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Minimizing Negative Transfer of Knowledge in
Multivariate Gaussian Processes: A Scalable

and Regularized Approach
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Abstract—Recently there has been an increasing interest in the multivariate Gaussian process (MGP) which extends the Gaussian
process (GP) to deal with multiple outputs. One approach to construct the MGP and account for non-trivial commonalities amongst
outputs employs a convolution process (CP). The CP is based on the idea of sharing latent functions across several convolutions.
Despite the elegance of the CP construction, it provides new challenges that need yet to be tackled. First, even with a moderate
number of outputs, model building is extremely prohibitive due to the huge increase in computational demands and number of
parameters to be estimated. Second, the negative transfer of knowledge may occur when some outputs do not share commonalities. In
this paper we address these issues. We propose a regularized pairwise modeling approach for the MGP established using CP. The key
feature of our approach is to distribute the estimation of the full multivariate model into a group of bivariate GPs which are individually
built. Interestingly pairwise modeling turns out to possess unique characteristics, which allows us to tackle the challenge of negative
transfer through penalizing the latent function that facilitates information sharing in each bivariate model. Predictions are then made
through combining predictions from the bivariate models within a Bayesian framework. The proposed method has excellent scalability
when the number of outputs is large and minimizes the negative transfer of knowledge between uncorrelated outputs. Statistical
guarantees for the proposed method are studied and its advantageous features are demonstrated through numerical studies.

Index Terms—Negative Transfer, Multivariate Gaussian process, Convolution process, Pairwise models, Regularization.
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1 INTRODUCTION

GAUSSIAN process regression models are widely used
in several fields due to their desirable properties, such

as flexibility, ease of implementation, uncertainty quantifica-
tion and natural Bayesian interpretation [1]. Recently, there
has been increasing interest in extending GP models to deal
with multivariate outputs (also known as cokriging) due
to their prevalence in many applications. For example, in
manufacturing plants, hard to sample performance indica-
tors can be predicted from other correlated and cheap to
sample indicators [2]. Also, the future evolution of sensor
signals from in-service devices can be predicted using pre-
viously observed signals from similar devices in the histor-
ical database [3]. Other applications arise in geostatistics,
wireless networks and computer experiments.

The multivariate Gaussian process draws its roots from
multitask learning. When multiple datasets from related
outputs exist, integrative analysis can be advantageous
relative to learning outputs independently. This integra-
tive analysis, which leverages commonalities among related
outputs to improve prediction and learning accuracy is
referred to as multitask learning [4], [5]. The key feature
in multitask learning is to provide a shared representation
between training and testing outputs to allow the induc-
tive transfer of knowledge. From an MGP perspective, this
transfer of knowledge is achieved through specifying a valid
positive semidefinite covariance function that models the
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dependencies of all data points within an output and across
different outputs [6].

Traditionally, in MGP models, outputs are jointly mod-
eled with a separable covariance structure, i.e. correlation
over the same the input space is separable from between-
output correlation [7]–[9]. In such methods, the separable
covariance function is of the form t × cov(x,x′) where t
is the between-output covariance matrix and cov(., .) is a
covariance function over inputs x ∈ RD, the same for all
outputs. This assumption is appealing due to the simplified
covariance structure and significant reduction of model
parameters, however it restricts all marginal GP’s for all
outputs to share the same set of covariance parameters
defined in cov(., .).

On the other hand, nonseparable covariance functions
allow outputs to possess both shared and unique features,
as different outputs share information through different
covariance parameters, therefore, accounting for non-trivial
commonalities in the data. Recent work on nonseparable
covariance functions are mainly based on convolution pro-
cesses (CP) [10]–[12]. Earlier work, is known in the geo-
statistics literature as the linear model of coregionalization
(LMC) [13] and can be seen as a special case of the CP
framework [14]. The CP is based on the idea that a GP
can be constructed by convolving a latent function with a
smoothing kernel [15]. Thus, if each output is expressed as a
convolution of a latent function drawn from a GP, and if we
share these latent functions across multiple convolutions,
then, multiple outputs can be expressed as a jointly dis-
tributed GP [16], [17]. As referred to by [18], the key feature
of the CP approach is facilitating the non-instantaneous
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mixing of base processes, where, for instance, each output
can be described using its own length-scale, which gives an
added flexibility for describing the data.

Despite the elegance of the MGP established using CP,
denoted as MGCP, model building is extremely prohibitive
and often impractical even with a moderate number of out-
puts. Further, it is not uncommon for modern engineering
systems to have a large number of outputs [19], [20]. For
instance, when considering qualitative factors, the number
of outputs in computer experiments increases dramatically
based on all potential combinations [21]. This leads to a set
of considerable challenges.

• Challenge 1 (Computational complexity): The fact that
the full covariance function of the joint GP should
be considered results in significant computational
burden and numerical issues. This challenge, in fact,
is a direct consequence of accounting for multiple
outputs and has been recently tackled in some litera-
ture [18], [22].

However, two other challenges arise with the CP construc-
tion and have yet to be tackled.

• Challenge 2 (High dimensional parameter space — Number
of parameters): The flexibility of the CP is based on
providing different covariance parameters for differ-
ent output levels, therefore, even for a moderate-
scale problem, the number of parameters in the co-
variance function can easily reach hundreds or even
thousands. This will lead to significant difficulties in
solving the optimization problem to find the maxi-
mum likelihood estimator (MLE) for the parameters,
specifically under non-convex and highly nonlinear
settings.

• Challenge 3 (Negative transfer of knowledge): The integra-
tive analysis of multiple outputs implicitly assumes
that these outputs share some commonalities. How-
ever, if this does not hold, negative transfer of knowl-
edge may occur, which leads to decreased perfor-
mance relative to learning tasks separately [23]. This
is specifically important in the CP approach which,
unlike separable approaches, implicitly implies that
functions have unique features. Even though nega-
tive transfer is a very important issue, no research
has handled this issue in the context of MGP models.

In the current literature, nonseparable modeling using
MGCP is prohibitive even for a moderate number of out-
puts, due to challenges 1 and 2. Also, no literature has
addressed the negative transfer of knowledge (challenge 3) in
MGCP that results from the integrative analysis of outputs
that share no commonalities. This article aims to simul-
taneously overcome these challenges through proposing a
regularized pairwise modeling approach for MGCP models.
The proposed method has excellent scalability when the
number of outputs is large and minimizes the negative
transfer of knowledge between uncorrelated outputs. Our
approach is based on breaking down the high dimensional
MGCP into a group of bivariate GP models, where the
shared latent function parameters that facilitate the sharing
of information in each bivariate model are penalized to

prevent information sharing between outputs with no com-
monalities. Consistency in estimation and variable selection
are then established. In summary, our contributions can be
summarized as follows.

1) We introduce the notion of negative transfer in
MGP’s and provide the necessary and sufficient
conditions for an MGP to collapse into independent
GPs.

2) We provide a generic pairwise framework that ad-
dresses negative transfer while reducing the pa-
rameter space and computational complexity. Our
approach

a) scales to arbitrarily large datasets by paral-
lelization, where each pairwise model can
be estimated separately with only a small
number of parameters.

b) is generic regarding the choice of kernel and
allows any sparse MGP approximation to be
applied within.

3) We prove the consistency of our method in both
selection (an oracle property) and estimation. Here
variable selection implies selecting whether func-
tions should be predicted independently or not .

Empirical evidence demonstrates that the proposed
method can: (1) achieve similar prediction performance as
the full multivariate approach when the output dimension
is low, (2) outperform the full multivariate approach, with
only a fraction of its computational needs, when the out-
put dimension is high, (3) outperform the full multivariate
approach when some functions are uncorrelated even when
the output dimension is low.

The rest of the article is organized as follows. Section 2
provides some preliminaries related to the CP construction.
In Section 3, we motivate the proposed method through
expanding on the proposed challenges. Section 4 introduces
our regularized pairwise modeling approach and proves
some corresponding statistical properties. The advanta-
geous features of our proposed method are then demon-
strated through benchmarking our method with other refer-
ence methods in Section 5. Finally, Section 6 concludes this
article with discussions. Technical details are deferred to the
appendix.

2 PRELIMINARIES

Consider a set of N output functions y(x) =
[y1(x), y2(x), ..., yN (x)]> from inputs x lying in some input
space X ⊂ RD. The MGP is defined as

Y(x) =


y1(x)
y2(x)

...
yN (x)

 =


f1(x)
f2(x)

...
fN (x)

+


ε1(x)
ε2(x)

...
εN (x)

 = F(x) + E(x),

(1)
where the functionF : RD → RN is zero mean multivariate
process with covariance covfij(x,x

′) = covfij
(
fi(x), fj(x

′)
)

for all x,x′ ∈ X , i, j ∈ I = {1, 2, ..., N} and εi(x) ∼
N (0, σ2

i ) represents additive noise. For the ith output the
observed data is denoted as Di = {(yi,Xi)}, where
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yi = [y1i , y
2
i ..., y

pi
i ]>, yci := yi(xic), Xi = [xi1, ...,xipi ]

>

and pi represents the number of observations for output i.
Also, denote X = [X>i , ...,X

>
N ]> to be the matrix of all

input points. We do not restrict Xi = Xj . The formulation
in (1) is a general decomposition of an MGP and will reduce
to a univariate GP if N = 1.

General Multivariate GP Setting

1

Interpolate Extrapolate

Fig. 1. Illustration of General MGP Setting

As shown in Figure 1, the underlying principle of the
MGP is to borrow strength from a sample of curves, through
the shared representation in (1) which enables integrative
analysis, in order to predict individual outputs. For instance,
assuming P =

∑
pi, at any new input x0 ∈ X belonging

to output i ∈ I the joint distribution of the observed values
from all outputs and the target function value at the test
location y0i = yi(x0) is given by

(
y
y0i

∣∣∣∣X) ∼ N
(

0P+1,

[
Cf ,f + Σ Cf ,f0

i

C>
f ,f0

i
Cf0

i ,f
0
i

+ σ2
i

])
,

(2)
where y = [y>1 ,y

>
2 , ...,y

>
N ]> are the noisy observed

targets corresponding to the latent function values
f = [f>1 ,f

>
2 , ...,f

>
N ]>, f ci := fi(xic) such that

fi = fi(Xi), Cf ,f ∈ RP×P is the covariance
matrix relating all input points for all outputs with
covfij(x,x

′), Σ = diag[σ2
1Ip1 , ..., σ

2
NIpN ] is a block

diagonal matrix in which the ith block corresponds
to a pi × pi matrix, Cf ,f0

i
= [C>

f1,f0
i
, ...,C>

fN ,f0
i
]>;

Cfc,f0
i

= [covfic(x0,xc1), ..., covfic(x0,xcpc)]> and Cf0
i ,f

0
i

=

covfii(x0,x0) where f0i := fi(x0). Following multivariate
normal theory, the predictive distribution of yi(x0) denoted
as pr(·|y) is given as

pr(yi(x0)|y) = N
(
C>f ,f0

i
(Cf ,f + Σ)−1y, Cf0

i ,f
0
i
+

σ2
i −C>f ,f0

i
(Cf ,f + Σ)−1Cf ,f0

i

)
.

