, and, consequently, the value of Cc is also the same for both cases.

The major difference between the counterwinding and the cowinding spectra concerns the 
location of the pitchfork bifurcation and the branches it involves. Recall that in the counter-
winding case the pitchfork bifurcation takes place on the 2VS bifurcation curve, whereas in 
the cowinding case the pitchfork bifurcation takes place on the 0VS bifurcation curve. Hence, 
the NEEs of the 2VSs in the cowinding case do not arrive at λ = 0 prior to reaching C  =  Ct. 
Therefore the cowinding 2VSs only exhibit oscillatory instabilities as the turning point is 
approached. At the turning point, one of the NEE pairs becomes zero. On the other hand, it is 
the 1VS branch that collides in the supercritical pitchfork bifurcation with the 0VS branch. 
The latter possesses 2 real eigenvalue pairs in the vicinity of the anti-continuum limit, while 
it only has 1 such in the vicinity of the turning point (past the pitchfork bifurcation). The 1VS 

Figure 8.  (left) Imaginary part of the eigenvalues of counterwinding 2VSs, and (right) 
real part of the eigenvalues of counterwinding 0VSs, close to the pitchfork and turning 
points. The collision of the two branches occurs at Ct, where they disappear in a turning 
point bifurcation.
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branch, as in the counterwinding case, carries one real eigenvalue pair and a potential addi-
tional oscillatory instability due to an NEE mode.

3.4.  Dynamic solutions

For the convenience of the reader, this subsection is broken down into two distinct comp
onents - one for counterwinding vortices and one for cowinding vortices.

3.4.1.  Counterwinding vortices.  In the continuum limit it is known that counterwinding vor-
tices move in parallel along a straight line, whereas here numerical investigations will reveal 
that this is not the case in the context of our lattice dynamical system (1). Here we will focus 
on the instabilities of the 2VS solutions for C ∈ (Cc,Ct) to explore the expected dynamics 

Figure 9.  Dynamics of (1) with a randomly perturbed initial condition near the 
stationary counterwinding 2VS at C  =  0.25. At this parameter value the 2VS only 
possesses oscillatory instabilities. As can be seen, the vortices translate, yet also 
approach each other and eventually pair-wise annihilate. The panels depict the density 
|ψn,m|2 at selected values of time.

J J Bramburger et alNonlinearity 33 (2020) 2159



2172

for solutions that start very close to our stationary 2VSs. All images of simulations in this 
section are taken for an 81× 81 lattice in an effort to minimize the boundary effects on the 
dynamics.

We first begin by adding a small random perturbation (∼10−8) to 2VSs with C in the 
interval (Cc,Ct). We have found that all simulations lead to upward (i.e. perpendicular to the 
axis connecting the two vortices) translating vortices which eventually collide at some finite 
time step. This can be observed in figure 9 where we take C  =  0.25 and provide a number 
of snapshots of the dynamic evolution. Notice that the counterwinding vortices appear to 
be propagating upward with a slight bend toward each other, leading at t ≈ 360 for this par
ticular simulation to their collision and pair annihilation. We note that our random pertur-
bation does have the effect of breaking the ψn,m = ψ−n,m symmetry of the counterwinding 
vortices, and therefore we have also explored initial conditions which preserved this symme-
try. That is, if our solution is given by ψn,m = rn,meiθn,m, then we introduce the initial condition 
ψn,m(0) = (rn,m + δ)eiθn,m  so that ψn,m(0) = ψ−n,m(0). In this case the evolution in t preserves 
the (n,m) �→ (−n,m) symmetry of the initial condition, but again we find that the vortices 
eventually collide and annihilate each other. Moreover, this dynamical outcome arises both 
for the case of oscillatory instabilities (as in figure 9), and for that of exponential instabilities 
(not shown here).

