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Abstract

Degradation modeling traditionally relies on monitoring degradation signals to model the underlying

degradation process. In this context, failure is typically defined as the point where the degradation

signal reaches a pre-specified threshold level. Many models assume that degradation signals are

completely observed beyond the failure threshold, while the issue of truncated degradation signals

still remains a challenge. Moreover, based on the physics of degradation process, the degradation

signal should be inherently monotonic. However, it is almost inevitable that most of the sensor-

based degradation signals are subject to noise which can lead to misleading prediction results. In

this paper, a non-parametric approach to modeling and prognosis of degradation signals using B-

splines in a mixed effects setting is proposed. In order to deal with the issue of truncated historical

degradation signals, our approach is based on augmenting B-spline basis functions with functions of

infinite support. Moreover, to model the degradation signal more accurately and robustly in a noisy

setting, necessary and sufficient conditions to ensure monotonic evolution of the modeled signals

are derived. Appropriate procedures for online updating of random coefficients of mixed effects

model considering derived monotonicity constraints based on degradation data collected from an

in-service unit are also presented. The performance of the proposed framework is investigated and

benchmarked through analysis based on numerical studies and a case study using real-world data

from automotive lead-acid batteries.
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1. Introduction

Remaining useful life (RUL) estimation is essential in prognostics and health management of a

system. RUL can be defined as the remaining life of a component until it is able to function in

accordance with its intended purposes. With recent advances in sensor and information technology,

growing attention is being paid to RUL prognosis. In general, RUL prognosis models can be

categorized into two categories: Model-based prognostics and data-driven prognostics (Vanem,

2018). In model-based prognostics, the RUL prediction of the system is done using physical or

mathematical models of the degradation phenomenon. However, in data-driven prognostics, the

aim is to transform the data provided by the sensors into relevant models (parametric or non-

parametric) of the degradation behavior (Medjaher et al., 2012). In model-based approaches, the

prognosis accuracy is highly dependent on the accuracy of the physical model that is used. On the

other hand, the independence regarding specific objects in data-driven approaches provides more

flexibility which makes them widely used in RUL estimation and degradation modeling (Zhang

et al., 2018). This paper deals with a data-driven prognostics approach for the estimation of RUL.

Contemporary data-driven prognostics approaches are mostly based on degradation signals.

Degradation signals, also known as condition monitoring (CM) signals, are correlated with the

physical degradation of the system and can be used to infer the unobservable underlying health

status of the system (Kontar et al., 2017). In degradation data analysis, the component under study

is considered failed once its degradation level reaches a certain pre-specified level for the first time

(first hitting time). Specifically, most data driven prognostics approaches first start by establishing

an initial population-level statistical model for describing the evolution of the degradation signals

in the offline stage that provides the prior information. Then, the prediction of signal evolution

for a new in-service unit is performed based on both prior information and the newly collected

degradation data from the in-service unit to obtain the posterior information.

Most of existing data-driven prognostics methods in literature are based on parametric modeling

of the degradation signal evolution. Such parametric models typically assume that the degradation

signals behave according to a common functional form, referred to as common shape function (Liao

and Köttig, 2014). The most commonly used approach in parametric modeling is based on using

mixed effects models that contain a fixed effects part representing the average behavior of the

population and a random effects part representing the individual units' characteristics. Lu and

Meeker (1993) were among the first who proposed the use of a mixed effects model to characterize

the degradation path of a population of units. Based on the general model of Lu and Meeker

(1993) and general assumptions summarized by Wang (2000), several mixed effects models have

been proposed for RUL estimation (Gebraeel et al., 2005, 2009; Rizopoulos et al., 2014).

Apart from the methods based on the mixed effects models, two other widely-used parametric

approaches are Wiener processes and Gamma processes. Wiener processes are typically used for
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degradation modelling where the degradation process may vary bi-directionally over time. Tseng

and Peng (2004) proposed to model the cumulative degradation path of a product's quality char-

acteristic using Wiener processes. Modeling degradation processes using the Wiener process has

some limitations. Firstly, the Wiener processes have the Markov property which means that the

evolution of the degradation process at each stage is independent of its past behavior. Also, the

Wiener processes are based on the assumption that the mean degradation path is linear. On the

other hand, the Gamma process is appropriate for modeling degradation processes that are mono-

tonic and evolving in only one direction (Si et al., 2011; Sun et al., 2018). One limitation of

using Gamma processes is that, similar to Wiener processes, they also assume that the degradation

process has the independent increment property. Furthermore, the noise in the Gamma process

should have a Gamma distribution with a special parameter structure (Son et al., 2016).

The parametric models are typically derived from the underlying physics of the degradation

process or empirical evaluation of the degradation signals. However, in many applications it may be

difficult to identify the underlying physics and the signal may not follow any functional form (Zhang

et al., 2018). Moreover, imposing a parametric form always comes with one caveat that if the

specified form is far from the truth the prognostics results are misleading (Kontar et al., 2018). One

approach to overcome the challenges of parametric models is to consider non-parametric degradation

models in which the functional form is learned from the degradation data. Zhou et al. (2011)

used functional principal component analysis (FPCA) to non-parametrically model the degradation

process using the historical data and a set of principal component scores. Moreover, an empirical

Bayes approach is used in their paper to update the principal component scores of the degradation

model in real-time for online monitoring of the components operating in the field. One major

weakness of modeling the degradation signals using the FPCA approach is inaccurate estimation of

the mean and covariance function under high noise level (Kontar et al., 2018; Zhou et al., 2012).

Besides that, in a recent attempt towards non-parametric prognosis of degradation signals, Kontar

et al. (2018) proposed using the multivariate Gaussian convolution processes (MGCP) to model

the evolution of individual components taking into account the heterogeneity in data. Although

their method can effectively model the evolution of degradation signals, it suffers from the issue of

scalability, specifically when number of signals is large.

Despite the recent work on non-parametric methods, both the FPCA and MGCP require that

data are densely observed over the whole domain of the experiment, i.e., degradation signals have

the same support. As mentioned previously, failure is defined as the moment when the degradation

signal reaches a certain pre-specified threshold level. In some engineering practices, it is possible

to continue observing the degradation signal after it crosses the failure threshold as the failure

does not necessarily imply component replacement (Shiau and Lin, 1999; Wang and Xu, 2010).

However, in most cases, the system is shut down or replaced immediately once the degradation

signal crosses the failure threshold. This means that no further observations can be made once
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the unit has failed. Such signals are referred to as truncated degradation signals (Gebraeel et al.,

2005; Virkler et al., 1979). Unfortunately, truncation results in wrong estimation of the remaining

useful life for the MGCP and FPCA, since we are not able to observe the complete evolution of

the historical signals over the whole domain of the experiment. This is intuitively understandable,

as prediction for a Gaussian Process (GP) falls back to the mean when predicting far away from

observation points (Rasmussen, 2004). Therefore, the prediction may never hit the threshold level

in the case of truncation. One exception to this issue is a study by Zhou et al. (2012) where they

applied FPCA on the transformed degradation signals. However, their approach cannot guarantee

the monotonicity of the CM signal evolution, as the FPCA assumes that the signals indeed follow a

GP, which is non-monotone. Also, the transformation approach requires a relatively large number

of training units in the historical database.

In this paper, we propose a non-parametric approach to modeling and prognosis of degradation

signals using B-spline basis functions in a mixed effects setting. Specifically, our approach is

motivated by supplementing the basis with functions of infinite support as proposed in Schumaker

(2007) and Corlay (2016). This framework offers numerous advantages. First, B-spline is inherently

a non-parametric data-driven approach in which we are allowing the data to speak for themselves.

Moreover, by augmenting the basis functions with infinite support we let the B-spline to cover the

whole possible range of degradation signal evolution thus allowing to extrapolate the evolution of

degradation signal beyond the threshold level. Therefore, it allows us to deal with the issue of

truncated signals as mentioned earlier in this paper. Furthermore, it is well-known that the B-

splines can be derived as polynomials with a certain degree depending on the degree of generating

B-spline basis functions. This feature, further, allows us to control the evolution of the degradation

signals by imposing appropriate constraints to ensure monotonicity in the resulting polynomial

functions. This, in fact, helps with correct modeling and prognosis of the degradation signal when

we are observing noisy data. Finally, it should be mentioned that as opposed to MGCP approach

developed in Kontar et al. (2018), the number of parameters that needs to be estimated in the

log-likelihood function is fixed and depends only on the degree and number of basis functions.