(3)

The mean in (3) is the empirical best linear unbiased
estimator (EBLUP) of yi(x0), while the variance is divided
into three parts, the first is the variance of the variable under
study, σ2

i represents additive noise and the last part is the
variance reduction due to the EBLUP approximation [24].

As shown from (3), the sharing of information is
achieved through covfij(x,x

′) which models the variations
both within and across different outputs, to capture their re-
latedness and improve prediction accuracy. This covariance
function is typically assumed to belong to a known paramet-
ric class [25] of covariance functions {covfij(·, · ;θf ),θf ∈

Θf}, where ∀θf ∈ Θf , covfij(·, · ;θf ) is a valid positive
semidefinite covariance function, such that Θf is a set that
contains the true parameters θ∗f for the covariance of f(x).
Although in univariate settings there are many well known
valid autocovariance functions, however, in the MGP it is
extremely challenging to define cross-covariance functions
that result in valid covariance matrices [26].

An alternative to directly parametrizing a covariance
function is to construct a GP, fi : RD → R, through
convolving a Gaussian white noise process X(x) with a
smoothing kernel Ki(x) = αiki(x) where αi ∈ R and
ki : RD → R. Since the base process is a GP, and a
convolution is a linear operator on a function, then the
convolved process is also a GP [27]–[29].

fi(x) = Ki(x) ? X(x) =

∫ ∞
−∞

Ki(x− u)X(u)du , (4)

where ? denotes a convolution, cov(Xi(u), Xi(u
′)) = δ(u−

u′) = δ(u′ − u) = δuu′ and δ is the Dirac delta function.
This approach is equivalent to applying a stable linear
filter, where the output fi(x) is a weighted integral over
the input signal X(x), weighted according to the impulse
response Ki(x). This requires the filter to be stable, where
the output is bounded for all bounded input signals [30],
i.e. for a positive real finite number a, |X(x)| ≤ a =⇒
|fi(x)| ≤ a

∫∞
−∞ |ki(u)|du. Therefore the only restriction for

constructing a valid GP is that the impulse response/kernel
is absolutely integrable

∫∞
−∞ |ki(u)|du < ∞. Some appli-

cations and extensions of the CP approach for the single
output case are presented in [31] and [25].

Under the CP construction as shown in (4), if we share
the same latent function X(x), across multiple outputs
fi(x), i ∈ I , then all outputs can be expressed as a jointly
distributed GP, i.e. MGP [29]. The resulting covariance
function will then only depend on the displacement vector
d = x− x′ ∈ RD and is given as

covfij(x,x
′) =

∫ ∞
−∞

Ki(x− u)Kj(x
′ − u)du

=

∫ ∞
−∞

Ki(u)Kj(u− d)du.

(5)

As shown in (5), instead of directly parametrizing a
positive semi-definite covariance function we only need
to specify the parameters of a smoothing kernel, where
the resulting covariance function must be valid by con-
struction. Therefore, the key advantages is that we can
exploit influence of multiple latent functions, Xq(x) where
q ∈ {1, 2, .., Q}, to share information across different output
levels through different covariance parameters encoded in
the kernels Kqi(x) as shown in (6) [11], [32].

fi(x) =

Q∑
q=1

Kqi(x)?Xq(x) =

Q∑
q=1

∫ ∞
−∞

Kqi(x−u)Xq(u)du.

(6)

3 CHALLENGES AND MOTIVATION

In this section, we expand on the MGCP challenges and
present the motivation for our proposed method.
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3.1 Computational complexity

As shown in the previous section, the MGCP is fully
parametrized through the kernel parameters θf and mea-
surement noise σ = {σ1, ..., σN}. Now denote θ =
{θ>f ,σ>}> and all the observed data as D = {Di, ...,DN},
then the likelihood of the joint MGCP is given as

L(θ;D) = (2π)−P/2|Cf ,f + Σ|−1/2

× exp(−y(Cf ,f + Σ)−1y>/2).
(7)

As shown in (7), learning from the likelihood requires the
inversion ofCf ,f+Σ and calculating its determinant at each
step/iteration. The covariance matrix of the CP, assuming
p observations for each of the N outputs, scales as Np
leading to O(P 3) = O(N3p3) computational complexity
and O(N2p2) storage. Therefore, CP modeling approaches
are plagued by extremely high computational loads and
numerical issues. In addition, more input points are usually
required for multivariate outputs, resulting in a further
increase in the complexity. Although separable approaches
consider multiple outputs however their restrictive covari-
ance functions often lead to structured covariances which
are easily manipulated [8], [9]. On the other hand, some
recent approaches have tried to tackle this computational is-
sue in the context of nonseparable covariances [18], [33]. For
instance, [18] proposed an inducing variable approximation
similar to the well-known partially independent training
conditional (PITC) approximation [1]. Their key assumption
is that that outputs {yi(x) : i ∈ I} would be condition-
ally independent if all latent functions Xq(u) are observed
at S inducing locations, i.e. pr({yi(x)}Ni=1|{Xq(u)}Qq=1) =∏N
i=1 pr(yi(x)|{Xq(u)}Qq=1). This assumption leads to the

inversion of a block diagonal covariance matrix which re-
duces the complexity to O(Np3) + O(NSp2). If S = p
then this matches the complexity of modeling with N inde-
pendent GPs. Further, [3], [22] assumed training output as
independent and proposed sharing latent functions Xq(u)
only between test and training outputs. This lead to a block
arrowhead covariance matrix which also reduced the com-
plexity of learning from the likelihood to that of modeling
with independent GPs. It is crucial to note that despite the
reduced computational complexity due to the manipulation
of the covariance matrix, we are still required to estimate an
extremely large number of parameters even with a moderate
number of outputs. This challenge is further discussed in the
next subsection.

3.2 Number of parameters

General Multivariate GP Setting

3

Fig. 2. CP model structure example

Despite the disadvantages associated with high computa-
tional complexity, the main drawback, which renders non-
separable modeling prohibitive even for a moderate N ,
is the large number of the parameters that need to be
estimated. This large number of parameters is a direct con-
sequence of the CP construction which inherits its flexibility
from the ability to share information through different ker-
nels resulting in different covariance parameters for differ-
ent output levels. It is clear from (3) that prediction accuracy
is greatly dependent on the parameter estimates which are
obtained from minimizing the negative log-likelihood func-
tion `(θ;D) = −log L(θ;D). Up to an additive constant,
`(θ;D) = 1

2 〈Y , (Cf ,f + Σ)−1〉 + 1
2 log|Cf ,f + Σ| where

〈A,A′〉 = trace(AA′) and Y = yy>. Since, `(θ;D) is
highly nonlinear and non-convex in θ, its minimization in a
high dimensional parameter space is extremely challenging,
time consuming and suboptimal as one should anticipate
poor parameter estimates in such high dimensions [34]–[36].

Furthermore, as shown in (6), the number of parameters
depends on Q which is the number of latent functions
induced in the model. For instance, consider the case in
Figure 2 where we share latent functions between each pair
of outputs, i.e. Q = N(N − 1)/2 resulting in N(N − 1)
kernels. This is comparable to two way interaction effects in
ANOVA where [37] only pairwise interactions are consid-
ered through the shared latent GP. Now assume the kernels
Kiq(x) = αqikqi(x) follow the most commonly used expo-
nential kernel, kqi(x) = exp((x − x′)>Λqi(x − x′)) where
Λqi is aD×D positive definite diagonal matrix allowing dif-
ferent length scales for each dimension. As a result the total
number of parameters in the model is N(N−1)(1+D)+N
where the first part N(N − 1) represents the number of
kernels multiplied by the number of parameters (1 + D) in
each kernel, while the second part N represents the number
of parameters in σ. Note that this case is a bit conservative
as we use the exponential kernel which is able to provide
a large degree of flexibility with a small number of hyper
parameters [34], [38]. Even for a moderate scale case where
N = 30 and D = 1, we are required to estimate 1770
parameters under a non-convex setting. In another case,
considering the more restrictive approach in [39] and [40]
where Q = 1 and all outputs possess the same noise, i.e.
σ = σ1 =, ..,= σN , the number of parameters still scales as
N(N+2D+1)/2+1, therefore forN = 30 andD = 1 we are
estimating 991 parameters. In conclusion, obtaining good
estimates in such a high dimensional parameters space is an
impractical task, for this reason the practical applications of
the MGCP are limited. Note that once the parameters are
learned, prediction complexity at any new test point x0 is
O(Np) for mean and O(N2p2) for variance, which can be
done rather efficiently.

3.3 Negative transfer

As previously mentioned, a major challenge in the MGP
which to the best of our knowledge has not been tackled
yet, is the negative transfer of knowledge that occurs when
we integratively analyze outputs that share no commonal-
ities. Similar to the second challenge, negative transfer is
specifically important in nonseperabale approaches which
are used when functions have unique features. We start with
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an example to illustrative the impact of negative transfer in
MGCP models. Consider a simple case with two outputs
and a one dimensional input x ∈ X ⊂ R. The outputs
are generated according to y1(x) = 1 + sin(x) + ε1(x)
and y2(x) = 4 + 0.5sin(1.5x) + ε2(x) and x ∈ [0, 10].
The number of observations per signal is p1 = p2 = 20
evenly spaced points and the measurement noise is set as
σ1 = σ2 = 0.1. We analyze this data separately using
a univariate GP applied to each output and integratively
using an MGCP. In the univariate GP, we assume a Gaus-
sian/squared exponential covariance where covfii(x, x

′) =
α2
i exp(−d2/(4ν2)). In the MGCP we adopt the covari-

ance function in [11] and [40], where covfij(x, x
′) =

αiαj
√

2|νiνj |/(ν2i + ν2j )exp(−d2/(2ν2i + 2ν2j )). Results are
shown in Figure 3.

