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Abstract
Stationary solutions to the two-dimensional hyperbolic discrete nonlinear Schrödinger equation
are derived by starting from the anti-continuum limit and extending solutions to include nearest-
neighbor interactions in the coupling parameter. Pseudo-arclength continuation is used to capture
the relevant most fundamental branches of localized solutions, and their corresponding stability
and dynamical properties (i.e. their fate when unstable) are explored. The focus is on nine
primary types of solutions: single site, double site in- and out-of-phase, squares with four sites
in-phase and out-of phase in each of the vertical and horizontal directions, four sites out-of-phase
arranged in a line horizontally, and two additional solutions having respectively six and eight
excited sites. The chosen configurations are found to merge into four distinct bifurcation events.
The nature of the bifurcation phenomena is unveiled, typically involving saddle-center collisions
and pairwise disappearances of the branches. Finally, the consequences of the termination of the
branches on the dynamical phenomenology of the model are explored. When the branches are
unstable for small coupling values, they may often dynamically lead into a single site branch. For
larger coupling values where no stable branches exist, the solutions are typically found to lead to
dispersion involving one or more ‘masses’ dispersing the energy around a central core.

Keywords: discrete Schrödinger, hyperbolic, nonlinear

(Some figures may appear in colour only in the online journal)

1. Introduction

The hyperbolic nonlinear Schrödinger (HNLS) equation is a
model of increasing interest both in applied mathematics and
in theoretical/experimental physics [1–6] as it arises in a
diverse host of physical applications. Among others, one can
mention as specific examples deep water waves [7, 8] and
cyclotron waves in plasmas [9, 10], although the equation has
been also quite popular in nonlinear optics. Within the latter,
the examination of normally dispersive (quasi-discrete) opti-
cal waveguide arrays [11, 12] has offered a framework for the
study of optical pulses. Additionally, the nonlinear, experi-
mentally accessible X-wave structures [13, 14] (but also more
elaborate states including dark-bright [15] or vortex-bright

[16] solitary waves) have motivated its theoretical and num-
erical study. More recent efforts have also seen the devel-
opment of methods based on hyperbolic coordinates to study
the standing waves of the HNLS [17], a consideration of its
universal asymptotic regime for a wide range of initial con-
ditions [18], as well as the analysis of its profile decom-
position in different mass-critical and supercritical cases [19];
see also references therein. It is relevant to highlight the
diversity of recent studies involving this HNLS model. These
range over the last decade from nonlinear optics and necking
or snaking instabilities [20–22], to water waves and the
modeling of rogue or domain wall patterns [23, 24], as well as
to the study of nonlinear wave patterns of the model in
mathematical physics [25, 26].

While these extensive studies have addressed numerous
aspects of the continuum HNLS model, the authors are not
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aware of any efforts considering the (genuinely) discrete
aspects of the model, the so-called hyperbolic discrete non-
linear Schrödinger or HDNLS equation. This is an interesting
endeavor on a number of counts. On the one hand, the elliptic
variant of the discrete problem is quite well understood (see,
e.g., the monograph [27]), hence, it is conceivable that some
of the corresponding analytical and numerical techniques may
be adapted to the present setting. In fact, there exists a so-
called staggering transformation ( )= -u w1n m

n
n m, , (where

wn,m is the solution of the elliptic problem) which can convert
the former to the latter. This approach will not be used here,
given that this transformation becomes singular in the con-
tinuum limit. Instead, notice that the phenomenology of the
HDNLS model is of interest not only given its consideration
as a numerical scheme for the continuum HNLS, but also
because some of the applications may bear a (at least par-
tially) discrete character, as discussed, e.g. in [11, 12].

There are additional characteristics that add to the appeal
of the HDNLS model. For instance, in the so-called anti-
continuum (AC) limit of vanishing coupling between adjacent
nodes, any stationary configuration is ‘permissible’ as is
known also for the elliptic case [27]. However, in the con-
tinuum limit, on the other hand, the work of [6] established that
there are no nontrivial standing wave solutions. This implies
that all the solutions initiated at the AC limit must terminate at
some point prior to reaching the continuum i.e. at some finite
value of the coupling strength. This is fundamentally different
from the standard elliptic DNLS case, where solitary waves,
and even vortical solutions may persist in the continuum limit
[1]. It is also a feature that has direct consequences evident in
the dynamical evolution of the model for coupling strengths
past the critical point of the relevant bifurcations. There, it can
be seen that the system is led to dispersional dynamics invol-
ving one or more masses depending on the initial condition, as
is discussed in detail below. Thus, it is of interest to explore the
bifurcations through which these branches terminate and to
classify the dynamical behavior of the model prior to, as well
as past the corresponding critical points. It is the aim of the
present work to address a number of these issues for some of
the most fundamental (one- and few-site) configurations of the
HDNLS model. The main results are:

• The solvability condition enabling the classification of the
stationary states and the characterization of their stability
as is adapted from the elliptic case to the hyperbolic one.