This, indeed, offers a huge advantage over the multivariate Gaussian process based approaches that

typically suffer from the scalability issues.

The remainder of this paper is structured as follows. Section 2 reviews degradation signal

modeling and conventional Bayesian updating. Moreover, the concept of B-splines with infinite

support is described in this section. In section 3, we derive necessary and sufficient conditions

to guarantee monotonic evolution of degradation signals in a mixed effects model based on B-

splines of infinite support. Moreover, appropriate procedures to conduct online updating based on

the collected data from the new in-service unit considering the derived monotonicity constraints

are discussed in this section. Section 4 presents numerical studies where the performance of the

proposed approach is investigated under different scenarios. In section 5, the application of the
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proposed method in a real-world case study is demonstrated. Finally, our concluding remarks are

presented in section 6.

2. Degradation signal modeling and prognosis

2.1 Review of B-spline based mixed effects modeling for degradation signals and

online updating

The mixed effects model has been widely used in degradation signal modeling and RUL estimation

in literature due to its flexible model structure (Gebraeel et al., 2005). The main advantage of

the mixed effects model is that it allows each unit to have its own parameters and degradation

progression path. The degradation path of the ith unit at each time point t in the mixed effects

model is typically defined as:

yi (t) = xi (t) + εi (t) = zT (t) θi + εi (t) , (1)

where xi(t) is the true but unobservable value of the degradation signal, εi(t) is the measurement

error which is assumed to be independent and normally distributed N(0, σ2), zT (t) is a pre-specified

time-dependent regression function and θi = [θi,1, . . . , θi,d]
T is the vector of random coefficients for

unit i. The random coefficients in (1) allow the units to have distinct but similar degradation paths,

and it is assumed that θi follows a multivariate normal distribution N(µ,Σ).

In cases where the behavior of degradation signals is evident, we may consider the polynomials of

appropriate order or other certain specific nonlinear functions of time (e.g., log(t)) as the regression

function zT (t). However, in most of the cases, it happens that identifying a model that best defines

the evolution of degradation signals is difficult if not impossible. In this situation, one can use B-

spline basis functions of an appropriate degree as a non-parametric regression approach to define

zT (t) in Eq. (1). The value of B-spline basis functions of degree n defined over a set of non-

decreasing knot values at time t
(
bTn (t)

)
can be obtained recursively as a function of lower degree

basis functions. It is worth mentioning that by properly increasing the number of knots or degree

(n), B-splines can approximate arbitrary continuous functions to any given precision (De Boor

et al., 1978).

The B-spline based mixed effects model for modeling the degradation path of the ith unit at

time t can be defined as follows:

yi (t) = bTn (t) θi + εi (t) , (2)

where bn (t) = [b1,n(t), . . . , bd,n(t)]T is the vector of B-spline basis functions evaluated at time t

over a set of non-decreasing knot values. In order to use the mixed effects model in (2), first we

need to estimate the parameters of the model such as µ,Σ and σ2 in the offline stage based on the

historical dataset of degradation signals. Then, in the online stage, the estimated model is used
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as a prior and the Bayesian updating is performed to estimate the model parameters for the new

in-service unit based on the degradation data collected from the new unit.

At the current time point th, when the prediction is to be made, assume there are si values of the

degradation signal available from the in-service unit i, i.e. yi(ti,1:h) = [yi(ti,1),yi(ti,2), ...,yi(ti,si)]
T

and ti,1:h = [ti,1, ti,2, ..., ti,si ]
T where ti,si ≤ th. Therefore, the posterior distribution of the ran-

dom coefficients based on the newly collected data from the ith in-service unit up to time th,

can be computed as p(θi|yi (t1:h)) ∝ p(yi (ti,1:h) |θi)π(θi) where p(yi (ti,1:h) |θi) represents the

likelihood of the observation data and π(θi) refers to the prior distribution estimated in the of-

fline stage. Assuming normally distributed θi and εi, the posterior is also normally distributed

p (θi|yi (ti,1:h)) ∼ N(µ̂i,h, Σ̂i,h) where µ̂i,h and Σ̂i,h represent the mean and covariance matrix of

the posterior. This, in fact, derives from the conjugate property of the normal distribution. Con-

sidering the prior parameter estimates as µ0 and Σ0, the closed form expression for the posterior

mean and covariance matrix is as follows:

µ̂i,h = Σ̂i,h

[
bTn (ti,1:h)yi (ti,1:h)

σ2
+ Σ−1

0 µ0

]
,

Σ̂i,h =

[
Σ−1

0 +

[
bTn (ti,1:h) bn (ti,1:h)

σ2

]−1
]
,

(3)

where bn (ti,1:h) = [bn (ti,1) , bn (ti,2) , . . . , bn (ti,h)]T and µ0,Σ0 and σ2 can be replaced by their

estimates µ̂0, Σ̂0 and σ̂2 from the offline stage. With the updated mean and covariance matrix,

the degradation values of the new in-service unit can be predicted for future time t > th. This

procedure considers both the prior information coming from the average behavior of the population

and specific behavior of the in-service unit up to time th.

It should be mentioned that the B-spline basis functions are always limited to the range of

observed data points and vanish outside this range based on their definition. As a result, modeling

the evolution of the degradation signals always depends on the specific range of the historical data

over which the B-spline basis functions are defined. However, it often happens that the support

range of degradation signals in our historical dataset is limited. In this case, when modeling the

evolution of a specific unit, we reach to a state at which we are required to extrapolate outside the

range of B-splines. The next subsection introduces infinite support B-splines as a solution to deal

with this issue.

2.2 B-splines of infinite support

The classical B-spline basis functions have compact support and can only model data limited to

this specific support range. This subsection reviews the extension of classical B-spline to include

the basis functions with infinite support as proposed in Schumaker (2007).
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Let k be a nonnegative integer and Γ = {γ0 ≤ γ1 ≤ ... ≤ γk−1} be a sorted collection of k knots,

where if k = 0 then Γ = ∅. Then the B-spline basis function of degree 0 associated with the knots

Γ is defined as follows: b0,0(t) := I(−∞,inf(Γ))(t), bk,0 := I[sup(Γ),+∞)(t),

bj,0(t) := I[γj−1,γj)(t), 1 ≤ j ≤ k − 1,
(4)

where I(·) denotes the indicator function. The B-spline basis functions with higher degree 1 ≤ n ≤ k
can be defined using the induction formula given in appendix A. The collection of functions

(bj,n)0≤ j<k+n+1 for 0 ≤ n ≤ k are called the B-spline basis functions of degree n. Appendix A also

gives the induction formula for the B-spline basis functions of degree n where n ≥ k. Figure 1 shows

the B-spline basis functions with infinite supports of different degrees defined over [−4, 4] with 6

equally spaced knot values placed at Γ = {−2.5,−1.5,−0.5, 0.5, 1.5, 2.5}. The classical B-spline

basis functions in this case are limited to the range between γ0 = −2.5 and γ5 = 2.5. However, the

basis functions with infinite support can extrapolate beyond this range as demonstrated in Figure

1.

One important property of B-spline basis functions is that their derivatives can be decomposed

onto B-spline basis functions of lower degree. Therefore, with the same notation as above, the

differentiation of B-splines basis functions (for 0 < n ≤ k) is as follows:

(bj,n)′ =



− n
C0
bj,n−1 0 ≤ j < min(n, k),

− n
γn−γ0 bn,n−1 for j = n,

n
γj−1−γj−n−1

bj−1,n−1 − n
γj−γj−n

bj,n−1 n+ 1 ≤ j < k,

n
γk−1−γk−n−1

bk−1,n−1 for j = k,

n
C1
bj−1,n−1 max(n, k) + 1 ≤ j < k + n+ 1,

(5)

where for the constants C0 and C1, we use the guideline proposed in Corlay (2016). In this study,

we take C0 = C1 =
γk−1−γ0
k−1 if γk−1 > γ0 and C0 = C1 = 1 otherwise. By iterating over this

decomposition, the mth derivative of B-spline basis function of degree n onto the basis of degree

n − m can be obtained. More information about the derivatives of B-splines and algorithms to

evaluate and calculate them can be found in Schumaker (2007) and Corlay (2016).

