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ABSTRACT

Since the launch of the Materials Genome Initiative (MGI) the field of materials informatics 
(MI) emerged to remove the bottlenecks limiting the pathway towards rapid materials 
discovery. Although the machine learning (ML) and optimization techniques underlying MI 
were developed well over a decade ago, programs such as the MGI encouraged researchers 
to make the technical advancements that make these tools suitable for the unique challenges 
in materials science and engineering. Overall, MI has seen a remarkable rate in adoption 
over the past decade.  However, for the continued growth of MI, the educational challenges 
associated with applying data science techniques to analyse materials science and 
engineering problems must be addressed. In this paper, we will discuss the growing use of 
materials informatics in academia and industry, highlight the need for educational advances 
in materials informatics, and discuss the implementation of a materials informatics course 
into the curriculum to jump-start interested students with the skills required to succeed in 
materials informatics projects.  
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Figure 1. Illustrates the recent boom in publications per year that combine aspects of data science into materials-
based research. The inset shows the breakdown of materials informatics publications by country. Results are 
based off 2,268 records for TOPIC: (“materials informatics”) OR TOPIC: (“machine learning” and “materials”) .
<<color online>> 

MATERIALS INFORMATICS IN ACADEMIA 

 Materials-based research has adopted the use of machine learning 
(ML) as an analytical tool. ML encompasses any algorithm whose 
performance will improve, or learn, as it is exposed to or trained on larger 
quantities of quality data. Implementing these ML algorithms with a specific 
workflow to overcome the unique challenges of materials-based research is 
termed materials informatics (MI). The application of ML tools to materials 
science data and the use of MI workflow to design new materials and 
techniques has shown exponential growth with over 2,000 publications 
during the past decade (Figure 1). The United States leads the global effort in 
MI with almost half of these publications. To date, most of the publications 
have largely focused on facilitating materials design, parameterizing 
potentials for in silico techniques, and optimizing materials characterization 
techniques [1]–[6]. For example, researchers have started to employ ML 
algorithms to process undetected or complex trends in databases containing 
first principle calculations data [7]. Ultimately, this has led to the proposal 
and synthesis of promising surface coatings [8], alloys[9]–[12], perovskites 
[13], and composites [2] that meet specified target properties for a specific 
application. MI has not only been useful in designing and predicting 
properties of new materials, but has also been vital in the recent development 
of new potentials used for in silico approaches via rapid parameterization 
[14], [15] at a reduced computational expense [15], [16] and the 
development of completely data driven potentials [17], [18]. These 
advancements have been utilized to push the length and time scales of the 
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current capabilities of simulations while maintaining the same level of 
accuracy as higher resolution simulation techniques. The MI framework to 
develop these new potentials has already been laid out in multiple studies 
[19]–[22]. For example, Huan et al. discuss a universal approach for creating 
atomistic force fields via ML [22]. MI has also been used to analyze 
phenomenological parameters such as the work performed by Miles, Leon, 
Smith, and Oates that looked at the uncertainty and sensitivity of parameters 
in a ferroelectric continuum model for lead titanate [23], [24]. Experimental 
characterization techniques are also a beneficiary of MI approaches. For 
example, a Bayesian inference approach was shown to provide many 
advantages for X-ray diffraction peak fitting over traditional approaches such 
as Reitveld refinement. Specifically, the Bayesian approach has the ability to 
escape from false minima, incorporate prior knowledge of the material into 
analysis, and provide uncertainty quantification [25]. MI has also been used 
to analyze position averaged convergent beam electron diffraction patterns 
with a convolutional neural network that achieved great speed and accuracy 
compared to brute force methods [26]. Overall, the rate of adoption of MI 
workflow to speed up characterization, simulations and materials discovery 
has been remarkable.  

MATERIALS INFORMATICS IN INDUSTRY

The use and application of ML tools has rapidly grown in industry with 
CrunchBase listing over 5,000 start-ups that implement data science tools to 
carry out the production of their products and services. This has resulted in 
an explosion of spending on ML and artificial intelligence (AI) with the 
International Data Corporation predicting an investment of $57.6B by 2021 
[27]. Among these start-ups are Materials Informatics companies like Citrine 
Informatics which has more than doubled in size over the last 2 years [28]. 
Citrine Informatics aims to accelerate materials discovery through their 
proprietary ML platforms that stores and uses materials data from its 
partnerships with universities, national labs, and corporations. With the rise 
of companies like Citrine Informatics, engineers and scientists that possess 
both knowledge of domain science (like materials science and engineering) 
and data science techniques are in very high demand.  

