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In this paper, we revisit the multilinear PageRank problem. Under the framework of tensor, 
we establish several new and tighter uniqueness conditions for the multilinear PageRank 
vector. Meanwhile, a refined error bound for the inverse iteration as well as the new 
perturbation bounds under different norms, which improve the existing ones in the current 
literature, are developed with feasible computations. Several numerical examples are given 
to validate the significant effectiveness of the proposed bounds.
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1. Introduction

Higher-order Markov chains play important roles in analyzing a variety of stochastic (probabilistic) processes over time 
in multi-dimensional spaces. Recently, Li and Ng [9] proposed an approximate tensor model for the higher-order Markov 
chain, which has recently brought much attention (e.g., see [1], [4], [6], and [12]) due to the broad applications under this 
formulation. One of the important applications is the study of the multilinear PageRank, which was first proposed by Gleich, 
Lim, and Yu in [6]. The approximate model for the higher-order Markov chain is given as follows.

x = Pxm−1,x ≥ 0,‖x‖1 = 1, (1.1)

where x = (xi) is called a stochastic vector (or probability distribution vector) and P is an order-m dimension n stochastic 
tensor (or called transition probability tensor), i.e.,

pi1,i2,··· ,im ≥ 0 ,
∑

i1∈〈n〉
pi1,i2,··· ,im = 1. (1.2)
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The model (1.1) can be used to formulate the multilinear PageRank problem:

x = αPxm−1 + (1 − α)v, (1.3)

or equivalently

x = αP(1)(

m−1︷ ︸︸ ︷
x ⊗ · · · ⊗ x) + (1 − α)v, (1.4)

where x is called a multilinear PageRank vector, ⊗ is the standard Kronecker product and P(1) is an n-by-nm−1 stochastic 
matrix of the flattened tensor along the first index (see [6] for more detail). For example, let P = (pi, j,k)

n
i, j,k=1 be an order-3

dimension n tensor. Then we have

P(1) =

⎡⎢⎢⎢⎣
p1,1,1 · · · p1,n,1 p1,1,2 · · · p1,n,2 · · · p1,1,n · · · p1,n,n

p2,1,1 · · · p2,n,1 p2,1,2 · · · p2,n,2 · · · p2,1,n · · · p2,n,n
...

. . .
...

...
. . .

...
...

...
. . .

...

pn,1,1 · · · pn,n,1 pn,1,2 · · · pn,n,2 · · · pn,1,n · · · pn,n,n

⎤⎥⎥⎥⎦ .

The multilinear PageRank vector is a nonnegative, stochastic solution of the system of polynomial equations (1.3) or (1.4).
It is noted that the multilinear PageRank model (1.3) reduces to the higher-order Markov chain model (1.1) when we 

take α = 1 (also see [7] for a general case). Generally, the model (1.3) can be also rewritten equivalently as (1.1):

x = Pvxm−1,Pv = αP + (1 − α)V, (V)i,i2,··· ,im = vi . (1.5)

Therefore, the multilinear PageRank model (1.3) can be transformed to the higher-order Markov chain model (1.1), and 
the condition for the uniqueness of a probability distribution vector is obtained recently (see, e.g., [4,5,9]). In [6], Gleich 
et al. presented a simplified uniqueness condition, i.e., if α < 1

m−1 , the multilinear PageRank vector in (1.3) is unique. This 
condition is independent of the tensor P , and is rather simple to be verified. However, it is too strong and appears to be 
over-simplified since α ≈ 1 has been excluded. It is well-known that the model still performs well when α tends to 1. 
Therefore this motivates us to seek some more general but tighter conditions. Most recently, Li et al. [11] proposed the 
following uniqueness condition:

α <
1

maxs
∑m

k=2 maxi2,··· ,ik−1,ik+1,··· ,im∈〈n〉
∑n

i=1 |pi,i1,··· ,ik−1,s,ik+1,··· ,im − σi | , (1.6)

where σi, i = 1, · · · , n are parameters. Clearly, when we take those σi, i = 1, · · · , n to be all zero, the uniqueness condition 
(1.6) can be reduced to α < 1

m−1 . A large number of numerical examples randomly generated showed that the condition 
(1.6) is less restrictive than α < 1

m−1 . However, the improvement is not significant when the given tensor is very sparse. 
Thus it is desirable to find a better uniqueness condition in order to obtain an adequate choice of the parameter α, which 
is one of the motivations of this paper.

In [6], algorithms such as the fixed-point method, the shifted fixed-point method, the nonlinear inner-outer iteration, the 
inverse iteration, and the Newton iteration are discussed, and error bounds for these algorithms are provided. Notice that 
the uniqueness conditions are also convergence conditions for these algorithms. In this paper, we focus on the improvement 
of the convergence condition and the error bounds for the inverse iteration by a new approach. The proposed idea is also 
applicable for other algorithms in a similar way.

Another issue is to seek the 1-norm perturbation bounds for the multilinear PageRank vector, which is an open problem 
and is stated in the concluding remarks given by [11]. Theoretically, one could make use of the perturbation bound of 
limiting probability vector (see [10]) to compute the multilinear PageRank vector. However, such an approach may not be 
computationally feasible due to the involvement of the limit. Hence, we develop some perturbation bounds in terms of 
1-norm as well as ∞-norm, which appear to be quite effective in our numerical experiments.

The main contributions of this paper can be summarized as follows:

1. We establish several new and tighter uniqueness conditions for the multilinear PageRank problem, which can provide 
the better approaches in solving this problem numerically.

2. We improve the error bound for the inverse iteration algorithm for solving the multilinear PageRank problem.
3. Further, under our framework, we conduct the perturbation analysis for the multilinear PageRank vector with new 

upper bounds provided.
4. Extensive numerical experiments, along with various practical problems, are provided and the outcomes significantly 

outperform the existing ones in most cases.

The rest of this paper is organized as follows. In Section 2, we discuss the uniqueness of the multilinear PageRank vector. 
Some uniqueness conditions of the multilinear PageRank vector are established. Also, we show that our new uniqueness 
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conditions are more effective than the existing ones given in [6,11]. In Section 3, we discuss the convergence condition and 
the error bounds for the inverse iteration, and the new estimations appear to be sharper than the one in [6]. In Section 4, 
we develop the perturbation bounds based on the 1-norm and the ∞-norm for the multilinear PageRank vector. Numerical 
examples are given in Section 5 to illustrate the effectiveness of our theoretical results. The paper ends with the concluding 
remarks in Section 6.

2. The uniqueness conditions

2.1. The uniqueness conditions based on the new parameter method

Definition 2.1. Let A be an order-m dimension n tensor, x be an n dimensional vector, and xi denote the i-th entry of x, 
Axm−r to be an order-r, dimension n tensor whose entry is given by

(Axm−r)i,i2,··· ,ir =
∑

ir+1,··· ,im∈〈n〉
ai,i2,··· ,ir ,ir+1,··· ,im xir+1 · · · xim . (2.1)

If r = 2, (2.1) reduces to a matrix:

(Axm−2)i j =
n∑

i3,··· ,im=1

ai, j,i3,··· ,im xi3 · · · xim , i, j = 1,2, · · · ,n. (2.2)

Furthermore, if r = 1, (2.1) reduces to Qi’s definition [17]:

(Axm−1)i =
n∑

i2,··· ,im=1

ai,i2,··· ,im xi2 · · · xim , i = 1,2, · · · ,n.

In particular, Axm−1 can be written as a form of matrix-vector product:

Axm−1 = Axm−2x.

Definition 2.2. Let A be an order-m dimension n tensor, both x and y be n dimensional vectors. We define

A(xm−r − ym−r) ≡ Axm−r −Aym−r . (2.3)

Especially, r = 1 and r = 2, (2.3) follows

A(xm−1 − ym−1) ≡ Axm−1 −Aym−1,

and

A(xm−2 − ym−2) ≡ Axm−2 −Aym−2.

Definition 2.3. Let A be an order-m dimension n tensor, both x and y be n dimensional vectors. We define A(k)
xy to be an 

n × n matrix whose the (i, j)-entry is given by

(A(k)
xy )i, j =

∑
i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

ai,i2,···ik−1, j,ik+1,··· ,im xi2 · · · xik−1 yik+1 · · · yim . (2.4)

The following lemmas will be used subsequently throughout this paper. The proof of the first lemma is analogical to 
Lemma 1 of [11].

Lemma 2.1. Let both x and y be n dimensional vectors, and let A be an order-m dimension n tensor. Then we have

A(xm−1 − ym−1) =
m∑

k=2

Axk−2�xym−k, (2.5)

where �x = x − y.

Lemma 2.2. Under the same assumptions as in Lemma 2.1, we have

Axk−2�xym−k = A(k)
xy �x. (2.6)
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Fig. 2.1. The parameter tensors J (2) (left) and J (3) (right).

Proof. Let �xi be i-entry of �x. By Definition 2.3 we have for any i

(Axk−2�xym−k)i

=
∑

i2,··· ,im∈〈n〉
ai,i2,···ik−1,ik,ik+1,··· ,im xi2 · · · xik−1�xik yik+1 · · · yim

=
n∑

ik=1

[
∑

i2,··· ,ik−1,ik,ik+1,··· ,im∈〈n〉
ai,i2,···ik−1,ik,ik+1,··· ,im xi2 · · · xik−1 yik+1 · · · yim ]�xik

= (A(k)
xy �x)i,

which proves (2.6). �
Lemma 2.3. Let both x and y be n dimensional stochastic vectors, and let J (k) (k = 2, · · · , m) be order-m dimension n tensors given 
by

(J (k))i1,··· ,ik,··· ,im = σ
(k)
i1,i2,··· ,ik−1,ik+1,··· ,im

, ∀ik ∈ 〈n〉,
where σ (k)

i1,i2,··· ,ik−1,ik+1,··· ,im ∈R for any il ∈ 〈n〉, l = 1, 2, · · · , k − 1, k + 1, · · · , im and k = 2, 3, · · · , m. Then

J (k)
xy �x = 0. (2.7)

Proof. By Lemma 2.2 we have for given k and any i ∈ 〈n〉
( J (k)

xy �x)i = (J (k)xk−2�xym−k)i

=
n∑

ik=1

∑
i2,··· ,ik−1,ik,ik+1,··· ,im∈〈n〉

σ
(k)
i,i2,···ik−1,ik+1,··· ,im

xi2 · · · xik−1�xik yik+1 · · · yim

=
∑

i2,··· ,ik−1,ik,ik+1,··· ,im∈〈n〉
σ

(k)
i,i2,···ik−1,ik+1,··· ,im

xi2 · · · xik−1 yik+1 · · · yim

n∑
ik=1

�xik

= 0,

which proves (2.7). �
Remark 2.1. The structure of tensors J (k)(k = 2, 3), for example, with m = 3 and n = 3, can be illustrated by Fig. 2.1.