A critical stage in evaluating B-splines is the placement of knot values which can be generally

done using bisecting method with O(log(k)) complexity (Tjahjowidodo et al., 2017; Corlay, 2016;

Aguilar et al., 2018). However the case of equally spaced knots, which is utilized in this paper,

leads to further simplifications where all bounded spline basis functions have the same polynomial

representation up to a parallel shift, and unbounded basis functions are symmetric. These properties

can be exploited to save a significant amount of memory and computation. Regarding selecting the

number of knots, we would like to also mention that it can be simply done using cross validation
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Figure 1: B-spline basis functions of infinite support with degrees 0, 1, 2 and 3.

or any of the well-established versions of statistical information criteria like Akaike Information

Criteria (AIC) or Bayesian Information Criteria (BIC).

In this paper, we propose to use a non-parametric mixed effects model based on B-spline basis

functions of infinite support as the regression function in (2). The advantage of using the infinite

support B-spline is that, firstly, it is data-driven and does not assume the data to follow a specific

functional form. Moreover, by properly constraining the random coefficients of B-spline basis

functions in the mixed effects setting, one can ensure the monotonic degradation path of each

unit as suggested by our domain knowledge. The next section discusses the development of such

constraints and appropriate procedures for online updating of the infinite support B-spline based

mixed effects model.

3. Remaining useful life prediction using monotonic B-splines with infinite

support

In this section, we first derive the monotonicity conditions for infinite support B-Splines of degree 1

and degree 2 in a mixed effects setting. Then, the necessary and sufficient conditions for monotonic

degradation of units in a mixed effects model with degree 3 B-spline basis function of infinite support

will be derived. Finally, the appropriate procedures to conduct online updating considering these

conditions will be discussed in section 3.2.
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3.1 Monotonicity conditions for B-splines with infinite support

In degradation modeling, practitioners typically use B-splines to model degradation signals because

of their flexibility in consistently approximating the evolution of signals based on collected data.

However, in cases where we are collecting data from sensors, most often it happens that the sensor

data are noisy and as a result, the collected data may contradict the underlying physics. In

degradation modeling, for example, the degradation signal should be monotonically changing over

time since the underlying health condition is always deteriorating unless some maintenance actions

have been performed (Son et al., 2016; Byon et al., 2010; Zhou et al., 2012). In cases where the noise

level of the collected data is high, non-parametric approaches like B-splines may lead to incorrect

estimation of the degradation signal. To overcome this potential shortcoming, the ideal degradation

modeling approach is the one that allows for flexibility while maintaining the monotonic evolution

path of the degradation signal. This section discusses the required conditions for modeling of

monotonic degradation signals using B-splines of infinite support in a mixed effects setting.

First, we derive the necessary and sufficient conditions for monotonicity of degree 1 and degree

2 B-splines with infinite support in a mixed effects model. As mentioned in section 2.2, the deriva-

tives of B-spline basis functions are explicitly decomposed onto the basis of lower degree. Thus,

non-negativity constraints on the first derivative of B-splines with infinite support translates into

monotonicity constraints. The B-spline basis functions of degree n (n ≤ k) associated with the

knots Γ = {γ0 ≤ γ1 ≤ . . . ≤ γk−1} and given by the induction formula in appendix A are a col-

lection of non-negative functions. Therefore, non-negativity of coefficients of basis functions in the

mixed effects model is a sufficient condition for non-negativity of B-splines with infinite support.

For B-spline of degree 0 and degree 1, this also happens to be a necessary condition (Yuan et al.,

2017; Beliakov, 2002). Thus, for basis functions of degree 1 and degree 2 which decompose onto

degree 0 and degree 1 basis functions, one can obtain the monotonicity condition using Eq. (5).

The following lemma discusses the monotonicity constraints for degree 1 and degree 2 B-splines

with infinite support.

Lemma 1 Let θi = [θi,1, . . . , θi,n+k+1]T be the coefficients of infinite support basis functions in the

mixed effects model of Eq. (2) for unit i at time t. Let Γ = {γ0 ≤ γ1 ≤ . . . ≤ γk−1} where k > n be

the set of non-decreasing knot values over which the infinite support B-spline is defined. Then, the

necessary and sufficient condition for monotonicity of degree 1 and degree 2 B-spline with infinite

support can be encoded in terms of the following constraints:

θi,j ≤ 0, j = 1, . . . , n,

θi,j − θi,j−1 ≥ 0, j = n+ 2, . . . , k + 1,

θi,j ≥ 0, j = k + 2, . . . , k + n+ 1.

(6)

9



Proof. The B-spline of degree n with infinite support over the knot vector Γ is defined as follows:

Q
(n)
i (t) = bTn (t) θi =

k+n∑
j=0

θi,j+1bj,n(t). (7)

The first order derivative of B-spline in (7) can be calculated using the differentiation of B-spline

basis functions given in (5) as follows:

Q
′(n)
i (t) =

k+n∑
j=0

(θi,j+1bj,n(t))′

=

n−1∑
j=0

θi,j+1

(
−n
C0

bj,n−1(t)

)
+ θi,n+1

(
−n

γn − γ0
bn,n−1(t)

)

+
k−1∑
j=n+1

θi,j+1

(
n

γj−1 − γj−n−1
bj−1,n−1(t)− n

γj − γj−n
bj,n−1(t)

)

+ θi,k+1

(
n

γk−1 − γk−n−1
bk−1,n−1(t)

)
+

k+n∑
j=k+1

θi,j+1

(
n

C1
bj−1,n−1(t)

)

=

n−1∑
j=0

(
−n
C0

θi,j+1

)
bj,n−1(t) +

k∑
j=n+1

(
n

γj−1 − γj−n−1
(θi,j+1 − θi,j)

)
bj−1,n−1(t)

+

k+n∑
j=k+1

(
n

C1
θi,j+1

)
bj−1,n−1(t),

(8)

where, in the last equality, we rearrange the terms for basis functions. The monotonicity condition

can be derived by imposing a non-negativity constraint on the first order derivative of B-splines with

infinite support. The first order derivative of B-splines of degree 1 and degree 2 can be calculated

in terms of basis functions of degree 0 and degree 1, respectively, as given in (8). For basis functions

of degree 0 and degree 1, non-negativity of coefficients is both a necessary and sufficient condition

for non-negativity of B-spline. Therefore, imposing non-negativity constraints on coefficients of

basis functions in the last equality of Eq. (8) for degree 1 and degree 2 B-splines results in the

conditions given in (6). As for the necessity of these conditions, it should be noted that the basis

functions bj−1,n−1 and bj,n−1 are always non-negative. Moreover for a degree 2 (or 1) B-spline,

each point in a knot interval has non-zero values in 3 (or 2) nearby basis functions (Please refer

to Figure 1). Therefore if the conditions in (6) for the corresponding coefficients is not satisfied,

the derivative of B-spline in that interval would be negative and as a result the B-spline function

is not monotonically increasing. This happens for degree 2 and 1 B-splines simply because their

derivatives can be written in forms of polynomials of degree 1 and 0. Thus the condition in (6) is

both necessary and sufficient and the proof is complete. �
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Using Lemma 1, monotonicity constraints for degree 1 and degree 2 B-splines with infinite

support can be written in form of linear inequality constraints for each unit i as follows:

a ≤ Aθi ≤ b, (9)

where

Ad×d =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,
A11 = A33 = In×n,

A13 = A31 = 0n×n,

A21 = A23 = 0(k−n+1)×n,

A12 = A32 = 0n×(k−n+1),

A22 =



1 0 0 0 0 . . . 0 0

−1 1 0 0 0 . . . 0 0

0 −1 1 0 0 . . . 0 0

0 0 −1 1 0 . . . 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 . . . −1 1


,

(10)

A22 is a (k − n + 1) × (k − n + 1) matrix and d = n + k + 1 is the number of basis functions.

For a(k+n+1)×1 we have a =
[
aT1 ,a

T
2 ,a

T
3

]T
where (a1)n×1 = [−∞, . . . ,−∞]T , (a2)(k−n+1)×1 =

[−∞, 0, . . . , 0]T and (a3)n×1 = [0, . . . , 0]T . Also, for b(k+n+1)×1 we have b =
[
bT1 , b

T
2 , b

T
3

]T
where

(b1)n×1 = [0, . . . , 0]T , (b2)(k−n+1)×1 = [+∞, . . . ,+∞]T and (b3)n×1 = [+∞, . . . ,+∞]T .