The results clearly indicate that separate modeling of
each function is significantly better than their integrative
analysis. This is specifically clear for y2, which interestingly,
was predicted using a larger length scale than the truth
due to sharing of information with a smoother function y1.
Note that this problem occurred in our dense input example
(pi = 20) which implies that the challenge of negative trans-
fer becomes exceedingly significant with sparse data. For
these reasons, and since negative transfer is a crucial issue
in MGP models, the main goal of this article is to handle
the negative transfer of knowledge while maintaining the
scalability of the model.

3.4 Motivation: Pairwise estimation and the precision
matrix
In this article we propose a pairwise distributed estima-
tion scheme motivated by both the distributed estimation
literature for univariate GP models [41], [42] and pairwise
modeling of longitudinal profiles [39], [43]. The proposed
approach is based on distributing MGCP estimation through
bivariate GP submodels which are individually estimated.
Predictions are then made through combining predictions
from the bivariate models within a Bayesian framework.
Not only does this approach scale to arbitrarily large
datasets by parallelization, also each bivariate model can
be efficiently built with a limited of parameters and a small-
scale covariance matrix.

While, pairwise modeling seems to address computa-
tional challenges, negative transfer remains an important
issue. Interestingly, pairwise modeling turns out to possess
unique characteristics which allows us to tackle the challenge
of negative transfer. While few literature [44] have aimed
to establish the number of latent functions to be shared,
such approaches do not imply avoiding negative transfer.
As we will show in this subsection, information sharing
and independent predictions can only be avoided through
independence and hence sparsity on the precision matrix.
However, since MGCP models are based on modeling the
covariance through latent functions not the precision matrix
then we can only control the precision matrix under specific
structures. It is clear from (3) that prediction accuracy for
the GP/MGP is dependent on the inverse covariance matrix,
also known as precision matrix Ω = (Cf ,f+Σ)−1 ∈ RP×P .
The precision matrix carries conditional independence infor-
mation. This matrix consists of block matrices Ωij ∈ Rpi×pj ,

where the (c, c′)th entry of each block is denoted as Ωc,c
′

ij .
One can directly show that cov(yci , y

c′

j |ÿ) = 0 if and only
if Ωc,c

′

ij = 0, where ÿ = {y}/{yci , yc
′

j } (y excluding yci
and yc

′

j ). Thus, conditionally independent variables lead
to zero entries in the precision matrix [45]. As mentioned
previously, GP/MGP models are characterized through a
positive semidefinite covariance function (ex: covfij(x,x

′))
rather than a conditional covariance function to generate
the precision matrix. However, the remarks below illustrate
some useful properties in the case of a bivariate GP.

Lemma 1. (Multivariate) Given that pr(y|X,θ) =
N (0P ,Ω

−1), then Ωij = 0 if and only if the multivariate
Gaussian random vectors yi and yj are conditionally
independent, i.e. cov(yci , y

c′

j |ÿ) = 0 for every c ∈ {1, .., pi} and
c′ ∈ {1, .., pj}.

Lemma 2. (Bivariate) Given that pr(yi,yj |X1,X2,θ
′) =

N
(

0pi+pj ,

(
Ωii Ωij

Ω>ij Ωjj

)−1)
, then Ωij = 0 if and only

if, the multivariate Gaussian random vectors yi and yj are
independent, i.e. cov(yci , y

c′

j ) = 0 for every c ∈ {1, .., pi} and
c′ ∈ {1, .., pj}.

A brief proof of both Lemmas and further references are
provided in Appendix A. The key conclusion from the Lem-
mas are as follows. Lemma 1 shows that an MGP collapses
into independent GP’s if and only if the inverse covariance
off-diagonal blocks are zero. While Lemma 2 shows that
through pairwise modeling, we are able to control the pre-
cision matrix through parameters in the covariance function
used to construct the bivariate GP.

The utilization of pairwise modeling, distributed estima-
tion and this direct mapping from the covariance function
to the precision matrix is detailed in the following sections.

4 MODEL DEVELOPMENT

The proposed framework presents a flexible alternative that
can scale to a large number of outputs while avoiding the
negative transfer of knowledge. The nature of our pro-
posed pairwise approach circumvents any need to find or
establish latent functions between pairs. While within each
pair, model selection is automatically done through our
regularization approach which is consistently able to infer
whether information should be shared or not. In Section 4.1,
we establish our pairwise model based on a CP construction.
Our pairwise scheme is based on distributing the estimation
of the high dimensional MGCP into bivariate GP’s which
are individually built. An MGCP with N outputs as a
result decomposes into N(N − 1)/2 pairwise submodels
to predict all outputs. However, for the sake of notational
simplicity, and building on Figure 1, we focus on predicting
one output through sharing information from the remaining
N − 1 outputs as shown in Figure 4 below. In Section, 4.2
we provide some statistical guarantees for the proposed
method. Section 4.3, provides a direct approach to applying
our regularized pairwise approach to separable modeling.
Finally, Section 4.4, provides the methodology to combine
predictions from the bivariate submodels.
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Fig. 3. Illustration of negative transfer in MGCP

General Multivariate GP Setting

2

Pair 1 Pair 2 Pair 

Fig. 4. Paired submodels

4.1 The pairwise and regularized MGCP

Based on (1) for each pairwise submodel we have
[
yi(x)
yj(x)

]
=[

fi(x)
fj(x)

]
+

[
εi(x)
εj(x)

]
, for i, j ∈ I , where the input data is

Di = {(yi,Xj)} and Dj = {(yj ,Xj)}. Further, we assume
that yij = [y>i ,y

>
j ]> represents the noisy observations cor-

responding to the latent function values fij = [f>i ,f
>
j ]>. In

order to capture both the unique properties of each output
and their interdependence we construct both fi(x) and
fj(x) as the sum of a latent function unique to each output
and a shared latent function which facilitates the sharing of
information. The model structure is shown in Figure 5.

Methodology: Avoiding Negative transfer

5

 

Pair 

Fig. 5. Bivariate submodel structure

As shown in Figure 5, independent features are encoded
through dependence on a latent function that has no effect
on the other output (Xi, Xj) while dependent features are
encoded through the common dependence on X0.

Following the CP construction in (6), we have that
yi(x) = fi(x) + εi(x) = Kii(x) ?Xi(x) +K0i(x) ?X0(x) +
εi(x), similarly, yj(x) = Kjj(x)?Xj(x)+K0j(x)?X0(x)+
εj(x). This model is quite flexible, as it provides both shared
and unique latent functions for both outputs. Based on this

modeling framework, the cross covariance function between
the two outputs is given as

covyij(x,x
′) = covfij(x,x

′) + covεij(x,x
′)

= covfij(x,x
′) + σ2

i τijτx,x′ ,
(8)

where, τij is the Kronecker delta function, which is equal
to one if i = j, and is zero otherwise. In a more general
case to that of Section 2, we define the latent functions
{Xq : q = 0, i, j} as cov(Xq(u), Xq(u

′)) = ξ2qδuu′ where
ξq ∈ R. Then given the fact that Xq(u) and Xq′(u

′) are
independent latent functions which only covary if q = q′

and u = u′ and utilizing the commutativity of the convolu-
tion and the ”sifting” property of the Dirac delta function,
i.e.

∫
f(u)δ(u − x)dz = f(x), we have that covfij(x,x

′) =
E(fi(x)fj(x

′)) =

E
( ∑
q∈{0,i}

∫ ∞
−∞

Kqi(x̄)Xq(u)du

×
∑

q′={0,j}

∫ ∞
−∞

Kqj(¯̄x)Xq′(u
′)du′

)
=

∑
q∈{0,i,j}

∫ ∞
−∞

∫ ∞
−∞

Kqi(u)Kqj(u
′)E(Xq(x̄)Xq(¯̄x))dudu′

=
∑

q∈{0,i,j}

ξ2q

∫ ∞
−∞

∫ ∞
−∞

Kqi(u)Kqj(u
′)δ(x̄− ¯̄x)dudu′

=
∑

q∈{0,i,j}

ξ2q

∫ ∞
−∞

Kqi(u)Kqj(u− d)du

(9)

where x̄ = x − u, ¯̄x = x′ − u′. Note that the derivation in
(9) is a wrapper function for covfii(x,x

′), covfjj(x,x
′) and

covfij(x,x
′). Based on our model framework illustrated in

Figure 5 and due to the shared dependence on only X0, the
autocovariance and cross covariance functions simplify as


covfii(x,x

′) =
∑
q={0,i} ξ

2
q

∫∞
−∞Kqi(u)Kqi(u− d)du

covfjj(x,x
′) =

∑
q={0,j} ξ

2
q

∫∞
−∞Kqj(u)Kqj(u− d)du

covfij(x,x
′) = ξ20

∫∞
−∞K0i(u)K0j(u− d)du

(10)
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This modeling framework is generic in terms of the
choice of the kernel function. However, a general purpose
kernel can be constructed through assuming the kernels
follow a Gaussian form. As mentioned previously, the Gaus-
sian kernel is the most common choice of kernels due to its
flexibility and correspondence to Bayesian linear regression
with an infinite number of basis functions [34]. Further,
similar constructions using such kernels have been utilized
in both a GP and MGP setting [18], [46].