The incentives to pursue educational and research opportunities in MI 
remains high as the fields of MI and artificial intelligence continue to see 
significantly above-average job growth. In 2019, job postings on LinkedIn 
for data scientists and machine learning engineers increased by 56% and 
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96% respectively [29]. The Bureau of Labor Statistics predicts that the 
number of jobs in Mathematics and Statistics (which includes data scientists) 
will rise by 30% from 2018 to 2028 [30]. In addition to job growth, 
informatics jobs provide above average compensation. LinkedIn users 
reported median salaries of $130,000 and $182,000 for the data scientist and 
machine learning engineer positions and data scientists who handle 
unstructured data and have coding skills earn up to 34% more than other 
analysts. This group is also nearly three times as likely to have a degree in 
engineering or science (34% vs 13%) [31]. As the use of data science tools 
matures and spreads to different industries and domains, the demand for 
professionals with domain knowledge and the ability to handle incomplete 
and heterogeneous data is increasing. This trend is especially applicable to 
materials science, where structured databases, off-the-shelf data analytics 
software packages and professionals with both domain and data science 
knowledge are in short supply. 

CHALLENGES 

MI is undeniably a valuable tool for materials scientists as the modern pace 
of materials innovation has become intractable by traditional approaches. 
The success of MI in academia and industry has only reinforced this truth as 
structure and property predictions across vast chemical spaces become 
simultaneously cheaper and more accurate. However, materials informatics 
is still lagging behind other fields that have adopted data science approaches 
due to the unique challenges inherent to materials datasets. One of the most 
impactful processes in each MI approach is the user-dependent choice of 
material descriptors. In general, these descriptors need to sufficiently identify 
unique atomic environments, while being invariant to transformations such 
as translation, rotation, and permutations of like elements [17]. However, 
these descriptors can quickly become computationally expensive, which is 
especially true for soft matter as the exploration space is inherently highly 
dimensional [32], [33]. These materials can have properties heavily reliant 
upon this design space as their sequence, environment, length, chemical 
composition, density, etc. can drastically change morphology and non-
bonded interactions [34]–[36]. Thus, developing a framework that can 
identify the optimal material descriptors for each MI application can help 
overcome one of the biggest barriers that has kept MI from realizing its full 
potential. Early works have already targeted this issue through the 
development of standard notation such as SMILES for molecules and 
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BigSMILES for macromolecules [37]–[39]. In addition, some works have 
performed analysis on the influence of numerous materials descriptors 
ranging from crystal chemistry to electronic structure descriptors used to 
predict multiple properties of intermetallic compounds [11]. 

 Databases would seem to be the easy solution to standardize the 
structure of reported data, however, current databases are for particular 
purposes or limited to specific materials class(es) limiting their viability for 
use in MI studies. In addition, most databases do not report material 
processing details resulting in a possible disconnect between the structure-
property relationship that is fundamental to material science. This is 
especially important for less-ordered materials commonly found in soft 
materials and glasses. For more information on the additional challenges for 
disordered materials we recommend referencing “Soft Matter Informatics: 
Current Progress and Challenges” by Peerless et al. [33] and “Data‐driven 
glass/ceramic science research: Insights from the glass and ceramic and data 
science/informatics communities” by De Guire et al. [40]. 

        Collecting data from previous publications also possess significant 
challenges. In a recent paper, the quality of data reported was highly 
concerning for inorganic materials synthesis recipes. Through a text mining 
approach, it was found that the overall extraction yield was 28% of total 
papers. Out of the successfully mined publications, 30% of papers did not 
contain a complete set of starting materials and final products, thus 
reconstruction of the reaction was not possible. Lastly, 42% of potential 
reactions were not reconstructed due to an incomplete or overcomplete set of 
extracted precursor/target materials, or a failure to correctly parse chemical 
composition [41]. Thus, the already limited materials datasets are further 
reduced in size due to poor data quality and lack of standards for reporting 
data. 

 For future database development, the materials informatics 
community needs to follow the examples of well-established databases such 
as the Protein Data Bank (PDB) [42]–[44]. The development of the PDB has 
created a culture, incentives and level of prestige that benefits each 
researcher that successfully submits a protein structure in this database for 
others to use. This effective data sharing in PDB database resulted in the 
growth and development of structural bioinformatics field. In addition to 
centralizing large amounts of data, PDB has implemented a data quality 
metric that ensures only quality data exists within the database effectively 
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reducing the burden and time it takes to pre-process and filter the data for 
analysis.  

 For databases specific to materials science, The National Institute of 
Materials Science (NIMS) deserves special recognition as being one of the 
front runners for database development for MI applications [45]. NIMS is 
the co-copyright owner of databases such as the Pauling Files [46] which 
provides reliable data on crystal structure and phase diagrams in addition to 
being the owner of other respected databases such as PoLyInfo which 
provides data for polymeric materials design [47]. These databases are 
traditionally curated by hand as NIMS employees comb through literature 
daily assessing accurate information for entry into a database. Thus, NIMS 
curation of data has resulted in the development of databases that have been 
successfully used as the source of information in numerous MI studies. 