The conditions in (9) should always be considered when updating the posterior distribution for

the in-service unit in online stage in order to get a monotone degradation path. Unfortunately,

sole application of the Bayesian updating procedure reviewed in section 2.1 cannot guarantee these

conditions in updating the posterior distribution. In subsection 3.2.1, we introduce an approach

for updating the posterior distribution of new in-service unit considering the linear inequality

constraints in (9) to ensure monotonicity of the resulting modeled degradation signal in a mixed

effects models based on degree 1 and degree 2 B-splines with infinite support.

B-splines of degree 2 are typically sufficient for modeling a wide variety of degradation signal

evolution paths. Moreover, adding more knot values increases the accuracy of degree 2 B-splines.

However, B-splines of degree 3 are also commonly used in literature due to their flexibility and

ability to model curvature(Schumaker, 2007; Yuan et al., 2017). Thus, it is of prime importance

to develop necessary and sufficient conditions to ensure monotonic evolution of the degradation

signal using degree 3 B-splines of infinite support. In practice, B-splines of degree less than 4 are

11
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Figure 2: Piecewise polynomial construction of degradation signals using degree 3 B-splines with

infinite support.

sufficient for modeling different continuous functions and higher degrees of the B-splines typically

increases computational complexity and numerical instability (Schumaker, 2007).

For B-splines of degree 3 with infinite support, slightly more complex necessary and sufficient

conditions are required. In this regard, we take advantage of the piecewise representation of B-

splines. De Boor et al. (1978) and Schumaker (2007) state that for t ∈ [γp, γp+1] where γp and γp+1

are two consecutive knot values, the degree 3 B-spline basis function can be expressed as follows:

bj,3 (t) = α0,p,j + α1,p,jt+ α2,p,jt
2 + α3,p,jt

3, (11)

where αr,p,j , r = 0, ..., 3 are coefficients determined only by placement of the knots. Because of the

local support property of B-splines, bj,3 (t) are nonzero only when j = p − 3, . . . , p. Therefore, for

B-spline of degree 3 with infinite support and t ∈ [γp, γp+1] we have that:

Q
(3)
i (t) = bT3 (t) θi =

k+3∑
j=0

θi,j+1bj,3(t) =

p∑
j=p−3

θi,j+1

3∑
r=0

αr,p,jt
r

=

3∑
r=0

p∑
j=p−3

(θi,j+1αr,p,j) t
r =

3∑
r=0

ηr,pt
r.

(12)

Equation (12) shows that degree 3 B-splines model the degradation signal in each interval

[γp, γp+1] using polynomials of degree 3. Figure 2 illustrates the piecewise polynomial construction

of a degradation signal using degree 3 B-spline basis functions with infinite support. Monotonicity

condition for a degree 3 B-splines can be obtained by imposing monotonicity on Q
(3)
i in each knot

12



interval. The following lemma gives the required conditions for monotonicity of a degree 3 B-spline

with infinite support

Lemma 2 Let Γ = {γ0 ≤ γ1 ≤ . . . ≤ γk−1} where k > 3 be the set of non-decreasing knot values

over which the infinite support B-spline is defined. Let ηr,p, r = 0, ..., 3 be the coefficients of derived

degree 3 polynomial for t ∈ [γp, γp+1] as defined in (12). Then, the necessary and sufficient con-

ditions for monotonicity of degree 3 B-spline with infinite support can be encoded in terms of the

following constraints:

I (3η3,pγp−1 ≤ −η2,p ≤ 3η3,pγp, η3,p ≥ 0)

(
η1,p −

η2
2,p

3η3,p

)
≥ 0, p = 1, . . . , k − 1,

η1,p + 2η2,pγp−1 + 3η3,pγ
2
p−1 ≥ 0, p = 1, . . . , k,

I (3η3,kγk−1 ≤ −η2,k, η3,k ≥ 0)

(
η1,k −

η2
2,k

3η3,k

)
≥ 0,

η1,k + 2η2,kγk + 3η3,kγ
2
k ≥ 0.

(13)

Proof. In order to obtain necessary and sufficient conditions for monotonicity of Q
(3)
i (t), we need

to ensure monotonicity in each interval t ∈ [γp, γp+1]. In this regard, one needs to just impose

monotonicity on a degree 3 polynomial in each interval t ∈ [γp, γp+1] according to Eq. (12).

The polynomial Q
(3)
i (t) =

∑3
r=0 ηr,pt

r is monotonically increasing on t ∈ [γp, γp+1] if we force its

derivative Q
′(3)
i (t) = η1,p + 2η2,pt+ 3η3,pt

2 to be positive for t ∈ [γp, γp+1]. It should be noted that

Q
′(3)
i (t) is minimized at t = −η2,p/ (3η3,p) and the minimum value is η1,p − η2

2,p/ (3η3,p) if η3,p > 0.

Thus, the following three conditions ensure monotonicity of degree 3 B-splines with infinite support

for t ∈ [γp, γp+1].

I (3η3,pγp ≤ −η2,p ≤ 3η3,pγp+1, η3,p ≥ 0)

(
η1,p −

η2
2,p

3η3,p

)
≥ 0,

Q
′(3)
i (γp) ≥ 0, Q

′(3)
i (γp+1) ≥ 0.

(14)

In order to obtain necessary and sufficient conditions for monotonicity of Q
(3)
i (t), by local

support property of B-splines, we only need to ensure monotonicity in each interval of the knot

vector. We also need to add one dummy knot value at the end of the knot vector to determine the

extent of extrapolation that we are interested in. This knot value is not required to be inside the

range of the observed data point as with the regular B-splines. We denote this knot value by γk.

This results in the conditioned given in (13). �

The posterior distribution of the in-service unit should always satisfy the conditions of Lemma

2 in the online stage to obtain monotone evolution of a degradation signal when using degree 3

B-splines of infinite support in a mixed effect model. The constraints developed in (13) for online

updating of the mixed effects model based on degree 3 B-splines with infinite support are non-linear,
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unlike the ones derived for the case of degree 1 and degree 2 B-splines with infinite support in (9).

Subsection 3.2.2 introduces a procedure to update the posterior distribution of a new in-service

unit considering the general form of non-linear inequality constraints derived in Lemma 2 to ensure

monotonic evolution of the resulting modeled degradation signal in the mixed effects model based

on degree 3 B-splines of infinite support.

3.2 Online updating of the mixed effects model based on the B-splines of infinite

support with monotonicity constraints

This section discusses appropriate procedures to realize the necessary and sufficient conditions

developed previously for online updating of the mixed effects model based on monotonic B-splines

of infinite support. Specifically in subsection 3.2.1, we first introduce the constraint Kalman filter

(CKF) approach tailored for updating the random coefficients of infinite support basis functions

of degree 1 and degree 2 in mixed effects model considering the constraints given in Lemma 1.

The CKF procedure is applicable for updating random coefficients considering linear inequality

constraints. However, by Lemma 2, the monotonicity conditions for degree 3 B-splines with infinite

support are in the form of nonlinear inequality constraints, and the CKF procedure is not applicable

anymore. In order to deal with this issue, our approach to online updating of degree 3 B-splines

is based on Monte Carlo (MC) Sampling. The detailed procedure for updating based on the MC

sampling approach is discussed in subsection 3.2.2.

3.2.1 Analytical updating procedure based on the constrained Kalman filter for

degree 1 and degree 2 B-splines with infinite support

The online Bayesian updating procedure based on collected data from new in-service unit i at time

th results in a multivariate normal distribution denoted as p (θi|yi (ti,1:h)) ∼ N(µ̂i,h, Σ̂i,h) for ran-

dom coefficients of a mixed effects model as discussed in section 2.1. In order to get a monotonic

degradation signal for the new in-service unit in a mixed effects model based on degree 1 and degree

2 B-splines with infinite support, the posterior distribution should always satisfy the conditions pro-

vided by Lemma 1. This, indeed, results in updating the posterior multivariate normal distribution

with linear inequality constraint given by Lemma 1. Enforcing the set of constraints given in (9)

yields the truncated multivariate normal distribution denoetd as LN
(
µ̂i,h, Σ̂i,h;a, b,A

)
with the

PDF as follows:

p (θi|yi (ti,1:h) ;θi ∈ Ch) =


p(θi|yi(ti,1:h))∫

Ch
p(θi|yi(ti,1:h))dθi

= ξ−1
h p (θi|yi (ti,1:h)) if θi ∈ Ch,

0 otherwise,

(15)

where ξh is a normalizing constant and Ch denotes the constraints' space.