Now assume the kernels Kqi(x) =

αqi(4π)
D
4 |Λqi|−

1
4N (x|0,Λ−1qi ) to be scaled Gaussian

kernels. Also, denote N (x|µqi,Λ−1qi )N (x|µqj ,Λ−1qj ) =

N (µqi − µqj |0,Λ−1qi + Λ−1qj )N (x|µ̃, Λ̃) where
Λ̃−1 = (Λqi+Λqj)

−1 and µ̃ = Λ̃−1(Λqiµqi+Λqjµqj), to be
the identity for the product of two Gaussian distributions.
Then, we have that covfij(x,x

′)

=
∑

q∈{0,i,j}

ξ2qω
q
ij

∫ ∞
−∞
N (u| − d,Λ−1qi )N (u|0,Λ−1qj )du

=
∑

q∈{0,i,j}

ξ2qω
q
ij

∫ ∞
−∞
N (u| − d,Λ−1qi + Λ−1qj )N (u|µ̃, Λ̃)du

=
∑

q∈{0,i,j}

ξ2qω
q
ijN (d|0,Λ−1qi + Λ−1qj )

=
∑

q∈{0,i,j}

ξ2q ω̃
q
ijexp(−1

2
d>Φq

ij
−1
d),

(11)

where ωqij = αqiαqj(4π)
D
2 |Λqi|−

1
4 |Λqj |−

1
4 , ω̃qij =

2
D
2 αqiαqj |Λqi|

1
4 |Λqj |

1
4 /|Λqi + Λqj |

1
2 , and Φq

ij
−1

= (Λ−1qi +

Λ−1qj )−1 = Λqi(Λqi + Λqj)
−1Λqj . A nice feature of

(11), is that the marginal process i.e. covfii(x,x
′) =∑

q={0,i} ξ
2
qα

2
qiexp(− 1

4d
>Λqid) has the most common

Gaussian covariance function resulting from the convolu-
tion of two Gaussian kernels. Therefore, (11) can be viewed
as the extension of the Gaussian covariance function to the
multivariate case. Once again we note that (11) is a wrapper
function where for i 6= j, we have that covfij(x,x

′) =

ξ20 ω̃
0
ijexp(− 1

2d
>Φ0

ij
−1
d).

Now, we let θfij ∈ Θfij represent the parameters in
covfij(x,x

′) where Θfij is a set that contains the true pa-
rameters θ∗fij , and we denote θ>ij = {θ>fij ,σ

>
ij}>, where

σij = {σi, σj}>, to be the set of all parameters in the
bivariate submodel. Then, given our CP formulation and
following (8), the marginal density of the bivariate sub-
model is expressed as pr(yi,yj |X1,X2,θij) =∫

pr(yij |fij) pr(fij |θfij )dfij

=

∫ pi∏
c=1

pr(yci |f ci )

pj∏
c′=1

pr(yc
′

j |f c
′

j ) pr(fij |θfij )dfij ,
(12)

where pr(fij |θfij ) = N (0P ′ ,Cfij ,fij ), pr(yij |fij) =
N (0P ′ ,Σij) and p = pi + pj . Therefore pr(yi,yj |
X1,X2,θij) = N (0p,Cfij ,fij + Σij) where

Cfij ,fij + Σij =

(
Cfi,fi Cfi,fj
C>fi,fj Cfj ,fj

)
+

(
σ2
i Ipi 0
0 σ2

j Ipj

)
,

(13)

such that Cfij ,fij ∈ Rp×p is the covariance matrix relating
all input points of outputs i and j with covfij(x,x

′) in (10)
and (11). As previously mentioned, parameter estimates are
obtained from minimizing the negative log-likelihood func-
tion `(θij ;Di,Dj) = −log pr(yi,yj |X1,X2,θij). Denoting
Yij = yijy

>
ij , up to an additive constant, the bivariate

likelihood and its derivatives are given as

`(θij ;Di,Dj) =
1

2
〈Yij ,(Cfij ,fij + Σij)

−1〉

+
1

2
log|Cfij ,fij + Σij | .

(14)

Further, through denoting Cij , Cyij ,yij = Cfij ,fij +

Σij , Ψij = C−1ij yij and Ξnm =
∂Cij

∂θ
(n)
ij

C−1ij
∂Cij

∂θ
(m)
ij

the gradi-

ent and second derivatives with respect to any parameter
θ
(n)
ij ∈ θij are then given as (in Appendix B we expand on
∂Cij/∂θ

(n)
ij )

∂`

∂θ
(n)
ij

=
1

2

〈
ΨijΨ

>
ij −C−1ij ,

∂Cij

∂θ
(n)
ij

〉
∂2`

∂θ
(n)
ij ∂θ

(m)
ij

=
1

2

〈
ΨijΨ

>
ij −C−1ij ,

(
∂2Cij

∂θ
(n)
ij ∂θ

(m)
ij

−Ξnm

)〉
−1

2

〈
ΨijΨ

>
ij ,Ξmn

〉
.

The computational complexity of learning from the bi-
variate likelihood in (14) is reduced to O((2p)3). More
importantly, the total number of parameters in the model is
reduced to 4(1 +D) + 2 + 3 where 4 represents the number
of kernels (Kii,Kjj ,K0i,K0j) multiplied by the number of
parameters (1 + D) in each kernel, while 2 represents σi
and σj , and 3 represents the parameters (ξ0, ξi, ξj) of the
latent functions (X0, Xi, Xj) respectively. Note that reduc-
tions in parameter number can be done through assuming
K0i = K0j or σi = σj . As shown distributed estimation
using bivariate submodels, is able to handle both the com-
putational complexity and large parameter number to be
estimated. Also, all pairwise models can be parallelized and
thus our model can scale to an arbitrarily large number of
outputs by parallelization.

Now, recall Figure (5), X0, defined by ξ0, represents the
latent function which facilitates the sharing of information
between outputs i and j. Therefore, in order to handle neg-
ative transfer of knowledge we use the bivariate likelihood
in (14) but with ξ0 penalized. Following Lemma 2, we will
show in the following section that shrinking ξ0 decreases
the cross correlation amongst the outputs and that ξ0 = 0
ensures that each output is predicted independently. The
penalized negative log-likelihood function is defined as

`P(θij ;Di,Dj , λ) = `(θij ;Di,Dj) + Pλ(|ξ0|) , (15)

where Pλ(ξ0) is a penalty function. Different types of
penalty functions can be used, examples include: ridge
penalty Pλ(|ξ0|) = λξ20 , `1 penalty Pλ(|ξ0|) = λ|ξ0|, bridge
penalty Pλ(|ξ0|) = λ|ξ0|0<·<1, and scad penalty Pλ(|ξ0|) =
λ|ξ0| if |ξ0| ≤ λ, (ξ20−2γλ|ξ0|+λ2)/(2γ−2) if λ < |ξ0| ≤ γλ,
λ2(γ + 1)/2 if |ξ0| > γλ. The tuning parameter λ (λ and γ
in Scad) has an important effect on predictions. For instance

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 24,2020 at 20:36:38 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.2987482, IEEE
Transactions on Pattern Analysis and Machine Intelligence

8

in the Lasso, as λ increases, ξ0 shrinks to zero. Typically,
the optimal tuning parameter is found using a grid search
such as generalized cross validation (GCV), specifically b-
fold GCV [47]. The GCV is based on splitting the data into
b groups. For a given λ, first, we exclude one group as the
testing dataset, and the rest b − 1 groups are used as the
training data, from which predictions at test locations are
obtained. This is repeated b times for each group. The tuning
parameter is then chosen as the minimizer of some accuracy
measure (ex: absolute error, mean squared error, etc..) based
on the GCV procedure.

Prior to discussing the statistical properties of our model,
we note that the pairwise model pr(yi,yj |X1,X2,θij) =
N (0p,Cyij ,yij

) is in itself an MGP. Thus, any sparse MGP
approximation can be directly used to make the pairwise
model faster, be it an inducing point/variational approx-
imation, a state space approximation, a matrix tapering
approach or just a faster matrix inversion/determinant
calculation scheme. For example, considering u inducing
variables, one can directly implement the partially inde-
pendent training conditional approximation (PITC) [18],
where pr(yi,yj |X1,X2,θij) ≈ N (0p, blockdiag(Cyij ,yij

−
Cyij ,uC

−1
u,uCu,yij )) + Cyij ,uC

−1
u,uCu,yij ) or even just the

Nystrom approximation pr(yi,yj |X1,X2,θij) ≈ N (0p,
Cyij ,uC

−1
u,uCu,yij ).

4.2 Statistical properties

We now discuss some of the structural properties of
our model. We first introduce the main theorem which
guarantees that our regularized model in (15) is able to
avoid the negative transfer of knowledge.

Theorem 1. Suppose that ξ0 = 0, then the predictive distribution
of the bivariate model at any new input x0 ∈ X reduces to that of
a univariate model where pr(yi(x0)|yij) = pr(yi(x0)|yi) and
pr(yj(x0)|yij) = pr(yj(x0)|yj) such that



pr(yi(x0)|yij) = N
(
C>fi,f0

i
Ωiiyi, Cf0

i ,f
0
i
+

σ2
i −C>fi,f0

i
ΩiiCfi,f0

i

)
pr(yj(x0)|yij) = N

(
C>fj ,f0

j
Ωjjyj , Cf0

j ,f
0
j
+

σ2
j −C>fj ,f0

j
ΩjjCfj ,f0

j

)
where for c ∈ {i, j}, Ωcc = (Cfc,fc + σ2

cIpc)−1 ∈ Rpc×pc ,
Cfc,f0

c
= [covfcc(x0,xc1), ..., covfcc(x0,xcpc)]>,

Cf0
c ,f

0
c

= covfcc(x0,x0) and covfcc(x,x
′) =

ξ2c
∫∞
−∞Kcc(u)Kcc(u− d)du.

The proof is detailed in Appendix C. The key feature
of this theorem is that penalizing only one variable, in
our initial parameter set ξ0 ∈ θfij ⊂ θij , will lead to
separating the bivariate model into two models equivalent
to the univariate GP established through a CP in (4). Our
regularization approach is flexible to any specified kernel
function and not based on the Gaussian covariance derived
in (11), where theorem 1 holds for any valid kernel function

Kiq . We note that the result of theorem 1, is based on the
fact that for c ∈ {i, j} as ξ0 → 0

covfij(x,x
′) = ξ20

∫∞
−∞K0i(u)K0j(u− d)du→ 0

covfcc(x,x
′) =

∑
q∈{0,c}

ξ2q

∫ ∞
−∞

Kqi(u)Kqi(u− d)du

→ ξ2c

∫ ∞
−∞

Kcc(u)Kcc(u− d)du.

This is important to note since non-sparse penalties such
as the ridge penalty can still minimize the negative transfer
of knowledge through shrinking ξ0. This however comes at
the expense of variable selection implied in sparse penalties.

