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ABSTRACT

Since the launch of the Materials Genome Initiative (MGI) the field of materials informatics
(MI) emerged to remove the bottlenecks limiting the pathway towards rapid materials
discovery. Although the machine learning (ML) and optimization techniques underlying MI
were developed well over a decade ago, programs such as the MGI encouraged researchers
to make the technical advancements that make these tools suitable for the unique challenges
in materials science and engineering. Overall, MI has seen a remarkable rate in adoption
over the past decade. However, for the continued growth of MI, the educational challenges
associated with applying data science techniques to analyse materials science and
engineering problems must be addressed. In this paper, we will discuss the growing use of
materials informatics in academia and industry, highlight the need for educational advances
in materials informatics, and discuss the implementation of a materials informatics course
into the curriculum to jump-start interested students with the skills required to succeed in
materials informatics projects.
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MATERIALS INFORMATICS IN ACADEMIA

Materials-based research has adopted the use of machine learning
(ML) as an analytical tool. ML encompasses any algorithm whose
performance will improve, or learn, as it is exposed to or trained on larger
quantities of quality data. Implementing these ML algorithms with a specific
workflow to overcome the unique challenges of materials-based research is
termed materials informatics (MI). The application of ML tools to materials
science data and the use of MI workflow to design new materials and
techniques has shown exponential growth with over 2,000 publications
during the past decade (Figure 1). The United States leads the global effort in
MI with almost half of these publications. To date, most of the publications
have largely focused on facilitating materials design, parameterizing
potentials for in silico techniques, and optimizing materials characterization
techniques [1]-[6]. For example, researchers have started to employ ML
algorithms to process undetected or complex trends in databases containing
first principle calculations data [7]. Ultimately, this has led to the proposal
and synthesis of promising surface coatings [8], alloys[9]-[12], perovskites
[13], and composites [2] that meet specified target properties for a specific
application. MI has not only been useful in designing and predicting
properties of new materials, but has also been vital in the recent development
of new potentials used for in silico approaches via rapid parameterization
[14], [15] at a reduced computational expense [15], [16] and the
development of completely data driven potentials [17], [18]. These

advancements have been utilized to push the length and time scales of the
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Figure 1. Illustrates the recent boom in publications per year that combine aspects of data science into materials-
based research. The inset shows the breakdown of materials informatics publications by country. Results are
based off 2,268 records for TOPIC: (“materials informatics”) OR TOPIC: (“machine learning” and “materials™).
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current capabilities of simulations while maintaining the same level of
accuracy as higher resolution simulation techniques. The MI framework to
develop these new potentials has already been laid out in multiple studies
[19]-[22]. For example, Huan et al. discuss a universal approach for creating
atomistic force fields via ML [22]. MI has also been used to analyze
phenomenological parameters such as the work performed by Miles, Leon,
Smith, and Oates that looked at the uncertainty and sensitivity of parameters
in a ferroelectric continuum model for lead titanate [23], [24]. Experimental
characterization techniques are also a beneficiary of MI approaches. For
example, a Bayesian inference approach was shown to provide many
advantages for X-ray diffraction peak fitting over traditional approaches such
as Reitveld refinement. Specifically, the Bayesian approach has the ability to
escape from false minima, incorporate prior knowledge of the material into
analysis, and provide uncertainty quantification [25]. MI has also been used
to analyze position averaged convergent beam electron diffraction patterns
with a convolutional neural network that achieved great speed and accuracy
compared to brute force methods [26]. Overall, the rate of adoption of MI
workflow to speed up characterization, simulations and materials discovery
has been remarkable.

MATERIALS INFORMATICS IN INDUSTRY

The use and application of ML tools has rapidly grown in industry with
CrunchBase listing over 5,000 start-ups that implement data science tools to
carry out the production of their products and services. This has resulted in
an explosion of spending on ML and artificial intelligence (AI) with the
International Data Corporation predicting an investment of $57.6B by 2021
[27]. Among these start-ups are Materials Informatics companies like Citrine
Informatics which has more than doubled in size over the last 2 years [28].
Citrine Informatics aims to accelerate materials discovery through their
proprietary ML platforms that stores and uses materials data from its
partnerships with universities, national labs, and corporations. With the rise
of companies like Citrine Informatics, engineers and scientists that possess
both knowledge of domain science (like materials science and engineering)
and data science techniques are in very high demand.