First, in Lemma 3 we discuss transforming the multivariate normal distribution with linear

inequality constraints (θ ∼ LN (µ,Σ;a, b,A)) into a simpler form of a truncated multivariate nor-
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mal distribution with box constraints denoted by TN(µn,Σn;a, b) where µn and Σn denote the

new mean vector and covariance matrix after transformation.

Lemma 3 Let θ ∼ LN (µ,Σ;a, b,A) and Z = Aθ. Then Z ∼ TN(Aµ,AΣAT ;a, b) and If A−1

exists, then θ = A−1Z.

Proof. We know θ ∼ LN (µ,Σ;a, b,A) has PDF as follows:

C−1
L exp

{
− (θ − µ)T Σ−1 (θ − µ) /2

}
I(a≤Aθ≤b), (16)

where CL is the normalizing constant. Let us consider Z = Aθ. Then, according to the linear

transformation property of multivariate normal distribution, the first part of Eq.(16) must change

into the PDF of multivariate normal distribution N
(
Aµ,AΣAT

)
for Z. Thus, Z has the PDF as

follows:

C−1
T exp

{
− (Z −Aµ)T

(
AΣAT

)−1
(Z −Aµ) /2

}
I(a≤Z≤b), (17)

where CT is the new normalizing constant after transformation. Equation (17) shows the PDF of

TN(Aµ,AΣAT ;a, b). Moreover, following the same steps as above, if A−1 exists, then θ = A−1Z,

and the proof is complete. �

The monotonicity conditions of degree 1 and degree 2 infinite support B-splines can be ana-

lytically imposed using Lemma 3. In this regard, online updating based on the linear inequality

constraints of Lemma 1 reduces to a simpler form of box constraints on the coefficients of the

mixed effects model. Thus, if we had an approach to update the random coefficients of B-spline

basis functions in a box constrained multivariate normal distribution, then we could convert back

the updated coefficients according to Lemma 3 into the corresponding linear inequality constrained

multivariate normal distribution. Our approach for updating this simpler form of constraints is

based on the constrained Kalman filter proposed in Wilhelm et al. (2012) and Son et al. (2016).

The online Bayesian updating procedure discussed in section 2.1 eventually gives µ̂i,h and Σ̂i,h

where µ̂i,h ∈ Rd. The true individual parameter θi for a specific unit is unobservable and should

be estimated by the posterior mean µ̂i,h. However applying Lemma 1 and Lemma 3 respectively,

suggest that the transformed vector of random coefficients should satisfy a specific set of box

constraints. Thus, the posterior distribution of this new transformed vector of random coefficients

should be truncated at certain boundaries. This can be achieved through a PDF truncation step

in addition to the Bayesian updating step.

To be more specific, suppose that we transform the truncated posterior multivariate normal dis-

tribution with linear inequality constraints of Lemma 1 for unit i at time th

(
LN

(
µ̂i,h, Σ̂i,h;a, b,A

))
into the new simpler truncated multivariate normal distribution with box constraints denoted by

TN
(
µ̂ni,h, Σ̂

n
i,h;a, b

)
using Lemma 3 where µ̂ni,h = Aµ̂i,h and Σ̂n

i,h = AΣ̂i,hA
T and A,a and b are

as given in (9). Moreover, we assume that Zi = Aθi is the new vector of coefficients for unit i after
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Figure 3: Summary of CKF procedure for online updating

transformation. The PDF for TN
(
µ̂ni,h, Σ̂

n
i,h;a, b

)
can be defined as follows:

fT (Zi|yi (ti,1:h) ;a, b) =
f (Zi|yi (ti,1:h))

F (b|yi (ti,1:h))− F (a|yi (ti,1:h))
, for aj ≤ zij ≤ bj , (18)

where fT (Zi|yi (ti,1:h) ;a, b) = 0 elsewhere, fT (·) indicates the truncated density function of Zi

with box constraints and f (·) and F (·) denotes the probability density and cumulative density

functions of multivariate normal distribution. After truncating the density, the mean µ̂TNi,h =[
µ̂TNi,h,1, . . . , µ̂

TN
i,h,d

]T
and the covariance matrix Ĉov

TN

i,h [zi,j , zi,l] for j, l ∈ {1, . . . , d} can be readily

computed, as shown in appendix B where TN
(
µ̂ni,h, Σ̂

n
i,h;a, b

)
≈ N

(
µ̂TNi,h , Σ̂

TN
i,h

)
due to preserving

the reproducibility of conditional PDFs (Simon, 2006; Straka et al., 2012). The detailed procedure

to obtain the truncated mean vector
(
µ̂TNi,h

)
and covariance matrix

(
Σ̂TN
i,h

)
is given in appendix B

for the sake of completeness.

Applying the constrained Kalman filter approach, we can update the posterior distribution

of transformed coefficients according to the set of box constraints given by Lemma 3. Finally,

we need to transform back the updated mean vector and covariance matrix into the mean vector

and covariance matrix of the originally truncated posterior distribution using Lemma 3. Figure 3

summarizes the overall procedure for online updating considering the monotonicity constraints for

the mixed effects model based on degree 1 and degree 2 B-splines with infinite support using CKF.

3.2.2 General updating procedure based on Monte Carlo sampling for degree 3

B-spline with infinite support

The monotonicity conditions of degree 3 B-splines are in the form of non-linear inequality constraints

as derived in Lemma 2. Therefore, the analytical procedure presented in the previous subsection is
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no longer applicable. In order to conduct online updating in this situation, we propose to use a more

general approach based on the MC sampling. To be more specific, suppose that the unconstrained

updating of mixed effects parameters based on the Bayesian procedure of section 2.1 results in

the posterior distribution p (θi|yi (ti,1:h)) ∼ N(µ̂i,h, Σ̂i,h) for unit i at time th. In order to model a

monotonic degradation signal using degree 3 B-splines with infinite support, the random coefficients

of mixed effects model should constantly satisfy the conditions derived by Lemma 2. The aim is

to estimate the posterior distribution of random coefficients subject to constraints in (13), i.e.,

p (θi|yi (ti,1:h) ;θi ∈ Ch) ∼ TN
(
µ̂i,h, Σ̂i,h;θi ∈ Ch

)
where Ch denotes the constraints' space. The

PDF of TN
(
µ̂i,h, Σ̂i,h;θi ∈ Ch

)
can be expressed similar to (15). Equation (15) presents a closed

form description of the PDF of random variable θi with respect to constraints in (13). Here, due

to preserving the reproducibility of the conditional PDFs (Simon, 2006; Straka et al., 2012), the

truncated PDF must be approximated by a Gaussian PDF as follows:

p (θi|yi (ti,1:h) ;θi ∈ Ch) ≈ N(µ̂ci,h, Σ̂
c
i,h). (19)

It should be noted that the Gaussian approximation of the truncated PDF in (19) has nonzero values

outside the constrained region. However compared to the original unconstrained distribution, the

volume of approximate Gaussian distribution above the constrained region is close to 1. Similar

approximations can also be found in Straka et al. (2012) and Simon (2006). The moment of the

PDF function in (19) can be written as follows:

µ̂ci,h =

∫
θip (θi|yi (ti,1:h) ;θi ∈ Ch) dθi, (20)

Σ̂c
i,h =

∫ (
θi − µ̂ci,h

) (
θi − µ̂ci,h

)T
p (θi|yi (ti,1:h) ;θi ∈ Ch) dθi. (21)

The mean and covariance in (20) and (21) are difficult to solve analytically except for some

special cases like linear inequality constraints (Straka et al., 2012). Here, we use MC sampling

technique to approximate the integrals of Equations (20) and (21). The MC sampling technique is

based on approximating integrals using dense sampling of the truncated PDF. In order to approx-

imate the integrals in (20) and (21), suppose that N samples θ
(r)
i , r = 1, 2, . . . , N, are drawn from

the unconstrained posterior distribution N(µ̂i,h, Σ̂i,h). We divide the samples into two groups: the

samples satisfying the constraints Ch denoted as θ
c,(l)
i , l = 1, 2, . . . , N c, N c ≤ N and the ones not

satisfying the constraints. Thus, the mean and covariance matrix of the truncated PDF in (19) can

be approximated as follows:

µ̂ci,h ≈
1

N c

Nc∑
l=1

θ
c,(l)
i , (22)

Σ̂c
i,h ≈

1

N c − 1

Nc∑
l=1

(
θ
c,(l)
i − µ̂ci,h

)(
θ
c,(l)
i − µ̂ci,h

)T
. (23)
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Figure 4: Online updating for the in-service unit using B-splines of degree 3 with infinite support.