For values of the coupling constant C taken beyond Ct we no longer have stationary 
counterwinding vortex solutions. We do however take the stationary solutions near (and 
below) C  =  Ct and use them as initial conditions for coupling values well beyond the turn-
ing point. The aim of this is to explore the behavior of the vortex pair as the continuum limit 
is approached. Interestingly our temporal evolution reveals that the counterwinding vortices 
continue to propagate upward and eventually collide and annihilate each other. We further find 
that as the coupling constant C grows larger, it takes a longer time for the vortices to approach 
each other and collide. In section 4 we will present formal arguments which appear to explain 
some of this behaviour. Our observations (and formal arguments to follow) thus suggest that 
the genuine traveling of counterwinding vortices at the continuum limit is a singular behavior 
that is ‘destroyed’ by discreteness, rather than a behavior that potentially bifurcates at some 
finite value of C. Instead, discreteness introduces a (weaker, the larger the coupling strength) 
lateral dynamical motion of the vortex pair, leading eventually to its (apparently generic) 
annihilation for finite C.

3.4.2.  Cowinding vortices.  We now numerically observe the dynamical evolution of solu-
tions that start near our cowinding vortices. We recall that, as discussed above, the cowinding 
2VSs only experience oscillatory instabilities. As a result of these, the waveforms which are 
initialized near these stationary solutions start to rotate about the (n,m) = (0, 0) lattice site but 
eventually slow down their rotation and appear to stop, resulting in a ‘pseudo-stationary’ cow-
inding vortex configuration. Nevertheless, notice that it is less straightforward to extract the 
asymptotic scenario in this case in part due to the residual radiation present in the dynamical 
lattice. A relevant evolution is exemplified in figure 10 where we provide snapshots of the time 
stepping with initial condition given by a random perturbation of a 2VS state at C  =  0.23. It is 
important to notice, however, that the dynamically resulting stationary configuration involves 
vortices at a larger distance than the initial one.

We also report that the exponential instabilities of the 0VSs appear to lead to vortices which 
rigidly rotate about the (n,m) = (0, 0) lattice site for all t � 0. It is important to mention that 
such rotation does not happen at constant inter-center separation between the vortices. Rather, 
as we see in more detail also below, the distance between the cowinding pair member vortices 
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increases over time in a spiraling out motion (see below for a demonstration of such a spiral-
ling dynamical example).

Stationary cowinding vortex solutions no longer exist for values of the coupling constant 
C taken beyond Ct, and therefore we will explore what happens when a stationary 2VS state 
taken at some C slightly below Ct is used as an initial condition in (1) for coupling C  >  Ct. 
Our temporal evolution demonstrates that these cowinding vortices hold their shape but begin 
to rigidly rotate about the lattice site (n,m) = (0, 0), as is demonstrated in figure 11. This type 
of temporal dynamics resembles the corresponding evolution in the continuum limit (C → ∞) 
of (1), however with a significant modification. In particular, over time the vortices rotate at 
larger distances from each other and do so more slowly (i.e. at smaller angular momentum). 
This is the by-product of discreteness once again presumably destroying the perfectly rotating 

Figure 10.  Dynamics of (1) with a randomly perturbed initial condition near 
the stationary cowinding 2VS at C  =  0.23. At this parameter value the 2VS only 
possesses oscillatory instabilities. The dynamical evolution leads to rotation around the 
(n,m) = (0, 0) lattice site, but then begin to slow down and appear to halt resulting in 
a rotated (and with larger distance between the vortices than the original one) vortex 
configuration. The panels depict the density |ψn,m|2 at selected values of time.
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continuum states, in favor of progressively separating (non-periodic) discrete ones. As the 
continuum limit is approached, this lateral motion is still present although it becomes weaker, 
suggesting that it only disappears in the (singular) continuum limit.

4. The continuum equation

In this section we provide formal arguments in an attempt to describe some of the expected 
counter- and cowinding vortex dynamics in (1) for ε (or equivalently C) large. More specifi-
cally, our aim here is to illustrate the plausibility of the non-existence of rigidly translating 
(for counterwinding) or rotating (for cowinding) vortex states in the genuinely discrete DNLS 
problem. We begin by noting that taking ε → ∞ in (1) marks a return to the well-studied non-
linear Schrödinger equation in two continuous spatial dimensions given by [17]

i
∂ψ

∂t
− |ψ|2ψ +

∂2ψ

∂x2
+

∂2ψ

∂y2
= 0, (x, y) ∈ R2,� (11)

where ψ = ψ(x, y, t) is a complex-valued function. Equation (11) possesses an important sym-
metry property: if ψ(x, y, t) is a solution to (11) then so is