Lemma 2.4. Let x and y be n dimension stochastic vectors, and let A be an order-m dimension n tensor. Then we have

A(xm−1 − ym−1) =
m∑

k=2

(A(k)
xy − J (k)

xy )�x. (2.8)

Proof. The formula (2.8) is a direct result of Lemmas 2.1, 2.2 and 2.3. �
Let J (k)(k = 2, 3, · · · , m) be defined in Lemma 2.3.



588 W. Li et al. / Applied Numerical Mathematics 156 (2020) 584–607
Lemma 2.5. Let x and y be n dimensional stochastic vectors, and let P be an order-m dimension n stochastic tensor. For any J (k)(k =
2, 3, · · · , m), we have

||P(xm−1 − ym−1)||1 ≤ μ(J (2), · · · ,J (m))||�x||1 (2.9)

and

||P(xm−1 − ym−1)||∞ ≤ ν(J (2), · · · ,J (m))||�x||∞, (2.10)

where

μ(J (2), · · · ,J (m)) = max
ik∈〈n〉

m∑
k=2

max
i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

n∑
i1=1

|pi1,i2,··· ,ik,··· ,im − σ
(k)
i1,i2,··· ,ik−1,ik+1,··· ,im

|, (2.11)

and

ν(J (2), · · · ,J (m)) = max
i1∈〈n〉

m∑
k=2

max
i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

n∑
ik=1

|pi1,i2,··· ,ik,··· ,im − σ
(k)
i1,i2,··· ,ik−1,ik+1,··· ,im

|. (2.12)

Proof. By Definition 2.3 and Lemma 2.4, we have

‖P(xm−1 − ym−1)‖1 = ‖
m∑

k=2

(P (k)
xy − J (k)

xy )�x‖1

=
n∑

i=1

|
m∑

k=2

∑
i2,··· ,im∈〈n〉

(pi,i2,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

)xi2 · · · xik−1�xik yik+1 · · · yim |

≤
m∑

k=2

∑
i2,··· ,im∈〈n〉

n∑
i=1

|pi,i2,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

|xi2 · · · xik−1 yik+1 · · · yim |�xik |

≤
m∑

k=2

∑
ik= j∈〈n〉

max
i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

n∑
i=1

|pi,i2,··· , j,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

||�x j|

≡
m∑

k=2

∑
j∈〈n〉

τ
(k)
j |�x j|, (2.13)

where τ (k)
j = maxi2,··· ,ik−1,ik+1,··· ,im∈〈n〉

∑n
i=1 |pi,i2,··· , j,··· ,im − σ

(k)
i,i2,··· ,ik−1,ik+1,··· ,im |. Since

m∑
k=2

∑
j∈〈n〉

τ
(k)
j |�x j| =

∑
ik= j∈〈n〉

(τ
(2)
j + · · · + τ

(m)
j )|�x j|

= (τ
(2)
1 + · · · + τ

(m)
1 )|�x1| + · · · + (τ

(2)
n + · · · + τ

(m)
n )|�xn|

≤ max
j∈〈n〉

m∑
k=2

τ
(k)
j ‖�x‖1, (2.14)

this gives (2.9).
On the other hand, set s = arg max

i∈〈n〉
|(Pxm−1 −Pym−1)i |. Then by Lemma 2.4, we have

‖P(xm−1 − ym−1)‖∞ = |(Pxm−1 −Pym−1)s|

= |
m∑

k=2

∑
i2,··· ,im∈〈n〉

(ps,i2,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

)xi2 · · · xik−1�xik yik+1 · · · yim |

≤
m∑

k=2

∑
i2,··· ,im∈〈n〉

|ps,i2,··· ,im − σ
(k)
s,i2,··· ,ik−1,ik+1,··· ,im

|xi2 · · · xik−1 yik+1 · · · yim |�xik |

≤
m∑

max
i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

n∑
|ps,i2,··· ,ik,··· ,im − σ

(k)
s,i2,··· ,ik−1,ik+1,··· ,im

||�xik |

k=2 ik=1
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≤ max
i1

m∑
k=2

max
i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

n∑
ik=1

|pi1,i2,··· ,ik,··· ,im − σ
(k)
i1,i2,··· ,ik−1,ik+1,··· ,im

|‖�x‖∞,

which yields (2.10). �
Next, we present the main result as follows.

Theorem 2.1. Let P be an order-m stochastic tensor, v be a stochastic vector. Then the multilinear PageRank problem (1.3) has the 
unique solution if

α <
1

min{μ,ν} , (2.15)

where μ = min
J (k),k=2,3,··· ,m

μ(J (2), · · · , J (m)) and ν = min
J (k),k=2,3,··· ,m

ν(J (2), · · · , J (m)).

Proof. Assume there exist both stochastic vectors x and y with y �= x which satisfy the multilinear PageRank problem (1.3). 
Then we have

�x = x − y = α(Pxm−1 −Pym−1). (2.16)

Taking J (k)
μ = arg min

J (k),k=2,3,··· ,m
μ(J (2), · · · , J (m)) and J (k)

ν = arg min
J (k),k=2,3,··· ,m

ν(J (2), · · · , J (m)) for k = 2, 3, ..., m, by 

Lemma 2.5, it is easy to get

||�x||1 = α||P(xm−1 − ym−1)||1 ≤ αμ(J (2)
μ , · · · ,J (m)

μ )||�x||1 = αμ||�x||1 (2.17)

and

||�x||∞ = α||P(xm−1 − ym−1)||∞ ≤ αν(J (2)
ν , · · · ,J (m)

ν )||�x||∞ = αν||�x||∞, (2.18)

which contradicts to the assumption (2.15). �
For simplicity, we give the following corollary.

Corollary 2.1. Under the same assumptions as in Theorem 2.1, for any J (k) (k = 2, 3, · · · , m), the multilinear PageRank model (1.3)
has the unique solution provided

α <
1

mins∈{1,k}
∑m

k=2 maxis,i2,··· ,ik−1,ik+1,··· ,im∈〈n〉
∑n

is=1
|pi1,··· ,is,··· ,im − σ

(k)
i1,··· ,ik−1,ik+1,··· ,im

|
. (2.19)

Proof. Since for any s ∈ 〈n〉

min{μ,ν} ≤ min
s∈{1,k}

m∑
k=2

max
is,i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

n∑
is=1

|pi1,··· ,is,··· ,im − σ
(k)
i1,··· ,ik−1,ik+1,··· ,im

|.

It follows from Theorem 2.1 that the multilinear PageRank model (1.3) has the unique solution provided (2.19) holds. �
Remark 2.2. For a given set {J (2), · · · , J (m)}, it is easy to see

α <
1

min{μ(J (2), · · · ,J (m)), ν(J (2), · · · ,J (m))} ≤ 1

min{μ,ν} .

Thus, one can get different uniqueness conditions of the solution for the multilinear PageRank model (1.3) via choosing the 
parameter tensors J (2), · · · , J (m) . In next subsection, we will provide algorithms to choose these J (k)(k = 2, 3, · · · , m).

2.2. Choices of the parameters

In general, it is difficult to compute μ and ν directly. Next we give some computable bounds that can simplify the 
approach. Let e be a dimension n vector with all entries being 1. The following Algorithms 2.1 and 2.2 are proposed for 
choosing the parameter J (k), k = 2, 3, · · · , m in μ(J (2), · · · , J (m)) and ν(J (2), · · · , J (m)) respectively.
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Algorithm 2.1 Computing J (k)(k = 2, 3, · · · , m) for μ(J (2), · · · , J (m)).

1: Input P .
2: for k = 2, 3, · · · , m do
3: for i2, · · · , ik−1, ik+1, · · · , im ∈ 〈n〉 do
4: Let A = (ai1 ik ) with ai1 ik = pi1,i2,··· ,ik,··· ,im . Solve the nonlinear optimization problems:

ŷ = arg min
y

||A − yeT ||1. (2.20)

5: Update σ (k)
i1,··· ,ik−1,ik+1,··· ,im = ŷi1 .

6: end for
7: end for
8: Compute ̂μ1 = μ(J (2), · · · , J (m)).
9: Output ̂μ1.

Algorithm 2.2 Computing J (k)(k = 2, 3, · · · , m) for ν(J (2), · · · , J (m)).
1: Input P .
2: for k = 2, 3, · · · , m do
3: for i1, · · · , ik−1, ik+1, · · · , im ∈ 〈n〉 do
4: Let b = (bik ) with bik = pi1,i2,··· ,ik,··· ,im . Solve the nonlinear optimization problems:

t̂ = arg min
t

||b − te||1. (2.21)

5: Update σ (k)
i1,··· ,ik−1,ik+1,··· ,im = t̂ .

6: end for
7: end for
8: Compute ̂ν1 = ν(J (2), · · · , J (m)).
9: Output ̂ν1.