EDUCATION 

 In a recent report from TMS, it was reported that only 9 out of the 50 
sampled Materials Science programs offered a course that referenced “data 
science,” “data handling,” or the utilization of “databases” [48]. This creates 
a disconnect between the skills of graduating students and the desires of 
employers who seek more interdisciplinary training among materials 
graduates [49]. One of the root causes for the lack of education in materials 
informatics may be the shortage of faculty suited to teach the course. The 
limited resources, textbooks and course models currently available to faculty 
serves as a barrier for the induction and development of new MI classes. In 
the remainder of this section, we will discuss the course format and 
education opportunities successfully launched at the Materials Science and 
Engineering Department at North Carolina State University. While this text 
will serve as a resource and discuss a current course model, there is a need to 
develop a viable course textbook as we find current textbooks to either focus 
too much on the computer science aspects of ML or fail to address the 
unique challenges associated with MI as discussed in the previous section. 

 In order to develop the curriculum that prepares students for MI 
field, it is critical to understand the basic skillset a student needs to 
comfortably understand and incorporate materials informatics into future 
work, whether in academia or industry. Figure 2 highlights these essential 
skills which include math and statistics to understand protocol for handling 
different types and sizes of data, databases to help store and collect materials 
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data, data wrangling and pre-processing to prepare data for analysis, 
coding/machine learning algorithms to understand and run the MI process, 
and most importantly materials science domain knowledge. This is not to say 
materials graduates must be experts in all these fields, but they must have 
enough of an interdisciplinary background to understand current literature 
and interface with experts in informatics to exploit their own materials 
expertise.

 At North Carolina State University, there has been a large effort to 
enable students with the proper training in materials informatics through the 
NSF funded Data-Enabled Science and Engineering of Atomic Structure 
(SEAS) program [50]. Specifically, the SEAS program has created 
incentives for students through fellowships, seminars, group discussions, 
hackathons, and educational opportunities through the establishment of 
Graduate Certificate in Materials Informatics (GCMI), and networking 
opportunities that connect students with universities, national labs, and 
companies interested in hiring materials students with knowledge of 
informatics. The GCMI is designed for interdisciplinary graduate education 
at the intersection of materials science, engineering, and data science with 
the aim of preparing the next generation of materials engineers given the 
growing demand for data-science skills and knowledge of artificial 

Figure 2. Highlights the necessary skillset for materials informatics. The green hexagon represents the current
information that is taught in materials science programs and the grey hexagons represent required knowledge out side
of materials science and engineering. <<color online>>
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intelligence. The skills and knowledge obtained here will serve as foundation 
for the understanding of materials informatics and high throughput materials 
discovery that will improve a student’s career prospects. The core course for 
CGMI is Materials Informatics which was designed to enable students with 
the practical implementation of machine learning techniques to various 
materials science problems and to introduce the MI required skills in Figure 
2. Namely, the course covers an overview of materials knowledge, data 
management, and machine learning, while in-depth statistics and coding are 
referenced in concepts throughout the course but taught in other courses 
within the curriculum. While the course includes some basic review of 
necessary math and statistics, we do recommend that the students enrolled in 
this course already be familiar with main concepts in statistics and 
uncertainty quantification.  The hands-on implementation of the course is 
based on (1) reproducing the recently published data and (2) application of 
learned techniques to the student-driven project. For the known example, we
highly recommend the paper and supplementary information in the 
publication “Predicting the thermodynamic stability of perovskite oxides 
using machine learning models“ by Li, Jacobs, and Morgan [51]. This paper 
shares the code and data used to form the reported results which will allow 
students and faculty to recreate the study and verify their correct 
implementation of that specific MI approach by comparing their results with 
those reported in the literature. In addition, the ‘scikit-learn’ python package 
utilized by Li, Jacobs, and Morgan provides an excellent description of data 
science tools with examples. The complete course flow is illustrated in 
Figure 3a.  

Materials and Data Collection (Weeks 1 and 2)  

The course begins with the basic review of statistics and python basics 
followed by an overview of the typical data obtained from materials 
characterization (Fig. 3a). This encourages students to think about the raw 
data structure obtained through various materials characterization techniques 
across subdisciplines of materials science. For example, the differences in 
data structure and resolution can be discussed for characterization techniques 
such as TEM, X-ray diffraction, and computational techniques. During this 
portion of the class, it is important to note the common occurrence of small 
datasets and high dimensional design spaces in materials science. It should 
be stressed that the understanding of the particular material structure and 
properties is based on the physics infused into the dataset, limiting the 
benefits of MI approaches that do not maintain this information. Outside of 
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Characterization:
material, methods,

pros & cons 

Snapshot of 
Student-developed 
Database Schema  

Flow Chart of 
Material & Method 

Parameters 

(a) 

(b) ) 2 Weeks 
(Project)  