• Upon continuation of the principal branches under
consideration, four distinct bifurcation events are identi-
fied numerically.

• All standing waves are found to disperse for coupling
values larger than those of the bifurcation events; for smaller
coupling values, they may degenerate to other states, such
as most notably the solution involving a single central site.

This analysis is numerically pursued for nine prototypical
branches of two-dimensional configurations involving one-
and two-site states and the ones connected to the bifurcations
and termination of these branches. Understanding these states
and how their bifurcations arise provides a set of ‘guidelines’
for what to expect for larger size configurations.

The presentation will be structured as follows: in
section 2, the theoretical aspects of the existence (via solva-
bility conditions) and stability theory (linearizing around the
equilibrium configurations and exploring the corresponding
spectrum) are explored. Then, numerical computations will be
used in section 3 to corroborate the analytical existence/
stability results and direct numerical simulations will help
determine the fate of such waveforms when unstable (or when
they may not exist closer to the continuum limit). Finally, in
section 4, the findings are summarized and the conclusions
are presented, as well as a number of challenges towards
future work.

2. Model

Consider the HDNLS equation for un,m(z) as follows

∣ ∣ ( )+ D + =
u

z
u u ui

d

d
0, 1n m

H n m n m n m
,

, ,
2

,

where D = + - -+ - + -u u u u uH n m n m n m n m n m, , 1 , 1 1, 1, stands
for the hyperbolic operator, i.e. a discretization of -u uxx yy

with unit spacing, while ò is the nearest neighbor coupling
parameter. In the context of this being a (n isotropic) discrete
approximation to the continuum problem, one should think of
ò=1/Δx2, where Δx is the spacing between adjacent lattice
nodes in both directions. The indexing n represents the dis-
crete vertical direction and m the horizontal one. Setting

( ) ( )f= mu z en m n m
z

, ,
i gives the stationary equation ( ) =F 0n m, for

( ) ( ∣ ∣ ) ( )( ) ( ) ( ) ( )f m f f f= - - D   F . 2n m n m n m H n m,
def.

,
2

, ,

One can then seek standing wave solutions with frequency μ,
by solving the algebraic set of equations (2). An outline of the
workflow associated with the identification of these solutions,
their stability, and their implications on the model dynamics is
provided in figure 1.

2.1. Existence of solutions

In the ò=0 AC limit, the values of ( )fn m,
0 for each site {n, m}

can be chosen independently from each other since the
nearest-neighbor coupling parameter is zero. Localized solu-
tions are thus found by specifying ( )f = 0n m,

0 for most sites {n,

m}. For a few nonzero sites one can set ( )f = qen m,
0 i n m, with

μ=1 and θn,mä {0, π}. Table 1 lists some possible solutions
for ( )fn m,

0 and a naming convention for each example
configuration.

The following general notation will be used. Let
{ }( ) ( ) ( )f f f= , , ...,n m n m n m,

0
,

0
,

0
d d1 1 2 2

for Î d represent an enu-
meration of the nonzero sites of the initial ò=0 configura-
tion, and let ( ) [ ]


q p= Îarg 0, 2 d represent a vector whose

elements are the arguments of elements of  . For simplicity
the nonzero sites are enumerated in a natural way with the
top-most left nonzero site corresponding to the first index.
Notice that the configurations listed in table 1 are not
necessarily closed loops, but when they are they will be
enumerated from the top left, continuing counterclockwise. It
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will be convenient to denote

dL as a vector whose components

are either 0 or 1 corresponding to whether the left neighbor
(when considered on the full two-dimensional grid) ( )f -n m, 1

0
j j

of

each element of  is zero or nonzero. Similarly define

  
d d d, ,R T B corresponding to whether the right ( ( )f +n m, 1

0 ), top

( ( )f -n m1,
0 ), and bottom ( ( )f +n m1,

0 ) neighbors of each element of
 are zero or nonzero on the 2D grid. Finally, let

[ ]
   
q q q q pÎ, , , 0, 2L R T B

d denote the arguments of the
corresponding nonzero nearest neighbors to each element of
 (with the subscripts having the same neighbor designation
as above). Note that since  contains all of the nonzero ele-
ments of ( )fn m,

0 , the vectors

q are permutations of


q.