ψ̃(x, y, t) = ψ(cos(θ)(x+ p1)− sin(θ)(y+ p2), sin(θ)(x+ p1) + cos(θ)(y+ p2), t),

for any angle θ ∈ S1 and translation ( p1, p2) ∈ R2. These rotations and translations together 
form the special Euclidean group, often denoted as SE(2), and equation (11) precisely is said 
to be invariant with respect to the action of this group. Given a function ψ : R2 → C, the 
group orbit of ψ is given by the set

SE(2)ψ := {ψ(cos(θ)(x+ p1)− sin(θ)(y+ p2), sin(θ)(x+ p1) + cos(θ)(y+ p2)) :

θ ∈ S1, ( p1, p2)T ∈ R2},

which is simply the application of every element of SE(2) to the function ψ. Then, a group 
orbit X is a relative equilibrium if the flow of (11) leaves X invariant. That is, relative equilibria 
of (11) are equilibrium solutions in a moving coordinate frame. A trivial example of a relative 
equilibrium would be any equilibrium of (11) since any function trivially belongs to its own 
group orbit.

Counterwinding vortex solutions of (11) linearly propagate with constant nonzero speed 
[17], meaning that their temporal evolution is described by a continuous linear translation and 
therefore they belong to their group orbit for all t ∈ R. Similarly, cowinding vortex solutions 
of (11) rotationally propagate with constant nonzero angular frequency, meaning that their 
temporal evolution is described by a continuous rotation and therefore belong to their group 
orbit for all t ∈ R. Hence, cowinding and counterwinding vortex solutions are relative equilib-
ria of (11) and in turn their respective group orbits define invariant manifolds in some appro-
priate complex-valued space of functions with domain R2. Most importantly, these invariant 
manifolds are exactly three-dimensional, corresponding to the three degrees of freedom of the 
special Euclidean group SE(2) (i.e. two dimensions of translations and one dimension of rota-
tions). Much work has been undertaken to capture the qualitative dynamics of relative equi-
librium solutions using the group orbit, particularly to understand a closely related example, 
namely the dynamics of spiral waves as solutions to reaction-diffusion equations [2, 13, 30]. 
We will use some of these theoretical results in an attempt to understand our observations for 
(1) far from the anti-continuum limit.
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An effective way to understand the dynamics of (1) with large ε is to apply an inhomogene-
ous symmetry breaking perturbation to (11) which preserves only the symmetries of a square 
lattice [5, 20]. Such symmetry-breaking perturbations can be used to mimic the effect of dis-
cretizing space by breaking the continuous translational and rotational symmetries of the two-
dimensional nonlinear Schrödinger equation (11). Hence, let us consider a small parameter 
0 � δ � 1 and some sufficiently smooth function F  so that we perturb (11) as

i
∂ψ

∂t
− |ψ|2ψ +

∂2ψ

∂x2
+

∂2ψ

∂y2
+ δF(x, y,ψ, δ) = 0.� (12)

The specific form of F  is not important and can be generalized, but here we will assume that 
it is 1-periodic and even in both x and y , and linear in ψ. The linearity of F  with respect to 
ψ allows one to eliminate the oscillatory component e−iωt and still obtain an autonomous 

Figure 11.  Dynamics of (1) with a stationary cowinding 2VSs at C  =  0.498 used as 
an initial condition with C  =  0.51. Note that at C  =  0.51 we have no longer stationary 
cowinding vortices and now we can see that the vortices begin to rotate around each 
other, spiralling outward (i.e. with a growing distance between them) over time. The 
panels depict the density |ψn,m|2 at selected values of time.
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equation, as was done for the discrete nonlinear Schrödinger equation (1) in the previous sec-
tions. One should note that an important, and possibly motivating, example of such a function 
F  would be

F(x, y,ψ, δ) = −V(x, y)ψ,

where V(x, y) is a potential that respects the symmetries of the two-dimensional integer lattice 
[26]. Therefore, our goal is to hypothesize how the dynamics of the invariant manifolds for the 
unperturbed Schrödinger equation (11) given by the group orbits will perturb for 0 < δ � 1. 
This should inform us about what to expect regarding the behaviour of the cowinding and 
counterwinding vortices in the discrete spatial context of (1).