Remark 2.3. It is easy to show that the optimization problem (2.20) is equivalent to the following minimax constraint 
problem:

arg min
y

max
j

n∑
i=1

√
(aij − yi)

2. (2.22)

It is a typical optimization problem that can be computed by the function fminimax in Matlab.
Furthermore, it can be seen that (2.21) is equivalent to

arg min
t

n∑
i=1

|t − bi |, (2.23)

which has the optimal solution:

t̂ =
{ [c n

2
, c n

2 +1], n is even,

c n+1
2 , n is odd,

where c = (ci) is a vector obtained from b by rearranging its entries in ascending order, i.e., c = (bi1 , bi2 , · · · , bin )
T with 

bi1 ≤ bi2 ≤ · · · ≤ bin .

Remark 2.4. Since μ ≤ μ̂1 and ν ≤ ν̂1, by the proof of Theorem 2.1, the multilinear PageRank model (1.3) has the unique 
solution if

α <
1

min{μ̂1, ν̂1} . (2.24)

However, if m or n is large, it is expensive to compute μ̂1 and ν̂1 by Algorithms 2.1 and 2.2 directly. Therefore, we also 
proposed some feasible methods to generate the parameter tensors J (k)(k = 2, · · · , m), which leads to the more computable 
bounds.
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Remark 2.5. We may consider some special J (k)(k = 2, 3, · · · , m).

• Taking σ (k)
i,i2,··· ,ik−1,ik+1,··· ,im = σi , then we have

m∑
k=2

max
i2,··· ,im∈〈n〉

n∑
i=1

|pi,i2,··· ,ik,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

| = (m − 1) max
i2,··· ,im∈〈n〉

n∑
i=1

|pi,i2,··· ,im − σi|,

which is the formula (8) of [11].
• Taking σ (k)

i,i2,··· ,ik−1,ik+1,··· ,im = minik pi,i2,··· ,ik,··· ,im , then

n∑
i=1

|pi,i2,··· ,ik,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

| =
n∑

i=1

(pi,i2,··· ,ik,··· ,im − min
ik

pi,i2,··· ,ik,··· ,im )

= 1 −
n∑

i=1

min
ik

pi,i2,··· ,ik,··· ,im .

By Theorem 2.1, the uniqueness can be guaranteed provided

α <
1

m − 1 − ∑m
k=2 mini2,··· ,ik−1,ik+1,··· ,im∈〈n〉

∑n
i=1 minik pi,i2,··· ,ik,··· ,im

. (2.25)

It is also noted that mini2,··· ,ik−1,ik+1,··· ,im∈〈n〉
∑n

i=1 minik pi,i2,··· ,ik,··· ,im ≥ ∑n
i=1 mini2,··· ,im pi,i2,··· ,im . This shows that the 

uniqueness condition (2.25) is always better than the estimate (11) in [11].
• Taking σ (k)

i,i2,··· ,ik−1,ik+1,··· ,im = maxik pi,i2,··· ,ik,··· ,im , then

n∑
i=1

|pi,i2,··· ,ik,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

| =
n∑

i=1

(max
ik

pi,i2,··· ,ik,··· ,im − pi,i2,··· ,ik,··· ,im)

=
n∑

i=1

max
ik

pi,i2,··· ,ik,··· ,im − 1.

By Theorem 2.1, the solution of (1.3) is unique if

α <
1∑m

k=2(maxi2,··· ,ik−1,ik+1,··· ,im∈〈n〉
∑n

i=1 maxik pi,i2,··· ,ik,··· ,im − 1)
. (2.26)

This improves the estimate (12) appeared in [11].

Hence our new results are always better than the corresponding ones in [6] and [11] respectively.

Remark 2.6. Now let us give a simple example to compare the proposed conditions (2.25) and (2.26) with the ones in (9), 
(11) and (12) of [11]. Let an order-3 dimension 2 stochastic tensor P with its 1-unfolding P(1) be given by

P(1) =
[

1 − s1 1 − s2 1 − s3 1 − s4
s1 s2 s3 s4

]
,

where 1 ≥ s1 ≥ s2 ≥ s3 ≥ s4 ≥ 1
2 and s1 − s2 ≤ s3 − s4. Then both the uniqueness conditions (2.25) and (2.26) are

α <
1

s2 + s3 − 2s4
,

which is better than the condition α < 1
2(s1−s4)

given by (9), (11) and (12) of [11].

2.3. The uniqueness conditions based on the optimal set method and the parameter method

Let S denote a proper subset of 〈n〉 and S′ be its complementary set in 〈n〉. Next, combining our results with those in 
[9] gives the following lemma.

Lemma 2.6. Let x and y be solutions of (1.1), and let P be an order-m dimension n stochastic tensor. Then we have

||P(xm−1 − ym−1)||1 ≤ ω||�x||1, (2.27)
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where

ω = m − 1 − min
S⊂〈n〉

m∑
k=2

(min
ik∈S

min
i2,··· ,ik−1,ik+1··· ,im∈〈n〉

∑
i∈S′

pi,i2,··· ,im + min
ik∈S′ min

i2,··· ,ik−1,ik+1··· ,im∈〈n〉
∑
i∈S

pi,i2,··· ,im ). (2.28)

Proof. If x = y, the inequality holds. Assume �x �= 0. Let V = {i|�xi ≥ 0}. Then V �= ∅ and V ⊂ 〈n〉. Let V ′ = 〈n〉/V . Then 
V ′ �= ∅. Thus,

∑
i∈V

�xi =
m∑

k=2

∑
i2,··· ,im∈〈n〉

∑
i∈V

(pi,i2,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

)xi2 · · · xik−1 yik+1 · · · yim�xik

=
m∑

k=2

∑
ik∈V

∑
i2,··· ,ik−1,ik+1··· ,im∈〈n〉

∑
i∈V

(pi,i2,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

)xi2 · · · xik−1 yik+1 · · · yim�xik

+
m∑

k=2

∑
ik∈V ′

∑
i2,··· ,ik−1,ik+1··· ,im∈〈n〉

∑
i∈V

(pi,i2,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

)xi2 · · · xik−1 yik+1 · · · yim�xik .

(2.29)

Now taking σ (k)
i,i2,··· ,ik−1,ik+1,··· ,im such that∑

i∈V
σ

(k)
i,i2,··· ,ik−1,ik+1,··· ,im

= min
ik∈V ′

∑
i∈V

pi,i2,··· ,im .

Then by (2.29) we have∑
i∈V

�xi ≤ [
m∑

k=2

max
ik∈V

max
i2,··· ,ik−1,ik+1··· ,im∈〈n〉

∑
i∈V

pi,i2,··· ,im −
m∑

k=2

min
i2,··· ,ik−1,ik+1··· ,im∈〈n〉

min
ik∈V ′

∑
i∈V

pi,i2,··· ,im ]
∑
ik∈V

�xik

=
m∑

k=2

[1 − min
ik∈V

min
i2,··· ,ik−1,ik+1··· ,im∈〈n〉

∑
i∈V ′

pi,i2,··· ,im − min
ik∈V ′ min

i2,··· ,ik−1,ik+1··· ,im∈〈n〉
∑
i∈V

pi,i2,··· ,im ]
∑
i∈V

�xi

≤ ω
∑
i∈V

�xi,

combining with
∑

i∈V �xi = 1
2 ||�x||1 arrives at (2.27). �

Next, we give a new uniqueness condition for the multilinear PageRank model (1.3).

Theorem 2.2. Under the same assumptions as given in Theorem 2.1, the multilinear PageRank model (1.3) has the unique solution if

α <
1

ω
, (2.30)

where ω is given by (2.28).

Proof. Assume that x and y are two solutions of (1.3) with x �= y. Then we have

�x = x − y = α(Pxm−1 −Pym−1). (2.31)

By (2.27) and (2.30) we have

||�x||1 = ||αP(xm−1 − ym−1)||1 ≤ ωα||�x||1 < ||�x||1, (2.32)

which is a contradiction. This proves theorem. �
Remark 2.7. For m = 3, Fasino and Tudisco [5] also presented a uniqueness conditions

α <
1

T (P)
, (2.33)

where
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T (P) = 1

2
max

j,k1,k2∈〈n〉
∑

i

|pi, j,k1 − pi, j,k2 + pi,k1, j − pi,k2, j|.

It is difficult to compare the bounds (2.30) and (2.33) in theory. The following examples show that one bound can’t always 
be better than another.
(1) For the first example, taking

P(:, :,1) =
⎛⎝ 0.0459 0.4597 0.5329

0.8608 0.0346 0.2047
0.0933 0.5057 0.2624

⎞⎠ ,P(:, :,2) =
⎛⎝ 0.5963 0.2943 0.5501

0.2841 0.3786 0.0518
0.1196 0.3271 0.3981

⎞⎠ ,

P(:, :,3) =
⎛⎝ 0.3891 0.3908 0.5364

0.4823 0.3108 0.1482
0.1286 0.2984 0.3154

⎞⎠ ,

we get ω = 0.6709 < T (P) = 1.4030.
(2) For the second example, taking

P(:, :,1) =
⎛⎝ 0.5073 0.2795 0.3617

0.4567 0.5804 0.5441
0.0361 0.1402 0.0943

⎞⎠ ,P(:, :,2) =
⎛⎝ 0.3442 0.4090 0.4581

0.3429 0.4978 0.1162
0.3129 0.0933 0.4257

⎞⎠ ,

P(:, :,3) =
⎛⎝ 0.2166 0.5042 0.1572

0.3750 0.0598 0.3705
0.4083 0.4359 0.4723

⎞⎠ ,

we get ω = 0.9021 > T (P) = 0.8195.

By (2.28), it is easy to see that ω ≤ (m − 1)[1 − minS(mini2,··· ,im∈〈n〉
∑

i∈S′ pi,i2,··· ,im + mini2,··· ,im∈〈n〉
∑

i∈S pi,i2,··· ,im )]. 
Hence, we have the following corollary.