For ò>0 real-valued solutions ( )f n m, are computed from
( )f Î n m,
0 via continuation in the coupling parameter ò. Such

solutions satisfying the limit ( ) ( )f f=


lim n m n m
0

, ,
0 are unique and

guaranteed to exist for ò in some neighborhood I0=(−ò0, ò0)
by an application of the implicit function theorem. From
the stationary equation ( ) =F 0n m, one can directly compute the
solvability condition ( ( ))( ) ( )f f = FIm 0n m n m, , where overline

represents the complex conjugate. That is, solutions ( )f n m, are
also roots of [ ]

=g gn m, for elements defined as

( (
)) ( )

f f f f

f

= + -

-
+ - +

-

g Im

. 3
n m n m n m n m n m

n m

, , , 1 , 1 1,

1,

Considered as a (implicit) function of

q and ò, the vector

function

g can be expanded in Taylor series that is convergent

on the interval I0 [27–29]. That is,

( ) ( ) ( )
!

( ) ( )( ) ( )       åq q q q= = ¶
=

¥

  g g g
k

g, where
1

, 0 . 4
k

k k k k

1

Since the initial configuration at ò=0 exhibits a gauge
invariance

 
q q q + 0 for q Î 0 this gives a one parameter

family of roots of

g for any fixed ò ä I0. This implies that if

the first order Jacobian matrix ( ) 
q= ¶ ¶J g 1 has a simple

zero eigenvalue, there exists a unique (modulo gauge trans-
formation) analytic continuation of the limiting solution f(0)

into the domain I0 [27–29]. Having provided the conditions
for the existence of the different branches of solutions, the
next section will address the corresponding spectral stability
analysis.

2.2. Spectral stability

For each example solution f( ò)n,m in table 1 the stability is
monitored for each fixed ò>0 via the linearization ansatz

( [ ]) ( )( )f d= + +m n nu a be e e 5z
n m n m

z
n m

zi
, , ,*

*

which yields the order δ linear system

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ( )n
- -

= -
M M

M M
a
b

a
bi , 6

1 2

2 1* *

where ∣ ∣( )m f= D - + M 21
2 and ( )( )f= M2

2. Thus max
(Re(ν)) > 0 corresponds to instability, yielding the relevant
instability growth rate, while max(Re(ν))=0 corresponds to
(neutral) stability. Note that [ ]y = a b T represents a column
vector of length 2N2, where N×N is the two-dimensional
grid size.

In the numerical computations that follow, the relevant
solutions are identified via fixed point iterations and

Figure 1. A diagram of the workflow is shown for identifying at
ò=0, continuing for ò>0, examining the stability and finally
testing the dynamics of the different obtained solutions.

Table 1. Solutions ( )fn m,
0 to the stationary equation (2) for μ=1 are

listed with corresponding naming convention for each type. Nonzero
sites of the configuration are shown with the values ( )f = 1n m,

0

denoted as plus or minus. All other sites are zero. Solutions are
grouped by branch number, i.e. according to which ones merge after
continuing in ò.

3

Phys. Scr. 94 (2019) 115203 J D’Ambroise and P Kevrekidis



subsequently the matrix eigenvalue problem of equation (6) is
solved numerically to determine their stability. However, it is
particularly useful to have some theoretical prediction/
expectation about which configurations should be expected to
be stable and which ones should not. To that effect, the
methodology summarized in [27] (based on earlier works
such as [30, 31]) is adapted. This allows a connection of the
stability of the few-site configurations with the Jacobian of
the solvability conditions, as follows.

From equations (4) and using the notation of section 2.1
the bifurcation function is written ( )g 1 as follows:

( ) ( ) ( )
( ) ( ) ( )

( )       
     

q d q q d q q

d q q d q q

= - + -

- - - -

g sin sin

sin sin , 7

L L R R

T T B j B

1

where the equation is intended to be considered element-wise
in each of the excited sites.