4.1.  Counterwinding vortices

We begin by focusing on the case of counterwinding vortices. Such vortex solutions to (11) 
can be found by using the ansatz

ψ(x, y, t) = A(x, y− vt)e−iωt,� (13)

with ξ = y− vt , and constant v ∈ R. We refer to A as the profile of the counterwinding vortex 
pair, and we note these counterwinding vortices of (11) are partially characterized by their 
x �→ −x  symmetry, implying that the profile A is even in x. The set of all functions which are 
even in x is flow-invariant for (11), and hence an ansatz of the form (13) represents the inter-
section of this flow-invariant subspace of even functions and the group orbit of counterwind-
ing vortices. The profile A can be obtained by solving

Axx + Aξξ + (ω − |A|2)A− ivAξ = 0,� (14)

where the subscripts denote partial differentiation. We assume that for some fixed ω > 0, 
there exists a real ̄v �= 0 such that a counterwinding vortex profile A0 is a solution of (14) with 
v = v̄. That is,

ψ(x, y, t) = A0(x, y− v̄t)e−iωt

is a counterwinding vortex pair solution of (11) and that A(−x, y− vt) = A(x, y− vt) for all 
(x, y, t). The ansatz (13) implies that our solution is propagating linearly parallel to the y -axis, 
but recall that the SE(2) invariance of (11) implies that we could make it propagate in any 
direction we want.

Now equation (12) is a non-autonomous perturbation of (11), which, in turn, yields that 
the flow along the perturbed invariant manifold coming from the group orbit of counterwind-
ing vortices will also be non-autonomous. Moreover, since the set of all functions which are 
even in x is again flow-invariant for (12), we again restrict ourselves to the intersection of this 
flow-invariant subspace and the perturbed invariant manifold. Let us assume that the function 
Aδ(x, y) is the profile of a counterwinding vortex solution to (12) for 0 � δ � 1 which is even 
in x. Then, the results of [5, 20] lead one to believe that the continued counterwinding vortex 
solution of (12) for small δ > 0 is of the form

ψ(x, y, t) = Aδ(cos(α(x, y, δ))ξ1 − sin(α(x, y, δ))ξ2, sin(α(x, y, δ))ξ1 + cos(α(x, y, δ))ξ2)e−iωt,
� (15)

where ξ1 = x− vx(x, y, δ)t and ξ2 = y− vy(x, y, δ)t. Moreover, the functions α, vx, and vy are 
uniformly bounded, α is 1-periodic in both x and y , and satisfy

α(x, y, δ) = O(δ), vx(x, y, δ) = O(δ), vy(x, y, δ) = v̄+O(δ),
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where v̄ is the speed of the counterwinding vortex from the unperturbed equation (11). One 
should interpret the function α(x, y, δ) as introducing a slight wobble into the motion of the 
vortex solution, whereas vx(x, y, δ) and vy(x, y, δ) describe the inhomogeneous speed of linear 
propagation in the x and y  directions, respectively.

From the form of (15), we have that for any fixed (a1, a2) ∈ R2, the function Aδ is constant 
along the (generically one-dimensional) level sets

cos(α(x, y, δ))(x− vx(x, y, δ)t)− sin(α(x, y, δ))(y− vy(x, y, δ)t) = a1,
sin(α(x, y, δ))(x− vx(x, y, δ)t) + cos(α(x, y, δ))(y− vy(x, y, δ)t) = a2,

for each fixed δ > 0 sufficiently small. These curves serve as characteristics for the counter-
winding vortex solution to the inhomogeneous equation (12). Requiring that the solution (15) 
is even in x gives that α and vy are both even in x and vx is odd in x, and these symmetries 
imply that for every a1 �= 0 and a2 ∈ R, the characteristic curve corresponding to the level set 
(a1, a2) and the characteristic curve corresponding to the level set (−a1, a2) are continuously 
mapping into each other by the action (x, y, t) �→ (−x, y, t). Furthermore, in the case when 
vx(x, y, δ) �= 0 for all x �= 0, y ∈ R and 0 < δ � 1, we have that these characteristic curves 
approach x  =  0 in either forward or backward t. In this case we would observe an O(δ) drift 
in the x-direction of the solution to the middle in either forward or backward time. Hence, 
these heuristic arguments seem to suggest that it is exactly the n → −n symmetry (the discrete 
analogue of x → −x  symmetry) of the solutions to the discrete nonlinear Schrödinger equa-
tion which drives the breakup of solutions we observed previously in the dynamics. Indeed, 
it is this drift of the vortex centers towards x  =  0 which leads to their pairwise approach and 
eventual annihilation observed in the dynamics of figure 9.