Corollary 2.2. Under the same assumptions as in Theorem 2.1, the multilinear PageRank model (1.3) has the unique solution if

α <
1

η1
, (2.34)

where η1 = (m − 1)[1 − minS⊂〈n〉(mini2,··· ,im∈〈n〉
∑

i∈S′ pi,i2,··· ,im + mini2,··· ,im∈〈n〉
∑

i∈S pi,i2,··· ,im )].

Note that 
∑

i∈S pi,i2,··· ,im + ∑
i∈S′ pi,i2,··· ,im = 1. Then the following corollary follows from (2.34) directly.

Corollary 2.3. Under the same assumptions as in Theorem 2.1, the multilinear PageRank model (1.3) has the unique solution if

α <
1

η2
, (2.35)

or

α <
2

η3
, (2.36)

where

η2 = (m − 1) max
S⊂〈n〉

[ max
i2,··· ,im∈〈n〉

∑
i∈S′

pi,i2,··· ,im + max
i2,··· ,im∈〈n〉

∑
i∈S

pi,i2,··· ,im − 1]

and

η3 = (m − 1) max
S⊂〈n〉

[ max
i2,··· ,im∈〈n〉

∑
i∈S′

pi,i2,··· ,im + max
i2,··· ,im∈〈n〉

∑
i∈S

pi,i2,··· ,im

− min
i2,··· ,im∈〈n〉

∑
′
pi,i2,··· ,im − min

i2,··· ,im∈〈n〉
∑

pi,i2,··· ,im ].

i∈S i∈S
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3. Convergence analysis for the inverse iteration algorithm

Let J (k)(k = 3, · · · , m) be given by Lemma 2.3. Firstly, we give the following lemma which will be used in the sequel.

Lemma 3.1. Let x, y and z be n dimension stochastic vectors, and let P be an order-m dimension n stochastic tensor. For any set 
J (k)(k = 3, · · · , m), we have

||P(xm−2 − ym−2)z||1 ≤ μ(J (3), · · · ,J (m))||�x||1,
where

μ(J (3), · · · ,J (m)) = max
i2,ik∈〈n〉

m∑
k=3

max
i3,··· ,ik−1,ik+1,··· ,im∈〈n〉

n∑
i1=1

|pi1,i2,··· ,ik,··· ,im − σ
(k)
i1,i2,··· ,ik−1,ik+1,··· ,im

|,

Proof. Clearly, we have

||P(xm−2 − ym−2)z||1 ≤ ||P(xm−2 − ym−2)||1||z||1
= ||P(xm−2 − ym−2)||1

= max
i2∈〈n〉

n∑
i=1

|
m∑

k=3

∑
i3,··· ,im∈〈n〉

(pi,i2,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

)xi3 · · · xik−1�xik yik+1 · · · yim |

≤ max
i2∈〈n〉

n∑
i=1

m∑
k=3

∑
i3,··· ,im∈〈n〉

|pi,i2,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

|xi3 · · · xik−1 |�xik |yik+1 · · · yim .

By the same technique as (2.13) and (2.14) we can get the deserved inequality. �
In [6] the authors proposed an inverse iteration for solving (1.3):

xk = αPxm−2
k−1 xk + (1 − α)v. (3.1)

The k-th error bound for the inverse iteration was given as follows:

Theorem 3.1. [6] Let P be an order-m stochastic tensor, let v and x0 be stochastic vectors, xk be generated by the inverse iterative (3.1). 
If α < 1/(m − 1), then the multilinear PageRank model (1.3) has the unique solution x and

‖x − xk‖1 ≤ εk‖x − x0‖1, (3.2)

where ε = (m−2)α
1−α .

Next we further discuss convergence for the inverse iteration algorithm. Let x be a solution of (1.3). Then we can rewrite 
(1.3) as follows:

x = αPxm−2x + (1 − α)v.

Let �xk = x − xk and �xi be the i-th entry of �xk . We have

�xk = α[Pxm−2x −Pxm−2
k−1 xk]

= α[Pxm−2x −Pxm−2xk +Pxm−2xk −Pxm−2
k−1 xk]

= α[Pxm−2�xk +P[(xm−2 − xm−2
k−1 )xk]. (3.3)

Let J 2 = (σ
(2)
i1,i3,··· ,im ) defined in Lemma 2.3. By an analogous proof to Lemma 2.5, we have

||Pxm−2�xk||1 =
n∑

i1=1

|
∑

i2,··· ,im∈〈n〉
(pi1,i2,··· ,im − σ

(2)
i1,i3,··· ,im

)�xi2 xi3 · · · xim |

≤
n∑

i1=1

∑
i2,··· ,im∈〈n〉

|pi1,i2,··· ,im − σ
(2)
i1,i3,··· ,im

||�xi2 |xi3 · · · xim

≤ max
i2,··· ,im∈〈n〉

n∑
i1=1

|pi1,i2,··· ,im − σ
(2)
i1,i3,··· ,im

|||�xk||1. (3.4)
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Algorithm 3.1 Computing J (k)(k = 3, · · · , m) for μ(J (3), · · · , J (m)).

1: Input P .
2: for k = 3, · · · , m do
3: for i2, · · · , ik−1, ik+1, · · · , im ∈ 〈n〉 do
4: Let A = (ai1 ik ) with ai1 ik = pi1,i2,··· ,ik,··· ,im . Get and solve the nonlinear optimization problem (2.20) and obtain the solution 

ŷ.
5: Update σ (k)

i1,··· ,ik−1,ik+1,··· ,im = ŷi1 .
6: end for
7: end for
8: Compute ̂μ2 = μ(J (3), · · · , J (m)).
9: Output ̂μ2.

By taking σ (2)
i1,i3,··· ,im = mini2 pi1,i2,i3··· ,im and σ (2)

i1,i3··· ,im = maxi2 pi1,i2,i3,··· ,im in (3.4) respectively, it is easy to see

||Pxm−2�xk||1 ≤ γ ||�xk||1 (3.5)

and

||Pxm−2�xk||1 ≤ γ̌ ||�xk||1, (3.6)

where

γ = 1 − min
i3,··· ,im∈〈n〉

n∑
i=1

min
i2∈〈n〉

pi,i2,··· ,im and γ̌ = max
i3,··· ,im∈〈n〉

n∑
i=1

max
i2∈〈n〉

pi,i2,··· ,im − 1.

Furthermore, by Lemma 3.1, we have

||αP(xm−2 − xm−2
k−1 )xk||1 ≤ αμ(J (3), · · · ,J (m))||�xk−1||1.

Let γ = min{γ , γ̌ }. It is easy to check that 0 < γ ≤ 1. By (3.3)-(3.6), we obtain

‖�xk‖1 ≤ αμ(J (3), · · · ,J (m))

1 − αγ
‖�xk−1‖1.

Hence we have the convergence theorem for the inverse iteration as follows:

Theorem 3.2. Let P be an order-m stochastic tensor, let v and x0 be stochastic vectors, and let α satisfy (2.15). The inverse iteration 
algorithm (3.1) converges to the unique solution x of the multilinear PageRank problem (1.3) and

‖�xk‖1 ≤ εk
J ‖�x0‖1, (3.7)

where μ = min
J (k),k=3,··· ,m

μ(J (3), · · · , J (m)), εJ = αμ
1−αγ .

We next revise Algorithm 2.1 by choosing some special J (k)(k = 3, · · · , m) and obtain an upper bound of μ.
From Algorithm 3.1, the following corollary can be derived.

Corollary 3.1. Under the same assumption as in Theorem 3.2, we have

‖�xk‖1 ≤ ε̂k||x0‖1, (3.8)

where ̂ε = αμ̂2
1−αγ .

Note that

μ(J (3), · · · ,J (m)) ≤ max
ik∈〈n〉

m∑
k=3

max
i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

n∑
i1=1

|pi1,i2,··· ,ik,··· ,im − σ
(k)
i1,i2,··· ,ik−1,ik+1,··· ,im

|.

Then we take σ (k)
i1,··· ,ik−1,ik+1,··· ,im = minik pi1,··· ,ik,··· ,im and σ (k)

i1,··· ,ik−1,ik+1,··· ,im = maxik pi1,··· ,ik,··· ,im . Thus we have the following 
corollary.
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Corollary 3.2. Under the same assumption as in Theorem 3.2 we have

‖�xk‖1 ≤ (min{ε, ε̌})k‖�x0‖1 (3.9)

where

ε = α
∑m

k=3(1 − mini2,··· ,ik−1,ik+1,··· ,im∈〈n〉
∑n

i=1 minik pi,i2,··· ,ik,··· ,im )

1 − αγ

and

ε̌ = α
∑m

k=3(maxi2,··· ,ik−1,ik+1,··· ,im∈〈n〉
∑n

i=1 maxik pi,i2,··· ,ik,··· ,im − 1)

1 − αγ
.

Remark 3.1. Since

m∑
k=3

(1 − min
i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

n∑
i=1

min
ik

pi,i2,··· ,ik,··· ,im) ≤ m − 2

and

1 − αγ ≥ 1 − α,

the new proposed error bounds (3.9) are sharper than the one in (3.2).

Fasino and Tudisco gave an error analysis of an alternate higher-order power method for a second order Markov chain 
(see Theorem 6.3 in [5]). By an analogous technique to the one in [5], the error analysis for the inverse iteration method 
(3.1) for multilinear PageRank is also given as follows.

Corollary 3.3. Let P be an order-3 stochastic tensor, and let v and x0 be stochastic vectors. If α(TL(P) + TR(P)) < 1, the inverse 
iteration algorithm (3.1) converges to the unique solution x of the multilinear PageRank problem (1.3) and

‖�xk‖1 ≤ εk
T ‖�x0‖1, (3.10)

where εT = αTR (P)
1−αTL (P)

, TL(P) = 1
2 max

j,k1,k2

n∑
i=1

|pi, j,k1 − pi, j,k2 | and TR(P) = 1
2 max

j1, j2,k

n∑
i=1

|pi, j1,k − pi, j2,k|.