4 Weeks 
(HW1) 

5 Weeks 
(HW2) 

3 Weeks 
(HW3) 

Prediction/
ML Results 

Material/Data 

Figure 3. (a) Represents the syllabus topics of the course (blue) and suggested subtopics (yellow). (b) Represents the timeline for e ach
out of class assignment along with an example of a student’s homework assignment figures as discussed in the text. <<color online>>

Goals: 
Predict Self-
Assembled 
Morphology 

Idea: 
Amphiphilic 
Copolymer 

Design 

class, students should be thinking about a materials project that they would 
like to work on throughout the semester. Figure 3(b) shows an example of a 
student’s project idea to predict self-assembled morphologies based on the 
design of amphiphilic diblock copolymers. During this period, Homework 1 
is assigned where students should think of all possible characterization 
techniques that can be used to investigate the properties of selected material 
in their project idea. The students will also choose one characterization 
techniques and list all the tunable material preparation and characterization 
parameters that can influence results in their proposed project. Figure 3(b) 
shows an example of a flow diagram from a student’s homework. The 
student listed 8 techniques to study micelles in solution and settled on 
describing the parameters of a computational method in detail.
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Data wrangling and database design (Weeks 3-6) 

The course then transitions into discussing database structures which teaches 
students about the organization of data, data processing, data quality, and the 
value of uncertainty quantification. This data management step prepares 
students to pre-process data that can be fed into ML algorithms for materials 
prediction and optimization problems. This section of the course directly 
builds upon the understanding of data for various materials science and 
engineering problems, which was covered in weeks 1 and 2. During this 
time, students are assigned Homework 2, which requires data collection, 
wrangling and database design for both the example data from Li et al [51]. 
and student project. Ultimately, this homework culminates in the sketching 
of a database that represents the workflow of the important material and 
characterization parameters in Homework 1. Figure 3(b) shows a model 
database developed by a student. The database information should 
sufficiently maintain the structure-process-property relationship for each 
material entered.  

Machine learning techniques (Weeks 7-11) 

 Once students are comfortable with data collection, data wrangling, and data 
organization concepts, an overview on the types of ML algorithms is 
discussed in class. This includes teaching students the difference between 
supervised and unsupervised learning, the difference between classification 
and regression problems, and highlights the importance of feature selection. 
The following weeks of lecture then discuss a few algorithms in detail, 
teaching students the basics of how they work and providing examples 
through in-class, hands on examples. The in-class examples were based off 
of the ‘scikit-learn’ python package but could be altered to the instructors 
choosing. Figure 3(a) provides some suggested algorithms to explain in 
detail based off of their current usage in MI research. Once the students 
begin learning about specific algorithms, Homework 3 is assigned to 
reproduce and work with data in example paper Li et al. [51] and to utilize a 
ML algorithm of their choice on the dataset they have chosen for their final 
project.  

Implementation of MI (Weeks 12-15) 

 The final 3 weeks of class consist of lectures on state-of-the art 
implementation of MI to different problems, discussion on bottlenecks in 
various fields of materials, and guest speakers from academia or industry. 
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The lectures focus on some of the challenges discussed in the ‘challenges’ 
section and provide guidance on how the MI community can overcome some 
of these challenges. The guest speakers discuss their current usage of 
materials informatics providing students with an understanding of the 
cutting-edge research and specific research-based challenges that are 
currently being faced in the MI field.  

MI Course: Final Project (Week 16)  

The final project is based on the results from homework 1, 2, and 3, where 
the assignments are tied together in implementation of MI on student’s own 
data. Figure 4 illustrates the role of materials domain knowledge, data 
management skills, and machine learning skills for developing and 
implementing a MI project for a student’s project on the assembly of 
nanoparticles [34]. Figure 4(a-c) illustrate the results from homework 1, 2, 
and 3 respectively. Figure 4(d) illustrates the student’s final project 
workflow demonstrating the interplay between the assigned homework and 
how they form the fundamental steps to developing a performing a MI 
project.  

 The student's project required the implementation of data 
management skills, coding, and machine learning algorithms. Figure 4(b) 
illustrates the construction of a database schema which the student developed 
in homework 2. This was built off homework 1 which lists the valuable 
information of the nanoparticle system from standard characterization 
techniques. Through this process, the students should gain familiarity with 
reading, writing and parsing relevant common data file formats such as 
unstructured texts, CSV, and Microsoft Excel using one of the preferred 
programming languages or libraries. A knowledge of SQL query is also 
helpful to access large industry standard databases. SqLite3 databases are file 
based, portable, supported by libraries such as RSQlite in R, sqlite3 in 
python and built into MATLAB. Tools such as SQLiteBrowser can be used 
to easily import or export data from the database to CSV format and 
visualize and maintain the database. While handling the raw data for 
database development, students will note that a collected raw dataset often 
contains missing values, noise, errors and outliers. The next logical step is to 
understand the raw data and try to eliminate these limitations as much as 
possible before an ML algorithm can be applied. A collected dataset should 
go through the following refinements: 
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Figure 4. (a) the final project workflow based off  (a) homework 1 (b) homework 2 and (c) homework 3. (d) highlights the overall 
workflow that is developed when combining homework 1, 2, and 3. This figure ultimately demonstrates the homework teach 
students how to develop and perform a MI project in manageable increments. <<color online>>   
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1. Data Profiling: the student should try to understand the relation between 
the descriptors, their original input conditions, and consistency of the 
datasets if multiple sources were used. This step also involves connecting 
different raw dataset with the right descriptors and the hypothesis. 