The incentives to pursue educational and research opportunities in MI
remains high as the fields of MI and artificial intelligence continue to see
significantly above-average job growth. In 2019, job postings on LinkedIn
for data scientists and machine learning engineers increased by 56% and
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96% respectively [29]. The Bureau of Labor Statistics predicts that the
number of jobs in Mathematics and Statistics (which includes data scientists)
will rise by 30% from 2018 to 2028 [30]. In addition to job growth,
informatics jobs provide above average compensation. LinkedIn users
reported median salaries of $130,000 and $182,000 for the data scientist and
machine learning engineer positions and data scientists who handle
unstructured data and have coding skills earn up to 34% more than other
analysts. This group is also nearly three times as likely to have a degree in
engineering or science (34% vs 13%) [31]. As the use of data science tools
matures and spreads to different industries and domains, the demand for
professionals with domain knowledge and the ability to handle incomplete
and heterogeneous data is increasing. This trend is especially applicable to
materials science, where structured databases, off-the-shelf data analytics
software packages and professionals with both domain and data science
knowledge are in short supply.

CHALLENGES

MI is undeniably a valuable tool for materials scientists as the modern pace
of materials innovation has become intractable by traditional approaches.
The success of MI in academia and industry has only reinforced this truth as
structure and property predictions across vast chemical spaces become
simultaneously cheaper and more accurate. However, materials informatics
is still lagging behind other fields that have adopted data science approaches
due to the unique challenges inherent to materials datasets. One of the most
impactful processes in each MI approach is the user-dependent choice of
material descriptors. In general, these descriptors need to sufficiently identify
unique atomic environments, while being invariant to transformations such
as translation, rotation, and permutations of like elements [17]. However,
these descriptors can quickly become computationally expensive, which is
especially true for soft matter as the exploration space is inherently highly
dimensional [32], [33]. These materials can have properties heavily reliant
upon this design space as their sequence, environment, length, chemical
composition, density, etc. can drastically change morphology and non-
bonded interactions [34]-[36]. Thus, developing a framework that can
identify the optimal material descriptors for each MI application can help
overcome one of the biggest barriers that has kept MI from realizing its full
potential. Early works have already targeted this issue through the
development of standard notation such as SMILES for molecules and
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BigSMILES for macromolecules [37]-[39]. In addition, some works have
performed analysis on the influence of numerous materials descriptors
ranging from crystal chemistry to electronic structure descriptors used to
predict multiple properties of intermetallic compounds [11].

Databases would seem to be the easy solution to standardize the
structure of reported data, however, current databases are for particular
purposes or limited to specific materials class(es) limiting their viability for
use in MI studies. In addition, most databases do not report material
processing details resulting in a possible disconnect between the structure-
property relationship that is fundamental to material science. This is
especially important for less-ordered materials commonly found in soft
materials and glasses. For more information on the additional challenges for
disordered materials we recommend referencing “Soft Matter Informatics:
Current Progress and Challenges” by Peerless et al. [33] and “Data-driven
glass/ceramic science research: Insights from the glass and ceramic and data
science/informatics communities” by De Guire et al. [40].

Collecting data from previous publications also possess significant
challenges. In a recent paper, the quality of data reported was highly
concerning for inorganic materials synthesis recipes. Through a text mining
approach, it was found that the overall extraction yield was 28% of total
papers. Out of the successfully mined publications, 30% of papers did not
contain a complete set of starting materials and final products, thus
reconstruction of the reaction was not possible. Lastly, 42% of potential
reactions were not reconstructed due to an incomplete or overcomplete set of
extracted precursor/target materials, or a failure to correctly parse chemical
composition [41]. Thus, the already limited materials datasets are further
reduced in size due to poor data quality and lack of standards for reporting
data.