Remark 3.2. As the same remarks as in Remark 2.7, we can’t compare the bound (3.10) with (3.8)-(3.9) in theory. However, 
we will give some numerical examples in Subsection 5.2 to show these bounds.

4. Perturbation analysis

Perturbation analysis plays a critical role in numerical analysis, which studies the variation of solutions for a given 
problem when the data is perturbed. Alternatively, here we consider perturbation bounds for the multilinear PageRank 
problem (1.3).

The perturbed multilinear PageRank is given as follows:

x̃ = αP̃ x̃m−1 + (1 − α)v, (4.1)

where x̃ is a perturbed stochastic vector of x, and let �x = x − x̃ and �P =P − P̃ . Then by (1.3) and (4.1) we have

�x = α(Pxm−1 − P̃ x̃m−1)

= α(Pxm−1 −P x̃m−1 +P x̃m−1 − P̃ x̃m−1)

= α[P(xm−1 − x̃m−1) + �P x̃m−1]. (4.2)

By (4.2) and Lemma 2.4 we have

�x = α[
m∑

k=2

(P (k)

xx̃ − J (k)

xx̃ )�x + �P x̃m−1],

and thus we obtain
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[I − α

m∑
k=2

(P (k)

xx̃ − J (k)

xx̃ )]�x = α�P x̃m−1. (4.3)

Under the uniqueness condition (2.15) one can show that the matrix I − α
∑m

k=2(A(k)

xx̃ − J (k)

xx̃ ) is nonsingular. In fact, we 
only need to prove α‖ 

∑m
k=2(P (k)

xx̃ − J (k)

xx̃ )‖1 < 1, this inequality can be guaranteed by the uniqueness condition (2.15).
Therefore by (4.3) we have

�x = α[I − α

m∑
k=2

(P (k)

xx̃ − J (k)

xx̃ )]−1�P x̃m−1. (4.4)

Furthermore, one can get that I − α
∑m

k=2 |P (k)

xx̃ − J (k)

xx̃ | is a nonsingular M-matrix. Thus we have

[I − α

m∑
k=2

|P (k)

xx̃ − J (k)

xx̃ |]−1 ≥ 0. (4.5)

Combining (4.4) and (4.5) together gives

|�x| ≤ α[I − α

m∑
k=2

|P (k)

xx̃ − J (k)

xx̃ |]−1|�P x̃m−1|. (4.6)

For an order-m dimension n tensor A, the 1-norm and ∞-norm of a tensor are defined as follows.

||A||1 = max
i2,i3,··· ,im∈〈n〉

n∑
i1=1

|ai1,i2,··· ,im |,

and

||A||∞ = max
i1∈〈n〉

∑
i2,i3,··· ,im∈〈n〉

|ai1,i2,··· ,im |.

Next we present the perturbation bound for the multilinear PageRank vectors.

Theorem 4.1. Let P and P̃ =P + �P be order-m stochastic tensors and �P be a perturbation of P .

(1) If α satisfies (2.15), for any solution x̃ of (4.1) the perturbation inequality (4.6) holds and the solution x̃ of (4.1) satisfies

‖�x‖1 ≤ α‖�P‖1

1 − αμ
, (4.7)

‖�x‖∞ ≤ α‖�P‖∞
1 − αν

(4.8)

and

‖�x‖∞ ≤ α‖(I − αPσ )−1‖∞‖�P‖∞, (4.9)

where Pσ is an n × n matrix with

(Pσ )i, j =
m∑

k=2

min
i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

|pi,i2,··· ,ik−1, j,ik+1,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

|. (4.10)

(2) If α satisfies (2.30), then for a solution x̃ of (4.1) we have

‖�x‖1 ≤ α‖�P‖1

1 − αω
. (4.11)

Proof. By (4.2), Lemma 2.5, and Lemma 2.6, we have

||�x||1 ≤ αμ||�x||1 + ||�P||1,
||�x||∞ ≤ αν||�x||∞ + ||�P||∞,

and



598 W. Li et al. / Applied Numerical Mathematics 156 (2020) 584–607
||�x||1 ≤ αω||�x||1 + ||�P||1.
If α satisfies (2.15) (or (2.30)), then (4.7) and (4.8) (or (4.11)) hold.
By (4.6), it is easy to check

‖�x‖∞ ≤ α‖[I − α

m∑
k=2

|P (k)

xx̃ − J (k)

xx̃ |]−1‖∞‖�P x̃m−1‖∞. (4.12)

Since

|P (k)

xx̃ − J (k)

xx̃ |i, j ≤ max
i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

|pi,i2,··· ,ik−1, j,ik+1,··· ,im − σ
(k)
i,i2,··· ,ik−1,ik+1,··· ,im

|,

we have

I − α

m∑
k=2

|P (k)

xx̃ − J (k)

xx̃ | ≥ I − αPσ ,

where Pσ is given by (4.10). By the uniqueness condition it is known that I − αPσ is a nonsingular M-matrix. Moreover 
(e.g., see [3]),

(I − α

m∑
k=2

|P (k)

xx̃ − J (k)

xx̃ |)−1 ≤ (I − αPσ )−1. (4.13)

Thus by (4.12) and (4.13) we have

‖�x‖∞ ≤ ‖(I − αPσ )−1‖∞‖�P x̃m−1‖∞. (4.14)

It is noted that

‖�P x̃m−1‖∞ ≤ ‖�P‖∞.

Hence by (4.14) we have

‖�x‖∞ ≤ ‖(I − αPσ )−1‖∞‖�P‖∞.

This proves (4.9). �
By taking the different set J (k)(k = 2, 3, · · · , m), we give the following corollary.

Corollary 4.1. Let P and P̃ =P + �P be order-m stochastic tensors and �P be a perturbation of P .

(1) If α satisfies (2.24), the solution x̃ of (4.1) satisfies

‖�x‖1 ≤ α‖�P‖1

1 − αμ̂1
, (4.15)

and

‖�x‖∞ ≤ α‖�P‖∞
1 − αν̂1

. (4.16)

(2) If α satisfies (2.25), the solution x̃ of (4.1) satisfies

‖�x‖1 ≤ α‖�P‖1

1 − α
∑m

k=2(1 − mini2,··· ,ik−1,ik+1,··· ,im∈〈n〉
∑n

i=1 minik pi,i2,··· ,ik,··· ,im)
. (4.17)

(3) If α satisfies (2.26), the solution x̃ of (4.1) satisfies

‖�x‖1 ≤ α‖�P‖1

1 − α
∑m

k=2(maxi2,··· ,ik−1,ik+1,··· ,im∈〈n〉
∑n

i=1 maxik pi,i2,··· ,ik,··· ,im − 1)
. (4.18)

(4) If α satisfies (2.15), for any solution x̃ of (4.1) the perturbation inequality (4.6) holds and the solution x̃ of (4.1) satisfies

‖�x‖∞ ≤ α‖(I − αPmin)−1‖∞‖�P‖∞ (4.19)

and
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‖�x‖∞ ≤ α‖(I − αPmax)
−1‖∞‖�P‖∞, (4.20)

where Pσ is an n × n matrix with

(Pmin)i, j =
m∑

k=2

min
i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

(pi,i2,··· ,ik−1, j,ik+1,··· ,im − min
ik

pi,i2,··· ,ik−1,ik,ik+1,··· ,im ) (4.21)

and

(Pmax)i, j =
m∑

k=2

min
i2,··· ,ik−1,ik+1,··· ,im∈〈n〉

(max
ik

pi,i2,··· ,ik−1,ik,ik+1,··· ,im − pi,i2,··· ,ik−1, j,ik+1,··· ,im ). (4.22)

Remark 4.1. For a stochastic tensor P , let

δm(P) = min
S⊂〈n〉{ min

i2,··· ,im∈〈n〉
∑
i∈S ′

pi,i2,··· ,im + min
i2,··· ,im∈〈n〉

∑
i∈S

pi,i2,··· ,im}.

In [10], Li, Cui and Ng proposed a 1-norm perturbation bound for the limiting distribution of the higher-order Markov chain. 
Since the multilinear PageRank problem (1.3) can be rewritten as (1.5), the following perturbation bound can be followed 
from the perturbation bound in [10]

||�x||1 ≤ ||�Pv||1
(m − 1)δm(Pv) + 2 − m

, (4.23)

where P̃v = αP̃ + (1 − α)V and �Pv =Pv − P̃v . Since

δm(Pv) = δm(αP + (1 − α)V)

= min
S⊂〈n〉{ min

i2,··· ,im∈〈n〉
∑
i∈S ′

[αpi,i2,··· ,im + (1 − α)vi] + min
i2,··· ,im∈〈n〉

∑
i∈S

[αpi,i2,··· ,im + (1 − α)vi]}

= min
S⊂〈n〉{ min

i2,··· ,im∈〈n〉
∑
i∈S ′

αpi,i2,··· ,im + min
i2,··· ,im∈〈n〉

∑
i∈S

αpi,i2,··· ,im } + (1 − α)

n∑
i=1

vi

= αδm(P) + 1 − α,

and

||�Pv||1 = ||αP + (1 − α)V − αP̃ − (1 − α)V||1 = α||�P||1,
the bound (4.23) can be formulated as

||�x||1 ≤ α||�P||1
1 − α(m − 1)(1 − δm(P))

. (4.24)

Remark 4.2. As shown as in Theorem 5.7 in [5], Fasino and Tudisco also proposed a 1-norm perturbation bound for the 
limiting distribution of the second order Markov chain. By analogous proofs to Theorem 5.7 in [5] and to (4.24), we can 
obtain the following bound (4.25).

If αT (P) < 1, then the multilinear PageRank vector x is unique, and for any solution x̃ of (4.1), we have

‖�x‖1 ≤ α||�P||1
1 − αT (P)

, (4.25)

where T (P) is defined in Remark 2.7. In order to compare these perturbation bounds we will give some numerical examples 
in Subsection 5.3.