Therefore, in order to find the approximate mean and covariance matrix of the truncated pos-

terior PDF in (19), we need to simulate a large number of samples from N(µ̂i,h, Σ̂i,h) and form

the pool of samples satisfying the required constraints given in (13). Then the mean and co-

variance matrix of posterior distribution considering the constraints in (13) can be approximated

using Equations (22) and (23). Figure 4 illustrates the online updating procedure considering the

monotonicity constraints using MC sampling for a mixed effects model based on infinite support

B-splines of degree 3 when we get a new observation from the in-service unit.

4. Numerical Study

In this section, the performance of the proposed mixed effects model framework will be investigated.

Specifically, we first discuss the general procedure to simulate the degradation signals and evaluate

the performance of different methods. Then, using the simulated signals, we demonstrate the

advantages of our proposed method compared with some existing methods in the literature.

To motivate the application of the proposed approach, we consider an illustrative example. Let

us assume we have signals generated from a true underlying function with noise. Specially we

assume that the signals are generated from Ry (t) = ωyt
1.5 + ε, where y = 1, 2, . . . , 15, t ∈ [0, 10]

and ωy ∼ N(1, 0.252). The observations are made at 30 evenly spaced points and the measurement

noise is set to σε = 5. Moreover, it is assumed that all the signals in the historical dataset are

truncated after a specific observation time. Figure 5 demonstrates the signals generated in such a
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Figure 5: Truncated historical observations with noise.

setting where it is assumed that all the historical signals are observed until time point t = 8. The

failure threshold for this specific example is set to TH=30.

As shown in Figure 5, the failure time of all units is not observed. Therefore, if the new in-

service unit fails after t = 8, then we need to extrapolate to find its failure time. Considering these

truncated historical signals, we can fit a mixed effects model to predict the remaining useful life for

the new in-service unit. In this regard, we consider the case where the mixed effects model is used

both with regular degree 3 basis functions and degree 3 basis functions with infinite support. It is

assumed that we have partial observations for the new in-service unit and the aim is to predict its

failure time. Figure 6 demonstrates the prognosis results for the new in-service unit.

From Figure 6, it can be clearly observed that the prediction results based on the regular B-spline

are misleading. The main reason is that the regular B-spline, as with most of the non-parametric

approaches, is limited to the range of historical observations which prevents it from extrapolating

beyond this range. However, for the infinite support B-spline, there is no such limitation and

the method can extrapolate and predict beyond the range. This extrapolation results in accurate

estimation of the failure time in this method as can be seen from Figure 6. However, it should be

mentioned that the extrapolation result of the proposed framework is indeed more accurate when

the truncation point is closer to the failure time and the signal trend is similar after and before the

truncation point.

Further, insight regarding the importance of monotonicity of the proposed approach can also be

gained from Figure 6. As can be seen, the regular B-spline based approach with no constraints on
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Figure 6: Prognostics using infinite support B-splines vs. regular B-splines.

the evolution of the degradation signals results in a signal which is not monotonically increasing.

This contradicts the underlying domain knowledge that the degradation signal cannot decrease

over time. This phenomenon, in practice, happens as a result of high level of noise in sensor data

observations. Therefore, the most suitable approach is the one that allows for certain flexibility

along with the ability to impose the domain knowledge. Imposing the appropriate monotonicity

constraint in the infinite support B-spline approach can account for the high level of noise and

adjust the prediction which, in turn, results in more accurate prediction of the failure time. This

feature is well demonstrated in the evolution path of the in-service unit based on the two model

settings in Figure 6.

Regarding the numerical study, we simulate the degradation signals from five different model

settings. In each model setting, we report the prediction accuracy of different methods for partially

observed in-service signal at varying time points t∗. Specifically, we report the prediction accuracy

for different percentiles of observed in-service signal (i.e., 40%, 60% and 80%). Our procedure

to compare different methods is based on simulating Y=15 degradation signals from a specific

model setting and then randomly selecting one of them as the in-service unit r, and the rest as the

historical dataset. This procedure is repeated for 1000 times and each time we report the absolute

error (AE) as our criterion for comparing different methods. The absolute error between the true

failure time Tr and the estimated failure time T̂r(t
∗) can be described as follows:

AE (t∗) =
∣∣∣T̂r (t∗)− Tr

∣∣∣ , (24)

where as mentioned before a unit fails when its degradation signal passes the failure threshold.

The performance of different approaches are compared using a series of boxplots highlighting

the distribution of AE through 1000 simulation runs. Specifically, we compare the performance of
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Figure 7: Prediction accuracy results of model setting I.

the proposed degree 3 infinite support B-spline with monotonicty constraint approach with four

other methods proposed in the literature. The first one is the parametric mixed-effects model

using an exponential function denoted by ME-Exp introduced by Gebraeel et al. (2005). The

second method is the nonparametric FPCA approach proposed by Zhou et al. (2011). The third

approach is the mixed-effects model using general polynomial function proposed by Son et al. (2013)

and Rizopoulos (2011) denoted as ME-Poly. The appropriate degree of polynomial is determined

using the Akaike information criteria (AIC). For this approach we also consider the case where

the degree of polynomial is always fixed at 3 to have a measure of comparision with our proposed

framework with degree 3 B-splines. We denote this approach as ME-Cube. Finally, we compare

the performance of our approach with the MGCP approach of Kontar et al. (2018). In addition to

the proposed framework with monotonicity constraints, we also consider the performance of infinite

support B-spline without the monotonicity constraints to make the numerical study more complete.

We denote the former as Inf B-spline-M, while the latter is denoted as Inf B-spline in our model

settings.

In this study, we consider five model settings to compare the performance of different approaches.

In model setting I, we highlight the importance of monotonicity in degradation modeling. Specif-

ically in model setting I, we adopt the quadratic function defined in Kontar et al. (2018). In

this regard, we consider the setting where the outputs for the Y curves are generated from the

Ry (t) = ωI1,yt
2 + ε , where y = 1, 2, . . . , Y , t ∈ [0, 10] and ω1,y ∼ N(1, 0.252). Moreover it is as-

sumed that the observations are made at 30 evenly spaced points, the measurement noise standard

deviation is set to σε = 0.5 and the failure threshold is set at TH=40. In order to benchmark the

result with the correctly specified parametric form, we use the quadratic function in the polynomial

mixed effects model (ME-Poly). The results are demonstrated in Figure 7.

From Figure 7, we can see that the performance of the proposed non-parametric approach based

on the B-Splines of infinite support is comparable to that of the correctly specified parametric model
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Figure 8: Prediction accuracy results of model setting II.

in ME-Poly approach. Specifically, in the earlier stage when only 40% of the in-service unit signal

is available, the variance of prediction error for the proposed method is a little bit higher than the

ME-Poly approach which is based on the true parametric function. This happens because the ME-

Poly approach which is based on the true parametric form, can inherently capture the trend even

with a small number of observations. However, our proposed method requires more observations

to capture the true underlying trend and its prediction accuracy improves as it gets more data.

Moreover, we can see that by increasing the order of polynomial of mixed effect model in ME-Cube

approach we get similar performance as in ME-Poly.

From the results in Figure 7, we can gain insight regarding the importance of the monotonicity

constraint considered in our approach. The degradation signals generated in model setting I are

inherently monotone and imposing monotonicity through our proposed framework increases the

accuracy of its predictions. However, other non-parametric approaches considered in this study

cannot guarantee monotonicity. This is, in fact, the main reason that their prediction errors are

higher than that of our proposed method. It should also be mentioned that an important issue

with MGCP approach is scalability as mentioned in Kontar et al. (2018). This issue becomes more

prominent as we increase the number of signals in the historical dataset which leads the optimization

of log-likelihood to converge to local optima. This, in turn, results in inferior result for the MGCP

approach.