Next, we discuss some asymptotic properties of our
regularized bivariate model. In order to investigate the
asymptotic properties of our regularized model, we first
need to examine the properties of θij obtained from mini-
mizing the unpenalized likelihood in (14). Here we note that
one advantage of our model is that for both the penalized
`P(θij) and unpenalized likelihood `(θij) we are minimiz-
ing over the same set of parameters θij since ξ0 ∈ θij .
Based on mild regularity conditions for dependent obser-
vations, it has been shown that the maximum likelihood
estimator of θij is rp consistent. Refer to Appendix D, for
more details [48]–[50]. Now for the penalized model, let
θ∗ tij = {θ∗ tfij ,σ

∗ t
ij }> be the true parameter values corre-

sponding to θ>ij = {θ>fij ,σ
>
ij}>, and let θ̂ij be the estimated

parameters obtained from minimizing `P(θij). Hence ξ∗0 and
ξ̂0 respectively represent the true and estimated value of
ξ0 . For the penalty function Pλ(|ξ0|), we assume that the
penalty is non-negative; Pλ(|ξ0|) ≥ 0 and Pλ(0) = 0, and
that larger coefficients are penalized no less than smaller
ones; Pλ(|ξ′0|) ≥ Pλ(|ξ0|) if |ξ′0| ≥ |ξ0|. These are typical as-
sumptions and are satisfied by the aforementioned penalties
[51]. Further, we assume that the first and second derivatives
of Pλ(|ξ0|) are continuous at ξ∗0 6= 0. We next provide two
theorems that establish parameter estimation and selection
consistency. The theorems provide similar results as in [51],
but defined within our model specifications and based on
dependent observations. Note that the “′” notation on a
function implies a derivative.

Theorem 2. If z2 = max{|P′′λ(|ξ∗0 |)| : ξ∗0 6= 0} → 0, then there
exits a local minimzer θ̂ij for `P(θij), such that ||θ̂ij − θ∗ij || =
O(r−1p + z1), where z1 = max{P′λ(|ξ∗0 |) : ξ∗0 6= 0} .

Theorem 3. Assume that ξ∗0 = 0 and the parameters
θ̈ij = {θij}/{ξ0} satisfy rp consistency in theorem 2. Then
if lim inf

p→∞
lim inf
ξ0→0+

1
λP
′
λ(ξ0) > 0, λ → 0 and pλ/rp → ∞ as

p→∞, we have that lim
p→∞

pr(ξ̂0 = 0) = 1.

The proof for theorems 2 and 3 is detailed in Appendix
D. In the above theorem “lim inf ” denoted the infimum
of the limit points. It is clear from theorem 2 and 3, that
if we choose a proper tuning parameter λ and penalty
function Pλ(|ξ0|) there exists an rp consistent estimator
for the penalized likelihood `P(θij), which possesses the
sparsity property ξ̂0 = 0, i.e. asymptotically performs as
well as knowing that ξ0 = 0 beforehand. This result is also
known as an oracle property which provides consistency in
variable selection [52]. Here variable selection implies select-
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ing whether functions should be predicted independently or
not, a stated in theorem 1.

4.3 Application to separable covariance
In this section, we provide a direct approach to applying our
regularized pairwise approach to separable modeling. Here
we recall that a key aspect of separable covariance is that all
functions share the same marginal covariance, i.e. the within
correlation function. Thus, negative transfer is inevitable
due to this restriction. However, through regularizing the
between-output correlation matrix, one can decrease neg-
ative transfer where some pairs can be predicted indepen-
dently as shown here. The covariance function in a separable
model is of the form covfij(x,x

′) = Tijcov(x,x′), where Tij
is the between-output covariance matrix and cov(., .) is a
covariance function over inputs x ∈ RD, the same for all
outputs. For covfij(x,x

′) to be a valid covariance function,
it is required that Tij = {tc,c′} be a positive definite matrix
with unit diagonal elements (PDUDE) [9]. Therefore, in a

bivariate case with two outputs i and j, Tij =

(
1 tij
tij 1

)
,

such that tij measures the correlation between output i
and j. It is interesting to note that the covariance between
outputs only varies through tij , this is why outputs in
separable functions are instantaneously mixed as they are
directly derived by a scaling or a rotation to an output
space of dimensionD. Inspired by Theorem 1 and Appendix
C, one can directly show that tij = 0 ensures that each
output is predicted independently. Therefore, in separable
modeling, we only need to adjust the penalty function
to Pλ(|tij |), and optimize the penalized likelihood while
restricting Tij to be PDUDE. It is interesting to mention
here the intrinsic coregionalization (IC) model [53] which
is a simplified version of the LMC previously mentioned
in the introduction. The IC is a separable construction that
reduces to independent predictions over each output under
an isotopic data case and if outputs are modeled as noise
free. Unfortunately, despite its ability to avoid negative
transfer, such a model cannot make use of commonalities
across outputs.

4.4 Combining the predictions
Without loss of generality, we focus on predicting output
N through sharing information from the remaining N − 1
outputs as shown in Figure 4. Based on (3), for each sub-
model in Figure 4, the predictive equation for any new input
x0 ∈ X for output N is expressed as

pr(yN (x0)|yiN ) = N
(
C>fiN ,f0

N
ΩiNyiN , CfN

i ,f
N
i

+

σ2
N −C>fiN ,f0

N
ΩiNCfiN ,f0

N

)
,

(16)

where i ∈ I−N = {1, ..., N − 1}, ΩiN = (CfiN ,fiN +
ΣiN )−1, CfiN ,f0

N
= [C>

fi,f0
N
,C>

fN ,f0
N

]> and Cfc,f0
N

=

[covfNc(x0,xc1), ..., covfNc(x0,xcpc)]> for c ∈ {i,N}. Our
goal is to efficiently combine the predictions from the N − 1
bivariate submodels to form an overall result. To this end,
we utilize the product of GP experts (PoE) model, used in
univariate GP’s, however implemented within the specifi-
cations of our pairwise model [42], [54]. Here, we aim to

combine predictions from N − 1 “experts”, where each ex-
pert is a regularized bivariate GP. The PoE model combines
the predictions by the product of all expert predictions. In
our pairwise model, the PoE implies that p̄r(yN (x0)|y) =∏N−1
c=1 pr(yN (x0)|ycN ). PoE models are straightforward and

theoretically appealing as each expert is weighted by the
inverse covariance, therefore experts which are uncertain
about their predictions are automatically weighted less
than experts that are certain about their predictions. How-
ever, a major shortcoming of PoE models is that as N
increases, the combined prediction tends to be overconfi-
dent. For instance, assume that all functions in I−N are
exactly equivalent, then we have that pr(yN (x0)|ycN ) =
N (M,V) ∀c ∈ I−N for some mean M and variance V .
Therefore, p̄r(yN (x0)|y) = N (M̄ = M, V̄ = V/(N − 1))
and as N → ∞ =⇒ V̄ → 0. Naturally, in such a case
we would want p̄r(yN (x0)|y) = N (M̄ = M, V̄ = V). To
this end, we weight the contributions of each expert with a
weight βc = 1/(N − 1) for c ∈ I−N . As a result, given that
pr(yN (x0)|ycN ) = N (Mc,Vc) ∀c ∈ I−N , and following
the identity that the product of Gaussian distributions is
Gaussian, we have that p̄r(yN (x0)|y) = N (M̄, V̄), where

V̄−1 =
N−1∑
c=1

βcV−1c , M̄ = V̄
N−1∑
c=1

βcV−1c Mc , (17)

This efficient closed form inference for combining the bi-
variate models is independent of the computational graph,
and, consequently, facilitates the ability to scale to arbitrarily
large datasets by parallelization, where each bivariate model
is efficiently built with a limited of parameters and a small-
scale covariance matrix. Note that (17) is similar to the log
opinion pool model [55] and the Generalized product of
experts [42], [56], therefore, the key feature of the PoE model
is still retained as experts that are uncertain about their
predictions are weighted less, also, since

∑
c∈I−N βc = 1,

then it ensures a consistent model that falls back to the prior.
Some slight modifications to the traditional PoE have been
also proposed such as the Bayesian Committee Machine
(BCM) or the robust BCM [41], [57] . The BCM is based
on adjusting the variance of the unweighted PoE, by a prior
variance pr(yN (x0)), while the robust BCM adjusts the BCM
with weights similar to those in our model. However, the
BCM is based upon assuming a block diagonal covariance
where all experts share the same parameters, which hinders
its application in our model.

5 NUMERICAL CASE STUDIES

We conduct case studies to demonstrate the advantageous
features of our regularized and distributed multivariate
Gaussian convolution process denoted as MGCP-RD. In
Section 5.1, we discuss benchmarked methods and the gen-
eral setting for our numerical case studies. Then Section 5.2
uses simulated functions to demonstrate the performance of
the proposed method under four different model settings.
Further an illustrative example is provided in Section 5.2.

5.1 General settings
In this section, we discuss the settings used to assess the
MGCP-RD performance using simulated data. To evaluate

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 24,2020 at 20:36:38 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.2987482, IEEE
Transactions on Pattern Analysis and Machine Intelligence

10

the performance of our proposed method, we randomly
generate N signals from different model settings, in which
the first N − 1 outputs are used as a training set, while the
N th output is selected as the testing function. We repeat
the study for W = 1000 times. For each replication, we
use the mean absolute error (MAE) between the true signal
value and its predicted value at ptest = 50 points as
the criterion to evaluate our prediction accuracy. We then
report the distribution of the MAE across the W simu-
lations using a group of boxplots, with respective means
represented as black dots. The MAE values are denoted
as prediction errors in all boxplots. Kernel parameters are
obtained through minimizing the negative log-likelihood
using a scaled congugate gradient algorithm ( [18], [34],
[39]). For the MGCP-RD, we distribute the computations
over only two systems, where each system was responsible
for sequentially fitting (N − 1)/2 of the bivariate models.
All computations are done on R-3.2.2 in a 64-bit Windows
7 setting. Further, in our simulation studies, we benchmark
our method with four other reference methods for compar-
ison: 1) The individual GP established using a CP, denoted
as GCP, where the test function is fitted separately [34]; 2)
The full MGCP model, denoted as MGCP, described in Sec-
tion 3.2; 3) The inducing variable approximation, denoted
as MGCP-I, which tackles the computational complexity
challenge [18], [32]; 4) The pairwise model for longitudinal
profiles, denoted as MGCP-P [39], [40], [43]. To provide
consistent results we utilize the Gaussian kernel in Section
4.1 for each of the benchmarked methods. In the GCP,
this kernel reduces to the Gaussian/squared exponential
covariance function in the univariate case. For the MGCP-I
and since no specific latent structure is proposed we use that
of the full MGCP in Section 3.2. However, for the MGCP-P,
we utilize the proposed latent structure in the paper which
only involves one common latent function for each pairwise
model. Finally, throughput the numerical study we use a 3-
fold cross validation method to find the tuning parameters
for our approach.