Thus the first order Jacobian matrix ( ) 
q= ¶ ¶J g 1 has

entries that can be computed manually given any example
solution. The diagonal vector of the matrix J is

( ) ( )d q q d q q- + -cos cosL L R R

( ) ( )d q q d q q- - - -cos cosT T B B . Non-zero off-diagonal
entries are of the form ( )q q - cos j j, where the index of the
nonzero entry is the index of nonzero entries of d for each of
= L R T B, , , with the plus sign corresponding to T, B and

the minus sign corresponding to L, R. The eigenvalues λi of J
are then connected to the full stability problem via the relation
n l=





lim 2i i

0

2 , with the relevant proof going through in a

same way as with the elliptic case of [27].
The Jacobian matrix for each example configuration that

is considered is listed in table 2. Based on the eigenvalues
{λi} listed in table 2 the 1s, 2o-horz, and 4o-horz config-
urations are found to be stable for very small ò. For such small
ò one finds one unstable direction for configurations 2i-horz
and 4i-sqr; two for 4o-line and 6s; three for 4o-vert; and six
for 8s. Note that adjacent in-phase excitations along the
horizontal direction such as 2i-horz, 4i-sqr, and 8s lead to
instability, as do out-of-phase excitations in the vertical
direction such as 4o-vert. For more complex configurations
(like 6s or 8s), whether or not they will bear an instability
depends on whether they include such unstable ‘base ingre-
dients’ i.e. any in phase pair along the horizontal (as is the
case for 8s) or out of phase pair along the vertical (as is the
case for 6s). Having the analytical predictions of table 2 at
hand, the next section will focus on a numerical exploration
of the corresponding (potential) instabilities.

3. Numerical results: existence, stability and
dynamics

In the appendix there is a short pseudocode algorithm for the
arclength continuation procedure that is utilized in order to
identify the relevant branches of solutions numerically. The
continuation is initiated at ò=0 with the various solutions
listed in table 1. The power of the resulting solutions

( ) ∣ ∣( )f= å P n m n m, ,
2 is plotted as a function of ò>0 in

figure 2. The figure shows that the power curves merge into

four bifurcation ‘events’. The branch labels are indicated in
the caption of figure 2 as ordered from lowest to highest
power. Dashed lines represent unstable solutions and solid
ones represent stable solutions. Branch 1 (lowest power)
exists up to the value of ò≈0.242 where solutions origi-
nating from types 1s, 2i-horz, and 4o-vert meet. Branch 2
(lower middle) exists up to ò≈0.226 at which point the
solutions originating from types 2o-horz and 4o-line meet.
Branch 3 (upper middle) exists up to ò≈0.210 where types
4i-sqr and 8s meet. Branch 4 (highest power) exists up to
ò≈0.251 where types 4o-horz and 6s meet.

In figures 3–6 the sample solutions ( )f n m, on the left col-
umns show typical branch members while the result of the
two-dimensional continuation procedure over ò is shown on
the right panel through the unstable eigendirection growth
rates Re(ν). Comparing table 1 to the left columns of
figures 3–6 it is found that the extended solutions originate
from the ò=0 solutions in the following manner as the
nearest neighbor interaction is turned on for ò>0. Generally

Table 2. The table lists the Jacobian matrix J and corresponding
eigenvalues {λi} for each configuration. It is important to appreciate
that each positive number for λi on the right column translates into
an unstable pair for the full problem eigenvalues νi.

Name Jacobian J
Eigenvalues

{λi}

1s ( )0 {0}
2i-horz ( )--

1 1
1 1

{2, 0}

4o-vert ⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

- -
- -
- -

- -

2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

{4, 2, 2, 0}

2o-horz ( )--
1 1
1 1

{−2, 0}

4o-line ⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

-
-

-
-

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

{ }2, 2 , 0

4i-sqr ⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

-
-

-
-

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

{±2, 0, 0}

8s ⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

- -
- -

- -
- -
- -

- -
- -

- -

2 1 0 0 0 0 0 1
1 1 1 0 0 0 1 0
0 1 1 1 0 1 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 1 0 1 1 1 0
0 1 0 0 0 1 1 1
1 0 0 0 0 0 1 2

{

}





4, 2 2 ,

2, 2, 2 ,
0

4o-horz ⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

-
-
-
-

2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

{
}

- -
-
4, 2,
2, 0

6s ⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

-
- -

-
-
- -
-

1 1 0 0 0 0
1 1 1 0 1 0
0 1 2 1 0 0
0 0 1 2 1 0
0 1 0 1 1 1
0 0 0 0 1 1

{

}

-
-


3.681 33,
1.642 07,

3 , 0
1.323 4
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sites to the left and right of the initial configuration become
nonzero with the same sign as the initial configuration, and
sites neighboring the initial configuration vertically become
nonzero with opposite sign as the initial configuration. Signs
of the sites then alternate vertically and stay the same hor-
izontally in a manner that respects the signs of the initial
configuration as the footprint continues to expand for
increasing ò>0.