For future database development, the materials informatics
community needs to follow the examples of well-established databases such
as the Protein Data Bank (PDB) [42]-[44]. The development of the PDB has
created a culture, incentives and level of prestige that benefits each
researcher that successfully submits a protein structure in this database for
others to use. This effective data sharing in PDB database resulted in the
growth and development of structural bioinformatics field. In addition to
centralizing large amounts of data, PDB has implemented a data quality
metric that ensures only quality data exists within the database effectively
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reducing the burden and time it takes to pre-process and filter the data for
analysis.

For databases specific to materials science, The National Institute of
Materials Science (NIMS) deserves special recognition as being one of the
front runners for database development for MI applications [45]. NIMS is
the co-copyright owner of databases such as the Pauling Files [46] which
provides reliable data on crystal structure and phase diagrams in addition to
being the owner of other respected databases such as PoLylnfo which
provides data for polymeric materials design [47]. These databases are
traditionally curated by hand as NIMS employees comb through literature
daily assessing accurate information for entry into a database. Thus, NIMS
curation of data has resulted in the development of databases that have been
successfully used as the source of information in numerous MI studies.

EDUCATION

In a recent report from TMS, it was reported that only 9 out of the 50
sampled Materials Science programs offered a course that referenced “data
science,” “data handling,” or the utilization of “databases” [48]. This creates
a disconnect between the skills of graduating students and the desires of
employers who seek more interdisciplinary training among materials
graduates [49]. One of the root causes for the lack of education in materials
informatics may be the shortage of faculty suited to teach the course. The
limited resources, textbooks and course models currently available to faculty
serves as a barrier for the induction and development of new MI classes. In
the remainder of this section, we will discuss the course format and
education opportunities successfully launched at the Materials Science and
Engineering Department at North Carolina State University. While this text
will serve as a resource and discuss a current course model, there is a need to
develop a viable course textbook as we find current textbooks to either focus
too much on the computer science aspects of ML or fail to address the
unique challenges associated with MI as discussed in the previous section.

In order to develop the curriculum that prepares students for MI
field, it is critical to understand the basic skillset a student needs to
comfortably understand and incorporate materials informatics into future
work, whether in academia or industry. Figure 2 highlights these essential
skills which include math and statistics to understand protocol for handling
different types and sizes of data, databases to help store and collect materials


https://doi.org/10.1557/adv.2020.171
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. NC State University Libraries, on 24 Jul 2020 at 17:42:12, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1557/adv.2020.171

Domain Knowledge:
Materials Science and
Enginee

Machine Learning Mathematics and
Algorithms Statistics

Materials
Informatics
Essential

‘ Skills
Database 3 Programming

Development v P;:;%u':f?él_

Data Preprocessing
Data Wrangling
Data Vizualization

Figure 2. Highlights the necessary skillset for materials informatics. The green hexagon represents the curren

information that is taught in materials science programs and the grey hexagons represent required knowledge outside

of materials science and engineering. <<color online>>

data, data wrangling and pre-processing to prepare data for analysis,
coding/machine learning algorithms to understand and run the MI process,
and most importantly materials science domain knowledge. This is not to say
materials graduates must be experts in all these fields, but they must have
enough of an interdisciplinary background to understand current literature
and interface with experts in informatics to exploit their own materials
expertise.

At North Carolina State University, there has been a large effort to
enable students with the proper training in materials informatics through the
NSF funded Data-Enabled Science and Engineering of Atomic Structure
(SEAS) program [50]. Specifically, the SEAS program has created
incentives for students through fellowships, seminars, group discussions,
hackathons, and educational opportunities through the establishment of
Graduate Certificate in Materials Informatics (GCMI), and networking
opportunities that connect students with universities, national labs, and
companies interested in hiring materials students with knowledge of
informatics. The GCMI is designed for interdisciplinary graduate education
at the intersection of materials science, engineering, and data science with
the aim of preparing the next generation of materials engineers given the
growing demand for data-science skills and knowledge of artificial
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intelligence. The skills and knowledge obtained here will serve as foundation
for the understanding of materials informatics and high throughput materials
discovery that will improve a student’s career prospects. The core course for
CGMI is Materials Informatics which was designed to enable students with
the practical implementation of machine learning techniques to various
materials science problems and to introduce the MI required skills in Figure
2. Namely, the course covers an overview of materials knowledge, data
management, and machine learning, while in-depth statistics and coding are
referenced in concepts throughout the course but taught in other courses
within the curriculum. While the course includes some basic review of
necessary math and statistics, we do recommend that the students enrolled in
this course already be familiar with main concepts in statistics and
uncertainty quantification. The hands-on implementation of the course is
based on (1) reproducing the recently published data and (2) application of
learned techniques to the student-driven project. For the known example, we
highly recommend the paper and supplementary information in the
publication “Predicting the thermodynamic stability of perovskite oxides
using machine learning models® by Li, Jacobs, and Morgan [51]. This paper
shares the code and data used to form the reported results which will allow
students and faculty to recreate the study and verify their correct
implementation of that specific MI approach by comparing their results with
those reported in the literature. In addition, the ‘scikit-learn” python package
utilized by Li, Jacobs, and Morgan provides an excellent description of data
science tools with examples. The complete course flow is illustrated in
Figure 3a.