In order to further highlight the importance of extrapolation in our proposed approach, we

conduct a numerical study with doubly truncated signals. Specifically, in model settings II, we

adopt the signals introduced in model setting I with one modification. In model setting II, we

assume that in addition to the failure threshold, all the signals in the offline stage are truncated

after time t = 7. The prediction accuracy results of this model setting are given in Figure 8.

As can be seen from Figure 8, the performance of the infinite support B-spline approach proposed

in this paper is comparable to the ME-Poly approach which is based on the correctly specified
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Figure 9: Prediction accuracy results of model setting III.

parametric approach. As mentioned earlier, in this model setting, no historical observations are

available after time t = 7. However, this does not significantly affect the performance of the

ME-Poly approach as it is inherently based on the correctly specified parametric form. This, in

fact, happens because even if the signals in the historical dataset are truncated after time t = 7,

this approach can learn the true behavior of degradation signals based on the initial observations.

Regarding the infinite support based B-spline approach, however, the evolution of the in-service

degradation signal is extrapolated based on the behavior of the historical degradation signals until

time t = 7. As can be seen from Figure 8, the performance of this extrapolation is comparable to

that of the true parametric form in different observation percentiles. However, as for the other non-

parametric approaches, the predictions outside the range of historical data converge to an overall

mean function which result in wrong estimation of the failure time. This can be seen from the

result of numerical study in Figure 8.

In order to further investigate the performance of our approach, we conduct three more numer-

ical studies. Specifically, in model setting III, we focus on a nonlinear signal function adapted from

Kontar et al. (2018). The output for Y curves are generated from Ry (t) = 1.5t+ωIII1,y sin (t)+ωIII2,y ,

where y = 1, 2, . . . , Y and t ∈ [0, 10]. For the yth output, ωIII1,y ∼ U(0.8, 1.2) and ωIII2,y ∼ U(0, 7).

It is assumed that there are 35 evenly spaced observations per signal. The measurement noise

standard deviation is set to σε = 0.01 and the failure threshold is set at TH=14. In model setting

IV, we randomly sample 10 observations from each signal to further evaluate the robustness of our

approach when sparse data are available. Moreover, model setting V investigates the performance

of the proposed method when the noise level is high. Specifically, we set the measurement noise

standard deviation to σε = 0.05. Figure 9 demonstrates the results of model setting III.

From Figure 9, we can see that in different observation percentiles, the median and variance

of the prediction errors of the proposed method are less than those of the other parametric and

non-parametric approaches proposed in the literature. Moreover, it can be seen that the variance
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Figure 10: Prediction accuracy results of model setting IV.

and median of prediction errors decreases with increase in the observation percentiles. In fact, as

more data from the in-service unit becomes available in the online stage, the accuracy of differ-

ent methods gets better. We can also get an interesting insight by comparing the results of the

parametric and non-parametric approaches. As can be seen from Figure 9, the prediction based

on the parametric approaches of ME-Poly, ME-Exp and ME-Cube leads to worse results than

that of the non-parametric approaches in different observation percentiles. This signals the promi-

nent hazard of defining a wrong parametric model in predicting the RUL. On the other hand, the

non-parametric approaches enjoy enough flexibility to adapt with the specific trend of the signal.

Moreover comparing the performance of Inf B-Spline-M and Inf B-Spline models, we can see that

imposing monotonicity constraints increases the prediction accuracy of the proposed framework for

nonlinear signal function forms.

Results from Figure 10 further demonstrate the robustness of different approaches to sparsity in

observations from the in-service unit. It can be seen that sparsity in observations leads to increase

in the prediction errors of different approaches. However, the mean and variance of absolute error of

predictions based on our proposed method remains less than those of other approaches. Moreover,

Figure 11 showcases the impact of increase in the noise of observations. It can be seen that

increase in the level of noise increases the prediction error of the different approaches; however, the

performance of our proposed approach remains superior to that of other methods.

From the result of numerical study we can see that the importance of monotonicity constraint

is, in fact, more notable in the early stage of prediction when the data is rare. This can be

observed more vividly comparing the performance of the infinite support B-spline with and without

monotonicity constraints in all our model settings. As can be seen from Figures 7-11, the infinite

support B-spline with monotonicity constraint typically performs better than other approaches in

the early stage of RUL prediction when we cannot learn the monotonic trend of signal based on

available data. This better performance gets clearer, especially, when we have scarcity or higher
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Figure 11: Prediction accuracy results of model setting V.

noise level in our observations as discussed in model settings IV and V. The scarcity, insufficient

sampling data and high measurement noise are, indeed, inevitable in most manufacturing systems

which makes it crucial for decision making and control policies to have a robust measure of RUL.

5. Real-world case study

In this section, application of the proposed prognosis procedure on the real-world data collected

from an automotive lead-acid battery aging test is demonstrated. The dataset contains 14 batteries

and each battery fails when its degradation signal reaches a prespecified threshold level. Figure 12

demonstrates the degradation signal evolution of batteries from this dataset. The failure threshold

is defined as 5.4 and all the units are considered failed once their degradation signal hits the failure

threshold which results in truncated signals. Due to confidentiality, the data presented in Figure 12

has been slightly modified from the original data, but this modification does not affect our study

here.

In order to compare the performance of different methods, we use the leave-one-out cross val-

idation approach. Specifically, we consider that one of the 14 batteries is the in-service unit and

the model fitting in offline stage is performed for the remaining 13 ones. Then, the predictions

for the in-service battery is performed for different percentiles of its lifespan (i.e., 40%, 60% and

80%). Both degree 3 and degree 2 infinite support B-spline with monotonicity constraint are used

in this case study. We denote the former as Inf B-Spline-D2 while the latter is denoted as Inf

B-Spline-D3. The whole procedure is repeated 14 times and the AE is calculated each time. Figure

13 summarizes the results for the case study.

To the best of authors' knowledge, there is no general physical model for the degradation of

lead acid batteries. Therefore, a quadratic degradation path is used for the ME-Poly approach.

This further highlights the importance of non-parametric approaches in degradation modeling when
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there is no general physical model. As can be seen from Figure 13, in different percentiles of the

observed signal of the in-service unit, our approach based on degree 3 B-splines of infinite support

performs relatively better than the other approaches proposed in literature. The main reason for

the superior performance of our method is that it can effectively deal with truncated signals using

the basis functions of infinite support. This feature combined with the monotonicity constraint

on the evolution of the degradation signal guarantee that predictions are not limited to the range

of historical data as with other non-parametric approaches. On the contrary, in non-parametric
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Figure 12: Battery resistance data from an accelerated aging test.
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Figure 13: Prediction accuracy results for case study.
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approaches like MGCP, predictions outside the range of historical data converge to an overall mean

function which is typically defined as zero. This, indeed, results in wrong estimation of the RUL as

the predications may never hit the failure threshold. However, this is not an issue in our approach

which is based on B-splines of infinite support. Moreover comparing B-splines models, we can see

that the degree 3 B-splines which provide higher flexibility have a better performance in terms of

the absolute error compared with the degree 2 B-spline. Thus, the case study further confirms the

results of the numerical study that, in the case of truncated degradation signals, the performance

of our proposed approach is superior to the methods proposed in the literature.

6. Conclusion

In this study, a non-parametric approach to modeling and prognosis of degradation signals using

B-splines in a mixed effects framework is proposed. Unlike most of non-parametric approaches that

rely on a historical sample of complete degradation signals, our approach is suitable for modeling

truncated signals. In this regard, our approach is based on the B-splines augmented with basis

functions of infinite support. One advantage of using this framework is that it allows us to extrap-

olate the evolution of the in-service degradation signal beyond the range of truncated degradation

signals from our historical dataset.

Moreover, the B-spline setting allows us to encode the inherent monotonic evolution path of

degradation signals. In this regard, the necessary and sufficient conditions to guarantee monotonic

evolution of degradation signals in a mixed effects model based on B-splines of infinite support are

derived. Our approach for updating random coefficients of the proposed mixed effects model with

B-splines of degree 1 and degree 2 considering the derived monotonicity constraints is based on

transforming the resulted truncated multivariate normal distribution of coefficients into a simpler

form of box constrained multivariate normal distribution and updating using the constraint Kalman

filter. Regarding the B-splines of degree 3, slightly more complicated necessary and sufficient

monotonicity conditions based on polynomial representation of the B-spline basis functions are

developed. The derived conditions for updating the mixed effects model in the online stage in this

case leads to a truncated multivariate normal distribution with non-linear inequality constraints.