Solutions initiated at ò=0 from the configuration types
of 1s, 2i-horz, and 4o-vert merge into a single branch denoted
as Branch 1. These three solution types merge at ò≈0.242
and the left column of figure 3 shows example solutions for
ò=0.2414 on Branch 1. In the right column of figure 3 the
nonzero real parts of eigenvalues ν are plotted as computed
from equation (6). Note that the eigenvalue plots denote real
eigenvalues with an ‘x’ mark and nonreal complex eigenva-
lues with an ‘o’ mark. For very small ò the prediction
n l» 2 from section 2.2 is plotted in a red dashed line
based on the values of λ in table 2. Clearly, the one unstable
eigenvalue of the 2i-horz configuration and the two unstable
eigenvalues of the 4o-vert configuration are well captured for
small ò. As ò increases, however, these real eigenvalue pairs
appear to turn around towards ν=0 and tend the origin of
the spectral plane as the bifurcation point is approached.

One can follow the eigenvalue diagrams in figure 3 with
the following description of the change of the eigenvalue
types as a function of ò. Starting with the 1s configuration,
near the merging point there is one nonzero real pair of
eigenvalues within the range 0.201�ò�0.241. Near the
merge point this one real pair of eigenvalues moves towards
the origin. Additionally two pairs of eigenvalues on the
imaginary axis tend toward the origin (these are not reflected
in figure 3). The 2i-horz has one nonzero real pair for
0<ò�0.211 and two real pairs for 0.212�ò�0.241.
Near the merge point the two real pairs and one additional

imaginary pair approach the origin. The 4o-vert has initially a
total of three nonzero real pairs (one pair coinciding for a total
of two distinct) within the range 0<ò�0.205, then within
the range 0.206�ò�0.229 two real pairs, and the
remaining interval 0.230�ò�0.241 again three nonzero
pairs (one pair coinciding, two distinct). Nearest to the merge
point the three real eigenvalues decrease in amplitude towards
the origin.

Solutions initiated at ò=0 from the configurations types
2o-horz and 4o-line merge at ò≈0.226 as Branch 2. Figure 4
shows example solutions for ò=0.2258 on the left column.
Note that according to table 2 the 2o-horz type is initially (i.e.
for small ò) stable and the 4o-line type initially has two
unstable directions for small ò. The predictions n l» 2

Figure 2. The power ( ) ∣ ∣( )f= å P n m n m, ,
2 of solutions to the

stationary equation (2), obtained by arclength continuation, plotted
as a function of ò>0. Underneath each branch segment is a label
representing the ò=0 configuration from which the solution is
continued.

Figure 3. Each configuration plotted in the left column shows a
Branch 1 (real-valued) solution that was obtained by continuation of
the coupling parameter to the value of ò=0.2414 where the original
configuration at ò=0 is 1s (top), 2i-horz (middle), or 4o-vert
(bottom). In the right column the set of values {Re(ν)>0} is plotted
for the corresponding whole branch segment versus ò where
similarly the original configuration at ò=0 is 1s (top), 2i-horz
(middle), or 4o-vert (bottom). For the right column, circles mark the
values for which Im(ν)>0 (i.e. ν is complex non-real and existing
as quartets in the complex plane) and x’s mark the values for which
n Î  (i.e. ν is real and existing as pairs on the real axis of the
complex plane).
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according to table 2 are plotted as red dashed lines in the right
column of figure 4. For small ò, the two unstable eigendir-
ections of 4o-line are well captured. As ò is increased, in the
right column one can follow the eigenvalue changes over ò.
The 2o-horz type has one quartet with nonzero real part
within the range 0.083�ò�0.225 and then within the
range 0.210�ò�0.225 there is an additional real pair. The
4o-line type has two real pairs for 0<ò�0.225 and an
additional quartet for 0.101�ò�0.225. Near the merge

point for Branch 2 the magnitude of the real parts of the
quartet eigenvalues from both the 2o-horz and the 4o-line
approach approximately 0.05 as  0.226. The merge point
also has one real pair with magnitude approximately 0.38.
Notice that the 2o-horz type has the real pair increasing
toward this value while the 4o-line type has its largest real
pair decreasing toward this value (the smaller real pair for 4o-
line type goes to zero). Moreover, to confirm the saddle-
center nature of this bifurcation, the 2nd real pair of the
4o-line branch decreases towards the origin ν=0 as the
bifurcation point is approached, while the 2o-horz branch has
an imaginary eigenvalue pair (not shown here) tending to
collide with this real pair (of 4o-line) at the origin.