5. Numerical examples

In this section, we show some numerical experiments to illustrate the effectiveness of the proposed theoretical results. 
All tests are conducted by MATLAB R2014a with a desktop computer (Dell optiplex 3020) which have the following config-
uration: Intel(R) Core(TM) i7-2600 CPU 3.40 GHz and 16.00G RAM.

Example 5.1. The first five examples (i)-(v) (e.g., see [9], [11], [12], [18]) are derived from the real world problems. Examples 
(i)-(iii) come from the DNA sequence data in [19] and [2]. Example (iv) is from the inter-personal relationship’s data. 
Example (v) comes from the occupational mobility of physicist’s data.
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(i)

P(:, :,1) =
⎛⎝ 0.6000 0.4083 0.4935

0.2000 0.2568 0.2426
0.2000 0.3349 0.2639

⎞⎠ ,P(:, :,2) =
⎛⎝ 0.5217 0.3300 0.4152

0.2232 0.2800 0.2658
0.2551 0.3900 0.3190

⎞⎠ ,

P(:, :,3) =
⎛⎝ 0.5565 0.3648 0.4500

0.2174 0.2742 0.2600
0.2261 0.3610 0.2900

⎞⎠ ;

(ii)

P(:, :,1) =
⎛⎝ 0.5200 0.2986 0.4462

0.2700 0.3930 0.3192
0.2100 0.3084 0.2346

⎞⎠ ,P(:, :,2) =
⎛⎝ 0.6514 0.4300 0.5766

0.1970 0.3200 0.2462
0.1516 0.2500 0.1762

⎞⎠ ,

P(:, :,3) =
⎛⎝ 0.5638 0.3424 0.4900

0.2408 0.3638 0.2900
0.1954 0.2938 0.2200

⎞⎠ ;

(iii)

P(:, :,1) =

⎛⎜⎜⎝
0.2091 0.2834 0.2194 0.1830
0.3371 0.3997 0.3219 0.3377
0.3265 0.0560 0.3119 0.2961
0.1723 0.2608 0.1468 0.1832

⎞⎟⎟⎠ , P(:, :,2) =

⎛⎜⎜⎝
0.1952 0.2695 0.2055 0.1690
0.3336 0.3962 0.3184 0.3342
0.2954 0.0249 0.2808 0.2650
0.1758 0.3094 0.1953 0.2318

⎞⎟⎟⎠ ,

P(:, :,3) =

⎛⎜⎜⎝
0.3145 0.3887 0.3248 0.2883
0.0603 0.1203 0.0451 0.0609
0.3960 0.1255 0.3814 0.3656
0.2293 0.3628 0.2487 0.2852

⎞⎟⎟⎠ , P(:, :,4) =

⎛⎜⎜⎝
0.1685 0.2429 0.1789 0.1425
0.3553 0.4180 0.3402 0.3559
0.3189 0.0484 0.3043 0.2885
0.1571 0.2907 0.1766 0.2131

⎞⎟⎟⎠ ;

(iv)

P(:, :,1) =
⎛⎝ 0.5810 0.2432 0.1429

0 0.4109 0.0701
0.4190 0.3459 0.7870

⎞⎠ , P(:, :,2) =
⎛⎝ 0.4708 0.1330 0.0327

0.1341 0.5450 0.2042
0.3951 0.3220 0.7631

⎞⎠ ,

P(:, :,3) =
⎛⎝ 0.4381 0.1003 0

0.0229 0.4338 0.0930
0.5390 0.4659 0.9070

⎞⎠ ;

(v)

P(:, :,1) =
⎛⎝ 0.9000 0.3340 0.3106

0.0690 0.6108 0.0754
0.0310 0.0552 0.6140

⎞⎠ , P(:, :,2) =
⎛⎝ 0.6700 0.1040 0.0805

0.2892 0.8310 0.2956
0.0408 0.0650 0.6239

⎞⎠ ,

P(:, :,3) =
⎛⎝ 0.6604 0.0945 0.0710

0.0716 0.6133 0.0780
0.2680 0.2922 0.8501

⎞⎠ ;

Example 5.2. By the function rand of MATLAB, some order-3 dimension n stochastic tensors are generated.

We also give the numerical analysis for sparse tensors. The following two types of sparse tensors are used for testing the 
corresponding bounds.

Example 5.3. This example is given by Test 4 of [11] (or see [12]). Let � be a directed graph with node set V = {1, 2, ...n}. 
Then (i, j) is said to be an arc of �. Let P be the subset of V for which arbitrary two different nodes i, j, (i, j) is an arc in 
�, and let D be the set of all dangling nodes in V , i.e., for any i ∈D, both (i, j) and ( j, i) are not arcs of � for any j ∈V
(e.g., see [6], [8], [14], [13], [15] and [16]). By np (np ≥ 2) we denote the number of nodes in the subset P . Suppose that a 
directed graph � is given by V =D

⋃
P . Then one can construct a corresponding nonnegative tensor A as follows:

ai1,i2,··· ,im =
⎧⎨⎩

υi1,i2,··· ,im ,

0,
1 ,

i1 �= i2, ik �= ik+1, i1, ik ∈ P , k = 2, · · · ,m − 1,

i1 = i2 (or i1 ∈D), ik �= ik+1, ik ∈ P ,k = 2, · · · ,m − 1,

else,
n
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Table 5.1
Compare the proposed uniqueness conditions with the existing ones for (iv)-(v) in Example 5.1.

Example 1/μ̂1 1/̂ν1 (2.25) (2.26) (2.30) (2.34) (2.35) (2.36) (9) in [11] (11) in [11] (12) in [11] 1/T (P) in [5]

(iv) 1.709402 1.709402 1.474926 0.968054 0.854701 0.854701 0.854701 0.854701 0.584454 0.737463 0.484027 1.709401
(v) 1.206127 1.206127 1.206127 0.632071 0.603136 0.603136 0.603136 0.603136 0.414766 0.603136 0.316056 1.206273

Table 5.2
Compare the proposed uniqueness conditions with the existing ones by Example 5.2.

n 1/μ̂1 1/̂ν1 (2.25) (2.26) (2.30) (2.34) (2.35) (2.36) (9) in [11] (11) in [11] (12) in [11] 1/T (P) in [5]

3 0.743089 0.743089 0.724631 0.587861 0.935437 0.635534 0.635534 0.635534 0.505332 0.562953 0.458411 0.743089
5 0.722758 0.685285 0.624098 0.475379 1.051038 0.644482 0.644482 0.644482 0.474819 0.587186 0.39855 0.917655
8 0.808686 0.833864 0.588759 0.559018 0.969624 0.67851 0.67851 0.67851 0.454491 0.512925 0.40801 0.917098
10 0.751058 0.75722 0.563651 0.443124 0.86204 0.726348 0.726348 0.726348 0.387248 0.508496 0.312689 0.805905
12 0.751859 0.784676 0.55218 0.460356 0.804882 0.737056 0.737056 0.737056 0.404842 0.509015 0.336064 0.806575

Table 5.3
Compare the proposed uniqueness conditions with the existing ones by Example 5.2.

n 1/̂ν1 (2.25) (2.26) (9) in [11] (11) in [11] (12) in [11]

10 0.712019 0.595809 0.457731 0.403076 0.519549 0.329262
100 0.849598 0.507505 0.444854 0.427650 0.500106 0.373533
200 0.876944 0.504208 0.451571 0.440914 0.500023 0.394302
300 0.891712 0.502825 0.457447 0.448843 0.500012 0.407174
500 0.910065 0.501740 0.462457 0.456448 0.500004 0.419873
800 0.921467 0.501115 0.469030 0.464485 0.500002 0.433679
1000 0.929432 0.500911 0.471235 0.466742 0.500001 0.437632

Table 5.4
Compare the proposed uniqueness conditions with the existing ones by Example 5.3.

np 1/̂ν1 (2.25) (2.26) (9) in [11] (11) in [11] (12) in [11]

80 0.586560 0.504905 0.286232 0.333812 0.5 0.250539
100 0.651050 0.503989 0.302507 0.348820 0.5 0.267837
150 0.796860 0.502803 0.362419 0.389783 0.5 0.319381
180 0.859840 0.502278 0.408183 0.417020 0.5 0.357662

Fig. 5.1. Compare the proposed uniqueness conditions with the existing ones in [11].
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Fig. 5.2. Compare the proposed uniqueness conditions with the existing ones in [11].

Fig. 5.3. Compare the proposed error bound with (3.2) in [6] and (3.10) by (iv) in Example 5.1.

where υi1,i2,··· ,im ∈ (0, 1), and then normalizing the entries with pi1,i2,··· ,im = ai1,i2,··· ,im∑n
i1=1 ai1,i2,··· ,im

generates a stochastic tensor 

P = (pi1,i2,··· ,im ). It is noted that in the following numerical test, υi1,i2,··· ,im is taken in (0, 1) randomly and independently.

Example 5.4. Let � denote the density of zero entries for a tensor. If � = 0 or � = 1, P is a positive tensor or a zero tensor 
respectively. Test sparse tensors with different � are generated by the function randsample of MATLAB.

5.1. Uniqueness conditions

Firstly, we compare the proposed uniqueness conditions with the existing ones in [6] and [11]. For (i)-(iii) in Example 5.1, 
the uniqueness of the solution for the multilinear PageRank model (1.3) has been guaranteed if α ∈ (0, 1), but not for 
examples (iv) and (v). Therefore, we only report the numerical results in Table 5.1 for these two examples. It is shown that 
the proposed uniqueness conditions and the result in [5] are much better than other ones, and both the conditions (2.24)
and (2.25) show that these two examples also have the unique solution for arbitrary α in (0, 1).