4.2.  Cowinding vortices

We now initiate a similar exploration for cowinding vortex solutions to show that the 
(n,m) → (−n,−m) symmetry of cowinding vortices is expected to drive the breakup observed 
in simulations of (1) far from the anti-continuum limit. These vortex solutions to (11) can be 
found by using the ansatz

ψ(x, y, t) = B(cos(βt)x− sin(βt)y, sin(βt)x+ cos(βt)y)e−iωt,� (16)

for constants β �= 0 and ω � 0. We refer to B as the profile of the cowinding vortex pair, and we 
note that the cowinding vortices of (11) are partially characterized by their (x, y) �→ (−x,−y) 
symmetry, which is imposed by requiring that B(−x,−y) = B(x, y). The set of all functions 
which are invariant with respect to (x, y) �→ (−x,−y) symmetry is flow-invariant for (11), and 
hence an ansatz of the form (13) represents the intersection of this flow-invariant subspace 
and the group orbit of cowinding vortices. We note that now cowinding vortices are rigidly 
rotating in space with angular velocity β, implying that the characteristic curves of solutions 
of the form (16) are closed concentric circles about the origin (x, y) = (0, 0), as opposed to 
straight lines in the counterwinding case. We assume that for some fixed ω > 0 there exists a 
real β∗ �= 0 and a profile B0 so that

ψ(x, y, t) = B0(cos(β
∗t)x− sin(β∗t)y, sin(β∗t)x+ cos(β∗t)y)e−iωt,

is a cowinding vortex solution of (11) satisfying B0(−x,−y) = B0(x, y) for all (x, y) ∈ R2.
As previously remarked, the equation (12) is a non-autonomous perturbation of (11), and 

hence the perturbed invariant manifold coming from the group orbit of counterwinding vorti-
ces will also be non-autonomous. Moreover, since the set of all functions which are invariant 
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with respect to (x, y) �→ (−x,−y) symmetry is again flow-invariant for (12), we again restrict 
ourselves to the intersection of this flow-invariant subspace and the perturbed invariant mani-
fold. Then, let us assume that the function Bδ(x, y) is the profile of a cowinding vortex solution 
to (12) for 0 � δ � 1, which satisfies Bδ(−x,−y) = Bδ(x, y). This leads one to conjecture 
that the continued cowinding vortex solution of (12) for small δ > 0 is of the form

ψ(x, y, t) = Bδ(cos(β(x, y, δ)t)ζ1 − sin(β(x, y, δ)t)ζ2, sin(β(x, y, δ)t)ζ1 + cos(β(x, y, δ)t)ζ2)e−iωt,
� (17)

where ζ1 = x− dx(x, y, δ)t and ζ2 = y− dy(x, y, δ)t. The functions β, dx, and dy  are uniformly 
bounded and satisfy

β(x, y, δ) = β∗ +O(δ), dx(x, y, δ) = O(δ), dy(x, y, δ) = O(δ),

where β∗ is the rotational velocity of the unperturbed cowinding vortex. Hence, we see that we 
should expect O(δ) drifts in both the x- and y -directions.

From the form of (17), we have that for any fixed (b1, b2) ∈ R2, the function Bδ is constant 
along the (generically one-dimensional) level sets

cos(β(x, y, δ)t)(x− dx(x, y, δ)t)− sin(β(x, y, δ)t)(y− dy(x, y, δ)t) = b1,
sin(β(x, y, δ)t)(x− dx(x, y, δ)t) + cos(β(x, y, δ)t)(y− dy(x, y, δ)t) = b2,

for each fixed δ > 0 sufficiently small. These curves serve as characteristics for the cowinding 
vortex solution to the inhomogeneous equation (12). Requiring that the solution (17) satisfies 
ψ(−x,−y, t) = ψ(x, y, t) requires that