Materials and Data Collection (Weeks 1 and 2)

The course begins with the basic review of statistics and python basics
followed by an overview of the typical data obtained from materials
characterization (Fig. 3a). This encourages students to think about the raw
data structure obtained through various materials characterization techniques
across subdisciplines of materials science. For example, the differences in
data structure and resolution can be discussed for characterization techniques
such as TEM, X-ray diffraction, and computational techniques. During this
portion of the class, it is important to note the common occurrence of small
datasets and high dimensional design spaces in materials science. It should
be stressed that the understanding of the particular material structure and
properties is based on the physics infused into the dataset, limiting the
benefits of MI approaches that do not maintain this information. Outside of
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class, students should be thinking about a materials project that they would
like to work on throughout the semester. Figure 3(b) shows an example of a
student’s project idea to predict self-assembled morphologies based on the
design of amphiphilic diblock copolymers. During this period, Homework 1
is assigned where students should think of all possible characterization
techniques that can be used to investigate the properties of selected material
in their project idea. The students will also choose one characterization
techniques and list all the tunable material preparation and characterization
parameters that can influence results in their proposed project. Figure 3(b)
shows an example of a flow diagram from a student’s homework. The
student listed 8 techniques to study micelles in solution and settled on
describing the parameters of a computational method in detail.
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Figure 3. (a) Represents the syllabus topics of the course (blue) and suggested subtopics (yellow). (b) Represents the timeline for each

out of class assignment along with an example of a student’s homework assignment figures as discussed in the text. <<color online>>
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Data wrangling and database design (Weeks 3-6)

The course then transitions into discussing database structures which teaches
students about the organization of data, data processing, data quality, and the
value of uncertainty quantification. This data management step prepares
students to pre-process data that can be fed into ML algorithms for materials
prediction and optimization problems. This section of the course directly
builds upon the understanding of data for various materials science and
engineering problems, which was covered in weeks 1 and 2. During this
time, students are assigned Homework 2, which requires data collection,
wrangling and database design for both the example data from Li et al [51].
and student project. Ultimately, this homework culminates in the sketching
of a database that represents the workflow of the important material and
characterization parameters in Homework 1. Figure 3(b) shows a model
database developed by a student. The database information should
sufficiently maintain the structure-process-property relationship for each
material entered.

Machine learning techniques (Weeks 7-11)

Once students are comfortable with data collection, data wrangling, and data
organization concepts, an overview on the types of ML algorithms is
discussed in class. This includes teaching students the difference between
supervised and unsupervised learning, the difference between classification
and regression problems, and highlights the importance of feature selection.
The following weeks of lecture then discuss a few algorithms in detail,
teaching students the basics of how they work and providing examples
through in-class, hands on examples. The in-class examples were based off
of the ‘scikit-learn” python package but could be altered to the instructors
choosing. Figure 3(a) provides some suggested algorithms to explain in
detail based off of their current usage in MI research. Once the students
begin learning about specific algorithms, Homework 3 is assigned to
reproduce and work with data in example paper Li et al. [51] and to utilize a
ML algorithm of their choice on the dataset they have chosen for their final
project.