5.2 Results

We simulate functions from three different settings to
demonstrate the benefits of the MGCP-RD. The model set-
tings and results are shown below.

5.2.1 Setting I
In this setting, we aim to compare the performance of the
MGCP-RD in a simple case with few number of outputs
(N = 5) and no negative transfer. In order to establish a
setting with no negative transfer, the multivariate output
model for the N curves are generated according to the same
functional form yi(x) = 1 + sin(x) + εi(x) for x ∈ [0, 10]
and i ∈ I . The number of observations per signal is
p = p1 =, ..,= pN = 10 evenly spaced points, the test
points are evenly spaced across [0, 10] and measurement
noise standard deviation is set to σ = σ1 =, ..,= σN = 0.1
for all outputs. For the MGCP-I, all p design points are used
as inducing variables. Also, in this setting we implement the
ridge penalization. The importance of this case is that the
three challenges of nonseparable modeling can be readily
handled in a low dimensional setting with no negative

transfer. Therefore, this scenario is able to evaluate the
performance of the MGCP-RD relative to the full MGCP.
The results are shown in Figure 6.

The results in Figure (6) indicate that there is an in-
significant difference in the prediction error between the full
model (MGCP) and our proposed method. First, amongst
the models that considered multiple outputs the MGCP-P
had the worst performance. The MGCP-P is based on aver-
aging parameter estimates from paired submodels. Such an
approach is extremely dangerous due to the multimodality
of the GP/MGP likelihood [36].
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Fig. 6. Setting I results

As mentioned in [34], different parameters estimates
correspond to different interpretations of the data, however,
predictions will be moderately effected as the Bayesian
correspondence in the GP implies that predictions should
pass through or close to the design points. As will be shown
in later settings, this approach of averaging parameter esti-
mates becomes specifically dangerous with high noise lev-
els, large parameter space and outputs with varying forms
and characteristics where parameter estimates fluctuate
widely between different submodels and iterations. Second,
and following the intuition why we average predictions
rather than parameter estimates, Figure (7) below shows
the advantageous features of the weighted PoE model. In
Figure (7), we compare the MGCP-RD results with MGCP-
RD prediction errors before averaging the N − 1 pairwise
submodels from each iteration (denoted as BIVARIATE).
Note that since we consider the marginal errors from each
submodel in the BIVARIATE then we have W (N − 1)
errors compared to MGCP-RD with G errors. As shown in
the figure, the straightforward mechanism of PoE models,
where experts that are uncertain about their predictions
are automatically weighted less by the inverse covariance,
provides both a simple yet efficient solution for distributed
modeling.
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5.2.2 Setting II
In this setting, we aim to compare the performance of the
MGCP-RD in a case with a moderate number of outputs
(N = 50) and no negative transfer. Also, we also aim to
illustrate the importance of MGP models in extrapolation
which has not been fully exploited in literature. We adopt
the quadratic function example from [21] with some modifi-
cations. The multivariate output model for the N curves are
generated according to yi(x) = 1 + eIIx2 + εi(x) for i ∈ I
and eII ∼ uniform(0.8, 1.2). The number of observations
for the N − 1 training output is p = 20 evenly spaced
points for x ∈ [0, 10], while for the N th function to be
predicted we generated p = 10 evenly spaced points for
x ∈ [0, 7]. The test points are evenly spaced across [0, 10] and
measurement noise standard deviation is set to σ = 1 for all
outputs. Due to the long model building time, only W = 50
iterations for the MGCP and MGCP-I are conducted. For
the MGCP-I, all p = 20 design points in [0, 10] are used as
inducing variables. Also, in this setting we implement the `1
penalization. The importance of this case is that we are able
to test all benchmarked models in a rather high dimensional
parameter space with higher computational complexity. The
results are shown in Figure 8, while an illustrative example
of the MGCP-RD results in shown in 9.
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Fig. 8. Setting II results

Based on the results we can obtain some important
insights. First, from a computational perspective, and as
shown in Figure 8, the model building time of the MGCP
and MGCP-I is extremely prohibitive. It takes on average
13 hours to build one MGCP model and this is with a
one dimensional input and a moderate number of outputs
(N = 50). The mean building time for each iteration was
half a second for the GCP, 6.8 minutes for the MGCP-RD
and 104 minutes for the MGCP-P. Although the MGCP-P
considers paired models however to predict the N th output
we need to fit N(N − 1)/2 pairwise submodels, unlike our
method where only N − 1 models need to be built. These
results illustrate why non-separable MGP models are only
used in low dimensional settings. As mentioned previously,
for the MGCP-RD, we parallelized computational only over
2 systems (25 models sequentially fit in each system), how-
ever, with more computational power, the building time for
the MGCP-RD can be significantly reduced.

Second, in addition to the severe computational draw-
back of the MGCP, its predictive accuracy greatly degrades
in such a high dimensional space. This is intuitively un-
derstandable, as minimizing the negative likelihood in such
a high dimensional (4950) search space is a prohibitive
task for any search algorithm. The MLE will directly get
trapped in a local minima and will not be able to move

even if different starting points are tried, therefore lead-
ing to suboptimal parameter estimates with undesirable
properties. Besides that, the computation is plagued by
numerical issues associated with inverting the 990 × 990
covariance matrix at each iteration of the search algorithm.
Similar results have also been shown in [39], [40], [50], where
MGP models tend to loose accuracy in a high dimensional
parameter space. This issue is also faced in the MGCP-
I, which is not able to address the large parameter space
challenge, despite tackling the computational complexity
where it only requires the inversion of 20 × 20 covariance
matrices. It is important to note that multivariate statistical
modeling often encounters functional data with N >> 50
[20], [58], thus the aforementioned drawbacks significantly
increase in severity with more outputs.

Third, in Figure 9 below we compare our the MGCP-
RD results in cases with different output number N under
setting II specifications. As shown in the figure, as we
increase N the prediction errors significantly decrease. This
results further highlights the efficiency of the weighted PoE
model specifically when N is large.

Fig. 9. PoE results with different N
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Fig. 10. Intrapolation vs extrapolation

Finally, in Figure 8 we do not report the GCP prediction
accuracy to maintain scale, since the mean prediction error is
21.78. The reason for this poor performance is related to the
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fact the GP in traditional settings cannot extrapolate as cor-
relation goes to zero for data points that are far away from
the observed data. However, the MGP is able to borrow
strength from other observed outputs to predict the future
evolution of a specific output. In other words, extrapolation
in the MGP can be seen as interpolation across different
output. To highlight this aspect, Figure 10 illustrates the
MGCP-RD performance in extrapolation.

In Figure 10, for function 1 we perform interpolation,
while for functions 2 and 3 we extrapolate following setting
II specifications. However, in function 3, we generate p = 10
evenly spaced points for x ∈ [0, 5] instead of x ∈ [0, 7].
The figure clearly shows that one main advantage of MGP
models is the ability to extrapolate an output when other
correlated outputs are observed over a larger domain. This
advantage of MGP models indeed has many practical appli-
cations in cases where extrapolation might be also of interest
to the user.

5.2.3 Setting III
In this setting, we aim to compare the performance of the
MGCP-RD when negative transfer of knowledge exists. We
establish a simple setting with few number of outputs (N =
8). Motivated by M/M/1 queuing systems, the multivariate
output for the N functions is generated according to:

• i ∈ {1, 2, 3, 4}: y(1)i (x) = x2 + εi(x) for x ∈ [0, 0.8]

• i ∈ {5, 6}: y(2)i (x) = x2/(2(1−x))+εi(x) for x ∈ [0, 0.8]

• i ∈ {7, 8}: y(3)i (x) = x2/(1− x) + εi(x) for x ∈ [0, 0.8]

The number of observations per signal is p = 7 evenly
spaced points for x ∈ [0, 0.8], the test points are evenly
spaced across [0, 0.8] and measurement noise standard de-
viation is set to σ = 0.005 for all outputs. In this setting,
if we assume x to be the system utilization, then y

(2)
i (x)

and y(3)i (x) respectively define the steady state closed form
equations of the expected Queue time and Queue length in
an M/M/1 system, where the inter-arrival time is exponen-
tially distributed with rate 2 [59]. All p = 7 design points
in [0, 0.8] are used as inducing variables for the MGCP-I
and we implement the `1 penalization for the MGCP-RD.
Following our general settings, for each iteration we find the
MAE of the N th function to be predicted which belongs to
y
(3)
i (x) and represents the expected queue length. Also, we

benchmark with two other methods denoted as MGCP-Sep
and Spectral. In MGCP-Sep, the MGCP is used to predict the
N th output using only the training signals with the same
functional form, i.e. we fit outputs i ∈ {7, 8} separately
using the MGCP. While, Spectral is an MGP based on
a recently proposed spectral mixture kernel in [60]. The
Spectral method is added to check whether more expressive
kernels such as the spectral mixture are able to automati-
cally address negative transfer without using our proposed
framework. Note that, the importance of our Model Setting
III, is that the we are able to test all benchmarked models
in a setting where outputs behave according to different
functional forms. The results are shown in Figure 11.

The results in Figure 11 clearly illustrate the ability of
our model to minimize negative transfer while borrowing
strength from other correlated output. As shown in the
figure, MGCP-Sep outperformed MGCP. This confirms that

negative transfer is occurring since if outputs belonging to
y
(3)
i (x) are analyzed separately the results are better than

the full model (MGCP). More interestingly, we have that
MGCP-RD outperformed MGCP-Sep. The reason is that
y
(3)
i (x) and y

(2)
i (x) are highly correlated, therefore, MGCP-

RD was able to learn this cross correlation of y(3)i (x) with
y
(2)
i (x) while at the same time avoiding negative transfer

with y(1)i (x). However, MGCP-Sep is not able to learn from
the cross correlation between y

(3)
i (x) and y

(2)
i (x). Indeed,

in this model setting we observe that ξ̂0 = 0 for pairwise
models including y

(3)
i (x) and y

(1)
i (x) which indicates that

these outputs possess no common features and should be
predicted independently.