β(−x,−y, δ) = β(x, y, δ), dx(−x,−y, δ) = −dx(x, y, δ), dy(−x,−y, δ) = −dy(x, y, δ),

for all (x, y) ∈ R2 and sufficiently small δ � 0. Note that this implies that 
dx(0, 0, δ) = dy(0, 0, δ) = 0. Hence, these symmetries imply that for every 
(b1, b2) �= (0, 0), the characteristic curve corresponding to the level set (b1, b2) and the charac-
teristic curve corresponding to the level set (−b1,−b2) are continuously mapping into each other 
by the action (x, y, t) �→ (−x,−y, t). Furthermore, in the case when dx(x, y, δ) · dy(x, y, δ) > 0 
for all (x, y) ∈ R \ {(0, 0)} and 0 < δ � 1, we have that these characteristic curves approach 
(x, y) = (0, 0) in either forward or backward t. In this case we would observe an O(δ) spiral 
into to the centre (x, y) = (0, 0) in either forward or backward time. Hence, as before, we 
have provided heuristic arguments detailing the behaviour of (1) near the continuum limit, i.e. 
ε � 0. Indeed, this is also in line with our observations namely the finding that over (positive) 
time, the distance between the vortices slightly increases, i.e. that they are spiraling outwards 
from the center. As they do so, once again a rigidly rotating configuration cannot be reached; 
see figure 10, except at the continuum limit.

5.  Conclusions and future challenges

In the present work, we have extended considerations associated with a single vortex in a 
discrete nonlinear Schrödinger setting to ones involving vortex pairs of either the same or of 
opposite charges. These configurations in the continuum limit of the equation either rotate rig-
idly (for same charge) or translate with constant speed (for opposite charges). These tendencies 
are contrasted with the limit of vanishing coupling, the so-called anti-continuum limit which 
halts the vortex motion. This raises the interesting question of what happens ‘in between’, i.e. 
for coupling strengths between C → 0+ and C → ∞. We find that in the vicinity of the van-
ishing coupling, stationary configurations can exist involving the two vortices (of either same 
or of opposite charge). These configurations present an interesting sequence of bifurcation 
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phenomena involving pitchfork (symmetry breaking) bifurcations, as well as saddle-center, 
turning-point ones. The latter lead to the termination of the stationary multi-vortex branches, 
raising once again the question of how the continuum limit group orbit (rotation or transla-
tion) motions arise. Indeed, the answer to this question is non-trivial too. We find that vortex 
pairs initialized past these turning points cannot rigidly rotate or steadily translate. Rather, in 
the cowinding case instead of rotating, they spiral out. In the counterwinding one, rather than 
translate, they approach each other (while moving) and eventually annihilate. The rate of these 
lateral motions appears to decrease as the coupling increases, and it seems reasonable to con-
jecture that these motions only disappear altogether in the singular continuum limit.

Our numerical computations, we believe, shed some light on the system’s phenomenology. 
However, admittedly, they also raise numerous interesting questions for future investigation 
both at the mathematical and at the computational, as well as at the physical level. More spe-
cifically, quantifying the rate of spiraling for the cowinding case, and that of lateral approach 
in the counterwinding one (as a function of the coupling strength C) is an important question 
for future analytical and numerical consideration. On the other hand, proving rigorously the 
non-existence of discrete rotation or translation for finite C is of interest in its own right. 
Providing a rigorous characterization of the stability of the 0VS, 1VS and 2VS states is also 
an interesting task from the opposite, near-anti-continuum limit. Naturally, all of these con-
siderations are worthwhile to extend in the context of three-dimensional systems. There, it is 
well-known that configurations such as vortex lines and vortex rings represent the principal 
topologically charged entities in the dynamics [17]. Presently, we are not aware of any studies 
exploring systematically the stability of such states as regards either a single structure or pairs 
thereof. Such a study would be particularly interesting because, e.g. for vortex rings even a 
single one is subject to translation in the continuum limit [17]. Hence it is relevant to explore 
the impact of discreteness near the C  =  0 limit. Moreover, remarkable phenomena such as 
leapfrogging dynamics arise, e.g. as a result of the interaction of multiple vortex rings [4], 
hence it is natural to inquire about their fate in the discrete realm. Such studies are currently 
in progress and will be reported in future publications.
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