Solutions initiated from 4i-sqr and 8s merge at ò≈0.210
as Branch 3 and figure 5 shows example solutions for
ò=0.2101. Note that according to table 2 the 4i-sqr type has
one unstable direction and 8s has six unstable directions for
small ò. These predictions are plotted as red dotted lines in the
right column of figure 5, again in good agreement with the
numerical results at least for small values of ò, before turning
around towards ν=0, which in this case too happens around
ò=0.1. The eigenvalue types change over ò as follows. The
type 4i-sqr has a real pair for 0<ò�0.210, a second real
pair for the interval 0.056�ò�0.210 and a third real pair
for the interval 0.203�ò�0.210. Note also that a quartet
appears in the interval 0.088�ò�0.210. The type 8s has
six real pairs for most of the ò range with two persisting for
the smaller interval 0<ò�0.199 and four persisting (two
overlapping) for the whole interval 0<ò�0.210. Addi-
tionally a quartet exists for 0.108�ò�0.210. On both types
4i-sqr and 8s the largest real pair approaches a magnitude of
approximately 0.73 as  0.2101 and the complex quartet
has the magnitude of its real part approaching 0.02. On both

Figure 4. Plots are similar to figure 3 but here for Branch 2 with the
left column corresponding to ò=0.2258 with initial ò=0
configurations here as 2o-horz (top row) and 4o-line (bottom row).

Figure 5. Plots are similar to figure 3 but here for Branch 3 with
the left column corresponding to ò=0.2101 with initial ò=0
configurations here as 4i-sqr (top row) and 8s (bottom row).

Figure 6. Plots are similar to figure 3 but here for Branch 4 with
the left column corresponding to ò=0.2509 with initial ò=0
configurations here as 4o-horz (top row) and 6s (bottom row).
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types 4i-sqr and 8s, focusing on the smaller real pairs of
eigenvalues, they approach a magnitude of either 0.24 or
0.31. Notice that the 8s configuration has at this point two
extra real pairs (the overlapping pair) unaccounted for thus far
—they approach zero as the merge point nears. These are the
eigenvalues responsible for this saddle-center bifurcation,
while the 4i-sqr branch has two corresponding pairs tending
to ν=0 from the imaginary side.

Solutions initiated from 4o-horz and 6s merge at
ò≈0.251 as Branch 4 in the final example among our saddle-
center bifurcations. Figure 6 shows example solutions for
ò=0.2509. Table 2 predicts that 4o-horz is initially stable and
6s initially has two unstable directions. The 4o-horz type has
one complex quartet for 0.059�ò�0.082 and three such for
0.083�ò�0.096 (two coinciding), while two coinciding
ones remain for 0.097�ò�0.185. Near ò=0.185 these
complex eigenvalues rapidly return to the imaginary axis. A
real pair of eigenvalues exists close to the merging point in the
interval 0.237�ò�0.251 and a second real pair appears
very near that merge point for 0.248�ò�0.251. The 6s type
has two real pairs of eigenvalues for 0<ò�0.251 and an
additional quartet for 0.061�ò�0.091 and a total of three
quartets for 0.092�ò�0.102; then, it has a total of two
quartets for 0.103�ò�0.197 and one quartet for
0.198�ò�0.217. Near ò=0.217 the quartets of eigenva-
lues rapidly return to the imaginary axis. Near the merging
point for Branch 4 the magnitudes of the two real pairs of
eigenvalues decrease towards the limiting magnitude value of
0.02 and 0.23 as  0.251 for the 6s configuration while the
two real pairs of eigenvalues on the 4o-horz side of the branch
increase towards those same magnitude values as  0.251.
Thus, in the vicinity of this point, the two configurations
collide and merge through the associated turning point of this
final saddle-center bifurcation.

In table 3 the dynamical fate of some case example
solutions is listed together with the type of the perturbing
eigenvectors. Solutions are initiated at z=0 according to

equation (5) with δ=0.001 and with eigenvector [ ]a b T

corresponding to the eigenvalue ν that has largest real part
where ν is either real (denoted as Im(ν)=0) or in the com-
plex plane with nonzero imaginary part (Im ( )n ¹ 0). One
circular mass is denoted as 1m such as the bottom right panel
of figure 7, two expanding masses is denoted as 2m such as
the middle right panel of figure 8, four masses expanding
towards the corners of the grid is denoted as 4m such as the
bottom right panel of figure 9, and 1–2m corresponds to one
mass expanding in one direction and a smaller mass in the
opposite direction such as the bottom right panel of figure 8.
The abbreviation 1s-trans represents a transient state that is a
pulsating 1s type.