Implementation of MI (Weeks 12-15)

The final 3 weeks of class consist of lectures on state-of-the art
implementation of MI to different problems, discussion on bottlenecks in
various fields of materials, and guest speakers from academia or industry.
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The lectures focus on some of the challenges discussed in the ‘challenges’
section and provide guidance on how the MI community can overcome some
of these challenges. The guest speakers discuss their current usage of
materials informatics providing students with an understanding of the
cutting-edge research and specific research-based challenges that are
currently being faced in the MI field.

MI Course: Final Project (Week 16)

The final project is based on the results from homework 1, 2, and 3, where
the assignments are tied together in implementation of MI on student’s own
data. Figure 4 illustrates the role of materials domain knowledge, data
management skills, and machine learning skills for developing and
implementing a MI project for a student’s project on the assembly of
nanoparticles [34]. Figure 4(a-c) illustrate the results from homework 1, 2,
and 3 respectively. Figure 4(d) illustrates the student’s final project
workflow demonstrating the interplay between the assigned homework and
how they form the fundamental steps to developing a performing a MI
project.

The student's project required the implementation of data
management skills, coding, and machine learning algorithms. Figure 4(b)
illustrates the construction of a database schema which the student developed
in homework 2. This was built off homework 1 which lists the valuable
information of the nanoparticle system from standard characterization
techniques. Through this process, the students should gain familiarity with
reading, writing and parsing relevant common data file formats such as
unstructured texts, CSV, and Microsoft Excel using one of the preferred
programming languages or libraries. A knowledge of SQL query is also
helpful to access large industry standard databases. SqLite3 databases are file
based, portable, supported by libraries such as RSQlite in R, sqlite3 in
python and built into MATLAB. Tools such as SQLiteBrowser can be used
to easily import or export data from the database to CSV format and
visualize and maintain the database. While handling the raw data for
database development, students will note that a collected raw dataset often
contains missing values, noise, errors and outliers. The next logical step is to
understand the raw data and try to eliminate these limitations as much as
possible before an ML algorithm can be applied. A collected dataset should
go through the following refinements:
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1. Data Profiling: the student should try to understand the relation between
the descriptors, their original input conditions, and consistency of the
datasets if multiple sources were used. This step also involves connecting
different raw dataset with the right descriptors and the hypothesis.

2. Data Structuring: using the available data analytics tools or programming
languages, the raw data should be formatted into an accessible format that
can be easily read by the ML model. While multiple recommendations have
been proposed, such as XML, JSON, SQL, there is no consensus among the
material science community about a standard format for data storage and
management. We recommend storing the data in the tables of a relational
database as a good practice. Relational databases are industry standard, easy
to query, filter, and can be easily exported and imported to other common
formats such as CSV. However, depending on the type of data, other options
may include NoSQL databases, graph databases, time series databases etc.
For smaller datasets, less technical alternatives such as MS Excel, CSV
format, panda’s dataframe etc. may be more suitable for the purpose of the
project.

3. Data Cleaning: outliers and errors should be eliminated, noisy values
should be smoothed out, inconsistent data should be corrected. One may
need to come up with alternatives to the missing values by ad hoc means, for
example, running experiment or simulation, regression, or averaging the
available values. Common practice also involves using “Unknown” or
“N/A” to denote the missing values.

Once the raw data and database development are understood, students must
focus on manipulating the data for use. Data wrangling depends on the
question under study. While there are no fixed rulesets for wrangling, it
should have a clear set of objectives that will closely follow the hypothesis.
Wrangling may involve dropping the null or unknown data or filtering and
grouping specific features and descriptors. This process will often require the
normalization or scaling of features to remove biases. Data wrangling can
also include discretization, where a feature can be divided into multiple
features, and aggregation, where multiple features are merged into a single
feature. While a student will not receive hands on exposure to all wrangling
processes, this course should expose the student to relevant data processing
that can be successfully used in their respective project. Depending on the
student’s objective and hypothesis, multiple data wrangling can be done on
the cleaned raw dataset. So, a good practice is to leave the raw data set alone
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for future use. As you can see in Figure 4(b), the student’s database structure
creates a new table that was used as a relational database by filtering and
transforming the raw data table to generate a new wrangled data table.