2. Data Structuring: using the available data analytics tools or programming 
languages, the raw data should be formatted into an accessible format that 
can be easily read by the ML model. While multiple recommendations have 
been proposed, such as XML, JSON, SQL, there is no consensus among the 
material science community about a standard format for data storage and 
management. We recommend storing the data in the tables of a relational 
database as a good practice. Relational databases are industry standard, easy 
to query, filter, and can be easily exported and imported to other common 
formats such as CSV. However, depending on the type of data, other options 
may include NoSQL databases, graph databases, time series databases etc. 
For smaller datasets, less technical alternatives such as MS Excel, CSV 
format, panda’s dataframe etc. may be more suitable for the purpose of the 
project. 

3. Data Cleaning: outliers and errors should be eliminated, noisy values
should be smoothed out, inconsistent data should be corrected. One may 
need to come up with alternatives to the missing values by ad hoc means, for 
example, running experiment or simulation, regression, or averaging the 
available values. Common practice also involves using “Unknown” or 
“N/A” to denote the missing values. 

Once the raw data and database development are understood, students must 
focus on manipulating the data for use. Data wrangling depends on the 
question under study. While there are no fixed rulesets for wrangling, it 
should have a clear set of objectives that will closely follow the hypothesis. 
Wrangling may involve dropping the null or unknown data or filtering and 
grouping specific features and descriptors. This process will often require the 
normalization or scaling of features to remove biases. Data wrangling can 
also include discretization, where a feature can be divided into multiple 
features, and aggregation, where multiple features are merged into a single 
feature. While a student will not receive hands on exposure to all wrangling 
processes, this course should expose the student to relevant data processing 
that can be successfully used in their respective project. Depending on the 
student’s objective and hypothesis, multiple data wrangling can be done on 
the cleaned raw dataset. So, a good practice is to leave the raw data set alone 
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for future use. As you can see in Figure 4(b), the student’s database structure 
creates a new table that was used as a relational database by filtering and 
transforming the raw data table to generate a new wrangled data table. 

To understand and verify some basic relationships within the data, visual 
analysis, graphing, plotting, correlation and covariance analysis should be 
performed. This will help the student get a general idea of the working 
dataset and find any patterns that may become useful later. The next step is 
to select the correct features that can be input to an ML algorithm. While 
choosing the correct descriptors depends on the hypothesis, feature 
importance and feature selection can often be automated by algorithms that 
are included in most data analytics tools, such as scikit-learn. These 
algorithms can evaluate the importance of each feature by statistical testing 
and the ability of each feature to make accurate predictions after being 
trained. These feature selection algorithms are broadly divided into 3 types, 
namely, filtering method, wrapper method, and embedded method. 
Validation techniques are the final step in feature selection to make sure the 
training data and descriptive features do not lead to overfitting or selection 
bias. 

 After cross validation, when the algorithm shows good accuracy 
with the testing data, the model is then ready for prediction. In the example 
shown in Figure 4, a Gaussian Process was trained to create the predictive 
model. Material science domain knowledge is necessary to evaluate the 
prediction made by the model, but as this student learned, the MI approach 
has other built in benefits. The Gaussian Process creates its predictions based 
on non-parametric fitting to the data it is trained on. This trained model is 
uniquely suited for extrapolation and interpolation with the power to 
quantify the uncertainty in the predicted values. A high uncertainty prompted 
the student to conduct more experiments in the uncertain area which was fed 
back into the model to increase prediction accuracy. Thus, outside of 
predictive analysis, the student saw the value in using MI for experimental 
design. 