The 1s type solution at ò=0.2250 evolves towards a
single expanding mass marked as 1m in the table. Figure 7
shows the original solution at z=0 in the top right panel and
the evolved solution at a later z value in the bottom right
panel. The corresponding maximal eigenvalues in the top left
panel are defined according to equations (5) and (6). The
eigenvector is in the bottom left panel. The eigenvector [ ]a b T

corresponding to the positive real ν value is used to perturb
the solution according to equation (5). The result of the
evolution propagated according to equation (1) in the bottom
right panel clearly illustrates the dispersive nature of the
temporal dynamics.

Table 3 shows that at ò=0.2096 the solution of type 2o-
horz has two different fates depending on whether one per-
turbs according to (5) in the eigendirection corresponding to
the maximal real eigenvalue (marked as the Im(ν)=0 col-
umn of the table) versus the other eigendirection corresp-
onding to the maximal complex eigenvalue (marked as the Im
( )n ¹ 0 column of the table). In the former case the 2o-horz

Table 3. The table lists the fate of solutions obtained via continuation
in ò when they are propagated in the variable z according to the
dynamical equation (1).

Im(ν)=0 ( )n ¹Im 0 Im(ν)=0 ( )n ¹Im 0

ò=0.1500 ò=0.2250
1s (stable) — 1 m —

2i-horz 1s — 1s-trans —

4o-vert 1s — 1s-trans —

ò=0.1500 ò=0.2096
2o-horz — 1s 2 m 1–2 m
4o-line 1s 1s 1s-trans 1s-trans

ò=0.1500
4i-sqr 1s 1s
8s 1s 1s

ò=0.1500 ò=0.2400
4o-horz — 1s 4 m —

6s 1s 1s 4 m — Figure 7. The top left panel shows the values {ν} plotted in the
complex plane for the corresponding stationary solution ( )f n m, that is

plotted in the top right panel. The solution at z=0 is of type 1s for
ò=0.2250 and it is real-valued, and ∣ ∣+a b* corresponding to the
eigenvalue ν that has largest real part is plotted in the bottom left
panel. After propagating the result ∣ ( )∣( )f  zn m, is plotted in the bottom

right for z=50.
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type solution evolves towards an expanding mass with two
‘blobs’ moving outwards along the horizontal direction; this
is marked as 2m in the table and shown in the middle right
panel of figure 8 with the corresponding eigenvector shown in
the middle left panel. In the latter case such expansion is not
symmetric—this is marked as 1–2m in the table and shown in
the bottom right panel of figure 8 with the corresponding
eigenvector shown in the bottom left panel. Apparently here
the perturbation added on top of the initial 2o-horz config-
uration breaks its symmetry, leading to the asymmetric
evolution of the bottom right of figure 8.

For other configurations such as 4o-line, 4i-sqr and 8s,
according to table 3, their instabilities typically led to a single-
site resulting evolution for the values of ò-considered (for
which the single site configuration was dynamically stable).
In the cases of 2i-horz and 4o-vert for ò=0.225, the con-
figurations approach a transient 1s state, vibrating near a 1s
type solution with a pulsating core, since the stationary 1s
configuration is unstable for this value of ò. On the other
hand, at ò=0.2400 the 4o-horz and 6s configurations evolve
with mass expanding mostly towards the four corners, as is
demonstrated in figure 9. Indeed, all other solutions shown in
table 3 revert towards the 1s type, i.e. disperse mass while

transforming to a single site excited configuration. Solutions
on Branches 1–4 are tested when propagated according to
equation (1) with ò beyond the bifurcation points such as
ò=0.28, 0.3 to find that all tested standing wave solutions
disperse for such higher ò values, closer to the continuum
limit. This is in line with the expectation that no coherent
structure exists in the vicinity of the continuum limit. Yet, our
quantitative analysis illustrates that dispersion dominates
already for rather weak couplings i.e. ò>0.25. Whether a
discrete analogue of self-similar dynamics arises for this
interval (corresponding to the continuum observations of
[18]) is an interesting open question for future study.