Also, we notice that Spectral behaved similar to MGCP
and thus was not able to address the negative transfer of
knowledge. This is expected as the spectral kernel possesses
a large number of parameters, thus making optimization
rather difficult and prone to become trapped in local minima
and there is no incentive in the spectral kernel to penalize
spurious correlations. This also illustrates that one can have
models as expressive as needed to model within-output
(auto) correlation however handling across-output (cross)
correlation should be done with care to avoid negative
transfer. Finally, one important observation is that MGCP-P
behaved worse than GCP. As previously mentioned, aver-
aging parameter estimates is specifically dangerous in cases
with different functional forms as parameter estimates from
different submodels will greatly fluctuate.
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5.2.4 Setting IV

In this setting, the goal is to predict the foreign exchange
rate compared to the United States dollar currency. The
data comes from the pacific exchange rate service (http://
fx.sauder.ubc.ca/data.html). Our analysis utilized the ex-
change rates of the top ten international currencies (Cana-
dian Dollar CAD/USD, Euro EUR/USD, Japanese Yen
JPY/USD, Great British Pound GBP/USD, Swiss Franc
CHF/USD, Australian Dollar AUD/USD, Hong Kong Dol-
lar HKD/USD, New Zealand Dollar NZD/USD, South Ko-
reon Won KRW/ USD, Mexican Peso MXN/USD) during
the 52 weeks of the 2017 calender year. The data is illustrated
in Figure 12. Each output is adjusted to have zero mean
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and unit variance. We use a leave-one-out cross validation
approach to evaluate the performance of the MGCP-RD
and the benchmarked methods. We iteratively treat one
exchange currency rate as the test output and the remaining
9 currencies as the training set. This procedure is repeated
for the 10 currencies. For each test output we randomly
remove 13 data points (25% of the data from a specific
output) and test the model capability to recover the true
underlying values at these test points. For the MGCP, all
remaining input points are used as inducing variables for
the MGCP-I and we implement the `1 penalization for the
MGCP-RD.
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Fig. 12. Data illustration

First we provide some illustrative results in Figure 13.
As shown in the figure, the MGCP-RD was able to able
to efficiently recover the underlying truth. For performance
accuracy comparison we also use the standardized mean
square error (SMSE) defined in [34]. The results in in Table
1 show that the MGCP-RD was significantly able to outper-
form the benchmarked methods. This result in intuitively
understandable as based on Figure 12, the trends display
clear heterogeneity and thus negative transfer is a key issue
when integratively modeling the exchange rates.
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Fig. 13. MGCP-RD predictive results

6 CONCLUSION

MGP models established using a CP construction offer a
general and flexible solution for multiple output regression.

TABLE 1
Setting IV results

MGCP MGCP-RD MGCP-I MGCP-P GCP

MAE 0.203 0.156 0.218 0.952 0.247
std.error (0.160) (0.068) (0.236) (0.544) (0.182)

SMSE 1.666 1.293 1.788 3.261 1.703
std.error (1.783) (0.861) (2.250) (6.002) (1.935)

Despite that, the added flexibility arises serious computa-
tional challenges even with a moderate number of outputs
due to the significant increase in computational demands
and number of parameters to be estimated. Further, the
integrative analysis of multiple outputs implicitly assumes
that these outputs share some commonalities. However, if
this does not hold, negative transfer of knowledge may
occur. In this paper, we try to simultaneously address
the computational (computational complexity, high dimen-
sional parameter space) and negative transfer challenges.
To do so, we propose a regularized pairwise modeling
approach for MGCP models that has excellent scalability
and minimizes the negative transfer of knowledge between
uncorrelated outputs. The proposed approach is based on
distributing MGCP estimation through bivariate GP sub-
models which are individually estimated. Predictions are
then made through combining predictions from the bivari-
ate models within a Bayesian framework. Interestingly, pair-
wise modeling turns out to possess unique characteristics
which allows to tackle the challenge of negative transfer
through penalizing shared latent functions. The modeling
framework is generic in terms of the choice of the kernel
function and can scale to arbitrarily large datasets by par-
allelization. We also provide statistical guarantees for the
proposed method, extent our method to separable molding
cases and demonstrate its advantageous features through
numerical studies. The numerical studies illustrate that we
can (1) achieve similar prediction performance as the full
multivariate approach when the output dimension is low,
(2) outperform the full multivariate approach, with only
a fraction of its computational needs, when the output
dimension is high, (3) outperform the full multivariate ap-
proach when some functions are uncorrelated even when
the output dimension is low.

One important extension of this model lies in the domain
of functional graphical models. In such models, nodes are
functions rather than random variables. In fact, and since
a GP itself is an undirected graphical model, the MGP
represents a fully connected undirected functional graphical
model where each node represents an output. In our pair-
wise approach, we are encouraging independence between
pairs of functions through our regularization framework.
However, an interesting extension would be to extend this
regularization framework, to build conditional indepen-
dence amongst functions in a similar sense to Lemma 1. The
main challenge however remains in providing a mapping
between the covariance matrix and the precision matrix
which control conditional independence between the out-
puts. We will work along this line and report the results in
the future.
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APPENDIX A
In this appendix we prove the following Lemmas from
Section 3.4:

Lemma 1. (Multivariate) Given that pr(y|X,θ) =
N (0P ,Ω

−1), then Ωij = 0 if and only if the multivariate
Gaussian random vectors yi and yj are conditionally
independent, i.e. cov(yci , y

c′

j |ÿ) = 0 for every c ∈ {1, .., pi} and
c′ ∈ {1, .., pj}.

Lemma 2. (Bivariate) Given that pr(yi,yj |X1,X2,θ
′) =

N
(

0pi+pj ,

(
Ωii Ωij

Ω>ij Ωjj

)−1)
, then Ωij = 0 if and only

if, the multivariate Gaussian random vectors yi and yj are
independent, i.e. cov(yci , y

c′

j ) = 0 for every c ∈ {1, .., pi} and
c′ ∈ {1, .., pj}.

Proof. We first prove Lemma 2 and deduce Lemma 1
accordingly. Let Cyi,yj denote the covariance between

the random vectors yi and yj , where
(

Ωii Ωij

Ω>ij Ωjj

)
=(

Cyi,yi Cyi,yj

C>yi,yj
Cyj ,yj

)−1
= cov(yi,yj)

−1. Using the inverse

variance Lemma, we have that
(

Ωii Ωij

Ω>ij Ωjj

)
=

(
C−1yi,yi

+H>2 cov(yj |yi)−1H2 −H>2 cov(yj |yi)−1
−cov(yj |yi)−1H2 cov(yj |yi)−1

)
,

(18)
where H2 = C>yi,yj

C−1yi,yi
and cov(yj |yi) =

Cyj ,yj
− C>yi,yj

C−1yi,yi
Cyi,yj

. We now have that
Ωij = −H>2 cov(yj |yi)−1 = −C−1yi,yi

Cyi,yj
cov(yj |yi)−1.

However, since cov(yi,yj)
−1 is positive definite then

both Cyi,yi and cov(yj |yi) are positive definite and thus
Ωij = 0 if and only if Cyi,yj = 0.

To prove Lemma 1, we consider the random vectors
yi, yj and ÿ where ÿ = {y}/{yci , yc

′

j }. Now replace yi
by ÿ and replace yj by the partitioned vector [y>i ,y

>
j ]>.

Following (18), we observe that Ωjj = cov(yi,yj |ÿ)−1. By
applying the inverse variance Lemma again, but this time
to cov(yi,yj |ÿ)−1 instead of cov(yi,yj)

−1 we have that
Ωjj = cov(yi,yj |ÿ)−1 =

(
H3 −H>1 cov(yj |yi, ÿ)−1

−cov(yj |yi, ÿ)−1H1 cov(yj |yi, ÿ)−1

)
, (19)

where H3 = cov(yi,yi|ÿ)−1 + H>1 cov(yj |yi, ÿ)−1H1

and H1 = cov(yi,yj |ÿ)>cov(yi,yi|ÿ)−1. Then following
Lemma 2, the off-diagonal block is zero in this case, if and
only if the multivariate Gaussian random vectors yi and yj
are conditionally independent where cov(yci , y

c′

j |ÿ) = 0 for
every c ∈ {1, .., pi} and c′ ∈ {1, .., pj}.

APPENDIX B
In this appendix we expand on ∂Cij/∂θ

(n)
ij from Section 4.1.

Recall that θ(n)ij ∈ θ>ij = {θ>fij ,σ
>
ij}>, Cij = Cfij ,fij + Σij

and Λqi is a D × D positive definite diagonal matrix
allowing different length scales for each dimension. For

instance if D = 2 then Λqi =

(
ν2qi(1) 0

0 ν2qi(2)

)
. We first

expand on ∂Cii/∂θ
(n)
ij , where, as shown in Section 4.1,

the covariance of the marginal process is covfii(x,x
′) =∑

q={0,i} ξ
2
qα

2
qiexp(− 1

4d
>Λqid) =

∑
q={0,i} ξ

2
qα

2
qiexp

(
−

1
4

∑D
c=1 d

2
(c)ν

2
0i(c)

)
for c ∈ {1, ..., D}.

∂covfii
∂ξ20

= 2ξ0α
2
0iexp(−1

4
d>Λ0id);

∂covfii
∂α2

0i

= 2ξ20α0iexp(−1

4
d>Λ0id);

∂covfii
∂ν20i(c)

= −1

2
ξ20α

2
0id

2
(c)ν

2
0i(c)exp(−1

4
d>Λ0id);

∂covfii
∂σi

= 2σiτijτx,x′ .

We exclude ∂covf
ii

∂ξ2i
, ∂covf

ii

∂α2
ii

and ∂covf
ii

∂ν2
ii(c)

due to similarity
with their counterparts above. Now when i 6= j, we have
that covfij(x,x

′) = ξ20 ω̃
0
ijexp(− 1

2d
>Φ0

ij
−1
d) where ω̃0

ij =

2
D
2 α0iα0j |Λ0i|

1
4 |Λ0j |

1
4 /|Λ0i + Λ0j |

1
2 , and Φq

ij
−1

= (Λ−1qi +

Λ−1qj )−1. Let c′ = {1, ..., D}/{c} then

∂covfij
∂ξ20

= 2ξ0ω̃
0
ijexp(−1

2
d>Φ0

ij
−1
d);

∂covfij
∂α2

0i

= ξ202
D
2 α0j

|Λ0i|
1
4 |Λ0j |

1
4

|Λ0i + Λ0j |
1
2

exp(−1

2
d>Φ0

ij
−1
d);

∂covfij
∂ν20i(c)

= B̄ξ202
D
2 α0iα0jexp(−1

2
d>Φ0

ij
−1
d)+

ξ202
D
2 α0iα0j

|Λ0i|
1
4 |Λ0j |

1
4

|Λ0i + Λ0j |
1
2

¯̄B;

¯̄B = −d2(c)
ν0i(c)ν

4
0j(c)

(ν20i(c) + ν20j(c))
2

;

B̄ =



ν0i(c)|Λ0j |
1
4

(
1
2

∏
c′
ν20i(c′)|Λ0i|−

3
4 |Λ0i + Λ0j |

1
2

− |Λ0i|
1
4 ν0i(c)|Λ0i + Λ0j |−

1
2
∏
c′

(ν20i(c′) + ν20j(c′))
)

|Λ0i + Λ0j |


We also exclude

∂covf
ij

∂α2
0j

and
∂covf

ij

∂ν2
0j(c)

due to similarity with
their counterparts above.