MI Course: Summary  

 Overall, the goal of the Materials Informatics course was to 
introduce the emerging field of materials informatics along with current 
approaches that employ machine learning to accelerate the process of 
materials optimization, discovery, and development compared to traditional 
experiments or computations. This goal was accomplished by hitting a series 
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of student learning outcomes. At the end of the course, the students should 
be able to: 

1. Describe the types of machine learning and understand how 
materials database function 

2. Demonstrate an understanding of key materials informatics concepts 
and components 

3. Demonstrate an understanding of supervised learning algorithms and 
identify materials problems that can be addressed using these 
techniques 

4. Demonstrate an understanding of unsupervised learning algorithms 
and identify materials problems that can be addressed using these 
techniques 

5. Identify algorithms that can be used for optimization problems in 
materials research 

6. Evaluate existing and emerging machine learning technologies and 
analyze trends in data-driven techniques to anticipate how materials 
informatics evolve to meet changing need 

MI COURSE STUDENT ASSESSMENT  

 Student assessment before and after the course indicated that upon 
completion of the course in this format, it is evident that students improved 
their understanding and confidence for implementing materials informatics 
concepts in their own research, as seen in Figure 5. As discussed earlier, 

 

Figure 5. (a) Illustrates an increase in student confidence for applying materials informatics and (b) breaks down the 
increase of overall confidence into data management and machine learning categories. <<color online>>
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students must possess a specific skillset to be confident in using materials 
informatics, which included data management for collecting and pre-
processing information as well as machine learning algorithms for 
understanding the informatics results and processes. Figure 5(a) highlights 
the overall rise in student confidence for applying materials informatics in 
their own research while Figure 5(b) looks at the potential skillsets that 
served as the driving force for this overall change. Specifically, it appears 
that the largest progress revolved around an increase in confidence for 
utilizing the machine learning algorithms. This large increase likely arises 
from the nature of the students taking the course. The class was entirely 
composed of PhD students in STEM fields; thus, data collection and curation 
are not as foreign to most students as compared to the machine learning 
algorithms. The results from the assessment indicates that the course 
structure can be a valuable template for other universities to implement in 
their own materials science curriculum.   

CLOSING STATEMENT 

 As MI grows in academia and industry there will be a significant 
need for qualified students to fill labor demands at research institutions and 
companies. The course layout described above provides the blueprints for 
universities to include MI in their curriculum, ultimately preparing the next 
generation of students to enter the workforce with the necessary skillset for 
MI. Outside of the classroom, there are ‘low hanging fruit’ research 
opportunities to jump-start students interested in MI. This includes 
opportunities for students to repurpose the established methodology for 
different materials and models. Repurposing methodology may be 
considered incremental research, but it provides meaningful results and can 
be a perfect entry point for students and faculty interested in contributing to 
the flourishing MI field.  

ACKNOWLEDGMENTS 

The authors acknowledge the funding provided by the National Science 
Foundation(CMMI-1727603 and CMMI-1763025) and the NSF Research 
Traineeship on Data-Enabled Science and Engineering of Atomic Structures 
(DGE-1633587).

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/a

dv
.2

02
0.

17
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

C 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

, o
n 

24
 Ju

l 2
02

0 
at

 1
7:

42
:1

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1557/adv.2020.171
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


345

References: 

[1] H. Chan et al., “Machine learning coarse grained models for water,” Nat. Commun.,
2019.

[2] C.-T. Chen and G. X. Gu, “Composite Materials: Effect of Constituent Materials on 
Composite Performance: Exploring Design Strategies via Machine Learning (Adv. 
Theory Simul. 6/2019),” Adv. Theory Simulations, vol. 2, no. 6, 2019. 

[3] J. Behler, “Perspective: Machine learning potentials for atomistic simulations,” J. Chem. 
Phys., vol. 145, no. 17, 2016. 

[4] J. Hill, G. Mulholland, K. Persson, R. Seshadri, C. Wolverton, and B. Meredig, 
“Materials science with large-scale data and informatics: Unlocking new opportunities,” 
MRS Bull., vol. 41, no. 5, pp. 399–409, 2016. 

[5] S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, “The 
high-throughput highway to computational materials design,” Nat. Mater., pp. 191–201, 
2013.

[6] Y. Liu, T. Zhao, W. Ju, S. Shi, S. Shi, and S. Shi, “Materials discovery and design using 
machine learning,” J. Mater., vol. 3, no. 3, pp. 159–177, 2017. 

[7] K. Takahashi and Y. Tanaka, “Material synthesis and design from first principle 
calculations and machine learning,” Comput. Mater. Sci., vol. 112, pp. 364–367, 2016. 

[8] L. R. Zhao, K. Chen, Q. Yang, J. R. Rodgers, and S. H. Chiou, “Materials informatics for 
the design of novel coatings,” Surf. Coatings Technol., vol. 200, no. 5–6, pp. 1595–1599, 
2005.

[9] S. Zeng, G. Li, Y. Zhao, R. Wang, and J. Ni, “Machine Learning-Aided Design of 
Materials with Target Elastic Properties,” J. Phys. Chem. C, vol. 123, no. 8, pp. 5042–
5047, 2019. 

[10] R. Liu, A. Kumar, Z. Chen, A. Agrawal, V. Sundararaghavan, and A. Choudhary, “A
predictive machine learning approach for microstructure optimization and materials 
design,” Sci. Rep., vol. 10, no. 1, 2015. 