4. Conclusions and future challenges

In the present work, some of the fundamental solutions of the
hyperbolic discrete nonlinear Schrödinger model are
explored. The search for such waveforms was initiated at the
convenient AC limit and continuation in the coupling para-
meter was used for some of the most prototypical ones, most
notably one-, two- and four-site examples, with some
exceptions involving six- and eight-site examples, when these
were participating in bifurcations involving the lower number
of site branches. The solvability condition methodology of the
elliptic case was adapted to this hyperbolic case and existence
conditions were accordingly derived as well as predictions for
the eigenvalues of the linearization of such few-site config-
urations. Subsequently, the states were obtained via fixed
point iterations and the validity of the analytics as a function
of the coupling strength ò was examined. It was generally
found that the eigenvalue predictions worked well in the
vicinity of the AC limit. However, at larger values of the
coupling (typically of ≈0.2), the eigenvalues were found in
many configurations to ‘turn around’ and either meet up with

Figure 8. Plots are similar to figure 7 where the top right panel shows
the real-valued solution of type 2o-horz at z=0 for ò=0.2096. The
middle left panel shows ∣ ∣+a b* corresponding to the eigenvalue
with maximum real part among the quartet of eigenvalues (with
Im ( )n ¹ 0). Perturbing with this eigenvector results in solution
∣ ( )∣( )f  zn m, in the middle right panel plotted at z=218. The bottom

row of panels is similar but for the eigenvector corresponding to the
real eigenvalue with maximum real part among the real eigenvalues
(with Im(ν)=0). The resulting solution ∣ ( )∣( )f  zn m, is in the bottom

right panel at z=122.

Figure 9. Plots are similar to figure 7 where the top right panel shows
the real-valued solution of type 4o-horz at z=0 for ò=0.2400. The
middle left panel shows ∣ ∣+a b* . Perturbing according to (5) with
this eigenvector results in the solution ∣ ( )∣( )f  zn m, plotted in the bottom

right panel at z=116.
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a merging segment of the branch or return to the origin
leading to a set of bifurcation patterns that were elucidated
herein, some in fact involving more than 2 configurations (as
was the case with the branches 1s, 2i, 4o-vert). This aligns
itself with our expectation that all standing wave solutions
disappear in the continuum limit [6]. Sufficiently beyond
these critical bifurcation thresholds (all of which satisfied

 0.2 0.25cr for the examples considered), the fate of
standing wave-like initial conditions was also examined and it
was found that they disperse, forming one or more dispersing
‘blobs’, depending on the form of the initial condition.
Interestingly, this type of fate (of dispersion into one or
multiple blobs) could arise for select examples before the
bifurcation critical points, as elaborated in table 3. Never-
theless, in numerous cases of the latter scenario, the config-
urations just rearranged themselves towards eventually
reaching a single site state (1s).

Naturally, the present work paves the way for the
numerous intriguing questions both at the theoretical and at
the numerical level. A difficult set of questions concerns the
phenomenology around òcr. Our analysis enables an under-
standing for small ò; is there, however, a way to capture the
‘turning’ of the eigenvalues or the emergence of these
bifurcations around these critical values of ò? Beyond these
critical values, does one encounter a discrete variant of
the universal regimes presented in [18] and if so is there a
way to analyze such phenomenology at the discrete level?
Finally, extending considerations to the three-dimensional
setting with two directions bearing the same sign of the dis-
persion (diffraction, at the discrete level) and one the opposite
would be a possibility of interest in its own right. Some of the
questions are presently under consideration and will be
reported in future publications.
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Appendix

In algorithm 1 an initial solution ( )fn m,
0 for ò0=0 from table 1

is assumed to be represented as a column vector of length N2,
where N×N is the size of the two-dimensional grid. The
function F(f, ò)=Fò(f) is defined according to equation (2)
and also outputs a column vector of length N2. The constant
values of the change in arclength parameter ds, the maximum
ò value òmax, and the tolerance are assumed to be pre-set.

Algorithm 1. Arclength continuation.

1:ò0=0; ( )f f= ;0
0

2:v=nullspace ⎡⎣ ⎤⎦( )( ) ( )f f
f
¶
¶

¶
¶




, ; ;F F
0 0 0

3:v=v/norm(v);> initial direction vector
4:do
5:f=f0; ò=ò0;
6:do> Newton’s method on augmented function G
7:D=[f; ò; ]−[f0; ò0; ];
8: [ ( ) · ]f= -G F D v ds, ; ; ;

9: ⎡⎣ ⎤⎦( ) ( )f f=
f
¶
¶

¶
¶




M v, ; ;F F T
0

10: ⧹=corr M G;
11:[ ] [ ]f f= - ; ; ; ; corr;
12:while norm(corr) > tolerance

13: ⎡⎣ ⎤⎦( ) ( ) ⧹[ ( ) ]f f=
f
¶
¶

¶
¶




v v zeros N, ; ; , 1 ; 1; ;F F T
0

2

14:v=v/norm(v); > next direction vector
15:f0=f; ò0=ò;
16:while ò<òmax
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