We also test the numerical results by Example 5.2. For a large dimension n, we only report the numerical results of the 
conditions 1/̂ν , (2.25) and (2.26). These results are reported in Tables 5.2 and 5.3. In Tables 5.2 and 5.1, we can find the 
proposed bounds and the bound given in [5] are sharper, but neither is the best.

In Example 5.3, we take n = 20, and np = 3, 4, ...18, respectively, and compute the proposed uniqueness conditions 
and the existing ones, which are showed in Fig. 5.1. It is clear that the condition 1/μ̂1 performs the best. The proposed 
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Fig. 5.4. Compare the proposed error bound with (3.2) in [6] and (3.10) by (v) in Example 5.1.

Fig. 5.5. Compare the proposed error bound with (3.2) in [6] by Example 5.3 if np = 5.

Fig. 5.6. Compare the proposed error bound with (3.2) in [6] by Example 5.3 if np = 10.
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Table 5.5
Perturbation bounds on the 1-norm for (i)-(v) in Example 5.1 with different α.

Example α bound (4.11) bound (4.15) bound (4.17) bound (4.18) bound (4.24)

(i) 0.80 1.31E-06 9.50E-07 9.50E-07 9.50E-07 1.31E-06
0.90 1.63E-06 1.11E-06 1.11E-06 1.11E-06 1.63E-06
0.95 1.82E-06 1.19E-06 1.19E-06 1.19E-06 1.82E-06
0.99 1.98E-06 1.26E-06 1.26E-06 1.26E-06 1.98E-06
0.999 2.02E-06 1.27E-06 1.27E-06 1.27E-06 2.02E-06

(ii) 0.80 1.10E-06 8.79E-07 8.79E-07 8.79E-07 1.45E-06
0.90 1.36E-06 1.04E-06 1.04E-06 1.04E-06 1.95E-06
0.95 1.51E-06 1.13E-06 1.13E-06 1.13E-06 2.27E-06
0.99 1.64E-06 1.20E-06 1.20E-06 1.20E-06 2.59E-06
0.999 1.68E-06 1.22E-06 1.22E-06 1.22E-06 2.67E-06

(iii) 0.80 2.15E-06 1.30E-06 1.51E-06 1.30E-06 2.24E-06
0.90 3.22E-06 1.64E-06 1.98E-06 1.64E-06 3.44E-06
0.95 4.08E-06 1.83E-06 2.28E-06 1.83E-06 4.44E-06
0.99 5.07E-06 2.01E-06 2.55E-06 2.01E-06 5.63E-06
0.999 5.35E-06 2.05E-06 2.62E-06 2.05E-06 5.98E-06

(iv) 0.80 1.91E-05 2.30E-06 2.67E-06 7.04E-06 1.91E-05
0.90 - 2.90E-06 3.52E-06 1.95E-05 -
0.95 - 3.26E-06 4.08E-06 7.78E-05 -
0.99 - 3.59E-06 4.60E-06 - -
0.999 - 3.67E-06 4.73E-06 - -

(v) 0.80 - 3.36E-06 3.36E-06 - -
0.90 - 5.02E-06 5.02E-06 - -
0.95 - 6.33E-06 6.33E-06 - -
0.99 - 7.82E-06 7.82E-06 - -
0.999 - 8.24E-06 8.24E-06 - -

Table 5.6
Perturbation bounds on the ∞-norm for (i)-(v) with different α.

Example α bound (4.16) bound (4.19) bound (4.20)

(i) 0.80 1.84E-06 1.96E-06 2.01E-06
0.90 2.14E-06 2.31E-06 2.35E-06
0.95 2.31E-06 2.49E-06 2.54E-06
0.99 2.44E-06 2.65E-06 2.69E-06
0.999 2.47E-06 2.68E-06 2.72E-06

(ii) 0.80 2.13E-06 2.30E-06 2.37E-06
0.90 2.52E-06 2.74E-06 2.83E-06
0.95 2.74E-06 2.98E-06 3.08E-06
0.99 2.91E-06 3.18E-06 3.29E-06
0.999 2.95E-06 3.23E-06 3.34E-06

(iii) 0.80 3.36E-06 5.26E-06 3.92E-06
0.90 4.02E-06 6.75E-06 4.79E-06
0.95 4.37E-06 7.65E-06 5.28E-06
0.99 4.68E-06 8.46E-06 5.70E-06
0.999 4.75E-06 8.65E-06 5.80E-06

(iv) 0.80 3.91E-06 4.73E-06 1.03E-05
0.90 4.94E-06 6.28E-06 2.15E-05
0.95 5.56E-06 7.27E-06 4.00E-05
0.99 6.12E-06 8.22E-06 1.06E-04
0.999 6.25E-06 8.45E-06 1.63E-04

(v) 0.80 6.80E-06 7.27E-06 9.47E-06
0.90 1.01E-05 1.11E-05 6.56E-06
0.95 1.28E-05 1.43E-05 5.82E-06
0.99 1.58E-05 1.80E-05 5.37E-06
0.999 1.66E-05 1.91E-05 5.29E-06

conditions are all better than the existing ones except 1/̂ν1 if np ≤ 8. We also report the numerical results in Table 5.4 for 
n = 200 and np = 80, 100, 150 and 180. The condition 1/̂ν1 relatively performs well.

For Example 5.4, we generate order-3 dimension 100 tensors with the density � from 0.1 to 0.48 at the interval of 0.01
respectively. The numerical results are shown in Fig. 5.2. From Table 5.4 and Fig. 5.2, it is seen that the condition 1/̂ν1
always performs better than other ones.
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Table 5.7
Perturbation bounds on the 1-norm via Example 5.2.

n α bound (4.11) bound (4.15) bound (4.17) bound (4.18) bound (4.24) bound (4.25)

3 0.45 7.24E-07 8.69E-07 9.91E-07 8.87E-07 9.06E-07 8.69E-07
0.75 2.15E-06 4.22E-06 1.05E-05 4.68E-06 5.28E-06 4.22E-06
0.80 2.63E-06 6.61E-06 1.09E-04 7.83E-06 9.63E-06 6.61E-06

5 0.45 1.01E-06 1.01E-06 1.30E-06 1.74E-06 1.10E-06 8.81E-07
0.75 7.26E-06 6.90E-06 - - 1.72E-05 3.48E-06
0.80 1.72E-05 1.53E-05 - - - 4.82E-06

8 0.45 1.09E-06 1.19E-06 2.39E-06 4.32E-06 1.22E-06 1.11E-06
0.75 8.86E-06 2.71E-05 - - 9.46E-05 1.08E-05
0.80 2.68E-05 - - - - 6.00E-05

10 0.45 1.05E-06 1.26E-06 2.81E-06 4.51E-06 1.46E-06 1.11E-06
0.75 6.18E-06 2.428E-04 - - - 8.85E-06
0.80 1.14E-05 - - - - 2.57E-05

12 0.45 1.12E-06 1.34E-06 2.91E-06 - 1.48E-06 1.18E-06
0.75 8.25E-06 - - - - 1.28E-05
0.80 2.03E-05 - - - - 1.681E-04

Table 5.8
Perturbation bounds on the ∞-norm for Example 5.2.

n α bound (4.16) bound (4.19) bound (4.20)

3 0.45 1.51E-06 1.18E-06 9.96E-07
0.75 4.89E-06 2.53E-06 1.82E-06
0.80 6.19E-06 2.83E-06 1.97E-06

5 0.45 4.41E-06 2.00E-06 2.07E-06
0.75 3.78E-03 3.64E-06 3.88E-06
0.80 - 3.94E-06 4.22E-06

8 0.45 7.45E-06 3.02E-06 4.28E-06
0.75 - 5.52E-06 9.73E-06
0.80 - 5.97E-06 1.09E-05

10 0.45 9.18E-06 4.09E-06 6.50E-06
0.75 - 7.53E-06 1.57E-05
0.80 - 8.17E-06 1.78E-05

12 0.45 9.23E-06 4.19E-06 4.97E-06
0.75 2.45E-04 7.42E-06 9.84E-06
0.80 - 8.00E-06 1.08E-05

5.2. Error bounds

In this subsection, we compare the error bound based on the proposed uniqueness conditions with the existing bound 
ε in Theorem 3.1. We give numerical analysis for Example 5.1 (iv) and (v). Taking the value of α form 0.1 to 0.99 in the 
interval of 0.01, we drew Figs. 5.3 and 5.4. It can be seen that the proposed error bounds ε̂ in Corollary 3.1 and ε , ε̌ in 
Corollary 3.2 are always better than (3.2) in [6] and the proposed error bounds ε̂ and ε are always sharper than the bound 
εT in Corollary 3.3.

Taking n = 12 and np = 5 and 10 in Example 5.3, we also drew Figs. 5.5 and 5.6 to show the error bound for these two 
examples. It is seen that the proposed error bounds are sharper than the existing bounds except the bound (3.9).

5.3. Perturbation bounds

Next, we give numerical experiments for the proposed perturbation bounds. For a given stochastic tensor P , let S be 
randomly generated by Matlab such that∑

i

si,i2,··· ,im = 0,∀i, i2, · · · , im ∈ 〈n〉 (5.1)

with si,i2,··· ,im ∈ (−1, 1). Therefor P̃ = P + θS is still a stochastic tensor if θ is small enough. Let �P = θS , where θ is a 
real number.