[11] S. Srinivasan et al., “Mapping Chemical Selection Pathways for Designing 
Multicomponent Alloys: An informatics framework for materials design,” Sci. Rep.,
2015.

[12] H. J. Kulik, “Making machine learning a useful tool in the accelerated discovery of 
transition metal complexes,” Wiley Interdiscip. Rev. Comput. Mol. Sci., 2019. 

[13] C. Kim, G. Pilania, and R. Ramprasad, “Machine Learning Assisted Predictions of 
Intrinsic Dielectric Breakdown Strength of ABX3 Perovskites,” J. Phys. Chem. C, vol. 
120, no. 27, pp. 14575–14580, 2016. 

[14] H. Nakata and S. Bai, “Development of a new parameter optimization scheme for a 
reactive force field based on a machine learning approach,” J. Comput. Chem., vol. 40, 
no. 23, pp. 2000–2012, 2019. 

[15] P. Wang, Y. Shao, H. Wang, and W. Yang, “Accurate interatomic force field for 
molecular dynamics simulation by hybridizing classical and machine learning 
potentials,” Extrem. Mech. Lett., vol. 24, pp. 1–5, 2018. 

[16] C. Chen, Z. Deng, R. Tran, H. Tang, I. H. Chu, and S. P. Ong, “Accurate force field for 
molybdenum by machine learning large materials data,” Phys. Rev. Mater., vol. 1, no. 4, 
2017.

[17] V. Botu and R. Ramprasad, “Learning scheme to predict atomic forces and accelerate 
materials simulations,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 92, no. 9, 
2015.

[18] M. A. Wood, M. A. Cusentino, B. D. Wirth, and A. P. Thompson, “Data-driven material
models for atomistic simulation,” Phys. Rev. B, vol. 99, no. 18, 2019. 

[19] P. Bleiziffer, K. Schaller, and S. Riniker, “Machine Learning of Partial Charges Derived 
from High-Quality Quantum-Mechanical Calculations,” J. Chem. Inf. Model., vol. 58, 
no. 3, pp. 579–590, 2018. 

[20] S. Chmiela, H. E. Sauceda, K. R. Müller, and A. Tkatchenko, “Towards exact molecular 
dynamics simulations with machine-learned force fields,” Nat. Commun., 2018. 

[21] Y. Li et al., “Machine Learning Force Field Parameters from Ab Initio Data,” J. Chem. 
Theory Comput., vol. 13, no. 9, pp. 4492–4503, 2017. 

[22] T. D. Huan, R. Batra, J. Chapman, S. Krishnan, L. Chen, and R. Ramprasad, “A 
universal strategy for the creation of machine learning-based atomistic force fields,” npj 
Comput. Mater., 2017. 

[23] P. Miles, L. Leon, R. C. Smith, and W. S. Oates, “Analysis of a multi-axial quantum 
informed ferroelectric continuum model: Part 1—uncertainty quantification,” J. Intell. 
Mater. Syst. Struct., vol. 29, no. 13, pp. 2823–2839, 2018. 

[24] L. Leon, R. C. Smith, W. S. Oates, and P. Miles, “Analysis of a multi-axial quantum-
informed ferroelectric continuum model: Part 2—sensitivity analysis,” J. Intell. Mater. 
Syst. Struct., vol. 29, no. 13, pp. 2840–2860, 2018. 

[25] A. R. Paterson, B. J. Reich, R. C. Smith, A. G. Wilson, and J. L. Jones, “Bayesian 
approaches to uncertainty quantification and structure refinement from X-ray 
diffraction,” in Springer Series in Materials Science, 2018, pp. 81–102. 

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/a

dv
.2

02
0.

17
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

C 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

, o
n 

24
 Ju

l 2
02

0 
at

 1
7:

42
:1

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1557/adv.2020.171
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


346

[26] W. Xu and J. M. LeBeau, “A Convolutional Neural Network Approach to Thickness 
Determination using Position Averaged Convergent Beam Electron Diffraction,” 
Microsc. Microanal., vol. 23, 2017. 

[27] Louis Columbus, “Roundup Of Machine Learning Forecasts And Market Estimates, 
2018,” Forbes, 2018. [Online]. Available: 
https://www.forbes.com/sites/louiscolumbus/2018/02/18/roundup-of-machine-learning-
forecasts-and-market-estimates-2018/#2c05d4602225. [Accessed: 10-Dec-2019]. 

[28] “Citrine Informatics,” 2019. [Online]. Available: 
https://www.linkedin.com/company/citrine-informatics/insights/. [Accessed: 12-Dec-
2019]. 

[29] Kumaresh Pattabiraman, “LinkedIn’s Most Promising Jobs of 2019,” 2019. [Online]. 
Available: https://blog.linkedin.com/2019/january/10/linkedins-most-promising-jobs-of-
2019. [Accessed: 12-Dec-2019]. 