APPENDIX C

In this appendix we prove the following theorem from
Section 4.2:

Theorem 1. Suppose that ξ0 = 0, then the predictive distribution
of the bivariate model at any new input x0 ∈ X reduces to that of
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a univariate model where pr(yi(x0)|yij) = pr(yi(x0)|yi) and
pr(yj(x0)|yij) = pr(yj(x0)|yj) such that

pr(yi(x0)|yij) = N
(
C>fi,f0

i
Ωiiyi, Cf0

i ,f
0
i
+

σ2
i −C>fi,f0

i
ΩiiCfi,f0

i

)
pr(yj(x0)|yij) = N

(
C>fj ,f0

j
Ωjjyj , Cf0

j ,f
0
j
+

σ2
j −C>fj ,f0

j
ΩjjCfj ,f0

j

)
where for c ∈ {i, j}, Ωcc = (Cfc,fc + σ2

cIpc)−1 ∈ Rpc×pc ,
Cfc,f0

c
= [covfcc(x0,xc1), ..., covfcc(x0,xcpc)]>,

Cf0
c ,f

0
c

= covfcc(x0,x0) and covfcc(x,x
′) =

ξ2c
∫∞
−∞Kcc(u)Kcc(u− d)du.

Proof. Based on (9), ξ0 = 0 implies that, for i 6= j,
covfij(x,x

′) = ξ20
∫∞
−∞K0i(u)K0j(u − d)du = 0 for ev-

ery d. Therefore, we have that Cij = Cfij ,fij + Σij =(
Cfi,fi 0pi×pj
0pi×pj Cfj ,fj

)
+

(
σ2
i Ipi 0
0 σ2

j Ipj

)
. Applying (3) under

a bivariate setting we we have that

pr(yi(x0)|yij) = N
(
C>fij ,f0

i
C−1ij yij , Cf0

i ,f
0
i
+

σ2
i −C>fij ,f0

i
C−1ij Cfij ,f0

i

)
.

(20)

Recall, Cfij ,f0
i

= [C>
fi,f0

i
,C>

fj ,f0
i
]> where

C>
fi,f0

i
= [covfii(x0,xi1), ..., covfii(x0,xipi)]

> and

Cfj ,f0
i

= [covfij(x0,xj1), ..., covfij(x0,xjpj )]>. However,
since covfij(x,x

′) = 0 for i 6= j then Cfj ,f0
i

= 0>pj , therefore

C>fij ,f0
i
C−1ij yij = [C>fi,f0

i
,0pj ]×(

(Cfi,fi + σ2
i Ipi)

−1 0pi×pj
0pi×pj (Cfj ,fj + σ2

j Ipj )−1

)
[y>i ,y

>
j ]>

= C>fi,f0
i
Ωiiyi

C>fij ,f0
i
C−1ij Cfij ,f0

i
= [C>fi,f0

i
,0pj ]×(

(Cfi,fi + σ2
i Ipi)

−1 0pi×pj
0pi×pj (Cfj ,fj + σ2

j Ipj )−1

)
[C>fi,f0

i
,0pj ]>

= C>fi,f0
i
ΩiiCfi,f0

i

Similarly, we can obtain the proof pr(yj(x0)|yij).

APPENDIX D
In this appendix we prove the following theorems from
Section 4.2:

Theorem 2. If z2 = max{|P′′λ(|ξ∗0 |)| : ξ∗0 6= 0} → 0,
then there exits a local minimzer θ̂ij for `P(θij),
such that ||θ̂ij − θ∗ij || = O(r−1p + z1), where
z1 = max{P′λ(|ξ∗0 |) : ξ∗0 6= 0} .

Theorem 3. Assume that ξ∗0 = 0 and the parameters
θ̈ij = {θij}/{ξ0} satisfy rp consistency in theorem 2. Then if
lim inf
p→∞

lim inf
ξ0→0+

1
λP
′
λ(ξ0) > 0, λ → 0 and pλ/rp → ∞ as

p→∞, we have that lim
p→∞

pr(ξ̂0 = 0) = 1.

Proof. First we note that for the the negative log-likelihood
(`′) and penalty function (P′λ(|ξ0|)) the “′” notation on
a function implies a derivative. As previously mentioned
the MLE for the unpenalized likelihood `(θij) is rp con-
sistent where rp is a sequence such that rp → ∞ as
p → ∞. Therefore, we have that r−1p `′(θij) = O(1)

and ||θ̂ij − θ∗ij || = O(r−1p ) [48], [49]. This result is a
direct extension of the well known root-p consistency of
the MLE based on independent and identically distributed
normal observations, which holds under the usual regular-
ity conditions (please refer to chapter 7 of [48]). In theo-
rems 2 and 3 we aim to study the asymptotic properties
of the penalized likelihood `P(θij) = `(θij) + Pλ(|ξ0|) .
The proofs provide similar results as in [51], but defined
within our model specifications and based on dependent
observations. To be consistent with [51] notation, instead
of minimizing the negative log-likelihood we maximize the
log-likelihood whose form follows `P+(θij) = −`P(θij) =
−`(θij) − Pλ(|ξ0|) = `+(θij) − Pλ(|ξ0|). Also we follow
their convention by multiplying by p the penalty function,
i.e. `P+(θij) = `+(θij) − pPλ(|ξ0|). To prove theorem 2, we
need to show that for any given ε > 0 there exists a large
constant G such that

pr
(

sup
||g||=G

`P+(θ∗ij + ρg) < `P+(θ∗ij)
)
≥ 1− ε , (21)

where ρ = r−1p + z1. This equation implies that, with a
probability at least 1 − ε, there exists a local maximum in
the ball {θ∗ij + ρg : ||g|| ≤ G}, where the local maximizer
θ̂ij satisfies ||θ̂ij − θ∗ij || = O(ρ) = O(r−1p + z1). Expanding
on `P(θ∗ij + ρg)− `P(θ∗ij), we have that

`P+(θ∗ij + ρg)− `P+(θ∗ij) =
[
`+(θ∗ij + ρg)− `+(θ∗ij)

]
− p

[
Pλ(|ξ∗0 + ρgξ0 |)− Pλ(|ξ∗0 |)

]
,

(22)

where gξ0 denotes the element in g corresponding to ξ0. Un-
der the assumption that Pλ(|ξ0|) ≥ 0 and Pλ(0) = 0, and if
ξ∗0 = 0 then `P+(θ∗ij+ρg)−`P+(θ∗ij) ≤ `+(θ∗ij+ρg)−`+(θ∗ij)
as Pλ(|ξ∗0 + gξ0 |) − Pλ(|ξ∗0 |) = Pλ(|ρgξ0 |) ≥ 0. Using a
Taylor expansion we have that `+(θ∗ij + ρg) = `+(θ∗ij) +

ρ`′+(θ∗ij)
>g − ρ2

2 g
>I(θ∗ij)g{1 + o(1)} where `′+(θ∗ij)

> is the
gradient vector of `+ evaluated at θ∗ij and I is a finite pos-
itive definite information matrix at θ∗ij . Therefore, through
applying a Taylor expansion also on Pλ(|ξ∗0+ρgξ0 |), we have
that
`P+(θ∗ij + ρg)− `P+(θ∗ij)

≤
[
ρ`′+(θ∗ij)

>g − ρ2

2
g>I(θ∗ij)g{1 + o(1)}

]
− p

[
ρP′λ(|ξ∗0 |)sign(ξ∗0)gξ0 + ρ2P′′λ(|ξ∗0 |)g2ξ0{1 + o(1)}

]
.
(23)

Note that r−1p `′(θij) = O(1), and the penalty form is
similar to that of [51], thus the rest of the proof is identical
to theorem 1 in [51]. Regarding theorem 3, we need to show
that lim

p→∞
pr(ξ̂0 = 0) = 1 if ξ∗0 = 0. First we have that

∂`P+(θij)

∂ξ0
=
∂`+(θij)

∂ξ0
− pP′λ(|ξ0|)sign(ξ0). (24)
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Following a first order Taylor expansion, (24) can be written
as

∂`P+(θ̂ij)

∂ξ0
=
∂`+(θ∗ij)

∂ξ0
+
∑
n

∂2`+(θ∗ij)

∂ξ0∂θ
(n)
ij

(θ̂
(n)
ij − θ

∗(n)
ij )

+
∑
n

∑
n′

∂3`+(θ∗∗ij )

∂ξ0∂θ
(n)
ij θ

(n′)
ij

(θ̂
(n)
ij − θ

∗(n)
ij )(θ̂

(n′)
ij − θ∗(n

′)
ij )

− pP′λ(|ξ̂0|)sign(ξ̂0),
(25)

for some θ∗∗ij ∈ (θ∗ij , θ̂ij). However, since `+(θ̂ij) is of
order O(rp) and given that ||θ̂ij − θ∗ij || = O(r−1p ) we have
∂`P+(θ̂ij)

∂ξ0
= λp

[
− 1

λP
′
λ(|ξ̂0|)sign(ξ̂0) + O

(
rp
λp

)]
. From here

and since, lim inf
p→∞

lim inf
ξ0→0+

1
λP
′
λ(ξ0) > 0 and pλ/rp → ∞,

then the sign of ∂`P+(θ̂ij)
∂ξ0

is only determined by the sign of

ξ̂0. Thus, ∂`P+(θ̂ij)
∂ξ0

< 0 for 0 < ξ̂0 < ε and ∂`P+(θ̂ij)
∂ξ0

> 0 for
−ε < ξ̂0 < 0 for some small ε, which is a sufficient condition
to prove theorem 3.
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