In order to estimate the mean and covariance matrix of the resulting truncated PDF, we resort to

the Monte Carlo sampling technique. The results of our numerical study along with the real-world

case study confirm the advantage of the proposed framework in dealing with truncated signals.

In this paper, we have only considered modeling of one degradation signal. However, most of

the contemporary real-time monitoring systems tend to collect more than one degradation signal.

In such cases, the need for developing more sophisticated degradation modeling approaches arises

that can deal with both the issues of monotonicity and truncated degradation signal paths. This

can be considered as a potential future research direction that we intend to pursue.
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Appendices

A. Induction Formula for Infinite Support B-splines

The induction formula for the infinite support B-spline of degree 1 ≤ n ≤ k is as follows:

bj,n(t) :=
γj−t
C0

bj,n−1(t), j = 0,

bj,n(t) := bj−1,n−1(t) +
γj−t
C0

bj,n−1(t), 1 ≤ j < min(n, k),

bj,n(t) :=

bj−1,n−1(t) +
γj−t

γj−γj−n
bj,n−1(t), ifk > n

bj−1,n−1(t) + bj,n−1(t), ifk = n
j = min(n, k)

bj,n(t) :=
t−γj−n−1

γj−1−γj−n−1
bj−1,n−1(t) +

γj−t
γj−γj−n

bj,n−1(t), min(n, k) + 1 ≤ j < max(n, k),

bj,n(t) :=

bj,n−1(t) +
t−γj−n−1

γj−1−γj−n−1
bj−1,n−1(t), ifk > n

bj−1,n−1(t) + bj,n−1(t), ifk = n
j = max(n, k)

bj,n(t) :=
t−γj−n−1

C1
bj−1,n−1(t) + bj,n−1(t), max(n, k) + 1 ≤ j < k + n,

bj,n(t) :=
t−γj−n−1

C1
bj−1,n−1(t), j = k + n

(25)

where the term
t−γj−n−1

γj−1−γj−n−1
and

γj−t
γj−γj−n

are replaced by 1 and 0 respectively, when their denomina-

tors are equal to zero. Regarding the choice of constants C0 and C1, we use the guideline proposed

in Corlay (2016). In this paper, we take C0 = C1 =
γk−1−γ0
k−1 if γk−1 > γ0 and C0 = C1 = 1

otherwise.

The B-spline basis functions of degree n > k associated with knots Γ are defined as follows:

bj,n(t) :=
γj−t
C0

bj,n−1(t), j = 0,

bj,n(t) := bj−1,n−1(t) +
γj−t
C0

bj,n−1(t), 1 ≤ j < min(n, k),

(bj,n)min(n,k)≤ j<max(n,k)+1 any basis of ρmax(n,k)−min(n,k) (R) = ρn−k (R)

bj,n(t) :=
t−γj−n−1

C1
bj−1,n−1(t) + bj,n−1(t), max(n, k) + 1 ≤ j < k + n,

bj,n(t) :=
t−γj−n−1

C1
bj−1,n−1(t), j = k + n

(26)

B. Details of Constrained Kalman Filter

Using the moment generating function (MGF), the mean µ̂TNih =
[
µ̂TNih,1, . . . , µ̂

TN
ih,d

]T
and the covari-

ance matrix Ĉov
TN

[θi,j , θi,l] for j, l ∈ {1, . . . , d} of the TN
(
µ̂ni,h, Σ̂

n
i,h;a, b

)
with density function

given in (18) can be computed as follows:

µ̂TNih,j = µ̂nih,j + ψj

(
a, b; Σ̂n

ih

)
= µ̂nih,j +

d∑
l=1

σih,j,l {ϕl (al)− ϕl (bl)}, (27)

28



and

Ĉov
TN

[zi,j , zi,l] = σih,j,l + ξj,l

(
a, b; Σ̂n

ih

)
+ ηj,l

(
a, b; Σ̂n

ih

)
− ψj

(
a, b; Σ̂n

ih

)
ψl

(
a, b; Σ̂n

ih

)
,

(28)

where σih,j,l denotes covariance between the jth and the lth parameters. The ξj,l

(
a, b; Σ̂n

ih

)
and

ηj,l

(
a, b; Σ̂n

ih

)
functions used in (27) and (28) are respectively defined as follows

ξj,l

(
a, b; Σ̂n

ih

)
=

d∑
q=1

σih,j,qσih,l,q {aqϕq (aq)− bqϕq (bq)}
σih,q,q

, (29)

and

ηj,l

(
a, b; Σ̂n

ih

)
=

d∑
q=1

σih,j,q
∑
q 6= o

[(
σih,l,o −

σih,q,oσih,l,q
σih,q,q

)
×{ϕq,o (aq, ao) + ϕq,o (bq, bo)− ϕq,o (aq, bo)− ϕq,o (bq, ao)}]

(30)

where ϕl and ϕq,o are univariate and bivariate marginal density functions. The univariate marginal

density is ϕl (x) =
∫
Ω−l

fT (x,Z−l) dZ−l where Z−l is a (d − 1)-dimensional vector that ex-

cludes zi,l and Ω−l = {aj ≤ zi,j ≤ bj : ∀j 6= l, j = 1, . . . , d}. The bivariate marginal density is

ϕl (x, y) =
∫
Ω−q−o

fT (x, y,Z−q−o) dZ−q−o where Z−q−o is a (d − 2)-dimensional vector Z−q−o =

[zi,1, . . . , zi,q−1, zi,q+1, . . . , zi,o−1, zi,o+1, . . . , zi,d]
T that excludes both zi,q and zi,o for q 6= o, and

Ω−q−o = {aj ≤ zi,j ≤ bj : ∀j 6= qand∀j 6= o, j = 1, . . . , d} for q 6= o.
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Straka, O., Duńık, J. and Šimandl, M. (2012), ‘Truncation nonlinear filters for state estimation

with nonlinear inequality constraints’, Automatica 48(2), 273–286.

Sun, B., Yan, M., Feng, Q., Li, Y., Ren, Y., Zhou, K. and Zhang, W. (2018), ‘Gamma degradation

process and accelerated model combined reliability analysis method for rubber o-rings’, IEEE

Access .

Tjahjowidodo, T. et al. (2017), ‘A direct method to solve optimal knots of b-spline curves: An

application for non-uniform b-spline curves fitting’, PloS one 12(3), e0173857.

Tseng, S.-T. and Peng, C.-Y. (2004), ‘Optimal burn-in policy by using an integrated wiener process’,

IIE Transactions 36(12), 1161–1170.

Vanem, E. (2018), ‘Statistical methods for condition monitoring systems’, International Journal of

Condition Monitoring 8(1), 9–23.

Virkler, D. A., Hillberry, B. and Goel, P. (1979), ‘The statistical nature of fatigue crack propaga-

tion’, Journal of Engineering Materials and Technology 101(2), 148–153.

Wang, W.-b. (2000), ‘A model to determine the optimal critical level and the monitoring intervals in

condition-based maintenance’, International Journal of Production Research 38(6), 1425–1436.

Wang, X. and Xu, D. (2010), ‘An inverse gaussian process model for degradation data’, Techno-

metrics 52(2), 188–197.

Wilhelm, S. et al. (2012), ‘Moments calculation for the doubly truncated multivariate normal

density’, arXiv preprint arXiv:1206.5387 .

Yuan, Y., Chen, N. and Zhou, S. (2017), ‘Modeling regression quantile process using monotone

b-splines’, Technometrics 59(3), 338–350.

Zhang, Z., Si, X., Hu, C. and Lei, Y. (2018), ‘Degradation data analysis and remaining useful

life estimation: A review on wiener-process-based methods’, European Journal of Operational

Research .

31



Zhou, R., Gebraeel, N. and Serban, N. (2012), ‘Degradation modeling and monitoring of truncated

degradation signals’, IIE Transactions 44(9), 793–803.

Zhou, R. R., Serban, N. and Gebraeel, N. (2011), ‘Degradation modeling applied to residual lifetime

prediction using functional data analysis’, The Annals of Applied Statistics pp. 1586–1610.

32