Firstly, for Example 5.1, taking θ = 10−6 and α = 0.80, 0.90, 0.95, 0.99 and 0.999 respectively, the proposed bounds are 
computed and listed in Tables 5.5 and 5.6. The proposed bounds on the ∞-norm perform well in all cases. For the bounds 
with the 1-norm, (4.11), (4.18) and (4.24) fail if α is close to 1. The bounds (4.15) and (4.17) are always valid for these 
examples.
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Table 5.9
Perturbation bounds on the 1-norm for Example 5.3.

n α bound (4.11) bound (4.15) bound (4.17) bound (4.18) bound (4.24)

12 0.25 5.23E-07 5.60E-07 6.94E-07 1.72E-06 5.72E-07
0.45 1.42E-06 1.73E-06 4.30E-06 - 1.85E-06
0.55 2.32E-06 3.29E-06 - - 3.75E-06
0.65 4.14E-06 8.79E-06 - - 1.31E-05

0.75 9.80E-06 - - - -
15 0.25 4.79E-07 5.13E-07 6.70E-07 1.25E-06 5.62E-07

0.45 1.23E-06 1.48E-06 4.55E-06 - 1.97E-06
0.55 1.90E-06 2.58E-06 - - 4.56E-06
0.65 3.06E-06 5.35E-06 - - 5.26E-05
0.75 5.56E-06 2.49E-05 - - -
0.85 1.48E-05 - - - -

18 0.25 3.74E-07 4.02E-07 5.39E-07 7.48E-07 4.18E-07
0.45 9.20E-07 1.11E-06 3.69E-06 - 1.24E-06
0.55 1.38E-06 1.85E-06 - - 2.23E-06
0.65 2.10E-06 3.44E-06 - - 5.02E-06
0.75 3.40E-06 9.31E-06 - - 6.08E-05
0.85 6.49E-06 - - - -
0.95 2.29E-05 - - - -
0.99 1.74E-04 - - - -

Table 5.10
Perturbation bounds on the ∞-norm for Example 5.3.

n α bound (4.16) bound (4.19) bound (4.20)

12 0.25 6.04E-06 4.22E-06 5.75E-06
0.45 2.12E-05 8.42E-06 1.37E-05
0.55 4.91E-05 1.09E-05 1.90E-05
0.65 5.76E-04 1.36E-05 2.52E-05
0.75 - 1.67E-05 3.26E-05
0.85 - 2.01E-05 4.12E-05
0.95 - 2.41E-05 5.11E-05
0.99 - 2.58E-05 5.54E-05
0.999 - 2.62E-05 5.64E-05

15 0.25 6.41E-06 4.20E-06 4.76E-06
0.45 2.38E-05 8.05E-06 9.90E-06
0.55 6.18E-05 1.02E-05 1.30E-05
0.65 - 1.24E-05 1.64E-05
0.75 - 1.48E-05 2.01E-05
0.85 - 1.74E-05 2.43E-05
0.95 - 2.02E-05 2.88E-05
0.99 - 2.13E-05 3.07E-05
0.999 - 2.16E-05 3.12E-05

18 0.25 6.69E-06 4.61E-06 5.25E-06
0.45 2.04E-05 8.57E-06 1.07E-05
0.55 3.80E-05 1.06E-05 1.40E-05
0.65 9.53E-05 1.28E-05 1.75E-05
0.75 - 1.50E-05 2.14E-05
0.85 - 1.73E-05 2.57E-05
0.95 - 1.97E-05 3.05E-05
0.99 - 2.07E-05 3.25E-05
0.999 - 2.09E-05 3.29E-05

We also generate some stochastic tensors such as in Example 5.2. The perturbation stochastic tensors are also produced 
via (5.1) with θ = 10−6. The corresponding numerical results are reported in Tables 5.7 and 5.8. Among all estimates, the 
bound (4.11) or (4.25) perform best with the 1-norm for these examples. For the ∞-norm case, the bound (4.19) is sharper 
than bounds (4.16) and (4.20).

Analogously, taking np = 12, 15 and 18, we give the numerical perturbation bounds for Example 5.3, respectively. The 
corresponding bounds are listed in Tables 5.9 and 5.10 which is seen that the bound (4.11) perform best with the 1-norm 
for these examples and the numerical results for the ∞-norm case are consistent with the ones appeared in Example 5.2.

6. Concluding remarks

The solution for the multilinear PageRank problem (1.3) is characterized by the corresponding PageRank vector. However, 
the verification of the uniqueness of the PageRank vector is cumbersome and often associates with the high computational 
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cost. Recent studies suggest to develop some computable bounds as the uniqueness indicators. Current available results in 
the literature appear to be not tight enough that may prevent us from getting the desirable solutions. In this paper, we 
develop several uniqueness conditions of the solution for the multilinear PageRank problem with feasible computations, 
which improve the existing ones appeared in [11] and [6]. In addition, the error bound for the inverse iteration is given 
and is more suitable than the one given in [6]. Moreover, the perturbation bounds for the multilinear PageRank vector in 
different norms are derived, which characterizes the sensitivity under our framework.

Acknowledgements

The authors would like to thank the anonymous referee for his/her very helpful suggestions that lead to the improvement 
of this manuscript.

References

[1] A.R. Benson, D.F. Gleich, L.H. Lim, The spacey random walk: a stochastic process for higher-order data, SIAM Rev. 59 (2) (2017) 321–345.
[2] A. Berchtold, A.E. Raftery, The mixture transition distribution model for high-order Markov chains and non-Gaussian time series, Stat. Sci. 7 (2002) 

328–356.
[3] A. Bremab, J.R. Plemmons, Nonnegative Matrices in the Mathematical Science, SIAM, Philadelphia, 1994.
[4] K.C. Chang, T. Zhang, On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors, J. Math. Anal. Appl. 408 

(2013) 525–540.
[5] D. Fasino, F. Tudisco, Higher-order ergodicity coefficients for stochastic tensors, arXiv preprint, arXiv:1907.04841, 2019.
[6] D. Gleich, L.H. Lim, Y. Yu, Multilinear PageRank, SIAM J. Matrix Anal. Appl. 36 (2015) 1409–1465.
[7] S. Hu, L. Qi, Convergence of a second order Markov chain, Appl. Math. Comput. 241 (2014) 183–192.
[8] A.N. Langville, C.D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine Rankings, Princeton University Press, 2011.
[9] W. Li, M.K. Ng, On the limiting probability distribution of a transition probability tensor, Linear Multilinear Algebra 62 (2014) 362–385.

[10] W. Li, L.B. Cui, M.K. Ng, The perturbation bound for the Perron vector of a transition probability tensor, Numer. Linear Algebra Appl. 20 (2013) 
985–1000.

[11] W. Li, D. Liu, M.K. Ng, S.W. Vong, The uniqueness of multilinear PageRank vectors, Numer. Linear Algebra Appl. 24 (6) (2017) e2107.
[12] D. Liu, W. Li, S.W. Vong, Relaxation methods for solving the tensor equation arising from the higher-order Markov chains, Numer. Linear Algebra Appl. 

26 (5) (2019) e2260.
[13] X. Li, M.K. Ng, Y. Ye, HAR: hub, authority and relevance scores in multi-relational data for query search, in: Proceedings of the 2012 SIAM International 

Conference on Data Mining, Society for Industrial and Applied Mathematics, 2012, pp. 141–152.
[14] X. Li, M.K. Ng, Y. Ye, MultiComm: finding local community structure in multi-dimensional networks, IEEE Trans. Knowl. Data Eng. 26 (2014) 929–941.
[15] M.K. Ng, X. Li, Y. Ye, MultiRank: co-ranking for objects and relations in multi-relational data, in: Proceedings of the 17th ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, ACM, 2011, pp. 1217–1225.
[16] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation ranking: bringing order to the web, Technical Report, Stanford University, 1999.
[17] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput. 40 (2005) 1302–1324.
[18] A.E. Raftery, A model for high-order Markov chains, J. R. Stat. Soc., Ser. B, Methodol. 47 (1985) 528–539.
[19] A. Raftrey, S. Tavaré, Estimation and modelling repeated patterns in high order Markov chains with the mixture transition distribution model, Appl. 

Stat. 43 (1994) 179–199.

http://refhub.elsevier.com/S0168-9274(20)30166-5/bibF2C9B81443E76C8C960712982CF846BCs1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibE40CF9830D93445BC95053BC95EA5B9As1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibE40CF9830D93445BC95053BC95EA5B9As1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bib96D4CDFF8ED57E93E3B3D843CFFE3AF7s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibBF9017D04F72C1B5BA407971FBF61289s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibBF9017D04F72C1B5BA407971FBF61289s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibEFF7D5DBA32B4DA32D9A67A519434D3Fs1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibDA89166FE9C473175E1AEB67D70A35FDs1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibEBFC26A474835C1AD7C18F712064485Fs1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibC822C1B63853ED273B89687AC505F9FAs1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bib5BC233B67AEBC26A0119DE3FF40BE608s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bib49AB0CC821BACFE40541C59560717487s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bib49AB0CC821BACFE40541C59560717487s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibC04DB6F4331D0E99C74A91C2482F3BA7s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibA1CBD0E8D2357A66243FE06E9C4E392Fs1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibA1CBD0E8D2357A66243FE06E9C4E392Fs1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bib7CE84B229B752A8ACEF67C11A6325F49s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bib7CE84B229B752A8ACEF67C11A6325F49s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bib007F0B224A0329AF3974234297CF9962s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibB9C45B9B63935EBD45015865D5379132s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibB9C45B9B63935EBD45015865D5379132s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bib8C325C32067AB2C35671CFD658699605s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bibE12D1AA3D93AC637FE22A74CE8285CF0s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bib200979A2B32F07A78AE6E56B80B59F92s1
http://refhub.elsevier.com/S0168-9274(20)30166-5/bib200979A2B32F07A78AE6E56B80B59F92s1

	Multilinear PageRank: Uniqueness, error bound and perturbation analysis
	1 Introduction
	2 The uniqueness conditions
	2.1 The uniqueness conditions based on the new parameter method
	2.2 Choices of the parameters
	2.3 The uniqueness conditions based on the optimal set method and the parameter method

	3 Convergence analysis for the inverse iteration algorithm
	4 Perturbation analysis
	5 Numerical examples
	5.1 Uniqueness conditions
	5.2 Error bounds
	5.3 Perturbation bounds

	6 Concluding remarks
	Acknowledgements
	References