[30] “Mathematicians and Statisticians,” Occupational Outlook Handbook, 2019. [Online]. 
Available: https://www.bls.gov/ooh/math/mathematicians-and-statisticians.htm. 
[Accessed: 12-Dec-2019]. 

[31] Linda Burtch, “The Burtch Works Study Salaries of Data Scientists &amp; Predictive 
Analytics Professionals,” 2019.

[32] V. Venkatraman and B. Alsberg, “Designing High-Refractive Index Polymers Using 
Materials Informatics,” Polymers (Basel)., 2018. 

[33] J. S. Peerless, N. J. B. Milliken, T. J. Oweida, M. D. Manning, and Y. G. Yingling, “Soft 
Matter Informatics: Current Progress and Challenges,” Adv. Theory Simulations, vol. 2, 
no. 1, 2019. 

[34] M. D. Manning, A. L. Kwansa, T. Oweida, J. S. Peerless, A. Singh, and Y. G. Yingling, 
“Progress in ligand design for monolayer-protected nanoparticles for nanobio interfaces,” 
Biointerphases, vol. 13, no. 6, 2018. 

[35] J. A. Nash, A. L. Kwansa, J. S. Peerless, H. S. Kim, and Y. G. Yingling, “Advances in 
molecular modeling of nanoparticle-nucleic acid interfaces,” Bioconjug. Chem., vol. 28, 
no. 1, pp. 3–10, 2017. 

[36] N. K. Li et al., “Prediction of solvent-induced morphological changes of polyelectrolyte 
diblock copolymer micelles,” Soft Matter, vol. 11, no. 42, pp. 8236–8245, 2015. 

[37] D. Weininger, “SMILES, a Chemical Language and Information System: 1: Introduction 
to Methodology and Encoding Rules,” J. Chem. Inf. Comput. Sci., vol. 28, no. 1, pp. 31–
36, 1988. 

[38] D. Weininger, A. Weininger, and J. L. Weininger, “SMILES. 2. Algorithm for 
Generation of Unique SMILES Notation,” J. Chem. Inf. Comput. Sci., vol. 29, no. 2, pp. 
97–101, 1989. 

[39] T.-S. Lin et al., “BigSMILES: A Structurally-Based Line Notation for Describing 
Macromolecules,” ACS Cent. Sci., vol. 5, no. 9, pp. 1523–1531, 2019. 

[40] E. De Guire et al., “Data-driven glass/ceramic science research: Insights from the glass 
and ceramic and data science/informatics communities,” J. Am. Ceram. Soc., vol. 102, 
no. 11, pp. 6385–6406, 2019. 

[41] O. Kononova et al., “Text-mined dataset of inorganic materials synthesis recipes,” Sci. 
data, 2019. 

[42] H. M. Berman et al., “The Protein Data Bank (www.rcsb.org),” Nucleic Acids Res.,
2000.

[43] F. C. Bernstein et al., “The Protein Data Bank,” Eur. J. Biochem., vol. 80, no. 2, pp. 319–
324, Nov. 1977. 

[44] S. K. Burley et al., “RCSB Protein Data Bank: Biological macromolecular structures 
enabling research and education in fundamental biology, biomedicine, biotechnology and 
energy,” Nucleic Acids Res., vol. 47, pp. D464–D474, 2019. 

[45] “Source: National Institute for Materials Science.” [Online]. Available: 
https://www.nims.go.jp/eng/. [Accessed: 09-Dec-2019]. 

[46] P. Villars et al., “The Pauling File, Binaries Edition,” in Journal of Alloys and 
Compounds, 2004. 

[47] S. Otsuka, I. Kuwajima, J. Hosoya, Y. Xu, and M. Yamazaki, “PoLyInfo: Polymer 
database for polymeric materials design,” in Proceedings - 2011 International 
Conference on Emerging Intelligent Data and Web Technologies, EIDWT 2011 , 2011. 

[48] K. Anderson et al., “Creating the Next Generation Materials Genome Initiative 
Workforce,” 2019.

[49] R. Mansbach et al., “Reforming an undergraduate materials science curriculum with 
computational modules,” J Mater Educ, vol. 38, pp. 161–174, 2016. 

[50] “Data-Enabled Science and Engineering of Atomic Structure (SEAS).” [Online]. 
Available: https://www.mse.ncsu.edu/seas/traineeship/. [Accessed: 16-Dec-2019]. 

[51] W. Li, R. Jacobs, and D. Morgan, “Predicting the thermodynamic stability of perovskite 
oxides using machine learning models,” Comput. Mater. Sci., vol. 150, pp. 454–463, 
2018.

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/a

dv
.2

02
0.

17
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

C 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

, o
n 

24
 Ju

l 2
02

0 
at

 1
7:

42
:1

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1557/adv.2020.171
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