To understand and verify some basic relationships within the data, visual
analysis, graphing, plotting, correlation and covariance analysis should be
performed. This will help the student get a general idea of the working
dataset and find any patterns that may become useful later. The next step is
to select the correct features that can be input to an ML algorithm. While
choosing the correct descriptors depends on the hypothesis, feature
importance and feature selection can often be automated by algorithms that
are included in most data analytics tools, such as scikit-learn. These
algorithms can evaluate the importance of each feature by statistical testing
and the ability of each feature to make accurate predictions after being
trained. These feature selection algorithms are broadly divided into 3 types,
namely, filtering method, wrapper method, and embedded method.
Validation techniques are the final step in feature selection to make sure the
training data and descriptive features do not lead to overfitting or selection
bias.

After cross validation, when the algorithm shows good accuracy
with the testing data, the model is then ready for prediction. In the example
shown in Figure 4, a Gaussian Process was trained to create the predictive
model. Material science domain knowledge is necessary to evaluate the
prediction made by the model, but as this student learned, the MI approach
has other built in benefits. The Gaussian Process creates its predictions based
on non-parametric fitting to the data it is trained on. This trained model is
uniquely suited for extrapolation and interpolation with the power to
quantify the uncertainty in the predicted values. A high uncertainty prompted
the student to conduct more experiments in the uncertain area which was fed
back into the model to increase prediction accuracy. Thus, outside of
predictive analysis, the student saw the value in using MI for experimental
design.

MI Course: Summary

Overall, the goal of the Materials Informatics course was to
introduce the emerging field of materials informatics along with current
approaches that employ machine learning to accelerate the process of
materials optimization, discovery, and development compared to traditional
experiments or computations. This goal was accomplished by hitting a series
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of student learning outcomes. At the end of the course, the students should
be able to:

1. Describe the types of machine learning and understand how
materials database function

2. Demonstrate an understanding of key materials informatics concepts
and components

3. Demonstrate an understanding of supervised learning algorithms and
identify materials problems that can be addressed using these
techniques

4. Demonstrate an understanding of unsupervised learning algorithms
and identify materials problems that can be addressed using these
techniques

5. Identify algorithms that can be used for optimization problems in
materials research

6. Evaluate existing and emerging machine learning technologies and
analyze trends in data-driven techniques to anticipate how materials
informatics evolve to meet changing need

MI COURSE STUDENT ASSESSMENT

Student assessment before and after the course indicated that upon
completion of the course in this format, it is evident that students improved
their understanding and confidence for implementing materials informatics
concepts in their own research, as seen in Figure 5. As discussed earlier,
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Figure 5. (a) Illustrates an increase in student confidence for applying materials informatics and (b) breaks down the

increase of overall confidence into data management and machine learning categories. <<color online>>
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students must possess a specific skillset to be confident in using materials
informatics, which included data management for collecting and pre-
processing information as well as machine learning algorithms for
understanding the informatics results and processes. Figure 5(a) highlights
the overall rise in student confidence for applying materials informatics in
their own research while Figure 5(b) looks at the potential skillsets that
served as the driving force for this overall change. Specifically, it appears
that the largest progress revolved around an increase in confidence for
utilizing the machine learning algorithms. This large increase likely arises
from the nature of the students taking the course. The class was entirely
composed of PhD students in STEM fields; thus, data collection and curation
are not as foreign to most students as compared to the machine learning
algorithms. The results from the assessment indicates that the course
structure can be a valuable template for other universities to implement in
their own materials science curriculum.

CLOSING STATEMENT

As MI grows in academia and industry there will be a significant
need for qualified students to fill labor demands at research institutions and
companies. The course layout described above provides the blueprints for
universities to include MI in their curriculum, ultimately preparing the next
generation of students to enter the workforce with the necessary skillset for
MI. Outside of the classroom, there are ‘low hanging fruit’ research
opportunities to jump-start students interested in MI. This includes
opportunities for students to repurpose the established methodology for
different materials and models. Repurposing methodology may be
considered incremental research, but it provides meaningful results and can
be a perfect entry point for students and faculty interested in contributing to
the flourishing MI field.
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